
MYRO
My Record Oriented

privilege system

Giorgio Calderone
IFC - INAF Palermo, Italy

Luciano Nicastro
IASF - INAF Bologna, Italy

November 19, 2007
Ver. 0.3.2-alpha1

http://ross.iasfbo.inaf.it/myro

This page intentionally left blank.

CONTENTS CONTENTS

Contents

1 Introduction 1

2 MyRO : My Record Oriented privilege system 1

3 MyRO installation 2
3.1 Dependencies . 2
3.2 Installing MyRO . 2

3.2.1 Configure . 2
3.2.2 Compile . 3
3.2.3 Install . 3

4 How it works 4
4.1 Users, groups and permissions . 4

5 MyRO usage 6
5.1 Implementing the privilege system . 6

5.1.1 Handle groups . 6
5.1.2 Modify user’s properties . 7
5.1.3 Protect a table . 7
5.1.4 Check users’ grants . 8

5.2 Extended views . 8

6 Reference for functions and procedures 9
6.1 myro.chkPerm . 9
6.2 myro.defgid . 10
6.3 myro.defgrp . 10
6.4 myro.defperm . 10
6.5 myro.fmtPerm . 10
6.6 myro.gid2grp . 11
6.7 myro.grp2gid . 11
6.8 myro.is root . 11
6.9 myro.is su . 11
6.10 myro.listGroups . 12
6.11 myro.myuser . 12
6.12 myro.perm . 12
6.13 myro.print priv . 13
6.14 myro.su . 13
6.15 myro.uid . 13
6.16 myro.uid2defgid . 13
6.17 myro.uid2defperm . 14
6.18 myro.uid2usr . 14
6.19 myro.uid member of anygroup . 14

i

CONTENTS CONTENTS

6.20 myro.uid member of gid . 15
6.21 myro.uid member of grp . 15
6.22 myro.users . 15
6.23 myro.groups . 15
6.24 myro.usr2defgid . 16
6.25 myro.usr2uid . 16
6.26 myro.usr descr . 16
6.27 myro.usr email . 17

ii

2 MYRO : MY RECORD ORIENTED PRIVILEGE SYSTEM

1 Introduction

2 MyRO : My Record Oriented privilege system

MyRO is the name we use to refer to a technique used to implement a database privi-
lege system on a per-record basis on the MySQL database. Actually all database servers
implement a privilege system based on tables or columns, that is if a user has grants to
access a certain table (or a table’s column) he can access all records of that table (or that
table’s column). MyRO lets you specify grants on a record level so a user can access
only those records it is allowed to “select/update/delete”. A consequence of this is that
different users reading the same table will see different records. The grant mechanism
provided by MyRO is similar to that of a Unix file system, that is each record belongs to
a “owner” and a “group” and has three sets of permissions associated (for the owner, the
users belonging to the group and all other users) that specify if that record can be read
and/or written.

The software components of MyRO are a Perl script used to perform administrative
tasks, a C library and a set of MySQL functions. The process of protecting tables is
completely transparent to the final user, that is once MyRO has been installed and con-
figured by the database administrator, users can access the database without even know
that MyRO is working.

1

3 MYRO INSTALLATION

3 MyRO installation

The MyRO software library is distributed in a tar.gz package. You can find the latest
version at http://ross.iasfbo.inaf.it/myro. To unpack the package simply issue the com-
mand:

tar xvzf myro-x.y.z.tar.gz

where x, y, z are the version number (namely the first number is the major revision, the
second number is the version, and third number is the subversion). A directory named
myro-x.y.z will be created containing all sources code as well as the documentation and
the scripts needed to install MyRO . Before installing MyRO you should check that all
mandatory dependencies are satisfied (see Sect. 3.1), then you must follow a three step
procedure: Configure, Compile and Installing MyRO .

3.1 Dependencies

The only mandatory packages required by MyRO are:

• MySQL sources (http://www.mysql.org, version 5.1.20 later);

• Perl (http://www.perl.com/);

• The DBD::mysql perl module;

The DBD::mysql perl module can be easily installed through the cpan utility issuing the
following command:

install DBD::mysql

See the cpan documentation for further informations. If these package are not already
installed in the system you should install them before continuing.

3.2 Installing MyRO

3.2.1 Configure

Configuring MyRO means checking your system for compatibilities, search for include
files and libraries, and finally produce all necessary Makefiles needed to compile MyRO
. This is done automatically by the distributed configure script. Typically you can use
this script without any option, as follows:

./configure

Anyway configure has a lot of options and switches (type configure --help for a list)
to customize the compilation step. For further documentation see the INSTALL file.

2

3.2 Installing MyRO 3 MYRO INSTALLATION

3.2.2 Compile

To compile MyRO , once the configure script has been correctly executed, simply issue
the command:

make

If you got errors while compiling check Sect. 3.2.1 and the INSTALL file.

3.2.3 Install

If MyRO has been correctly compiled you can install with the command:

make install

If your account doesn’t have the permission to write in the path where it should be installed
then you’ll get an error. In this case you should login as “root” and retry.

3

4 HOW IT WORKS

4 How it works

Suppose the table to be protected is called mytable_data. MyRO adds three fields to
the table to store information about the owner and group to which the records belong,
and for the permissions. Then it installs three triggers on the table associated with the
INSERT, UPDATE and DELETE events, and finally creates a view1 with a custom name
(for example mytable) with a simple SELECT * statement and a WHERE clause that filter
the records readable by the user executing the query. This way the next time users will
access mytable they will access the view, not the underlying table, and they will see only
the records they’re allowed to read or write. When a user tries to write on a table the
corresponding trigger will be activated for each record being modified, to check if the user
has grants to modify the record.

4.1 Users, groups and permissions

Users and groups used in MyRO are completely analogous to those of a Unix file system.
Each MySQL account has a unique user id (uid) and can be a member of any number
of groups, each associated with a unique group id (gid). Furthermore to each MySQL
users is associated a flag that tells if the user is a “super-user”, in this case all permission
checking will be disabled. MyRO automatically handles its internal tables where all uid,
group definition and group membership are stored. Also each record in a table protected
by MyRO has three fields which contain the uid of the owner, the gid of the group
owning that record, and a permission specification, that is a numerical code that specify if
that record can be read and/or written by three categories of users: owner of the record,
member of the group to which the record belongs to and all other users. MyRO uses all
these information to determine if a record can be read and/or written. The permission
specification is a sequence of 6 bits whose meaning are as follows (from the least to the
most significant bit):

• write permission for owner;

• read permission for owner;

• write permission for members of the group;

• read permission for members of the group;

• write permission for all other users;

• read permission for all other users;

MyRO has a function to properly convert a permission specification to a more readable
string representation of the grants:

1Views are database objects just like tables, except that they don’t require disk space because their
data is read from the actual tables.

4

4.1 Users, groups and permissions 4 HOW IT WORKS

mysql> select myro.fmtPerm(43);

+------------------+

| myro.fmtPerm(43) |

+------------------+

| rwr-r- |

+------------------+

1 row in set (0.01 sec)

in which the two first characters refer to the owner, the third and fourth to the members
of the group and the last two characters to all other users. Also MyRO automatically
creates a group named anygroup. Members of this group are automatically members of
any other group. This feature is necessary when you are dealing with many groups creation
and destroy, and you know that a user must be member of all of this groups. Assigning
the user to this group means it is member of any group, even if they are created after the
user has been assigned to anygroup.

5

5 MYRO USAGE

5 MyRO usage

All administrative tasks related to MyRO , like protecting tables or manipulating groups,
can be performed using the the myro script. All available options can be displayed using
the command:

myro --help

Before using MyRO it is necessary to install the functions in the MySQL database server
(version >= 5.1.20) with the command:

myro --install

The password of the MySQL root account will be asked. This command also creates a
database named myro which contains all MyRO internal tables.

5.1 Implementing the privilege system

Once MyRO has been installed in the database server all MySQL users will already have
a uid and a default group to which they belong whose name is the same as the account
username. Furthermore the group anygroup will automatically be created. The steps
needed to implement the privilege system are as follows:

• creates all needed groups;

• modify users membership to groups;

• protect tables;

• check that all users’ grants are consistent.

These operations are discussed in the next sections.

5.1.1 Handle groups

A new group can be created using the following command:

myro --addgroup <GroupName> [<Description>]

To delete a group use the command:

myro --delgroup <GroupName>

To see a list of defined groups issue the following SQL statement from a MySQL terminal:

call myro.groups();

6

5.1 Implementing the privilege system 5 MYRO USAGE

5.1.2 Modify user’s properties

With the following command it is possible to modify the default group to which a user
belongs, specify if it is a “super-user”, provide a description and an e-mail address:

myro --moduser <UserName> [<Group> [<Su> [<Description> [<Email>]]]]

To assign a user to a group use the command:

myro --assign <UserName> <Group>

To delete a user account you should drop the entire MySQL user account. To see the
list of users along with their properties issue the following SQL statement from a MySQL
terminal:

call myro.users();

5.1.3 Protect a table

To protect a table with MyRO issue the command:

myro --protect <DBName> <Table> <View>

where the first two arguments are the database which contains the table, and the table
name to protect. The third argument is the name of the view that will be used to access
the table. This command will add three fields in the table:

• my_uid: to store the user ID of record owner;

• my_gid: to store the group ID to which the record belongs;

• my_perm: to store the record permissions.

These fields are all of type TINYINT UNSIGNED so each record will require 3 more bytes on
disk. Actually this field type is fixed, thus only 256 users and groups can be defined, but
this feature may change in future releases. If the table being protected by myro already
contains records the corresponding my_uid, my_gid and my_perm fields will contain NULL
values, this means that these records will be accessible only from “super-users”. To change
the owner of these records open a MySQL terminal as user “root” and issue the following
statement:

UPDATE <table> SET my_uid = myro.uid(),

my_gid = myro.defgid(),

my_perm = myro.defperm();

where <table> is the name of the table being protected. For those records that will be
inserted after the table has been protected, this fields will be automatically populated with
the correct values. The command myro --protect will also create a view with the same
structure as the underlying table whose purpose is to filter records that can be read (etc.)
by a user. Users should now use this view to access the data instead of the real table.

7

5.2 Extended views 5 MYRO USAGE

5.1.4 Check users’ grants

All grants relative to the protected table should be removed for any users so that the only
way to access the data is to use the view created by MyRO . To check that all user’s grants
are compatible with this requirement you can simply execute the myro script without any
argument, so that if some user can directly access one of the protected tables a warning
will be given. On the other hand users should have grants to access MyRO ’s views. To
give users the correct grants to access a MyRO view issue the command:

myro --grant <UserName> <Host> <DBName> <View>

5.2 Extended views

The view created by MyRO has the same structure as the underlying table without the
my_uid, my_gid and my_perm fields, thus it is impossible to read the information stored in
these fields. Typically these information are not needed by the users, however there may
be some cases in which it is necessary to show these information. For this purpose MyRO
can create three additional views which shows these information in various formats. To
create this views issue the command:

myro --extended <DBName> <Table>

8

6 REFERENCE FOR FUNCTIONS AND PROCEDURES

6 Reference for functions and procedures

Below there is a list of all functions and procedure created with MyRO , with their usage
and parameters. Here we’ll use some common abbreviations which resemble the ones used
in Unix filesystems:

• uid: an integer which represent the user ID;

• gid: an integer which represent the group ID;

• defgid: an integer which represent the default group ID of any newly inserted record
for a given user;

• defperm: an integer which represent the default permission specification of any newly
inserted record for a given user.

6.1 myro.chkPerm

Check if a user can access a record for a read or write operation. The first parameter is
the ID of the user who wants to access the record, the next three parameters are the value
of the my_uid, my_gid and my_perm fields read from the record and the final parameter
specifies which kind of access the user wants to perform.

Syntax:
myro.chkPerm(uid TINYINT UNSIGNED, my uid TINYINT UNSIGNED, my gid TINYINT

UNSIGNED, my perm TINYINT UNSIGNED, what CHAR(1))

Parameters:

1. uid TINYINT UNSIGNED : user ID;

2. my uid TINYINT UNSIGNED : user ID of owner of the record;

3. my gid TINYINT UNSIGNED : group ID of the group to which the record belongs to;

4. my perm TINYINT UNSIGNED : permission specification;

5. what CHAR(1) : “r” for read access, “w” for write access.

Return value (BOOL):
: 1 if the user can access the record, 0 otherwise.

9

6.2 myro.defgid 6 REFERENCE FOR FUNCTIONS AND PROCEDURES

6.2 myro.defgid

Return the default group ID for the current user.

Syntax:
myro.defgid()

Return value (TINYINT UNSIGNED):
: default group ID.

6.3 myro.defgrp

Return the default group name for the current user.

Syntax:
myro.defgrp()

Return value (CHAR(50)):
: default group name.

6.4 myro.defperm

Return the default permission specification for the current user.

Syntax:
myro.defperm()

Return value (TINYINT UNSIGNED):
: default permission specification.

6.5 myro.fmtPerm

Return a string representation of a permission specification. A read permission is identi-
fied by character “r”, a write permission by character “w”. The string is made up of 6
characters, the first two refer to access for the owner of the record, the third and fourth to
access for users belonging to the group, the last two characters for all other users.

Syntax:
myro.fmtPerm(perm TINYINT UNSIGNED)

Parameters:

1. perm TINYINT UNSIGNED : permission specification.

Return value (CHAR(6)):
: string representation of permission.

10

6.6 myro.gid2grp 6 REFERENCE FOR FUNCTIONS AND PROCEDURES

6.6 myro.gid2grp

Return the group name for a given group ID.

Syntax:
myro.gid2grp(gid TINYINT UNSIGNED)

Parameters:

1. gid TINYINT UNSIGNED

Return value (CHAR(50)):
: group name, or NULL if the gid does not exist.

6.7 myro.grp2gid

Return the group id for a given group name.

Syntax:
myro.grp2gid(grp CHAR(50))

Parameters:

1. grp CHAR(50) : group name.

Return value (TINYINT UNSIGNED):
: group ID, or NULL if the group does not exist.

6.8 myro.is root

Return a flag telling if current user is “root”.

Syntax:
myro.is root()

Return value (BOOL):
: 1 if the current user is “root”, 0 otherwise.

6.9 myro.is su

Returns the “super user” flag of a given user ID.

Syntax:
myro.is su(uid TINYINT UNSIGNED)

Parameters:

11

6.10 myro.listGroups 6 REFERENCE FOR FUNCTIONS AND PROCEDURES

1. uid TINYINT UNSIGNED : user ID;

Return value (BOOL):
: “super user” flag.

6.10 myro.listGroups

Return a list of groups to which a user belongs to, given its user ID.

Syntax:
myro.listGroups(uid TINYINT UNSIGNED)

Parameters:

1. uid TINYINT UNSIGNED : user ID.

Return value (VARCHAR(200)):
: a string with a list of group names.

6.11 myro.myuser

Return the user name of the user who is calling the function.

Syntax:
myro.myuser()

Return value (CHAR(50)):
: user name of the current user.

6.12 myro.perm

Return a permission specification given its string representation. This function performis
the inverse codification of the myro.fmtPerm function.

Syntax:
myro.perm(perm CHAR(6))

Parameters:

1. perm CHAR(6) : string representation of permission.

Return value (TINYINT UNSIGNED):
: permission specification.

12

6.13 myro.print priv 6 REFERENCE FOR FUNCTIONS AND PROCEDURES

6.13 myro.print priv

Show the list of MySQL grants for a user.

Syntax:
CALL myro.print priv(usr CHAR(50));

Parameters:

1. usr CHAR(50) : user name.

6.14 myro.su

Return the “super user” flag for the current user.

Syntax:
myro.su()

Return value (BOOL):
:“super user” flag.

6.15 myro.uid

Return the uid of the user who is calling the function.

Syntax:
myro.uid()

Return value (TINYINT UNSIGNED):
: user ID of the current user.

6.16 myro.uid2defgid

Return the default group ID of a given user ID.

Syntax:
myro.uid2defgid(uid TINYINT UNSIGNED)

Parameters:

1. uid TINYINT UNSIGNED : user ID.

Return value (TINYINT UNSIGNED):
: default group ID.

13

6.17 myro.uid2defperm 6 REFERENCE FOR FUNCTIONS AND PROCEDURES

6.17 myro.uid2defperm

Return default permission specification of a given user ID.

Syntax:
myro.uid2defperm(uid TINYINT UNSIGNED)

Parameters:

1. uid TINYINT UNSIGNED : user ID.

Return value (TINYINT UNSIGNED):
: default permission specification.

6.18 myro.uid2usr

Return the user name of a given user ID.

Syntax:
myro.uid2usr(uid TINYINT UNSIGNED)

Parameters:

1. uid TINYINT UNSIGNED : user ID.

Return value (CHAR(50)):
: user name, or NULL if the uid doesn’t exist.

6.19 myro.uid member of anygroup

Check if a user is member of special group “anygroup”.

Syntax:
myro.uid member of anygroup(uid TINYINT UNSIGNED)

Parameters:

1. uid TINYINT UNSIGNED : user ID.

Return value (BOOL):
: 1 if the user is member of “anygroup”, 0 otherwise.

14

6.20 myro.uid member of gid6 REFERENCE FOR FUNCTIONS AND PROCEDURES

6.20 myro.uid member of gid

Check if a user is member of the group identified by gid.

Syntax:
myro.uid member of gid(uid TINYINT UNSIGNED, gid TINYINT UNSIGNED)

Parameters:

1. uid TINYINT UNSIGNED : user ID;

2. gid TINYINT UNSIGNED : group ID.

Return value (BOOL):
: 1 if the user is member of the group identified by gid, 0 otherwise.

6.21 myro.uid member of grp

Check if a user is member of a group.

Syntax:
myro.uid member of grp(uid TINYINT UNSIGNED, grp CHAR(50))

Parameters:

1. uid TINYINT UNSIGNED : user ID.

2. grp CHAR(50) : group name.

Return value (BOOL):
: 1 if the user is member of the group, 0 otherwise.

6.22 myro.users

Show a list of all user accounts along with their properties and the groups they belong to.

Syntax:
CALL myro.users();

6.23 myro.groups

Shows a list of all defined groups with their descriptions.

Syntax:
CALL myro.groups();

15

6.24 myro.usr2defgid 6 REFERENCE FOR FUNCTIONS AND PROCEDURES

6.24 myro.usr2defgid

Returns the user name of a given user name.

Syntax:
myro.usr2defgid(usr CHAR(50))

Parameters:

1. usr CHAR(50) : user name.

Return value (TINYINT UNSIGNED):
: default group ID.

6.25 myro.usr2uid

Return the user ID of a given user name.

Syntax:
myro.usr2uid(usr CHAR(50))

Parameters:

1. usr CHAR(50) : user name.

Return value (TINYINT UNSIGNED):
: user ID, or NULL if the user doesn’t exist.

6.26 myro.usr descr

Return the description of a given user name.

Syntax:
myro.usr descr(usr CHAR(50))

Parameters:

1. usr CHAR(50) : user name.

Return value (CHAR(50)):
: description if any has been given, NULL otherwise.

16

6.27 myro.usr email 6 REFERENCE FOR FUNCTIONS AND PROCEDURES

6.27 myro.usr email

Return the e-mail address of a given user name.

Syntax:
myro.usr email(usr CHAR(50))

Parameters:

1. usr CHAR(50) : user name.

Return value (CHAR(50)):
: e-mail address if any has been given, NULL otherwise.

17

