
MCS
My Customizable Server

 My

 Customizable

 Server

Giorgio Calderone
IFC - INAF Palermo, Italy

Luciano Nicastro

IASF - INAF Bologna, Italy

June 11, 2011
Ver. 0.3.3-alpha3

http://ross.iasfbo.inaf.it/mcs

This page intentionally left blank.

CONTENTS CONTENTS

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 MCS features . 2

1.2.1 Multithreading applications . 3
1.2.2 Network applications . 3
1.2.3 The MCS data abstraction layer 3
1.2.4 Database access . 3
1.2.5 FITS file access . 3
1.2.6 Application server . 4
1.2.7 Other facilities . 4
1.2.8 Facilities included in previous releases 4

1.3 Using MCS from other programming languages 5
1.4 License issues . 6
1.5 Some simple examples . 6
1.6 About this document . 7

2 MCS installation and usage 11
2.1 Dependencies . 11
2.2 Installing MCS . 12

2.2.1 Configure . 12
2.2.2 Compile . 13
2.2.3 Install . 13

2.3 Troubleshooting . 13
2.3.1 Problems with Python . 14

2.4 Using the MCS library . 14
2.4.1 Include MCS header . 14
2.4.2 Compile and link . 14

3 Developer’s manual 15
3.1 The data abstraction layer . 15

3.1.1 The Data class . 15
3.1.2 The Record class . 16
3.1.3 The RecordSet class . 17

3.2 Threads and synchronization . 18
3.2.1 The Thread class . 18
3.2.2 The Synchro class . 19

3.3 Database access . 20
3.3.1 The DBConn class . 20
3.3.2 The Query class . 21

i

CONTENTS CONTENTS

4 The MCS server 22
4.1 Architecture of an MCS based system . 22

4.1.1 Database server . 22
4.1.2 Application server (MCS based) 22
4.1.3 External programs . 22
4.1.4 Clients . 23

4.2 The MCS server . 23
4.2.1 Comparison with a “shell” . 23
4.2.2 Temporal sequence of events during a connection 24
4.2.3 Base commands . 25
4.2.4 Grants . 28

4.3 Running the MCS server . 28
4.3.1 The configuration file . 28

4.4 Customize the MCS server . 28
4.4.1 Adding external programs . 28
4.4.2 Adding SQL scripts . 28
4.4.3 Adding BATCH scripts . 28
4.4.4 Adding custom commands . 28

5 Connecting to an MCS service 29
5.1 The Client class . 29
5.2 User environment . 29
5.3 Login . 30
5.4 Logout . 30

6 Using MCS with other programming languages 31
6.1 Interface usage and naming convention . 31
6.2 Constructors . 32
6.3 Copying constructors . 32
6.4 Destructors . 33
6.5 Methods . 33
6.6 Error handling . 33
6.7 The C interface . 34
6.8 The Fortran interface . 36
6.9 The PHP interface . 36
6.10 The Python interface . 36
6.11 The IDL interface . 37

ii

1 INTRODUCTION

1 Introduction

MCS is a collection of high level C++ classes and functions designed to easily implement
the following kind of applications:

• multi-thread applications;

• network applications (through TCP);

• database (MySQL) applications;

• information servers;

• VOTable1 and/or FITS access.

Aside from these tasks MCS provides several other features that can be used to solve
common problems when developing applications in C++. The greatest advantage in using
MCS is that it exploits the C++ capabilities in developing high-level tasks but does not
require the developer to deal with networking, threading, database code, or in general
low-level code. Furthermore some repetitive tasks like converting data between different
types or creating and manipulating dynamically allocated data structures can be easily
accomplished using the MCS classes.

MCS has been developed on the GNU/Linux platform and it is released under the
GPL license. It can be freely downloaded from the site http://ross.iasfbo.inaf.it/mcs. This
site contains all news, updates, documentation and downloadable software packages. The
site is still under development, so check for updates.

The MCS project was developed at IFC-INAF (Palermo, Italy) by Giorgio Calderone
and Luciano Nicastro (now at IASF-INAF, Bologna).

1.1 Motivations

Information services can be separated in two classes: those in which the information pro-
duced are addressed to humans, and those in which they are meant for the use by other
software applications. In the former case there is a quite standardized way to develop such
an information service, essentially based upon a web server, a database server, a scripting
language and HTML pages. In the latter case instead there is no such standardization, and
this is one of the reasons why MCS (My Customizable Server) was implemented. Thanks
to its communication protocol indeed MCS can be used to easily develop information ser-
vices that can be accessed from other software applications. Furthermore MCS provides
several mechanisms to customize the server behaviour and integrate already existing appli-
cations. So MCS is an attempt to standardize the developing of these kind of applications.

1through the VOTPP package

1

1.2 MCS features 1 INTRODUCTION

By comparison MCS and its protocol are for software applications what a web server and
HTTP are for the WWW: a simple way to access data.

Another reason that drove the development of MCS is the need in today’s astronomical
projects of computational systems capable to store and analyze large amounts of scientific
data, to effectively share data with other research Institutes and to easily implement infor-
mation services to present data for different purposes (scientific, maintenance, outreach,
etc.). Due to the wide scenario of astronomical projects there isn’t yet a standardized ap-
proach to implement the software needed to support all the requirements of a project. The
new approach we propose here is the use of a unified model where all data are stored into
the same database becoming available in different forms, to different users with different
privileges.

Finally, MCS has been developed with the goal to simplify C++ developing through
the use of high-level classes that relieve the developers from repetitive tasks. One of the
most remarkable example of this higher level abstraction layer are the Data, Record and
RecordSet classes (see Sect. 3.1).

MCS is the evolution of a software named SDAMS (SPOrt Data Archiving and Man-
agement System) that was implemented to support the SPOrt experiment, an Italian Space
Agency (ASI) funded project which has been “frozen” because of the problems with the
Columbus module on the International Space Station. At that time the approach used
to build SDAMS seemed to be easily portable to other experiments so its features and
usability have been generalized until it became the actual MCS . In fact it is now used to
manage the data collected by the optical and infrared cameras ROSS/REMIR mounted on
the robotic telescope REM at La Silla, Chile. Although MCS has been developed to build
an information server to support an astronomical project, it is completely general purpose
and can be used in the same manner in many other kind of projects.

1.2 MCS features

The MCS classes can be used to simplify application development in a variety of situations.
Anyway we have to warn the reader about the fact that the MCS library is not supposed to
be used as a system library replacement: if your application needs a low level control upon
processes, threads, sockets, database connections, data conversions and memory allocation
you simply have to use the system libraries. Only in this way indeed you can dispose of
all the possibilities offered by the operative systems and the C++ language. However this
kind of applications are just a minor part of all the applications, thus if your application
needs to deal with this topics from a higher level then you can use the higher-level MCS
classes instead of the low-level system routines.

The tasks that can be accomplished by the MCS classes can be subdivided in the
following categories:

2

1.2 MCS features 1 INTRODUCTION

1.2.1 Multithreading applications

The Thread class can be used to create threads, that are separate path of execution run-
ning in the same process memory space. To create a separate thread you simply have to
derive the Thread and implement the run method, which will became the body of execu-
tion of the separate thread. Synchronization between separate threads can be accomplished
using the Synchro class. This class is also used as parent class for other classes such as
Record, which acts as a shared resource between different threads.

1.2.2 Network applications

MCS provides several classes to develop network applications. The HostInfo class can be
used to retrieve information about a network host, such as its IP address, while the Net-
Interface class can be used to retrieve information about the network interfaces installed
on a computer. The Socket class is capable to open TCP sockets against remote hosts
and send data through it. The ServerSocket can be used to open a server socket, that is
a socket that waits on a specified port for incoming user connections. This class has been
used to implement the MCS server, while Socket class has been used to implement the
Client class which can connect to an MCS server.

1.2.3 The MCS data abstraction layer

The Data, Record and RecordSet classes can be used as a high-level abstraction layers
upon data. Basically these classes offer a unique interface to access data from different
sources (database, files, information sent by the MCS server, etc.). Furthermore they
provide facilities to convert data between different formats, serialize data structures, im-
plement thread-safe queues etc... These classes are intensively used to pass data between
MCS classes. See Sect. 3.1.

1.2.4 Database access

The DBConn and Query classes provide the possibility to connect to a database server
(actually only MySQL2 is supported but other database server may be supported in the
future) and execute queries on it. Data can be read from the database and written on it
using the MCS data abstraction layer.

1.2.5 FITS file access

The FITSReader class can be used to read a FITS3 file. Data will be read through the
data abstraction layer.

2http://www.mysql.com
3http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html

3

1.2 MCS features 1 INTRODUCTION

1.2.6 Application server

An application server is an application that provides a service over the network. Typically
a user connects to the service and issues a query that will be executed on the server, then
the resulting data will be sent back to the user using a dedicated communication protocol.
This process is very similar to the request of a web page. The MCS library provides an
already working multithreaded TCP server like many others, but the MCS one has two
interesting feature:

• the server behaviour is customizable (that’s the reason for its name), that is the kind
of queries that can be executed can be tuned on developer’s needs.

• the communication protocol is perfectly integrated with the MCS data abstraction
layer, so that data sent back from the server are in a well defined format (not like
those of a web page) and thus it is very simple to implement an application that can
access the service.

1.2.7 Other facilities

MCS has also a lot of minor features that help the developers to deal with common
problems. Two of these facilities are:

• CommandParser: a class to parse a command line, with option and arguments
support;

• Conf : a class to read and write configuration files, like the Windows INI files.

1.2.8 Facilities included in previous releases

A number of other facilities had been part of MCS in previous releases. Now these
facilities had become separate projects because they don’t depend upon MCS (except for
VOTPP).

MyRO (My Record Oriented privilege system)
MyRO 4 is the name we use to refer to a technique used to implement a database privilege
system on a per-record basis. Actually all database servers implement privilege systems
based on tables or columns, that is if a user has grants to access a certain table (or a table
column) he can access all records of that table (or that table column). MyRO lets you
specify grants on a record level so a user can access only those records it is allowed to. A
consequence of this is that different users reading the same table will see different records.
The grants mechanism provided by MyRO is similar to that of a Unix file system, that
is each record has an “owner” and a “group” to which the record belongs. Furthermore it
has three sets of permissions (for the owner, the group, and all other users) that specify if

4http://ross.iasfbo.inaf.it/myro

4

1.3 Using MCS from other programming languages 1 INTRODUCTION

that record can be read and/or written. The software components of MyRO are a Perl
script used to perform administrative tasks, a C library and a set of MySQL functions.
The process of protecting tables is completely transparent to the final user, that is once
MyRO has been installed and configured by the database administrator users can access
the database without even know that MyRO is working.

Astronomy related facilities
The most important Astronomy facility is the possibility to read VOTable5 through the
VOTPP6 (VOTable C++ Parser) library. VOTable files can be read using the Parser Stream
or the Parser Tree class, that is using the SAX model (read one node at a time) or the
DOM model (read the entire file and build a browseable tree in memory). Note that
VOTPP provides a distinct class for each possible VOTable node, so that the C++ code
will be very close to the XML counterpart.

Another important Astronomy feature is DIF 7 (Dynamic Indexing Facility) which
integrates the HTM8 and HEALPix9 indexing facilities inside database tables. This means
that a query involving spherical coordinates (both in 2D or 3D environments) can take
advantage from the database built-in indexing mechanisms to speed-up execution of a
query.

1.3 Using MCS from other programming languages

MCS also provides an interface to use some of its classes from programming languages
other than C++. The features exported through this interface are:

• the possibility to use the database related classes together with the data abstraction
layer;

• the possibility to connect to an MCS server.

Due to the fact that not all languages support the object-oriented programming paradigm
what is exported are just functions. An interesting feature of these functions is that they
all have the same names in all languages.

Supported programming languages are:

• C;

• Fortran 77;

• PHP;

5http://www.ivoa.net/Documents/latest/VOT.html
6http://ross.iasfbo.inaf.it/votpp
7http://ross.iasfbo.inaf.it/dif
8http://www.sdss.jhu.edu/htm/
9http://healpix.jpl.nasa.gov

5

1.4 License issues 1 INTRODUCTION

• Python;

• IDL.

Support for Java and Perl will be added soon.

1.4 License issues

MCS is distributed free of charge and according to the GNU General Public License. This
means that you may copy this software and distribute it free of charge, as well as modify
it provided that you retain this note and mention the authors name. The GNU General
Public License comes with this package in a file named COPYING, for more information
about this license visit http://www.gnu.org.

1.5 Some simple examples

The directory share/examples in the MCS package contains several examples that can
be compiled and executed once MCS has been installed. To compile the examples simply
execute make in that directory.

This section is aimed at giving a first sight at the code you should deal with if you decide
to use MCS . Some aspects may appear unclear here but these are just examples. Check
the following sections for further and more complete references.

In the first example (see List. 1) we’ll show how to set and retrieve information from a
Data object, which is the object upon which is built the entire data abstraction layer.
Note in particular how the Data object takes care of all the necessary conversions between
different data type.

In the second example (see List. 2) we’ll execute a query on a database table, and print
the result on standard output. We’ll also show how to retrieve data through the data
abstraction layer which, in this case, is implemented by the Query class (from line 15 to
the end).

In the third example (see List. 3) we’ll build the simplest MCS application server, with-
out any customization but with all base features available (authentication support, base
commands, database access, file download and upload, access to external programs).

Finally in our fourth example (see List. 4) we use the Client class to connect to a running
MCS server (like the one in the previous example), issue some commands to upload and
download a file and finally execute a query on the remote database and print the result on
standard output. You should notice that lines from 24 to the end are exactly the same as
those in listing 2, lines from 15 to the end. This is due to the fact that both the Client
and Query classes implement the data abstraction layer, thus these classes provide the
same interfaces to retrieve data, even if in one case data are being read from a database,
and in the other data have been packed, sent through the network and then unpacked.

6

1.6 About this document 1 INTRODUCTION

1 #include <mcs . hh>
2 using namespace mcs ;
3

4 int main () {
5 Data d(STRING, 2 0) ;
6

7 //Assign an i n t e g e r .
8 d = 12 ;
9 int i = d . i v a l () ;

10

11 //Ass igning a f l o a t i n g po in t number .
12 d = 1 . 2 ;
13 f loat f = d . f v a l () ;
14

15 //Assign a date / time data .
16 d = "2007-03-19 13:30" ;
17 t ime t t = d . t v a l () ;
18

19 //Assign a s t r i n g
20 d = "My name is Giorgio" ;
21 string s = d . s v a l () ;
22 }

Listing 1: Source of data1.cc

1.6 About this document

This document gives an overview of the MCS facilities and focuses on some of the basic
topics of MCS . It is divided in several sections so that you can read only the information
you need:

• MCS installation and usage: it provides information about the configuration
of the package against all optional dependencies, the compilation and installation,
furthermore it shows how to link against the MCS library;

• Developer’s manual: it introduces the reader to some of the MCS basic concepts
like the data abstraction layer, thread handling, database connections, etc., and
focuses on various techniques to develop applications with MCS ;

• The MCS server: it shows how to implement, customize, execute and administrate
an MCS server;

• Client’s manual: it shows how to connect to an MCS server;

• Using MCS with other programming languages: describes all the available
interfaces to connect to MCS through other languages;

7

1.6 About this document 1 INTRODUCTION

1 #include <mcs . hh>
2 using namespace mcs ;
3

4 int main () {
5 //Connect to the database s e r v e r
6 DBConn db ;
7 db . connect ("mcstest" , "mcstest" , "test" ,"192.168.1.5") ;
8

9 //Execute a query through the opened connect ion
10 Query qry(&db) ;
11 qry . prepare ("SELECT * FROM mcstest") ;
12 qry . execute () ;
13

14 //Loop through the r e s u l t i n g record s e t
15 while (! qry . e o f ()) {
16

17 //Get a r e f e r ence to curren t record
18 Record& rec = qry . r ec () ;
19

20 //For each f i e l d p r i n t i t s va lue
21 for (int i =0; i<r e c . count () ; i++)
22 cout << r e c [i] . s v a l () << "\t" ;
23 cout << endl ;
24

25 //Move to next record
26 qry . setNext () ;
27 }
28 }

Listing 2: Source of db1.cc

1 #include <mcs . hh>
2 using namespace mcs ;
3

4 int main (int argc , char ∗argv []) {
5 // S ta r t the s e r v e r daemon
6 mcsStart ("simplest") ;
7 }

Listing 3: Source of server1.cc

8

1.6 About this document 1 INTRODUCTION

1 #include <mcs . hh>
2 using namespace mcs ;
3

4 int main (int argc , char ∗argv []) {
5 //Connect to the MCS se r v e r .
6 Cl i en t c l i ("./" , "localhost" , 6523) ;
7

8 //Perform au t h en t i c a t i on .
9 c l i . l o g i n ("mcstest" , "mcstest" , "test") ;

10

11 //Upload a f i l e
12 c l i . exec ("PUT myfile") ;
13

14 //Download a f i l e
15 c l i . exec ("GET myfile") ;
16

17 //Execute a query on remote database
18 c l i . exec ("QRY SELECT * FROM mcstest") ;
19

20 // Ret r i eve the r e s u l t s e t .
21 c l i . exec ("QRES") ;
22

23 //Loop through the r e s u l t i n g record s e t
24 while (! c l i . e o f ()) {
25

26 //Get a r e f e r ence to curren t record
27 Record& rec = c l i . r e c () ;
28

29 //For each f i e l d p r i n t i t s va lue
30 for (int i =0; i<r e c . count () ; i++)
31 cout << r e c [i] . s v a l () << "\t" ;
32 cout << endl ;
33

34 //Move to next record
35 c l i . setNext () ;
36 }
37 }

Listing 4: Source of client1.cc

9

1.6 About this document 1 INTRODUCTION

• libmcs reference10: technical description of the MCS library implementation. It
is produced using Doxygen11.

The MCS documentation is work in progress, so you should always look for the last version.
If you find any errors we’d appreciate if you could send us an email12. A users’ mailing list
is being prepared, so please contact us if you are a potential user. Thanks in advance.

10available only in HTML format at: http://ross.iasfbo.inaf.it/mcs
11http://www.stack.nl/∼dimitri/doxygen/
12Giorgio Calderone <gcalderone@ifc.inaf.it>, Luciano Nicastro <nicastro@iasfbo.inaf.it>

10

2 MCS INSTALLATION AND USAGE

2 MCS installation and usage

The MCS software library is distributed in a tar.gz package. You can find the latest
version at http://ross.iasfbo.inaf.it/mcs. To unpack the package simply issue the command:

tar xvzf mcs-x.y.z.tar.gz

where x, y, z are the version number (namely the first number is the major revision, the
second number is the version, and third number is the subversion). A directory named
mcs-x.y.z will be created containing all sources code as well as the documentation and
the scripts needed to install MCS . Before installing MCS you should check that all
mandatory dependencies are satisfied (see Sect. 2.1), then you must follow a three step
procedure: Configure, Compile and Install.

2.1 Dependencies

The only mandatory packages required by MCS are:

• Perl (http://www.perl.com, version 5.8.5 or later);

• PCRE (http://www.pcre.org, version 6.4 or later);

• cURL (http://curl.haxx.se, version 7.12 or later).

Typically these packages are already installed in the system, if this is not the case you
should install them before continuing. However there are a lot of MCS facilities which
depend on other optional packages:

• MySQL (http://www.mysql.com/, version 5.1 or later): used to connect and manage
a database, to handle client authentications and grants;

• Openssl (http://www.openssl.org/, version 0.9.7 or later): used to implement secure
connections through sockets;

• CFITSIO (http://www.cfitsio.org/, version 0.9.7 or later): used to read data in FITS
format;

• IDL (http://www.ittvis.com/idl/, version 5.6 or later): used to implement the IDL
to MCS interface;

• PHP (http://www.php.net/, version 5.0.5 or later): used to implement the PHP to
MCS interface;

• Python (http://www.python.org/, version 2.3 or later): used to implement the Python
to MCS interface.

You can enable or disable the compilation of each facility with the corresponding
option of the configure script (see Sect. 2.2.1).

11

2.2 Installing MCS 2 MCS INSTALLATION AND USAGE

2.2 Installing MCS

2.2.1 Configure

Configuring MCS means checking your system for compatibilities, search for include files
and libraries, and finally produce all necessary Makefiles needed to compile MCS . This is
done automatically by the distributed configure script. Typically you can use this script
without any option, as follows:

./configure

Anyway configure has a lot of options and switches (type configure --help for a list)
to customize the compilation step. The options like with-PACKAGE=PATH can be used to
specify the path where the configure script should search to find that package (default is
/usr/local). Some of these options are specific to MCS :

• --prefix=PATH

the directory under which all include files, libraries and other files relative to MCS
will be installed, if this option is not used usr/local is assumed;

• --enable-debug, --disable-debug

if enabled then the ”-g” and ”-O0” flags will be added to the compiler command line;
these are needed to include debugging information in the library and to discard any
optimization. By default this option is disabled;

• --enable-all

by default all optional facilities are disabled, you can enable them with the relative
options (discussed below), or you can enable all of them with this option. Note also
that if you want to enable all option except, say, the interface to Python, you can
simply use the following arguments: configure --enable-all --disable-python.

• --with-pcre=PATH

if the PCRE package (which is mandatory) is not installed in a standard location
(typically /usr/local) then you can provide the correct path with this option;

• --with-curl=PATH

if the cURL package (which is mandatory) is not installed in a standard location
(typically /usr/local) then you can provide the correct path with this option;

• --enable-mysql, --disable-mysql, --with-mysql=PATH

enable or disable the compilation of MySQL facilities, by default this option is en-
abled;

• --enable-openssl, --disable-openssl, --with-openssl=PATH

enable or disable the compilation of Openssl facilities, by default this option is dis-
abled;

12

2.3 Troubleshooting 2 MCS INSTALLATION AND USAGE

• --enable-cfitsio, --disable-cfitsio, --with-cfitsio=PATH

enable or disable the compilation of CFITSIO facilities, by default this option is
disabled;

• --enable-idl, --disable-idl, --with-idl=PATH

enable or disable the compilation of IDL to MCS interface, by default this option is
disabled;

• --enable-php, --disable-php, --with-php=PATH

enable or disable the compilation of PHP to MCS interface, by default this option
is disabled;

• --enable-python, --disable-python, --with-python=PATH

enable or disable the compilation of Python to MCS interface, by default this option
is disabled;

There are several other options and switches available, for further documentation see the
INSTALL file.

2.2.2 Compile

To compile MCS , once the configure script has been correctly executed, simply issue
the command:

make

If you got errors while compiling check Sect. 2.2.1 and the INSTALL file.

2.2.3 Install

If MCS has been correctly compiled you can install with the command:

make install

If your account doesn’t have the permission to write in the path where it should be installed
then you’ll get an error. In this case you should login as “root” and retry.

2.3 Troubleshooting

In this section we show solution to the most common problems encountered while config-
uring and compiling MCS .

13

2.4 Using the MCS library 2 MCS INSTALLATION AND USAGE

2.3.1 Problems with Python

To build the Python to MCS interface the Python include files are required. These are
available in the Python source distribution or in the “Python devel” package of your
distribution.

• The header Python.h has not been found: a symbolic link named python must
point to the actual Python includes directory, and it must be located either in
/usr/include or /usr/local/include.

2.4 Using the MCS library

Once you have installed the MCS library (see Sect. 2.2) you can use it in your C++ code
as described here.

2.4.1 Include MCS header

All MCS classes and functions are defined inside the mcs namespace to avoid conflict with
other libraries you may use. To use the MCS facilities you must include the MCS header
in your C++ source code as follows:

#include <mcs.hh>

using namspace mcs;

To use the MCS library with other programming languages see Sect. 6.

2.4.2 Compile and link

The MCS package installs a script named mcs-config which can be used to retrieve
several information regarding the installation itself, for example the location of the include
files and of the libraries, as well as the list of the libraries to link to:

mcs-config --cflags

mcs-config --libs

For all other options type mcs-config --help. To compile and link a program (whose
source file is, say, myprog.cc) against the MCS library you can issue the commands:

cpp ‘mcs-config --cflags‘ -c myprog.cc

cpp -o myprog myprog.o ‘mcs-config --libs‘

or with a single command:

cpp ‘mcs-config --cflags‘ myprog.cc -o myprog ‘mcs-config --libs‘

Note that the single quotes are “reversed single quotes” (ASCII decimal code 96).

14

3 DEVELOPER’S MANUAL

3 Developer’s manual

This section is aimed at showing to the reader some of the MCS basic concepts like the
data abstraction layer, thread handling, database connections, etc., and focuses on various
techniques to develop applications with MCS . We will often refer to classes, methods and
function whose complete documentation can be found in the MCS library reference 13.

3.1 The data abstraction layer

The data abstraction layer is a set of classes aimed at providing a uniform access to data
coming from different sources, and to easily manipulate and transmit those data. Namely
the classes involved are Data, Record and RecordSet, with each one representing a
different level of data hierarchy.

3.1.1 The Data class

The first level corresponds to the Data class, which can be used to store a single data,
that is a number, a string, a date/time, a binary object, etc. The main feature of a Data
object is its capability of performing conversions between different types of data, that is
you can assign to a Data object different types of data, as in the following example:

1 //Create a Data o b j e c t
2 Data mydata (STRING, 2 0) ;
3

4 //Assign an i n t e g e r .
5 mydata = 12 ;
6

7 //Assign a f l o a t i n g po in t number .
8 mydata = 1 . 2 ;
9

10 //Assign a s t r i n g
11 s = "My name is Giorgio" ;

As you can assign different type of data to a Data object, you can also assign a Data
object value to different types of variable, as in the following example:

1 //Assign to an i n t e g e r v a r i a b l e
2 int i = mydata . i v a l () ;
3

4 //Assign to a f l o a t i n g po in t v a r i a b l e
5 f loat f = mydata . f v a l () ;
6

7 //Assign to a s t r i n g v a r i a b l e
8 string s = mydata . s v a l () ;

You should have noticed that in this case a simple assignment is not allowed, so you have to
call the appropriate *val() method of the Data class, in which the first character is i for

13http://ross.iasfbo.inaf.it/mcs

15

3.1 The data abstraction layer 3 DEVELOPER’S MANUAL

integers, f for single precision floating point numbers, s for strings, etc. Note however that
a Data object is not a “dynamic type” object (like those of other programming languages
such as Perl, PHP, IDL), indeed it always has a “base type” that determines the size of its
internal buffer and the behaviour of the different conversion routines (in the last example
the “base type” is a string 20 characters long). A consequence of this fact is that an
assignment can also lead to an error, just because the “base type” cannot change during
the use of the object and some conversions do not make sense. In our previous example,
assigning a string more than 20 characters long would have led to an error. Let’s examine
another case where an assignment could lead to an error:

1 //Create a Data o b j e c t wi th base type INT
2 Data mydata (INT) ;
3

4 mydata = 12 ; //Ok
5 mydata = 1 . 2 ; //Ok , w i l l be rounded to 1
6 mydata = 1 . 5 ; //Ok , w i l l be rounded to 2
7

8 mydata = "A string" ; //Error ! ! !
9 mydata = "123" ; //That i s c o r r e c t .

10

11 int i = mydata . i v a l () ; //Ok , i = 123
12 string s = mydata . s v a l () ; //Ok , s = ”123”

As you can see the assignment in line 8 doesn’t make any sense, you can’t assign a generic
string to an integer base type. On the other hand the assignment in line 9 is perfectly
allowed because that string can be converted to an integer. Finally, the last two assignment
are allowed, even if in the first case the variable will be set to a value of 123 as an
integer, whereas in the second the variable will be set to the string "123", whose memory
representation is quite different from the integer in the first case.

3.1.2 The Record class

On the second level of hierarchy there is the Record class which can be seen as a
dynamically-sized array of Data objects. Here the word “record” is meant in the sense
of a record in the Pascal language or the struct in C/C++; indeed a Record object can
contain any number of Data objects of any base type. Creating and populating a Record
is quite simple:

1 //Create a Record o b j e c t
2 Record rec ;
3

4 //Create some Data o b j e c t s
5 Data d1 (STRING, 2 0) ;
6 Data d2 (INT) ;
7 Data d3 (TIME) ;
8

9 //Give a name to the Data o b j e c t s
10 d1 . setName ("A_String") ;

16

3.1 The data abstraction layer 3 DEVELOPER’S MANUAL

11 d2 . setName ("An_Integer") ;
12 d3 . setName ("A_Float") ;
13

14 //Add the Data o b j e c t s to the Record o b j e c t s
15 r e c . addFie ld (d1) ;
16 r e c . addFie ld (d2) ;
17 r e c . addFie ld (d3) ;
18

19 //Now we can r e f e r to each Data o b j e c t us ing the syntax
20 //we would use wi th any C/C++ array
21 r e c [0] = "Hello" ;
22 r e c [1] = 123 ;
23 r e c [2] = 1 . 2 3 ;
24 Data& tmp = rec [0] ;
25

26 //We can a l s o r e f e r to a Data o b j e c t us ing i t s name .
27 string s = rec ["A_String"] . s v a l () ;
28 int i = rec ["An_Integer"] . i v a l () ;
29 f loat f = rec ["A_Float"] . f v a l () ;

As can be seen from the example a Record object can be used like a usual C/C++ array,
that is using square brackets([]). Another interesting feature which links the Data and
Record classes is the possibility to give a name to the Data object and use that name to
search the object inside a Record object (see line 27 in previous example).

3.1.3 The RecordSet class

The third level of hierarchy is the RecordSet class, which is a dynamically-sized container
of Record objects. It is not required that all contained objects have the same structure
(that is the same sequence of base type for Data objects). Using a RecordSet object is
quite similar to using a file handler, indeed there is a current Record object pointed by
a cursor (like a pointer to a record in a file) that can be moved forward and backward in
the file to search for the required data. The following example shows how to populate a
RecordSet object, and how to visit all the contained Record objects:

1 //Create a RecordSet o b j e c t
2 RecordSet r s e t () ;
3

4 // In s e r t the Record o b j e c t c rea t ed in the prev ious example
5 r s e t . i n s e r t (r e c) ;
6

7 // In s e r t o ther Record o b j e c t s as needed . . .
8 r s e t . i n s e r t (. . .) ;
9

10 // V i s i t a l l Record o b j e c t s
11

12 //To v i s i t a l l Record o b j e c t s we have to move to the f i r s t
13 //Record o b j e c t in the s e t
14 r s e t . s e t F i r s t () ;

17

3.2 Threads and synchronization 3 DEVELOPER’S MANUAL

15

16 //Loop through a l l Record o b j e c t s in the s e t
17 while (! r s e t . e o f ()) {
18 //Get a r e f e r ence to the curren t Record o b j e c t
19 Record& r = r s e t . r e c () ;
20

21 //Use the record in some way . . .
22

23 //Move to the next Record o b j e c t in the s e t .
24 r s e t . setNext () ;
25 }

The previous example, however, shows a quite rare usage of the RecordSet class, in fact
it would be useless to populate a record and read it again inside the same programming
unit. The most common way to populate a RecordSet is to derive the class and overload
the fetch() virtual method. As an example see the code of the FileReader class.

It is worth to mention that, while the names “record” and “recordset” are often used
in database terminology, the Record and RecordSet classes are not limited to database
access, instead they are designed to be general purpose. For example the RecordSet
is the parent class of the Parser Table class, which is used to read VOTable files. Of
course these classes are also used to perform database access, in particular the result of
a query inside the MCS library is presented as a RecordSet object, a record of the
result is presented as a Record object and a field of the record is presented as a Data
object. Another important feature of these classes is that they implement the Serializable
interface, so they can be easily sent through the network using the Socket class. Indeed
all message passing between client and server during an MCS session is performed using
these objects to incapsulate the information being sent.

3.2 Threads and synchronization

Threads are essentially identical copies of a code which run on different data, and let your
program perform several “contemporary” tasks. MCS lets you implement code that runs
in separate threads, and it provides a way to synchronize those threads using the Thread
and Synchro classes.

3.2.1 The Thread class

To implement a code which runs in a separate thread you should derive the Thread class
and overload its virtual run() method. This will become the body of execution of the
separate thread. Suppose you want to implement an application which reads file names
from standard input and “contemporary” perform some task on the given files. The derived
class would be as in the following example:

1 //A ‘ ‘ g l o b a l ’ ’ queue , wh i l e f i l e names are read from s t d i n they
2 // are s t o r ed in t h i s queue .

18

3.2 Threads and synchronization 3 DEVELOPER’S MANUAL

3 Record queue ;
4

5 //Derive the Thread c l a s s
6 class MyThread : public Thread {
7

8 void run () {
9 for (; ;) {

10 // I f t h e r e ’ s a t l e a s t one f i l e name in the queue . . .
11 i f (queue . count ()) {
12 string fn = queue . pop () . s v a l () ;
13 // . . . perform some ta s k on the f i l e
14 }
15 s l eep ms (1 0 0 0) ; // wai t f o r one second .
16 }
17 }
18 } ;

As you can see this thread waits until there are file names in a queue, and once the data
arrive it will take the file name and perform some task on the file. The main program
should read the file names from stdin, as in the following example:

1 int main () {
2 //Create the thread o b j e c t and s t a r t i t . . .
3 MyThread t ;
4 t . s t a r t () ;
5

6 string s ;
7 while (c in >> s) //Read from standand input
8 queue . push (s) ; // In s e r t the s t r i n g in the queue
9 }

This program will always be “alive” that is it will always react when you type a filename
on stdin, even if it is working on a file in a separate thread.

The Thread class is used inside MCS to implement the multithreaded server. In the
simplest case, when a user connects to the server it will create an instance of a class named
UserThread (which derives Thread) which will listen for user commands and eventually
will send back the requested data. Thus the main server program can continue to listen
for new users connections. Also, if other users are already connected, they will have their
own thread to work with. This way the server can provide services to different users at the
same time.

3.2.2 The Synchro class

Once you have different threads running in your application you may need to synchronize
them. A typical example occurs when the threads need to access a global variable. Suppose
that in the previous example the computation inside the thread is very time consuming,
and you want to elaborate two files in parallel. This can be easily done creating two (or
even more) instances of the MyThread class in the main program:

19

3.3 Database access 3 DEVELOPER’S MANUAL

1 //Create two in s t ance s o f the MyThread c l a s s .
2 MyThread t1 ;
3 MyThread t2 ;
4

5 // S ta r t s epara t e th reads .
6 t1 . s t a r t () ;
7 t2 . s t a r t () ;

That’s all is needed to implement the parallel elaboration of two files. But there’s is a
hidden bug in this code, what would happen if both threads try to read from the global
queue at the same time? Even if this is unlikely to occur, both threads could read the
same data from the queue and start the elaboration of the same file, thus probably leading
to an error. This bug can be removed using the Synchro class to implement “protected
sections”, that are sections of code that can be executed by only one thread at a time. The
changes in the code are as follows:

1 class MyThread : public Thread {
2 //Use the same Synchro o b j e c t in a l l p a r a l l e l t h reads .
3 stat ic Synchro syn ;
4

5 void run () {
6 for (; ;) {
7 i f (queue . count ()) {
8 syn . ente r () ; //Enter the p ro t e c t e d s e c t i on
9 string fn = queue . pop () . s v a l () ;

10 syn . l e ave () ; //Leave the p ro t e c t ed s e c t i on
11 // . . . perform some ta s k on the f i l e
12 }
13 s l eep ms (1 0 0 0) ; // wai t f o r one second .
14 }
15 }
16 } ;

As you can see the global variable now is being used inside a protected section, thus the
previous bug cannot occur anymore. Note also that the protected section is leaved before
working on the file, that is because otherwise the other thread couldn’t advance until the
first has ended its job.

3.3 Database access

THe MCS library can be used to execute SQL queries on a MySQL database. The classes
involved are DBConn, Query and Table.

3.3.1 The DBConn class

This class is used to open a database connection and perform authentication, as in the
following example:

1 DBConn db ;

20

3.3 Database access 3 DEVELOPER’S MANUAL

2 db . connect ("mcstest" , "mcstest" , "test") ;

If the connection or authentication fails an exception will be thrown.

3.3.2 The Query class

Once a connection to the database has been estblished it is possible to execute SQL queries
on it through the Query class:

1 Query qry(&db) ;
2 qry . prepare ("SELECT * FROM mcstest") ;
3 qry . execute () ;

In this case the query produce a result set which can be retrieved through the data ab-
straction layer (because Query derives from RecordSet):

1 //Loop through the r e s u l t i n g record s e t
2 while (! qry . e o f ()) {
3 //Get a r e f e r ence to curren t record
4 Record& rec = qry . r e c () ;
5

6 //For each f i e l d p r i n t i t s va lue
7 for (int i =0; i<r e c . count () ; i++)
8 cout << r e c [i] . s v a l () << "\t" ;
9 cout << endl ;

10

11 //Move to next record
12 qry . setNext () ;
13 }

21

4 THE MCS SERVER

4 The MCS server

4.1 Architecture of an MCS based system

An MCS based system has four main components (see Fig. 1):

Database server
C, C++, Fortran, IDL, PHP

ClientMCS server

TCP/IP socket

Shell script

IDL

SQL

Perl

Figure 1: Main components of an MCS based system

4.1.1 Database server

The database server is used to handle clients authentication, to store all application specific
data and anything else necessary to the application itself. This server isn’t accessible
directly from the clients, but it is visible only to the application server. At the moment
the only supported database server is MySQL 14. In the future other servers may become
accessible through MCS .

4.1.2 Application server (MCS based)

The application server is the core of the information system. It implements the client/server
model: a client opens a TCP socket towards the host running MCS and sends a request,
then the server “computes” an answer, eventually querying the database and/or executing
some external programs, and sends it back to the client. The behaviour of the MCS server
can be customized deriving some classes.

4.1.3 External programs

External programs are software applications written in any language, which interact with
the application server via command line and the standard output. Support to these pro-

14http://www.mysql.com

22

4.2 The MCS server 4 THE MCS SERVER

grams was added to easily integrate already existing applications within MCS .

4.1.4 Clients

Clients are programs which access the MCS service over the network. Such programs can
be written in any language and run on any platform, provided that they implement the
MCS protocol. Interfaces that implement the MCS protocol are provided by the MCS
library for the following languages on the Linux platform: C++, C, Fortran, IDL, PHP,
Python. Support for other languages (such as Java and Perl) and the Windows platform
will be available soon (we hope).

4.2 The MCS server

The MCS server is an application server, that is an application that waits on a TCP port
until a client gets connected. When a client is connected the server provides an information
service, that is the possibility to request information to the server. Data are transmitted
using the MCS protocol, which must be implemented by the clients. This protocol is
flexible enough to transmit binary data and files, but also to let a client access the service
offered by MCS from a simple telnet client . Due to the flexibility of the protocol, MCS is
the natural solution to implement communication between different software tools running
on different hosts, through the network. So MCS can also perform IPC (Inter Process
Communication).

4.2.1 Comparison with a “shell”

Using interactively an MCS server resemble very closely the usage of a classic Unix shell,
that is a command line interface with a prompt on which users can execute commands in
their own environment and wait for the output before a new command can be issued. It
is therefore possible to make a comparison between the “components” of a shell, and the
ones from an MCS connection (see Tab. 1). The concepts listed herein will be described
in details later.

Unix shell MCS server
stdin e stdout bidirectional TCP socket
system account MySQL account
internal commands base commands
programs, shell scripts external programs (EXEC command)
home directory work directory

Table 1: “shell” comparison

23

4.2 The MCS server 4 THE MCS SERVER

4.2.2 Temporal sequence of events during a connection

In this section we’ll explain the temporal sequence of events during an MCS session, using
Fig. 2. The arrow indicates the time flow; as we can see different blocks on client and

OPEN
SOCKET

ANSWER

WAIT
COMMAND

F

F

A

CLIENT SERVER

START

WELCOME MSG
RECEIVING

SEND
COMMAND

RECEIVE

T OTHER
COMMANDS?

TIME

END

WELCOME MSG

"BYE" ?

WAIT
CONNECTION

THREAD
CREATION

SEND

THREAD
DESTRUCTION

PROCESSING
REQUEST

SEND
ANSWER

T

Figure 2: Flow diagram of a typical MCS session

server aren’t contemporaries. Furthermore we see that while for the client the start and
end points are well defined, for the server we don’t have such points because we suppose
it is executed indefinitely. Usually the server waits for a client to open a TCP socket,
when such a socket is opened, the server creates a new thread of execution and assigns
the connection to it. We can notice (point labeled “A” in Fig. 2), that at this point
the execution path of the server is split in two, one of them returns to wait for another

24

4.2 The MCS server 4 THE MCS SERVER

client, while the other starts processing client requests on another thread. Threads are
basically identical programs working on different data. In this case the different data are
the different sockets connected to different clients. That’s how the server can process
requests from several clients “simultaneously”. As soon as the new thread is ready, it will
send a welcome message through the socket. Receiving this message indicates that the
server is ready to process client requests. From now on the server will wait for commands
to arrive, while the client will enter a loop to send all necessary commands and receiving the
related answers. When the server receives a command it will check if it is a BYE command,
that is a command to close the connection. If this is the case then the thread will destroy
itself. In all other cases the server will process the request and send the answer to the
client until a BYE command is received.

4.2.3 Base commands

Users can request a service from an MCS based application server using commands.
There are two types of commands: a. base commands are those implemented in MCS
itself, b. custom commands are those implemented by the users (see Sect. “Developer’s
manual”).

A command is a sequence of characters terminated by a newline character, very similar
to the ones used in a typical UNIX shell. They are composed of a keyword (the command
itself), zero or more options (with a “-” minus sign) and zero or more arguments, depending
on the command. The command keyword and the options are case insensitive whereas
arguments are not. Options and arguments are separated by one or more blanks, and can be
enclosed in double quotes to be considered as a single argument (’’a single argument’’).
The actual argument anyway won’t contain the double quotes. If an argument must contain
a double quote it can be escaped with a backslash (\"). The Tab. 2 shows a list of available
base commands. Any base command provides the -help option, which will produce a
brief explanation of the command usage. A command can be executed each time the MCS
server sends a prompt, there can be three kinds of prompt:

• #0--: last command executed successfully;

• #0W-: last command report a warning;

• #0E-: last command report an error.

Options common to all commands There are a number of options that are common
to all commands, so we report them here:

• -help: show a brief explanation about the command usage and doesn’t execute the
command;

• -force: continue execution of commands even if an error occurred;

• -werr: Turns all warning into errors, so that a warning can stop the execution.

25

4.2 The MCS server 4 THE MCS SERVER

Table 2: MCS Command codes

Command code Meaning

CID Retrieve the CID (Client Identifier)
CLINFO Retrieve information about all connected clients
NOP A “do-nothing” command

USR Supply user name
PWD Supply password
DBN Supply application name
CON Login
BYE Close the connection

GET Download a file from work directory
PUT Upload a file to the work directory
GETDATA Retrieve a Data object
PUTDATA Send a Data object
QRY Execute an SQL query
QRES Send the query result as a file
FETCH Retrieve the record at the specified position
EXEC Execute an external command or script, with parameter

Command USR <username> Used to supply the user name to the MCS server during
authentication. The user name identifies a list of grants. Example:

usr giorgio

Command PWD <password> Used to supply the password for a specific account. Exam-
ple:

pwd my_password

Command DBN <application name> Used to select the application to which the user
wants to connect. This command can be used when a single MCS server implements
different applications, otherwise it is not useful. Example:

dbn test

This way you will access the application named test.

26

4.2 The MCS server 4 THE MCS SERVER

Command CON This command doesn’t need any parameter and it is used to finalize the
authentication process. It must be used after the USR, PWD and optionally the DBN com-
mands. If the user authenticates successfully, the following command will be automatically
executed:

exec auto

The MCS server administrator may use the auto script to initialize the user environ-
ment.

Command BYE Logout and close the connection.

Command CID Every client has a Client identifier, that is a unique integer number
that identifies the associated thread. This command can be used to retrieve such a number.

Command QRY [-sqascii] [-sqfits] <query> Execute SQL queries directly on the
database DB server. The query doesn’t need to be quoted, and you can use the quotes
inside the query itself. If it is a selection it will return information about the record set,
if it is not will return the number of affected records. If the option -sqascii or -sqfits

are given then the result of the query will be written into a file in the work directory
respectively in ASCII or FITS format. Example:

qry SELECT * FROM table

Notice: you don’t need to supply the ’;’ at the end of the query, like you
would do with the MySQL client.

Command QRES This command prepare an ASCII file containing all records from the
last query, then it will send the file to the client.

Command EXEC <name> [PARS] This command executed an external program, an SQL
script or a batch file. The name of external programs and/or script are specified on the
server in the configuration file. If you’re executing an external program, the parameters
will be passed on the command line and its standard output and error will be written into
the work directory in the out and err file respectively. If you’re executing an SQL or
batch script, the parameters will be substituted inside the script where a placeholder (like
$1, $2, etc..) is found.

Command GET [<file name>] Retrieve a file located into the work directory on the
server. The parameter is the file name. If no parameter is passed then the file out will be
retrieved.

27

4.3 Running the MCS server 4 THE MCS SERVER

Command PUT <file name> <size> Store a file into the work directory on the server.
Parameters are the file name and the file size in byte.

4.2.4 Grants

TO BE WRITTEN.

4.3 Running the MCS server

TO BE WRITTEN.

4.3.1 The configuration file

TO BE WRITTEN.

4.4 Customize the MCS server

One of the main feature of MCS (as its acronym suggests) is the possibility to be cus-
tomized, adapting the server behaviour to specific needs/tasks. MCS can be customized
in several ways:

• adding external programs, either real external applications or batch lists of MCS
commands;

• adding SQL programs, to be executed on the database server;

• adding customized commands, deriving the UserThread class;

• modifying the behaviour of the local thread, deriving the LocalThread class;

We’ll explain in detail how to customize the MCS server in the following sections.

4.4.1 Adding external programs

TO BE WRITTEN.

4.4.2 Adding SQL scripts

TO BE WRITTEN.

4.4.3 Adding BATCH scripts

TO BE WRITTEN.

4.4.4 Adding custom commands

TO BE WRITTEN.

28

5 CONNECTING TO AN MCS SERVICE

5 Connecting to an MCS service

To connect to an MCS service you can use one of the available interfaces for the various
languages: C++, C, Fortran, IDL, PHP or Python (Perl and Java will be added). They
already implement all the features of the MCS protocol like handling connection and data
transfer, either as a file or as record sets. One of the main features of these interfaces, as
shown below, is that the syntax (except for the C++ interface) is almost identical for all
languages.

5.1 The Client class

The Client class is the main interface to MCS ; all other interfaces are implemented
through it. We recommend to read the reference documentation for the classes we’ll men-
tion.

The Client class constructor (line 9) accepts parameters about a. the CLIPATH directory
(see Fig. 3), b. the host address of the host whose running the MCS service, c. the
port on which the server is listening. Once you are connected to the server, you can use
the login() method (line 11) to perform authentication and the exec() method (line 12)
to issue commands. In this examples we issued the CID command to retrieve the client
identifier. Each data exchanged between client and server passes through one of the public
Record members of the Class client. In this case the client identifier is contained into
a Data object in the aux member (line 14). As an example of another Record member
we can require a brief help message about a command (line 16, 17, 18). Then we can
perform a query on the database and print all records (line 20 to 33). Finally we close the
connection and delete the Client object (line 35 and 36). Note that all the code is in a
try..catch block to eventually catch exceptions that may be thrown (MCS code throws
only exception based on the class Event).

5.2 User environment

Once a user has connected and logged in (see Sect. 5.3) to an MCS service, he/she has a
dedicated environment consisting of:

• a work directory, where the user can upload or download files;

• a database connection, so that a user can perform database queries as well as create
temporary tables visible only to the user itself.

In this document we will refer to the work directory on the server with CLIPATH. With
the same name we’ll refer to the directory on the client side from/to which files are uploaded
or downloaded (see Fig. 3). Figure 3 shows a directory called SRVPATH above CLIPATH:
this is the server main directory which contains all work directories.

29

5.3 Login 5 CONNECTING TO AN MCS SERVICE

CLIPATH

CLIPATH

Client side Server side

SRVPATH

Figure 3: Directories in an MCS based system

5.3 Login

The authentication should be made just after the connection using the USR, PWD, DBN

(optional) and CON commands. Some commands (QRY, FETCH, EXEC, etc...) require the
user to be logged in, otherwise a permission error will occur.

5.4 Logout

To logout simply issue the command BYE then close the socket. It is important that the
client closes the socket first, otherwise the resource on the server will remain locked.
When a user closes its connection the server will close the database connection, destroy the
thread associated with the client and optionally delete all files in the user work directory.
(MCS will use the MyRO package to handle grants).

30

6 USING MCS WITH OTHER PROGRAMMING LANGUAGES

6 Using MCS with other programming languages

An MCS session is quite similar to a telnet client, so user can connect to the server also
with a simple telnet program. But to take advantage of all the feature of the MCS protocol
you’ll need to use one of the available interfaces.
MCS is written in C++, so most of its facilities are available as classes. In the following
sections we’ll assume that the reader has a minimum knowledge of the object oriented
paradigm, as well as the C++ syntax. Furthermore we’ll mention some of the MCS
classes, whose reference documentation can be found at http://ross.iasfbo.inaf.it/mcs.
A user which connects to an MCS server needs to deal with the following classes:

• Client: the interface to connect to an MCS server;

• Data: the base class by which data are exchanged between client and server;

• Record: a collection of Data objects;

• RecordSet: a collection of Record objects.

Furthermore the following set of classes may be useful to a client program:

• DBConn: connect to a database server;

• Query: execute queries and retrieve results;

• Table: perform direct access on a database table;

• Conf: reads configuration files.

In Sect. 5.1 we’ll explain how to write a program which connects to an MCS server
using these classes and the C++ language. If a user wishes to use another language to
connect to MCS he can use one of the available interfaces, which are simply wrappers
to the classes mentioned above. For this reason the code to connect to MCS is quite
similar in all languages, and we recommend to read Sect. 5.1 also if you don’t plan to use
C++. Successive sections will report information specific to each language. As already
mentioned, the languages actually supported are: C, Fortran, IDL, PHP and Python. In
the near future interfaces will be developed for Java and Perl.

6.1 Interface usage and naming convention

In this section we describe how to use the interfaces for languages others than C++, and
the naming convention used. For a detailed description of all the classes involved and their
methods check the reference manual as well as Sect. 5.1.

As mentioned above, the interfaces are simply wrappers around C++ classes, so when
you’re calling a function of the interface in your favourite language, you are actually calling
a method of a C++ object that lives in the heap (dynamic) memory. That’s the reason

31

6.2 Constructors 6 USING MCS WITH OTHER PROGRAMMING LANGUAGES

why there isn’t a reference documentation for each interface, the main reference for the
MCS classes contains all the information you need. Note that not all the class members
are wrapped in the various interfaces (because only C++ supports overloading), check the
classes documentation to see if a method is wrapped or not. To use the interface you
should therefore create an object, call one or more of its methods and finally destroy him.

Before using an object you must call the appropriate wrapper to the constructor which
returns the memory address where the object has been allocated. You should not modify
this address, neither modify the type of the variable where the address has been stored
(for those languages that let you do this), otherwise the object will become unreachable.
We recommend to destroy objects when they are no longer needed. You can do this by
calling the appropriate wrapper to the destructor and passing the address of the object to
be destroyed. The memory address you got from the constructor must also be passed to
all the wrappers to methods of that class.

Important note: What is returned by the wrapper to constructor routine is just a
memory address, so the language you are using (even C!) doesn’t know anything about
the type of object that has been created. For this reason, if you use this address with
a wrapper of another class, your compiler won’t give you any compilation or syntax
error but you will likely get a “segmentation fault” when the program is running.

There is only one exception to this rule: if an object derives from other classes then you
can use the address of that object also with wrappers of parent classes.
In the following sections we’ll explain the naming convention for a generic class named
CLASS. Arguments in brackets (<>) are specific to a function or method. Arguments named
addr are the memory address of an object.

6.2 Constructors

Constructors follow the name convention:

addr = new_CLASS(0, <PARAMETERS>)

where the parameters are the ones needed by the constructor. The first parameter is
reserved for future use. Note that only one constructor can be wrapped so check the
documentation to see which one is used. These functions return the memory address
where the object has been allocated. You must use this address in the subsequent methods
call. In all interfaces this memory address is stored in a numeric variable, you should avoid
changing its value or the type of the variable.

6.3 Copying constructors

Copying constructors follows the name convention:

32

6.4 Destructors 6 USING MCS WITH OTHER PROGRAMMING LANGUAGES

newaddr = copy_CLASS(addr)

These functions don’t need any specific parameter but only the address of the object to
be copied. Note that you should call the appropriate copy constructor (the one belonging
to the same class with which the object was created), otherwise you will surely get a
“segmentation fault”. These functions return the memory address of the newly created
object.

Note: actually only the Data class has a copy constructor implemented in the
interfaces at the moment.

6.4 Destructors

Destructors follows the name convention:

del_CLASS(addr)

These functions don’t need any specific parameter but only the address of the object to
be destroyed. Note that you should call the appropriate destructor (the one belonging
to the same class with which the object was created), otherwise you will surely get a
“segmentation fault”. These functions doesn’t return any value.

6.5 Methods

Methods follow the name convention:

retval = CLASS_methodname(addr, <PARAMETERS>)

where the parameters are the ones needed by the method. Note that because overloading
is not supported, only one method with a certain name can exist. The type and meaning
of the returned values depend on the method called; check the class documentation.

6.6 Error handling

Many MCS classes use exceptions to handle errors, but this mechanism is not available in
C nor in other languages for which we have an interface. Because we didn’t want to use the
“C-Style” error handling, that is checking the returned value of a function after each call to
see if an error occurred, we implemented another mechanism: the MCS library maintains
an internal “status” structure which tells if an error occurred or not. This “status” is
checked each time an interface function is called, if an error occurred in a previous call the
function will return immediately, otherwise the function will do its job. If an error occurs
during the execution of the function the “status” will be updated with an error message.
In this case all successive calls will return immediately. This way you can check if an error
occurred only at the very end of a sequence of instructions, as in the following example:

33

6.7 The C interface6 USING MCS WITH OTHER PROGRAMMING LANGUAGES

Call MCS function 1

Call MCS function 2

Call MCS function 3

...

if (ifd_got_error()) { //...handle error

print ifd_last_error();

}

ifd_reset_error();

As you can see the check for the error is performed at the very end, not after each function
call. Once you handled the error you may decide to continue execution, in this case you
should reset the “status” information with a call to the ifd_reset_error function (as
shown above).

6.7 The C interface

To use the C interface you should include the mcs_c.h file in your source code, it is located
in the same directory as the main include file mcs.hh (see Sect. 2.2.1). To compile and
link your program follow the same step as with any other MCS based program:

cc ‘mcs-config --cflags‘ -c myprog.c

cc -o myprog myprog.o ‘mcs-config --libs‘

As an example see Fig. 5 in which we implemented in C the program we developed in
C++ (Fig. 4).

Some line needs a comment, first of all note lines 7, 9, 10 in which the number of arguments
is different from the corresponding C++ code, that’s because C cannot handle default
argument values, so we have to specify them all. At lines 13, 19, 26, 2 you can see that the
syntax is in reverse order in respect to the C++ code, let’s examine the line 13 in detail:

cli->aux[0].ival() C++

Data_ival(Record_field(Client_aux(cli), 0)) C

In either cases we are calling the Data::ival method, of the object returned by the
Record::operator[] at position 0, of the aux member of a Client object. But the
operator[] doesn’t have any equivalent in the C language, so it has been substituted
by the Record_field function (see reference documentation). Furthermore the order in
which members are called in C++ is reversed in the C language. At line 38 there is a
check to see if an error occurred, and eventually the message is printed and the “status” is
restored. Finally note at lines 24 and 29 that we passed the address of the Client object
to a wrapper for the RecordSet class; this is allowed only because Client derives from
RecordSet.

34

6.7 The C interface6 USING MCS WITH OTHER PROGRAMMING LANGUAGES

1 #include <s t d i o . h>
2 #include <mcs c . h>
3

4 int main (int argc , char∗ argv [])
5 {
6 int i ;
7 IFD OBJP c l i = new Cl ient (0 , "./" , "localhost" , 6523 , 0 , 10000) ;
8

9 C l i e n t l o g i n (c l i , "mcstest" , "mcstest" , "") ;
10 C l i e n t e x e c (c l i , "CID" , 0) ;
11

12 p r i n t f ("Client identifier is: %d\n" ,
13 Data iva l (R e c o r d f i e l d (Cl i ent aux (c l i) , 0))) ;
14

15 C l i e n t e x e c (c l i , "CID -help" , 0) ;
16

17 for (i =0; i<Record count (C l i e n t o u t (c l i)) ; i++)
18 p r i n t f ("%s\n" ,
19 Data sva l (R e c o r d f i e l d (C l i e n t o u t (c l i) , i))) ;
20

21 C l i e n t e x e c (c l i , "qry SELECT * FROM mcstest" , 0) ;
22 p r i n t f ("Number of rows: %d\n" , RecordSet nRows (c l i)) ;
23

24 for (i =0; i<RecordSet nFie lds (c l i) ; i++)
25 p r i n t f ("%s\t" ,
26 Data name (R e c o r d f i e l d (RecordSet metarec (c l i) , i))) ;
27 p r i n t f ("\n") ;
28

29 while (! RecordSet eo f (c l i)) {
30 for (i =0; i<RecordSet nFie lds (c l i) ; i++)
31 p r i n t f ("%s\t" ,
32 Data sva l (R e c o r d f i e l d (RecordSet rec (c l i) , i))) ;
33 p r i n t f ("\n") ;
34

35 RecordSet setNext (c l i) ;
36 }
37

38 i f (i f d g o t e r r o r ()) {
39 p r i n t f ("ERROR: %s\n" , i f d l a s t e r r o r ()) ;
40 i f d r e s e t e r r o r () ;
41 }
42

43 C l i e n t e x e c (c l i , "BYE" , 0) ;
44 d e l C l i e n t (c l i) ;
45

46 return 0 ;
47 }

Listing 5: Source of client c.c

35

6.8 The Fortran interface6 USING MCS WITH OTHER PROGRAMMING LANGUAGES

6.8 The Fortran interface

To use the Fortran interface you should include two files:

• mcs_fortran.inc: wrappers implementation;

• mcs_facility.inc: functions declaration.

These files are located in the same directory as the main include file mcs.hh (see Sect.
2.2.1). To compile and link your program follow these steps:

f77 ‘mcs-config --cflags‘ -Wno-unused-variable -c f_test.f

f77 -o f_test f_test.o ‘mcs-config --libs‘

The -Wno-unused-variable is used here because in the mcs_facility.inc there is a
declaration for each function of the MCS interface; without that option the compiler will
annoy the user with a lot of warnings.
The comments relative to the C language apply here as well, furthermore notice that for
some functions like Client_exec, RecordSet_setNext we used a dummy variable for the
return value. This is necessary because these are really functions (not procedures like
del_Client), even if the return value is of no interest.

6.9 The PHP interface

The PHP interface will be available only if the option was enabled when you executed the
configuration script. Starting from MCS version 0.3.1 it is not required anymore to use the
php2mcs script in order to be able to use the PHP interface. You still must include the file
php2mcs.php in your code (require("php2mcs.php");).
The comments relative to the C language apply here as well, furthermore notice that instead
of passing 0 to those parameters whose C++ counterparts require a “NULL” value, we
used the ifd_null function.

6.10 The Python interface

The Python interface will be available only if the option was enabled when you executed
the configuration script. Starting from MCS version 0.3.2 it is not required anymore to
use the python2mcs script in order to be able to use the Python interface. You still must
import the file python2mcs.py in your code (from python2mcs import *).
The comments relative to the C language apply here as well, furthermore notice that instead
of passing 0 to those parameters whose C++ counterparts require a “NULL” value, we
used the ifd_null function!

36

6.11 The IDL interface6 USING MCS WITH OTHER PROGRAMMING LANGUAGES

6.11 The IDL interface

The IDL interface will be available only if the option was enable when you executed the
configuration script. To use the IDL interface you should execute the idl2mcs script in
the directory where you’ll store your source code, this will create symbolic links to the files
needed. For efficiency reasons, all interface functions will be available as IDL Dynamically
Loadable Modules (DLMs) rather than functions and procedures. No further action is
required from the user to use these functions in the IDL code.
The comments relative to the C language apply here as well.

37

