
DIF

Dynamic Index Facility

Giorgio Calderone

IFC - INAF Palermo, Italy

Luciano Nicastro

IASF - INAF Bologna, Italy

October 16, 2015

Ver. 0.5.3

http://ross.iasfbo.inaf.it/MCS/

This page intentionally left blank.

CONTENTS CONTENTS

Contents

1 Introduction 1

1.1 What’s new in version 0.5.3 . 1
1.2 A simple example . 2

2 The HEALPix and HTM pixelization schemas 2

2.1 Index choice . 3

3 DIF installation 6

3.1 Dependencies . 6
3.2 Installing DIF . 6
3.3 Upgrade . 7

4 How DIF works 8

4.1 The search criteria . 10
4.2 Structure of the DIF.dif table . 11

5 DIF usage 13

5.1 dif options . 13
5.2 Indexing a table using DIF . 13
5.3 Accessing indexed tables . 14
5.4 Drop a DIF index from a table . 14
5.5 Uninstalling DIF from MySQL database . 15

6 Benchmarks and guidelines for using DIF 16

7 DIF function reference 18

7.1 Wrapper to function in the HTM library . 18
7.1.1 HTMidByName . 18
7.1.2 HTMnameById . 18
7.1.3 HTMBary . 19
7.1.4 HTMBaryC . 19
7.1.5 HTMBaryDist . 19
7.1.6 HTMLookup . 20
7.1.7 HTMNeighb . 20
7.1.8 HTMsNeighb . 21
7.1.9 HTMNeighbC . 21

7.2 Wrapper to function in the HEALPix library 22
7.2.1 HEALPBary . 22
7.2.2 HEALPBaryC . 22
7.2.3 HEALPBaryDist . 23
7.2.4 HEALPLookup . 23
7.2.5 HEALPNeighb . 24
7.2.6 HEALPNeighbC . 24
7.2.7 HEALPMaxS . 25

7.3 DB engine-related functions: region selections 25
7.3.1 DIF Circle . 25

i

CONTENTS CONTENTS

7.3.2 DIF Rect . 26
7.3.3 DIF Rectv . 26
7.3.4 DIF NeighbC . 27
7.3.5 DIF sNeighb . 28

7.4 DB engine-related functions: auxiliary functions 28
7.4.1 DIF clear . 28
7.4.2 DIF cpuTime . 29

7.5 Utility functions . 29
7.5.1 getHTMDepth . 29
7.5.2 getHEALPOrder . 29
7.5.3 getHEALPNested . 30
7.5.4 getRa . 30
7.5.5 getDec . 30
7.5.6 Sphedist . 31

8 Generating fake sky tables 32

9 Entries cross-matching 32

10 Troubleshooting 34

10.1 MySQL version 5.5, 5.6 and 5.7 and dif . 34
10.2 Known problems while upgrading dif . 34
10.3 Errors while using dif . 34

10.3.1 FATAL: Cannot install plugin DIF . 34
10.3.2 FATAL: Cannot create trigger . 34
10.3.3 MySQL error: Function ‘dif’ already exists 35
10.3.4 MySQL error: Can’t create database ’DIF’; database exists 35
10.3.5 List to be continued... 35

ii

1 INTRODUCTION

1 Introduction

Typically DB server offer efficient indexing of one or more 1–d data using the so called B–tree
structure. Data produced by an astronomical experiment however are typically related to sky
coordinates which span a 2–d space. Although it is possible to index such data using one or
two simultaneous 1–d indexes like RA and Dec, the queries performance will be very poor
since the search criteria on a 2–d space can be much more complex than on an union of two
independent 1–d spaces. Indeed the only possible queries that take advantages of such indexes
will involve range checking along the two coordinates: α1 ≤ α ≤ α2 and δ1 ≤ δ ≤ δ2. In some
cases, the DB server provides built-in capabilities to manage 2–d coordinates into indexes
using the R–tree structure. This would allow search criteria like “Find all objects within 2
arcsec of a given location”. However these functionalities are far from being a standardized
feature of DB servers; furthermore, there is room for optimization and specialization for
astronomical usage.

DIF is a set of tools aimed at implementing a powerful indexing system for astronomical
catalogues, or any other table containing spherical coordinates, stored into MySQL databases.
It uses a sphere pixelization scheme to convert a latitude/longitude coordinate system into
a single pixel ID, and creates a B–tree (1–d) index on it. Furthermore it provides a number
of functions to generate the pixel IDs given a search criteria such as “Find all the objects
within a given cone”. This way it allows very fast queries execution even on billion-rows
tables, using the MySQL built-in indexing system. DIF provides two pixelization schemas:
HTM1 and HEALPix2 (with either RING or NESTED map ordering). DIF software and
documentation is distributed as an open source package under the GPL license at the site
http://ross.iasfbo.inaf.it/MCS/. Please note that though tested and operational, this
package is continuosly updated and relevant changes could affect new versions. Please keep
checking the web site. Should you find any bug or inconsistency, or if you wish to suggest
new features and/or contribute to the development, please write us at:

• Giorgio Calderone <giorgio.calderone@mib.infn.it>

• Luciano Nicastro <nicastro@iasfbo.inaf.it>

This document is organized as follows: § 2 provide an overview of the HTM and HEALPix
pixelization schemas. § 3 shows how to install DIF, whereas § 5 shows how to use it. § 4
describe DIF internals and § 6 provides some guideline on how to reach good performance in
queries excecution. Finally § 7 provides the reference to all the DIF related functions.

1.1 What’s new in version 0.5.3

• Works also for MySQL 5.6 and 5.7 (and MySQL Cluster 7.2 and MariaDB 10.0)

• Use memset instead of bzero.

• Added UDF HTMsNeighb and DIF function DIF sNeighb to get higher depth trixels
around a given trixel.

• Documentation updated.
1http://www.sdss.jhu.edu/htm/
2http://healpix.jpl.nasa.gov/

1

1.2 A simple example 2 THE HEALPIX AND HTM PIXELIZATION SCHEMAS

1.2 A simple example

Once DIF is installed (§ 3) a database named DIF will be created, with a test table named
Messier in it. This table simply contains the Messier catalogue of astronomical objects. Its
purpose is to test DIF functionalities before using it to real data tables. The equatorial
coordinates in degrees of each object are stored in the Ra and Decl fields (note that MySQL
does not allow to have an “unquoted” field named Dec because it is a reserved word – it is
a synonym for DECIMAL). To create a HTM index with depth 6 (see § 2) simply issue the
command:

dif --index-htm DIF Messier 6 Ra Decl

Now you can query the DB server requesting, for example, all the objects in the catalogue
within 100 arcmin from the point with Ra = 82◦, Dec = 22◦:

mysql > SELECT * FROM Messier_htm_6 WHERE DIF_Circle (82, 22, 100);

+-- -+------+-------+------+--------+---------+---------+---------+-----------+--------+

| M | Type | Const | Mag | Ra | Decl | Dist | htmID_6 | HTM_Depth |HTM_Full |

+-- -+------+-------+------+--------+---------+---------+---------+-----------+--------+

| 1 | BN | Tau | 8.2 | 83.625 | 22.0167 | 6.3 kly | 62340 | 6 | 0|

+-- -+------+-------+------+--------+---------+---------+---------+-----------+--------+

1 row in set (0.00 sec)

Listing 1: Check DIF functionality on Messier table.

2 The HEALPix and HTM pixelization schemas

The HEALPix pixelization scheme (Górski et al., ApJ 662, 759, 2005) uses equal-area pseudo-
square pixels, particularly suitable for spatial analysis. The base pixels are 12 with two
different shapes (Fig. 1). The region in the range −2/3 < z < 2/3 is referred as the
equatorial zone, the two remaining regions being the polar caps. Recursive subdivision of
these pixels is performed keeping their centers equally distributed along rings of constant
colatitude. Rings located in the equatorial zone are divided into the same number of pixels;
the remaining rings contain a varying number of pixels. The two rings closest to the poles
always have 4 pixels and going toward the equator the number of pixels increases by 4 at each
step. The resolution of the HEALPix grid is parameterized by Nside = 2k, where k assumes
integer values being 0 for the base pixelization. It is called the “resolution parameter” or
order. It is then Npix = 12 ×N2

side. The HEALPix library implements a recursive quad-tree
pixel subdivision which is naturally nested. The resulting pixel numbering scheme is then
referred as the nested scheme. Alternatively the ring scheme simply counts the pixels moving
down from the north to the south pole along each isolatitude ring (see Fig. 1). The usage of
the ring scheme is not recommended to index tables like object catalogues which are typically
queried on small sky regions. In fact in this case a pixel ID-bind data sorting will not result
into an efficient “grouping” like that obtainable for the nested scheme where to “close-on-sky”
pixels correspond “close-on-disk” data. This is an important issue because data seek time is
the main issue to face when dealing with very large tables.

The HTM sphere pixelization scheme (Kunszt et al., 2001) uses triangular pixels which
can recursively be subdivided into four pixels. The base pixels are 8. They are obtained by
the intersection on the sphere of 3 major big circles. On the Earth they can be represented
by the equator and two meridians passing at longitude 0◦ and 90◦ (see Fig. 1). These base

2

2.1 Index choice 2 THE HEALPIX AND HTM PIXELIZATION SCHEMAS

Table 1: Relevant parameters for the HTM and HEALPix sphere pixelization

HTM HEALPix

N †
pix: 8× 4d 12 ×N2

side (where Nside = 2k)

ID range: [Npix , 2 ×Npix − 1] [0 , Npix − 1]
Max Npix: ≃ 9.0× 1015 ≃ 3.5 × 1018

Max res.∗ (′′): ≃ 1× 10−2 ≃ 4× 10−4 (Ωpix = π/(3 ×N2
side))

†d (depth): [0 , 25]; k (order ⇔ resolution parameter): [0 , 29]
∗ For HTM the maximum resolution is derived from the trixel minimum side,
for HEALPix assuming a square-pixel equivalent area.

spherical triangles all have the same area. Each of them can then be further divided into four
spherical triangles, or trixels, by connecting the three sides middle points using great circle
segments. As can be seen from Fig. 1, from the first subdivision onward the resulting trixels
are no longer equal-area. The scatter of the trixels area remains within the ±70% of the mean
area, which is 2π/4d+1, being d the depth or level (step of recursive subdivision) of the trixel.
For a given depth the number of trixels is Npix = 8× 4d. The minimal side length is π/2d+1

and the maximal is ≃ π/2 times the minimal length.
The relevant parameters for the two pixelizations are reported in Table 1. We, in general,

suggest to prefer the HTM pixelization because it offers a larger set of functions with respect
to HEALPix. We’ll see below that the HEALPix IDs of any set of selected rows can still be
computed using the DIF functions at query execution time.

2.1 Index choice

As said, there are two pixelization schema available in DIF: HTM and HEALPix. Users can
choose to use one of them or both. For catalogues and other general purpose applications,
HTM is usually the best choice because more search criteria are available, at the moment.
In order to use DIF on a table, the user must provide the following information to the dif

script:

• database name;

• table name;

• depth/order of the pixelization scheme:

– HTM, depth [0 : 25];

– HEALPix, resolution parameter: [0 : 29], for either ordering scheme (RING or
NESTED, see below);

• the two field names corresponding to the spherical coordinates (e.g RA and Dec, longi-
tude – φ and latitude – θ) or a SQL compatible expression to compute them.

Note: starting from Ver. 0.3.3-alpha1 the maximum resolution parameter for HEALPix
is 29 (it was 13 due to the use of 32 bit integers) corresponding to an angular resolution of

3

2.1 Index choice 2 THE HEALPIX AND HTM PIXELIZATION SCHEMAS

0.0 1.0 2.0

Azimuth/π

−1.0

0.0

1.0

c
o

s(
θ) 0, 0 0, 180

0

1
2

3
4

Figure 1: (left) The 12 HEALPix base pixels color coded for the “ring” scheme on the plane
and the sphere. Over-plotted the pixel boundaries for k = 1 which gives 48 pixels. (right)
The 8 HTM base pixels and recursive subdivisions on Earth surface. The “depth” d of the
trixels is marked.

∼ 4×10−4 arcsec. However, because of 64-bit floating point arithmetics limitations (e.g. min-
imum appreciable angular distance), this limit is not applicable for all the DIF implemented
functions.

The resolution of the pixelization scheme is an important parameter that will affect the speed
at which queries are executed. Test performed on very large tables have shown that it is
not always true that the greater is the depth the faster will be the query execution. The
query execution time is the result of a number of operations which depend on several system
parameters. Our results suggest that the most imortant component is the disk seek/access
time and that the CPU usage is a negligible fraction of the total time. We also found that for
tables up to several billion rows, the HTM pixelization at depth 8 gives the best performance3

(see also § 6). This result could be system dependent but we believe that typically having
pixels of size ∼ 20′ is a good choice. For large tables this means that it is adviceble having
on average a few thousand entries per pixel. However the user should make his/her own
tests and choose the most appropriate depth/order. He/she should also consider if it is worth
creating an index on one of the coordinates in conjuction with the IDs, i.e. for the HTM
case, htmID-RA. From our experience, the use of this two-levels index together with a “data”
sorting (e.g via myisamchk -R) could reduce the query execution time by up to one order
of magnitude for very large tables. Note also that in this case the DIF created index on
htmID (only) can be dropped as MySQL/DIF will use the new one automatically being the
pixelization ID the first element of the new aggregate index. An example is shown in List. 2.

mysql > DROP INDEX htmID_8 ON MyDB.MyTable ;

mysql > CREATE INDEX htmID_8 ON MyDB.MyTable (htmID_8 , RA);

3L. Nicastro and G. Calderone: Multiple depth DB tables indexing on the sphere, AA, vol. 2010, ID 524534

4

2.1 Index choice 2 THE HEALPIX AND HTM PIXELIZATION SCHEMAS

Listing 2: Example of replacing the default DIF index on a table.

Table 2: Number of pixels and memory requirements associated to different levels of resolution
parameter for HTM (depth) and HEALPix (order).

Depth/ HTM Npix HEALPix Npix Bytes Data type
Order

0 8 12 1 TINYINT

1 32 48 1 TINYINT

2 128 192 1 TINYINT

3 512 768 2 SMALLINT

4 2, 048 3, 072 2 SMALLINT

5 8, 192 12, 288 2 SMALLINT

6 32, 768 49, 152 2 SMALLINT

7 131, 072 196, 608 3 MEDIUMINT

8 524, 288 786, 432 3 MEDIUMINT

9 2, 097, 152 3, 145, 728 3 MEDIUMINT

10 8, 388, 608 12, 582, 912 3 MEDIUMINT

11 33, 554, 432 50, 331, 648 4 INTEGER

12 134, 217, 728 201, 326, 592 4 INTEGER

13 536, 870, 912 805, 306, 368 4 INTEGER

14 2, 147, 483, 648 3, 221, 225, 472 4 INTEGER

15 8, 589, 934, 592 12, 884, 901, 888 5 BIGINT

16 34, 359, 738, 368 51, 539, 607, 552 5 BIGINT

17 137, 438, 953, 472 206, 158, 430, 208 5 BIGINT

18 549, 755, 813, 888 824, 633, 720, 832 5 BIGINT

19 2, 199, 023, 255, 552 3, 298, 534, 883, 328 6 BIGINT

20 8, 796, 093, 022, 208 13, 194, 139, 533, 312 6 BIGINT

21 35, 184, 372, 088, 832 52, 776, 558, 133, 248 6 BIGINT

22 140, 737, 488, 355, 328 211, 106, 232, 532, 992 6 BIGINT

23 562, 949, 953, 421, 312 844, 424, 930, 131, 968 7 BIGINT

24 2, 251, 799, 813, 685, 250 3, 377, 699, 720, 527, 872 7 BIGINT

25 9, 007, 199, 254, 740, 990 13, 510, 798, 882, 111, 488 7 BIGINT

26 54, 043, 195, 528, 445, 952 7 BIGINT

27 216, 172, 782, 113, 783, 808 8 BIGINT

28 864, 691, 128, 455, 135, 232 8 BIGINT

29 3, 458, 764, 513, 820, 540, 928 8 BIGINT

5

3 DIF INSTALLATION

3 DIF installation

The DIF software library is distributed in a tar.gz package. You can find the latest version
at http://ross.iasfbo.inaf.it/MCS/. To unpack the package simply issue the command:

tar xvzf dif-x.y.z.tar.gz

where x, y, z are the version number (namely the first number is the major revision, the second
number is the version, and third number is the subversion). A directory named dif-x.y.z will
be created containing all the source code as well as the documentation and the scripts needed
to install DIF. Before installing DIF you should check that all the mandatory dependencies
are satisfied (see § 3.1), then you should follow the procedure described in § 3.2.

3.1 Dependencies

The mandatory packages required by DIF are:

• MySQL sources (http://www.mysql.org, version 5.1.30 or later);

• Perl (http://www.perl.com/);

• The DBD::mysql Perl module;.

Note that for MySQL the source files are necessary, not just the compiled package. The
DBD::mysql Perl module can be easily installed through the cpan utility issuing the following
command:

install DBD::mysql

See the cpan documentation for further information. If these package are not already installed
in the system you should install them before continuing.

3.2 Installing DIF

To install DIF you should follow the usual configure, make, make install procedures:

• configuring DIF means checking your system for compatibilities, search for include files
and libraries, and finally produce all necessary Makefiles needed to compile the DIF

sources. This is done automatically by the distributed configure script. Typically you
should only provide one argument to the configure script, as follows:

./configure --with-mysql-source=<PATH>

where <PATH> is the absolute path to the MySQL source tree. The configure script
has a lot of options and switches (type configure --help for a list) to customize the
compilation step. For further documentation see the INSTALL file. Nevertheless we
recommend not to change the default installation path (i.e. the --prefix= option).

• once the configure script has been correctly executed the compilation of sources is
performed with the command:

6

3.3 Upgrade 3 DIF INSTALLATION

make

If you got errors while compiling check the configuration process and the INSTALL file.

• once sources are compiled you can install the libraries and the scripts with the command:

make install

Usually this command need to be executed as “root”. In some cases it may be helpful
to execute the ldconfig command (as “root”) to rebuild the shared library cache.

• finally, to install the DB engine and the DIF facilities you should issue the command
(a running MySQL server is required!):

dif --install

The password of MySQL “root” user will be required. Optionally you could use the
--log option to get more information about SQL queries being executed.

3.3 Upgrade

After you have compiled and installed a new version of DIF you do not need to issue a
dif --install but rather

dif --upgrade

to upgrade UDFs and view definition. In case you are using a very old version of DIF (≤
0.3.3) please contact us and we will try to help you in this process.

Since version 0.5.3, you can eventually use another, partially manual way to upgrade:

1. open a MySQL session as root and issue these commands:

create table test.tbl select * from DIF.tbl;

delete from DIF.tbl;

eventually issue similar commands for other tables you may have in DIF (like Messier).

2. uninstall and reinstall DIF:

dif --uninstall

dif --install

Eventually please see also section 10. In particular after the uninstall consider restart-
ing the MySQL server.

3. in MySQL restore the DIF.tbl table (and eventually more).

insert into DIF.tbl select * from test.tbl;

drop table test.tbl;

7

4 HOW DIF WORKS

Can view the content of the table, just in case:

select * from DIF.tbl;

If, for any reason, a DIF view was lost or is inconsistent with the content of DIF.tbl, you can
recrate it with the option --views-only to dif. For example let’s assume you have installed
the Messier catalogue (in DIF, see section 4) and want to recreate it:

dif --views-only --index-htm DIF Messier 6 Ra Decl

This can be done for any table listed in DIF.tbl.

4 How DIF works

Consider an astronomical catalog stored on a database table in which each entry has two
fields in which the coordinates of a latitude/longitude system are stored. The DIF approach
is to split the sphere into a finite number of zones (or “pixels”) and associate an ID to each
of these pixels. The association is based on one of the pixelization schemas described in §

2. Thus a pixel ID can be associated to each entry in the table. DIF will add a field to the
table to store such IDs and creates an index on it, relaying on the built-in MySQL indexing
system. Then DIF provides a way to dynamically generate a list of pixel IDs corresponding to
a given search criteria, and perform a SQL join between the indexed table and the pixel list,
thus providing very fast query execution. The pixel ID list is provided through the DIF.dif
table; this is not a usual table since it does not occupy any space on the disk, its content
is dynamically generated based on the user specified search criteria. This functionality is
provided by the DIF DB engine. The generation of the pixel ID list and the SQL join are
completely transparent to the user once the DIF views are used to access the table.

In the following example we will refer to the Messier table which is automatically installed
in the DIF database during DIF installation. Other astronomical tables with many more
entries can be downloaded from http://ross.iasfbo.inaf.it/MCS/. The Messier table
has the following structure:

mysql > describe Messier ;

+-- --------+----------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-- --------+----------------------+------+-----+---------+-------+

| M | int (11) | NO | | NULL | |

| Type | char (2) | YES | | ** | |

| Const | char (3) | YES | | *** | |

| Mag | float | YES | | NULL | |

| Ra | float | YES | | NULL | |

| Decl | float | YES | | NULL | |

| Dist | char (20) | YES | | NULL | |

| App_size | char (20) | YES | | unknown | |

+-- --------+----------------------+------+-----+---------+-------+

Listing 3: Structure of the Messier table.

The equatorial coordinates in degrees of each object is stored in the Ra and Decl fields. Any
other coordinate system can be used as well, provided it can be transformed to a latitude
([−90 : 90]) / longitude ([0 : 360]) spherical system. To use the DIF indexing system upon
this table we should issue a command like:

8

4 HOW DIF WORKS

dif --index-htm DIF Messier 6 Ra Decl

In this case the HTM pixelization scheme with depth 6 is used. Note that we passed the
name of the fields containing the coordinates in the command line. The dif script will:

• add a new field named htmID 6 (of type smallint) to the table and populate it with
the HTM ID corresponding to the coordinates of the object;

• create an index on htmID 6;

• create a view named Messier htm 6 which trasparently perform the join between the
Messier and DIF.dif table;

• define triggers so that the htmID 6 field will be automatically populated with the correct
HTM ID each time the Messier table is modified.

Now the user can access the indexed table through the Messier htm 6 view. The search
criteria are specified in the SELECT query using the DIF Circle (or another region-defining)
function4, as in the example shown in List. 4

mysql > SELECT * FROM Messier_htm_6 WHERE DIF_Circle (82, 22, 100);

+-- -+------+-------+------+--------+---------+---------+---------+-----------+--------+

| M | Type | Const | Mag | Ra | Decl | Dist | htmID_6 | HTM_Depth |HTM_Full |

+-- -+------+-------+------+--------+---------+---------+---------+-----------+--------+

| 1 | BN | Tau | 8.2 | 83.625 | 22.0167 | 6.3 kly | 62340 | 6 | 0|

+-- -+------+-------+------+--------+---------+---------+---------+-----------+--------+

1 row in set (0.00 sec)

Listing 4: Example query on the Messier table.

Although the table used in the example has only 110 records, the notable aspect here is that
with DIF the same query can be executed even on a table with several billions records and
the execution time will be approximately the same for any table, provided the index has been
chosen carefully (see § 6). A schematic view of the entire process is show in Fig. 2. In many
cases using one single index would suffice all the user’s needs. However any number and type
of DIF indices can be added to the table. Depending on the system requirements, this could
positively affect the overall performance. How many and which type of indices one should
use, typically depends on the number of entries in the table and the (range of) size of the
sky regions queried. We will discuss this below, but we also recommend to read the reference
paper “Nicastro and Calderone, AA, vol. 2010, ID 524534”. Thus a user may want, e.g., to
add also a HTM index of depth 8 and an HEALPix nested index of order 10; this is easily
done with the command:

dif --index-htm DIF Messier 8 Ra Decl \

--index-healpix-nested DIF Messier 10 Ra Decl

Because an additional HTM depth is present, an “aggregate” view Messier htm will be cre-
ated. Users should perform the query on the view corresponding to the index to be used,
in this case Messier htm 6, Messier htm 8 or Messier healp nest 10. Optionally, to use
simultaneously the two HTM indices 6 and 8, one can query the view Messier htm. It uses
UNION ALL statements to perform the query on all the available depths and return a single

4Note that from Ver. 0.5.2 the prefix HTM/HEALP has been removed from these functions as the pixelization

scheme is derived directly from the view used

9

4.1 The search criteria 4 HOW DIF WORKS

The join operation is very fast because
it is based on the indexed field htmID

Search criteria generates
reference IDs in table DIF.dif

param fullID

A reference table whose content is dynamically
generated on the base of user search criteria

DIF.dif Table

Center coordinates Radius

... Ra Decl ...

Table containing data, coordinates and relative htmID

Messier Table

Front−end view to access the underlying indexing facility

Messier_htm_6 VIEW

This view has the same structure as the table Messier

... Ra Decl ... htmID_6

htmID_6

JOIN
htmID_6 = ID

Example query:SELECT * FROM Messier_htm_6 WHERE DIF_Circle(82, 22, 100);

Figure 2: Schematic view of the tables involved in a DIF query.

list of entries. Note, however, that DIF performs a single call to the HTM routine to get the
list of IDs at the various depths by performing a “recursive erosion” of the queried region
(see the above cited reference paper). These IDs are then used to feed the DIF.dif table as
in the single depth case (see below).

4.1 The search criteria

The search criteria used to dynamically populate the DIF.dif table are specified through one
of the following functions:

• DIF Circle: circle (cone) region;

• DIF Rect: rectangular region giving sides;

• DIF Rectv: rectangular region giving vertices;

• DIF NeighbC: region of a central pixel and its neighbors.

• DIF sNeighb: region of neighbors at higher depth (smaller pixel) around a central pixel.
Only implemented for HTM pixelization. See e.g. Fig. 3.

Note: starting from Ver. 0.5.2 the prefix HTM/HEALP, used to identify the functions that apply
to the two types of pixelizations, have been dropped. In fact these functions now inherit the
information on the pixelization directly from the views they apply to. The parameters of such
functions are described in § 7. DIF will remember search criteria between successive queries
until a new search criteria is specified. Thus, assuming these indices exist, the following
queries will return exactly the same set of records:

10

4.2 Structure of the DIF.dif table 4 HOW DIF WORKS

SELECT * FROM Messier_htm_6 WHERE DIF_Circle(82, 22, 100);

SELECT * FROM Messier_htm_8;

SELECT * FROM Messier_htm;

SELECT * FROM Messier_healp_nest_10;

Indeed the only difference may be in the queries execution times since different indexes could
provide different performance. Furthermore, search criteria may be specified before accessing
the view, as in the following example:

SELECT DIF_Circle(82, 22, 100);

SELECT * FROM Messier_htm_6;

Note: future versions of DIF will eventually allow combining (through logical AND and OR)
different regions. However this will require to drop the creation (and then availability) of the
aggregate view (htm). We then suggest to use in the queries only the depth specific views to
avoid the need to change program and scripts code in the future.

htmID_6 = 64575

depth 10 neighbors

Figure 3: Earth view of the HTM depth 10 neighbors to the depth 6 trixel with ID 64575
(covering Bologna [lon, lat] ≃ [11, 44]). This selection can be done via the UDF function
HTMsNeighb or via DIF sNeighb in a DIF query (see below).

4.2 Structure of the DIF.dif table

The DIF.dif table is the core of the DIF since it provides the (either HTM or HEALpix)
pixel list IDs against which indexed table are to be joined, based on user search criteria. It

11

4.2 Structure of the DIF.dif table 4 HOW DIF WORKS

also reports if a given pixel is fully or partially included in the requested region. The dif

table is based on the DIF database engine, thus it is different from other database tables
since it doesn’t occupy any space on disk but its content is dynamically generated using the
DIF functions. Also the table content is different for each MySQL connection, that is a user
cannot see the content of the dif table of another user. The structure of the dif table is
show in List. 5.

mysql > describe DIF.dif ;

+-------+------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+------------+------+-----+---------+-------+

| param | int (11) | YES | | NULL | |

| id | bigint (20) | YES | | NULL | |

| full | tinyint (1) | YES | | NULL | |

+-------+------------+------+-----+---------+-------+

Listing 5: Structure of the DIF.dif table.

The first field, param, gives the depth (HTM) or order (HEALPix) of the pixelization, the
second contains the pixel ID and the third is a flag indicating if the pixel is entirely included
(1) or partially included (0) in the user selected region. The dif table should never be
used directly, instead user should use one of the views provided by DIF. The name of these
views is made up of the name of the indexed table and a suffix that depends on the type of
index (either _htm, _healp_nest or _healp_ring) followed by an integer which represents
the depth/order. The structure of these views is exactly the same as the data table on which
they are based.

12

5 DIF USAGE

5 DIF usage

All administrative tasks related to DIF like creating or dropping indexes and views, can be
accomplished using the dif script. All available options can be displayed using the command:

dif --help

The dif script (written in Perl) supports both options and commands, the former are used to
enable a specific facility (logging, interactive interface) while the latter are used to accomplish
administrative tasks. Each command requires its arguments which may be given on the
command line or being inserted interactively upon request from the script. Any number of
options and commands (eventually followed by arguments) can be given on a single command
line. Options must be given before commands. The dif script always requires the MySQL
“root” password.

5.1 dif options

Available options are (for current list see dif -h):

-h | --help, print this usage message.

--interactive use interactive interface.

--log, print SQL queries on standard output.

--logfile print SQL queries on file dif.sql.

--no-multidx do not create or update the multi-index view for HTM (TabName_htm).

--no-trigger do not add or update the INSERT trigger for input table.

--readonly, do not execute any query that would modify the database.

-v | --ver, print version number.

Again, these must be given before any command. There can be any number of commands,
each followed by its own arguments. When using the interactive interface the arguments must
be given through stdin and those on command line will be ignored.

Notes:

• if your table is only used in read mode (SELECT) or you’ll take care to compute on the fly
the HTM/HEALPix IDs via HTMLookup or HEALPLookup DIF functions, then you can
use the option --no-trigger to avoid the creation of the triggers for INSERT queries;

• if you are not a specialized user, then it’s likely that you will index the table using one
HTM depth. Or event you’ll index on various depths but you are not going to take
advantage of multiple HTM depths capability. In these cases it is better you use the
--no-multidx to avoid creating the aggregate XYZ_htm table.

5.2 Indexing a table using DIF

To index a table using DIF you should execute the dif script with one or more of the following
commands:

• --index-htm <DBName> <Table> <Depth> <Ra deg> <Dec deg>;

• --index-healpix-ring <DBName> <Table> <Order> <Ra deg> <Dec deg>;

13

5.3 Accessing indexed tables 5 DIF USAGE

• --index-healpix-nested <DBName> <Table> <Order> <Ra deg> <Dec deg>;

The first will add an index using the HTM pixelization scheme with the desired depth, the
last two will use the HEALPix (respectively with RING and NESTED) scheme of desired
order. Arguments meaning are:

• <DBName>: name of the database which contains the table;

• <Table>: name of the table to which index should be added;

• <Depth>: depth of HTM pixelization (0 : 25);

• <Order>: order of HEALPIX pixelization (0 : 29);

• <Ra deg>: SQL expression to compute the right ascension (longitude) in degrees;

• <Dec deg>: SQL expression to compute the declination (latitude) in degrees;

A typical usage of these commands is as follows:

dif --index-htm DIF Messier 6 Ra Decl

If the right ascension is stored as a fractional hour instead of degrees than the following
command should be used:

dif --index-htm DIF Messier 6 "Ra*15.0" Decl

Note that the constant used to eventually convert intrisic “Integer” units to degrees must

be in “floating” or scientific notation, i.e. it has to include a “.” or an E in order to instruct
MySQL to perform non-integer operations. In the shown case it is not necessary as the Ra

column is fractional, however it is good habit to use always floating constants. Also note that
in order to protect the coordinate strings from reinterpretation or expansion by the shell or
shell script, when special characters are present (like the asterisk * which represents a wild
card character) it is important to either escape these characters (by using the “́’ character)
or, better, quote them (like in the shown example).

5.3 Accessing indexed tables

Indexed tables should be read using one of the views created by DIF and specifying criteria
through one of the region-defining functions. There will be a view for each index (as described
in § 4). Upon writing (either for inserting, updating or deleting a record) users should use
directly the original table, since the views are not writable! The htmID and healpID fields
will be automatically updated through the installed triggers. Furthermore users should avoid
using more than one DIF view in the same query.

5.4 Drop a DIF index from a table

To drop a DIF index from a table you should execute the dif script with one or more of the
following commands:

• --drop-index-htm <DBName> <Table> <Depth>

• --drop-index-healpix-ring <DBName> <Table> <Order>

14

5.5 Uninstalling DIF from MySQL database 5 DIF USAGE

• --drop-index-healpix-nested <DBName> <Table> <Order>

Again, the first will drop an HTM index of a given depth, the last two will drop the (respec-
tively RING and NESTED) HEALPix index of given order.

5.5 Uninstalling DIF from MySQL database

To remove all DIF related objects (UDFs, database and plugins) from the MySQL server you
should first drop all DIF indexes (as described in § 5.4), then issue the command:

dif --uninstall

If you want one or more tables not be affected by this process, simply remove the corresponding
entry from the DIF.tbl table. You could remove manually indices and pixel IDs columns (and
views) later.

15

6 BENCHMARKS AND GUIDELINES FOR USING DIF

0.1

1

10

100

E
la

p
.

ti
m

e
 (

s)

D=6 (40467 objs/pix)

D=8 (2529 objs/pix)

D=10 (158 objs/pix)

D=12 (9 objs/pix)

101

102

103

104

105

N
ro

w
s
s−

1

100

101

102

103

104

105

N
 p

ix
e

ls

1 10 100

1

10

100

N
P

p
a

rt
 /

 N
P

to
t (

%
)

K=6 (26978 objs/pix)

K=8 (1686 objs/pix)

K=10 (105 objs/pix)

K=12 (6 objs/pix)

1 10 100

Query disc radius (arcmin)

0.1

1

10

100

E
la

p
.

ti
m

e
 (

s)

D=6 (40467 objs/pix)

D=8 (2529 objs/pix)

D=10 (158 objs/pix)

D=12 (9 objs/pix)

101

102

103

104

105

N
ro

w
s
s−

1

100

101

102

103

104

105

N
 p

ix
e

ls

1 10 100

1

10

100

N
P

p
a

rt
 /

 N
P

to
t (

%
)

K=6 (26978 objs/pix)

K=8 (1686 objs/pix)

K=10 (105 objs/pix)

K=12 (6 objs/pix)

1 10 100

Query disc radius (arcmin)

Figure 4: Select query execution times and other parameters for a DIF managed table with
∼ 3 (left) and ∼ 1 (right) billion entries as a function of the disc radius. Results for four
different pixel scales are reported both for HTM (left in each panel) and HEALPix (right).
Each point represents the average of the results from 50 queries performed on random sky
positions.

6 Benchmarks and guidelines for using DIF

DIF benchmarks are discussed in L. Nicastro and G. Calderone, AA, vol. 2010, ID 524534.
Figure 4 shows the results for two tables produced using the fakesky_H6 program (see § 8),
i.e. with entries having a HTM depth 6 intrinsic ordering.

If you are intersted in DIF then you are likely dealing with a large amount of data. As
for any type of large dataset, apart using indices, the queries on sky regions greatly benefit
from an “ordered” table on disk, i.e. with data more localized phisically. This because the
disk data seek is minimized and the access is performed sequentially. The only difference here
is that on sky (or other multi-dimensional space) a unique (or best) data sort scheme/order
does not exist. What is certain is that once a sky pixelization, and then indexing scheme is
choosen, it is adviceable to sort the data to match the index. This way data of entries close
on-sky will also be close on-disk. In case multiple depths are used, i.e. several indices match
several spatial scales, the user should sort on the index closer to the most likely queried region
size. As already mentioned in § 2, using a pixel size of ∼ 20′ (i.e. split the sky in ∼ 1/2
million pixels) is a choice which is adequate for a generic-use table with up to some billion
entries.

In case a table is only used for SELECT queries, i.e. it is not being modified, ordering
the data on disk can be easily achieved using the shell command (as root) myisamchk -R

index Table (see myisamchk manual). This assumes a MyISAM table. Note that sorting time
depends both on the size of the table and the “disorder” of the data. Adding new data with

16

6 BENCHMARKS AND GUIDELINES FOR USING DIF

random sky positions would require a new sort to keep the table optimized. However if the
added data are a small fraction of the total, the operation would only take slitly longer than
a simple table copy operation. Moreover, if the data within a pixel are sorted either in RA
(longitude) or Dec (latitude) then a SELECT query which, in addition to a DIF function, in
the WHERE clause makes use of the sorted coordinate field to delimit a range, then the query
execution time can reduce by up an order of magnitude! Actual speed depends on the size of
the queried region with respect to the pixel size. Without going into the details of pixelization
used and machine configurations but just to give an example from our experience, selecting
the objects falling into a 10′ × 10′ region from a one billion object catalogue reduces from
∼ 100 − 200 ms, using DIF_Rect alone, to ∼ 20 ms adding the RA boundary condition.

Sometimes it would also be a good idea to compress read-only tables as this would reduce
the seek and access time. In this case can use myisampack. If you still need to improve
performance, it is also adviceable to put the table(s) on a RAID system, in particular level
10 or 50 would be safe and fast both in read and write mode. Otherwise, the more the disks
in the RAID the faster a SELECT query runs. Finally, when deciding which filesystem one
should prefer, it is better considering safety first. All the commonly used filesystems have
mount options which can significantly improve their performance at the expense of safety. If
one has very large tables, it is likely that the most common use is the selection (i.e. read) of
a subset of its entries. In this case check on the web for a filesystem benchmark and, if the
test is present, select the one that performs best for “extracting a subset of data from a large
file”.

When a table is intended for a very specialized use, routines or triggers can be created
to keep the table in “good shape”. We will not discuss this here but just mention the case
when a table is feeded on a more or less regular base with new entries. In this case the usage
of the PARTITION BY option on the table together with a trigger managed re-ordering or a
periodic sorting via a scheduled Event would be a good solution. In other cases, the use of
the MERGE DB engine would be adeguate and actullay more flexible than the PARTITION BY

option. It is the DB manager that, depending on data being managed, and eventually tests,
should decide which is the best strategy. In all cases the aim is always the same: reduce the
amount of data the DB server has to deal with taking into consideration that for a SELECT (or
UPDATE) query the more these data are fragmented on disk(s), the more the time necessary
to grab and deliver it to the user.

Last but not least, do consider to take advantage of the MySQL query cache (can use
“SHOW VARIABLES LIKE ’%query_cache%’” to see settings for your system). In fact if you
need a super-fast selection of the entries falling in a given region and the coordinates of this
region can be predicted before a routine/application actually will use it, then a preliminary
dummy SELECT query can be executed. When the actual query will be executed, MySQL
will deliver the data without the need to perform the search again, assuming they fit into
the available cache. Of course concurrent use of the cache memory does not guarantees this
will work in all cases because other queries performed between the dummy and actual query
could replace the data in the cache.

17

7 DIF FUNCTION REFERENCE

7 DIF function reference

There are three kind of functions installed by DIF:

• wrapper to corresponding function in the HTM/HEALPix libraries;

• functions related to the DB engine, that is to manipulate the content of the DIF.dif

table;

• utility functions.

The reference documentation for each function is reported below.

7.1 Wrapper to function in the HTM library

These functions allow calling underlying functions in the HTM library directly from SQL.

7.1.1 HTMidByName

Syntax:

HTMidByName(IdName STRING)

Parameters:

1. IdName STRING : ID name of the trixel of interest;

Return value (INT):
HTM trixel Id.

Example:

select HTMidByName(’S0000000’);

32768

7.1.2 HTMnameById

Syntax:

HTMnameById(Id INT)

Parameters:

1. Id INT : ID of the trixel of interest;

Return value (STRING):
HTM trixel Id name.

Example:

select HTMnameById(32768);

S0000000

18

7.1 Wrapper to function in the HTM library 7 DIF FUNCTION REFERENCE

7.1.3 HTMBary

Return the HTM trixel barycenter coordinates given depth and trixel ID.

Syntax:

HTMBary(Depth INT, Id INT)

Parameters:

1. Depth INT : depth ([0 : 25]) of the pixelization scheme;

2. Id INT : ID of the trixel of interest;

Return value (STRING):
Comma separated coordinates of the HTM trixel barycenter, in degrees.

Example:

select HTMBary(6,32768);

0.4687499999999769, -0.46875

7.1.4 HTMBaryC

Return the HTM trixel barycenter coordinates given depth and a pair of spherical coordinates.

Syntax:

HTMBaryC(Depth INT, Ra DOUBLE, Dec DOUBLE)

Parameters:

1. Depth INT : depth ([0 : 25]) of the pixelization scheme;

2. Ra DOUBLE : right ascension (or longitude), in degrees;

3. Dec DOUBLE : declination (or latitude), in degrees;

Return value (STRING):
Comma separated coordinates of the HTM trixel barycenter, in degrees.

Example:

select HTMBaryC(6,20,30);

20.03084356871285, 30.26104286747405

7.1.5 HTMBaryDist

Return the distance from the HTM trixel barycenter given depth and a pair of spherical
coordinates.

Syntax:

HTMBaryDist(Depth INT, Id INT, Ra DOUBLE, Dec DOUBLE)

Parameters:

19

7.1 Wrapper to function in the HTM library 7 DIF FUNCTION REFERENCE

1. Depth INT : depth ([0 : 25]) of the pixelization scheme;

2. Id INT : ID of the trixel of interest;

3. Ra DOUBLE : right ascension (or longitude), in degrees;

4. Dec DOUBLE : declination (or latitude), in degrees;

Return value (DOUBLE):
Angular distance from the trixel barycenter, in arcmin.

Example:

select HTMBaryDist(6,htmID_6,RAcs/3.6e5,DECcs/3.6e5) from

UCAC_2orig_htm_6 where DIF_Circle(100,0,10);

...

260 rows in set

7.1.6 HTMLookup

Return the ID of the HTM trixel given depth and a pair of spherical coordinates.

Syntax:

HTMLookup(Depth INT, Ra DOUBLE, Dec DOUBLE)

Parameters:

1. Depth INT : depth ([0 : 25]) of the pixelization scheme;

2. Ra DOUBLE : right ascension (or longitude), in degrees;

3. Dec DOUBLE : declination (or latitude), in degrees;

Return value (BIGINT):
ID of the HTM trixel.

Example:

select HTMLookup(6,20,30);

64152

7.1.7 HTMNeighb

Return the IDs of the HTM trixels touching the given pixel ID (neighbors).

Syntax:

HTMNeighb(Depth INT, Id INT)

Parameters:

1. Depth INT : depth level ([0 : 25]) of the pixelization;

2. Id INT : ID of the trixel of interest;

20

7.1 Wrapper to function in the HTM library 7 DIF FUNCTION REFERENCE

Return value (STRING):
A comma separated string with the (typically) 12 HTM trixels IDs sorted in ascending

order. For trixels touching any multiple of 90◦ angles the neighbors are (typically) 10.

Example:

select HTMNeighb(6, 32768);

32769, 32770, 32771, 47104, 47106, 47107, 49152, 63488, 63489, 63491

7.1.8 HTMsNeighb

Return the IDs of the HTM trixels, at the same or higher depth, touching the given pixel ID
(”smaller” neighbors).

Syntax:

HTMsNeighb(Depth INT, Id INT, oDepth INT)

Parameters:

1. Depth INT : depth level ([0 : 25]) of the pixelization;

2. Id INT : ID of the trixel of interest;

3. oDepth INT : depth level of the map for the border trixels (≥ Depth);

Return value (STRING):
A comma separated string with the HTM trixel IDs at level oDepth.

Example:

select HTMsNeighb(6,32768,8);

524312, 524324, 524340, 524341, 524343, 524344, 524346, 524347, 524348,

753664, 753666, 753667, 753672, 753673, 753675,753677, 753700, 753716,

786432, 1015808, 1015809, 1015811, 1015812, 1015814, 1015815, 1015822,

1015832, 1015864

7.1.9 HTMNeighbC

Return the IDs of the HTM trixels and its neighbours given a pair of spherical coordinates.

Syntax:

HTMNeighbC(Depth INT, Ra DOUBLE, Dec DOUBLE)

Parameters:

1. Depth INT : depth level ([0 : 25]) of the pixelization;

2. Ra DOUBLE : right ascension (or longitude), in degrees;

3. Dec DOUBLE : declination (or latitude), in degrees;

21

7.2 Wrapper to function in the HEALPix library 7 DIF FUNCTION REFERENCE

Return value (STRING):
A comma separated string with the (typically) 13 HTM trixel IDs. For angles multiple

of 90◦ the number of neighbors is (typically) 11. Order is: the central one, the remaining 12
sorted in ascending order.

Example:

select HTMNeighbC(6, 100,60);

58772, 58773, 58774, 58775, 58792, 58800, 58802, 58803, 58820, 58840,

58841, 58843, 58872

7.2 Wrapper to function in the HEALPix library

These functions allows calling underlying functions in the HEALPix library directly from
SQL.

7.2.1 HEALPBary

Return the HEALPix barycenter (center) coordinates given scheme, order and pixel ID.

Syntax:

HEALPBary(Nested INT, Order INT, Id INT)

Parameters:

1. Nested INT : map ordering, 0 for RING, 1 for NESTED;

2. Order INT : order ([0 : 29]) of the pixelization scheme;

3. Id INT : ID of the pixel of interest;

Return value (STRING):
Comma separated coordinates of the HEALPix pixel center, in degrees.

Example:

select HEALPBary(1,8,500);

48.1640625, 6.429418462523309

7.2.2 HEALPBaryC

Return the HEALPix barycenter (center) coordinates given scheme, order and a pair of spher-
ical coordinates.

Syntax:

HEALPBaryC(Nested INT, Order INT, Ra DOUBLE, Dec DOUBLE)

Parameters:

1. Nested INT : map ordering, 0 for RING, 1 for NESTED;

2. Order INT : order ([0 : 29]) of the pixelization scheme;

22

7.2 Wrapper to function in the HEALPix library 7 DIF FUNCTION REFERENCE

3. Ra DOUBLE : right ascension (or longitude), in degrees;

4. Dec DOUBLE : declination (or latitude), in degrees;

Return value (STRING):
Comma separated coordinates of the HEALPix pixel center, in degrees.

Example:

select HEALPBaryC(0,8,20.5,30.8);

20.390625, 30.86525625461861

7.2.3 HEALPBaryDist

Return the distance from the HEALPix barycenter (center) given scheme, order and a pair
of spherical coordinates.

Syntax:

HEALPBaryDist(Nested INT, Order INT, Id INT, Ra DOUBLE, Dec DOUBLE)

Parameters:

1. Nested INT : map ordering, 0 for RING, 1 for NESTED;

2. Order INT : order ([0 : 29]) of the pixelization scheme;

3. Id INT : ID of the pixel of interest;

4. Ra DOUBLE : right ascension (or longitude), in degrees;

5. Dec DOUBLE : declination (or latitude), in degrees;

Return value (DOUBLE):
Angular distance from the pixel center, in arcmin.

Example:

select HEALPBaryDist(1,8,healpID_nest_8,RAcs/3.6e5,DECcs/3.6e5) from

UCAC_2orig_healp_nest_8 where DIF_Circle(100,0,10);

...

260 rows in set

7.2.4 HEALPLookup

Return the ID of the HEALPix pixel given scheme, order and a pair of spherical coordinates.

Syntax:

HEALPLookup(Nested INT, Order INT, Ra DOUBLE, Dec DOUBLE)

Parameters:

1. Nested INT : map ordering, 0 for RING, 1 for NESTED;

2. Order INT : order ([0 : 29]) of the pixelization scheme;

23

7.2 Wrapper to function in the HEALPix library 7 DIF FUNCTION REFERENCE

3. Ra DOUBLE : right ascension (or longitude), in degrees;

4. Dec DOUBLE : declination (or latitude), in degrees;

Return value (BIGINT):
ID of the HEALPix pixel.

Example:

select HEALPLookup(0,8,20,30);

196152

7.2.5 HEALPNeighb

Return the IDs of the HEALPix pixels touching the given pixel ID (neighbors).

Syntax:

HEALPNeighb(Nested INT, Order INT, Id INT)

Parameters:

1. Nested INT : map ordering, 0 for RING, 1 for NESTED;

2. Order INT : order ([0 : 29]) of the pixelization scheme;

3. Id INT : ID of the pixel of interest;

Return value (STRING):
A comma separated string with the (typically) 8 HEALPix pixels IDs. At some peculiar

angles the W, N, E or S neighbors could not exist. Order is: the SW, W, NW, N, NE, E, SE
and S neighbor.

Example:

select HEALPNeighb(0, 8, 1000);

1091, 999, 912, 829, 913, 1001, 1092, 1187

7.2.6 HEALPNeighbC

Return the IDs of the HEALPix pixel and its neighbours given a pair of spherical coordinates.

Syntax:

HEALPNeighbC(Nested INT, Order INT, Ra DOUBLE, Dec DOUBLE)

Parameters:

1. Nested INT : map ordering, 0 for RING, 1 for NESTED;

2. Order INT : order ([0 : 29]) of the pixelization scheme;

3. Ra DOUBLE : right ascension (or longitude), in degrees;

4. Dec DOUBLE : declination (or latitude), in degrees;

24

7.3 DB engine-related functions: region selections 7 DIF FUNCTION REFERENCE

Return value (STRING):
A comma separated string with the (typically) 9 HEALPix pixels IDs. At some peculiar

angles the W, N, E or S neighbors could not exist. Order is: central one, the SW, W, NW,
N, NE, E, SE and S neighbor.

Example:

select HEALPNeighbC(1, 8, 100,60);

113911, 113910, 113916, 113917, 114088, 114082, 114080, 113909, 113908

7.2.7 HEALPMaxS

Return the HEALPix pixel max size (in arcmin) from center to corner (both RING or
NESTED), given the order.

Syntax:

HEALPMaxS(Order INT)

Parameters:

1. Order INT : order ([0 : 29]) of the pixelization scheme;

Return value (DOUBLE):
Angular distance in arcmin from the center of the pixel to the furthest corner.

Example:

select HealPMaxS(6);

57.24888364432666

select HealPMaxS(8);

14.34420720055738

select HealPMaxS(12);

0.8971372281806288

7.3 DB engine-related functions: region selections

These functions are dedicated to the definition of a search region. Typically they are used in
the WHERE clause of a SELECT query.

7.3.1 DIF Circle

Define a circular search region entered at the given coordinates and with the given radius.

Syntax:

DIF Circle(Ra DOUBLE, Dec DOUBLE, Rad DOUBLE)

Parameters:

1. Ra DOUBLE : right ascension (or longitude) of the center, in degrees;

2. Dec DOUBLE : declination (or latitude) of the center, in degrees;

3. Rad DOUBLE : radius of the cicle, in arcmin;

25

7.3 DB engine-related functions: region selections 7 DIF FUNCTION REFERENCE

Return value (BIGINT):
Always 1;

Example:

SELECT * FROM Messier_htm_6 WHERE DIF_Circle(82, 22, 100);

7.3.2 DIF Rect

Define a rectangular search region whose sides lie along lines of constant right ascension
(longitude) and declination (latitude).

Syntax:

DIF Rect(Ra DOUBLE, Dec DOUBLE, side DOUBLE [, side2 DOUBLE])

Parameters:

1. Ra DOUBLE : right ascension (or longitude) of the center, in degrees;

2. Dec DOUBLE : declination (or latitude) of the center, in degrees;

3. side DOUBLE : the length of the sides along the right ascension, in arcmin; if the fourth
argument is omitted this is the length of all sides of the rectangle, i.e. it is a square;

4. side2 DOUBLE (optional): length of the sides along the declination, in arcmin;

Return value (BIGINT):
Always 1.

Example:

select htmID_8,RAcs/3.6e5,DECcs/3.6e5 from

UCAC_2orig_htm_6 where DIF_Rect(100,30,10);

...

74 rows in set

7.3.3 DIF Rectv

Define a rectangle (or four sides polygon) search region with given coordinates of the vertices.
This function can be called either with four or eight arguments. In the first case the arguments
are assumed to be the coordinates of two opposite vertices of the rectangular region and thus
the sides of the region lie along lines of constant right ascension and declination. In the second
case the arguments are the coordinates of the vertices of a four sides polygon. In this case
the largest rectangle included in the polygon is used. In the future any type of polygons will
be supported.

Syntax:

DIF RectV(Ra1 DOUBLE, Dec1 DOUBLE, Ra2 DOUBLE, Dec2 DOUBLE [, Ra3 DOUBLE, Dec3

DOUBLE, Ra4 DOUBLE, Dec4 DOUBLE])

Parameters:

1. Ra1 DOUBLE : right ascension (or longitude) of the first vertex, in degrees;

26

7.3 DB engine-related functions: region selections 7 DIF FUNCTION REFERENCE

2. Dec1 DOUBLE : declination (or latitude) of the first vertex, in degrees;

3. Ra2 DOUBLE : right ascension (or longitude) of the second vertex, in degrees;

4. Dec2 DOUBLE : declination (or latitude) of the second vertex, in degrees;

5. Ra3 DOUBLE (optional): right ascension (or longitude) of the third vertex, in degrees;

6. Dec3 DOUBLE (optional): declination (or latitude) of the third vertex, in degrees;

7. Ra4 DOUBLE (optional): right ascension (or longitude) of the fourth vertex, in degrees;

8. Dec4 DOUBLE (optional): declination (or latitude) of the fourth vertex, in degrees;

Return value (BIGINT):
Always 1.

Example:

select htmID_6,RAcs/3.6e5,DECcs/3.6e5 from

UCAC_2orig_htm_6 where DIF_Rectv(10,30,10.3,30.3);

...

776 rows in set

7.3.4 DIF NeighbC

Define a search region composed of a HTM/HEALPix pixel and its neighbors given a pair of
spherical coordinates.

Syntax:

DIF NeighbC(Ra DOUBLE, Dec DOUBLE)

Parameters:

1. Ra DOUBLE : right ascension (or longitude), in degrees;

2. Dec DOUBLE : declination (or latitude), in degrees;

Return value (BIGINT):
How many HTM/HEALPix pixels have been selected.

Example:

SELECT * FROM Messier_htm_6 WHERE DIF_NeighbC(82, 22);

Note that for tables with multiple depths you can only use the smaller one (larger trixel).

27

7.4 DB engine-related functions: auxiliary functions 7 DIF FUNCTION REFERENCE

7.3.5 DIF sNeighb

Given a HTM trixel at a given depth, it defines a search region composed of the neighbors
trixels at a higher depth (smaller).
NOTE: the table must be DIF indexed at both depths!

Syntax:

DIF sNeighb(Depth INT, Id INT, oDepth INT)

Parameters:

1. Depth INT : depth level ([0 : 25]) of the pixelization;

2. Id INT : ID of the trixel of interest;

3. oDepth INT : depth level of the map for the border trixels (≥ Depth);

Example:

SELECT * FROM Messier_htm_6 WHERE DIF_sNeighb(6, 62392, 8);

| 1 | BN | Tau | 8.2 | 83.625 | 22.0167 ...

Note that you need first to index on depth 8 the Messier catalogue:

dif --index-htm DIF Messier 8 Ra Decl

Also being the catalogue quite small, the values above where calculated on purpose with a
lookup to the trixels IDs around the coordinates of the example above:

select htmlookup(6,83.625,22.0167);

62340

select htmlookup(6,83.45,22.0167);

62392

7.4 DB engine-related functions: auxiliary functions

These are DB engine-related auxiliary functions. The three functions DIF setHTMDepth,
DIF setHEALPOrder and DIF FineSearch are not meant to be used by users, but only inside
DIF views, thus their reference will not be given here.

7.4.1 DIF clear

Clear all user defined region and associated HTM/HEALPix pixel list. Although not manda-
tory, this function should be called each time a user wish to use DIF facilities since MySQL
does not always destroy the thread of a previous user connection.

Syntax:

DIF clear()

28

7.5 Utility functions 7 DIF FUNCTION REFERENCE

7.4.2 DIF cpuTime

This function returns the cumulative usage of CPU time by the DIF functions. It is useful to
quantify the impact of DIF usage with respect to the total time required to execute a query.

Syntax:

DIF cpuTime()

Return value (BIGINT):
Cumulative CPU time (in seconds) since last reset.

Example:

select DIF_cpuTime()/1.;

0.36

7.5 Utility functions

This functions return information about DIF indexed tables.

7.5.1 getHTMDepth

Return the “smallest” (or only) depth of the HTM index created on a table.

Syntax:

DIF.getHTMDepth(db CHAR(50), table CHAR(50))

Parameters:

1. db CHAR(50) : name of the database which contains the table;

2. table CHAR(50) : name of the table;

Return value (INT):
The “smallest” depth of HTM indexes in given table.

7.5.2 getHEALPOrder

Return the “smallest” (or only) resolution parameter (order) of the HEALPix index(es) cre-
ated on a table.

Syntax:

DIF.getHEALPOrder(db CHAR(50), table CHAR(50))

Parameters:

1. db CHAR(50) : name of the database which contains the table;

2. table CHAR(50) : name of the table;

Return value (INT):
Smallest resolution parameter of the HEALPix indexes in the given table.

29

7.5 Utility functions 7 DIF FUNCTION REFERENCE

7.5.3 getHEALPNested

Return the HEALPix map ID ordering scheme used to create the index on a table.

Syntax:

DIF.getHEALPNested(db CHAR(50), table CHAR(50), order INTEGER)

Parameters:

1. db CHAR(50) : name of the database which contains the table;

2. table CHAR(50) : name of the table;

3. order INTEGER : order of the pixelization;

Return value (INT):
Map ordering, 0 for RING, 1 for NESTED.

7.5.4 getRa

Return the SQL expression to get the right ascension / longitude as degrees for each record
of a given table.

Syntax:

DIF.getRa(db CHAR(50), table CHAR(50))

Parameters:

1. db CHAR(50) : name of the database which contains the table;

2. table CHAR(50) : name of the table;

Return value (CHAR(100)):
The SQL expression to get the right ascension (degrees).

7.5.5 getDec

Return the SQL expression to get the declination / latitude as degrees for each record of a
given table.

Syntax:

DIF.getDec(db CHAR(50), table CHAR(50))

Parameters:

1. db CHAR(50) : name of the database which contains the table;

2. table CHAR(50) : name of the table;

Return value (CHAR(100)):
The SQL expression to get the declination (degrees).

30

7.5 Utility functions 7 DIF FUNCTION REFERENCE

7.5.6 Sphedist

Compute the angular distance given the coordinates of two points on a sphere.

Syntax:

Sphedist(Ra1 DOUBLE, Dec1 DOUBLE, Ra2 DOUBLE, Dec2 DOUBLE)

Parameters:

1. Ra1 DOUBLE : right ascension (or longitude) of the first point, in degrees;

2. Dec1 DOUBLE : declination (or latitude) of the first point, in degrees;

3. Ra2 DOUBLE : right ascension (or longitude) of the second point, in degrees;

4. Dec2 DOUBLE : declination (or latitude) of the second point, in degrees;

Return value (DOUBLE):
Angular distance between the points, in arcmin.

31

9 ENTRIES CROSS-MATCHING

8 Generating fake sky tables

In the src sub-directory of the package there are three stand-alone programs suitable to
create table of fake sky objects: fakesky_H6, fakesky_HPx, fakesky_RND. Here we describe
what’s their output and how to use them. Some query examples are also presented with the
“expected” results.

More To Be Written
Simple examples:

./fakesky_HPx -h

./fakesky_HPx

./fakesky_HPx -o 8

./fakesky_H6 -h

./fakesky_H6

./fakesky_H6 -D .5

Please see source code

9 Entries cross-matching

In the src sub-directory of the package can find the stand-alone program myXmatch. It allows
to cross-match entries in two diferent DIF indexed tables. It has several options, in particular
to define the max separation for a positive match and the type and depth of the pixelization
to use. It is also possible to save the output directly into a DB table. It uses the spherematch
C code written by Mike Blanton (Fermiland). It has several limitations which we hope to
remove in future versions. We will also partially change the matching algorithm and add
further options.

More To Be Written
Usage:

myXmatch [OPTIONS] RAcenter DECcenter Radius

myXmatch [OPTIONS] -r RAcenter DECcenter Side

myXmatch [OPTIONS] -r RAcenter DECcenter Side1 Side2

Where OPTIONS are:

-h: print this help

-H: print help on available DIF indexed catalogues

-a: archive (append if exists) matched objects into a DB table (see -t)

-A: like -a but (if exists) first remove DB table

-l: list on screen selected and matched objects

-q: do not list on screen matched objects

-m: input (-S) and returned separation are arcmin (def. arcsec)

-r: input region is a rectangle (or square): input center and two

(one for square) side length (def. circle)

-d DBnane: use ’DBnane’ as input database (def. test)

-o OutDB: use ’OutDB’ as output database (def. test, implies -a)

32

9 ENTRIES CROSS-MATCHING

-p Password: MySQL user password is ’Password’ (def. password)

-s Server: send query to DB server ’Server’ (def. localhost)

-t Table: matched objects table (in DB test) will be ’Table’

(def. Xmatch_User_Cat1_Cat2)

-u User: MySQL user name is ’User’ (def. generic)

-x Cat1 Cat2: cross match catalogue ’Cat1’ and ’Cat2’

-D Depth: HTM pixelization depth to use is ’Depth’ (def. all : excludes -O)

-O Order: HEALPix pixelization order (NESTED) to use is ’Order’

(if not present use smallest avail.: excludes -D)

-S Sep: max separation defining a positive match is ’Sep’ arcsec

(def. 1 : see -m)

Note:

RA, DEC in fractional degrees or string format, Radius/Side in arcmin.

Options -D and -O apply to both catalogues.

If -O not given then assume both catalogues are HTM indexed.

Simple examples:

./myXmatch -h

./myXmatch -d MyCats -x UCAC4 USNOB1 129 -40.3 50

Please see source code

33

10 TROUBLESHOOTING

10 Troubleshooting

In this section we’ll show how to solve common problems while using DIF, in particular when
a dif --install is issued. If you are not sure of what you are doing or have very limited
knowledge of MySQL, please ask a colleague to help you. If none is available then send us an
e-mail and we will do our best to help you.

10.1 MySQL version 5.5, 5.6 and 5.7 and dif

Starting with version 0.5.3, DIF supports these MySQL releases as far as one takes care
of issuing the cmake command with the option -DWITH_DEBUG=0. This is a workaround to
a known issue (bug) that started since the cmake-based build system was adopted. See for
example this page http://bugs.mysql.com/bug.php?id=60872. This could change in future
versions.

10.2 Known problems while upgrading dif

We are aware of problems when upgrading DIF and the standard procedure described in
section 3.3 is applied. Sometimes a ldconfig and MySQL server restart do not make the
new ha_dif.so the actual one. In this case one can try repeating the procedure or giving the
path to the library as an argument, i.e.: ldconfig /usr/local/mysql/lib/mysql/plugin,
better if preceeded by a server shutdown (stop) than followed by a start. Onother suggestion
is to issue the install command with the “verbose” options, i.e.:
dif --log --readonly --install

this way all the commands that dif is trying to execute are printed on the terminal and
the user can try to track the problem, eventually executing some or all of the commands
manually.

10.3 Errors while using dif

10.3.1 FATAL: Cannot install plugin DIF

This error typically occurs when MySQL is unable to locate the shared library ha_dif.so,
which must be located in the path stored in the MySQL system variable plugin_dir. To
show the content of the variable issue the following command in a MySQL terminal:

show variables like ’plugin_dir’;

You should check that the library is available in the returned path. If not you should
make manually a logical link to the ha_dif.so library which by default is installed in
/usr/local/lib (or in the subdirectory lib of the prefix you gave to the configure script).
So, for example:
ln -s /usr/local/lib/ha_dif.so /usr/local/mysql/lib/mysql/plugin/ha_dif.so

10.3.2 FATAL: Cannot create trigger

This error typically occurs when the DIF.tbl table is not aligned with the actual DIF indices
present in the table. This could happen if the user manually moves the table between two
databases or manually create or delete indices. This misalignement can be verified by quering

34

10.3 Errors while using dif 10 TROUBLESHOOTING

DIF.tbl and viewing the status of the table. For example (for the Messier table):

select * from DIF.tbl where name=’Messier’;

describe Messier;

show index from Messier;

select * from INFORMATION_SCHEMA.VIEWS where

TABLE_NAME like ’Messier_htm%’ or TABLE_NAME like ’Messier_healp%’

One can try to drop the trigger, but it could fail. Then the easiest way to solve this issue
is to manually remove (need root privileges) the trigger file in the database directory (assume
tables are in /usr/local/mysql/var/MyCats):

ls /usr/local/mysql/var/MyCats/Messier*.TR*

Messier.TRG

difi_Messier.TRN

10.3.3 MySQL error: Function ‘dif ’ already exists

This error occurs when a previous execution of dif --install failed. In this case you should,
in general, first remove all DIF objects with:
“dif --uninstall” (for older versions “dif --deinstall”)
then try again with “dif --install”. Note: in case you are performing an upgrade, please
refer to § 3.3.

10.3.4 MySQL error: Can’t create database ’DIF’; database exists

This error occurs when a previous version of DIF was not correctly deinstalled before installing
a new version or a previous dif --install failed. Refer to section 3.3 to see how to perform
an upgrade.

10.3.5 List to be continued...

35

