
IDL Version 6.4
April 2007 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

Using IDL

0407IDL64USG

Restricted Rights Notice
The IDL®, ION Script™, ION Java™, IDL Analyst™, ENVI®, and ENVI Zoom™ software programs and the accompanying
procedures, functions, and documentation described herein are sold under license agreement. Their use, duplication, and disclosure
are subject to the restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to
this document at any time and without notice.

Limitation of Warranty
ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information
This software and its associated documentation are subject to the controls of the Export Administration Regulations (EAR). It has
been determined that this software is classified as EAR99 under U.S. Export Control laws and regulations, and may not be re-
transferred to any destination expressly prohibited by U.S. laws and regulations. The recipient is responsible for ensuring compliance
to all applicable U.S. Export Control laws and regulations.

Acknowledgments
ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, ION Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988–2001, The Board of Trustees of the University of Illinois.
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998–2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.

NetCDF Library. Copyright © 1993–1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991–2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995–1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has a commercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

MODTRAN is licensed from the United States of America under U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.

FLAASH is licensed from Spectral Sciences, Inc. under a U.S. Patent Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin
(http://www.csie.ntu.edu.tw/~cjlin/libsvm), adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.

IMSL is a trademark of Visual Numerics, Inc. Copyright © 1970–2006 by Visual Numerics, Inc. All Rights Reserved.

Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents
Chapter 1
Importing and Writing Data into Variables .. 7
Overview of Data Access in IDL .. 8
Accessing Files Using Dialogs .. 9
Reading ASCII Data .. 11
Reading Binary Data ... 12
Accessing Files Programmatically .. 14
Accessing Image Data Programmatically ... 16
Accessing Non-Image Data Programmatically ... 20
Using IDL Macros ... 22
File Access Routines ... 29

Chapter 2
Getting Information About Files and Data .. 31
Investigating Files and Data .. 32
Returning Image File Information ... 33
Using IDL 3

4

Returning Type and Size Information .. 38
Getting Information About SAVE Files .. 40
Returning Object Type and Validity .. 45
Returning Information About a File .. 47

Chapter 3
Graphic Display Essentials ... 49
IDL Visual Display Systems .. 50
IDL Coordinate Systems .. 53
Coordinates of 3-D Graphics ... 55
Coordinate Conversions ... 58
Interpolation Methods .. 61
Polygon Shading Method ... 63
Color Systems .. 64
Display Device Color Schemes ... 67
Colors and IDL Graphic Systems .. 69
Indexed and RGB Image Organization .. 73
Loading a Default Color Table .. 78
Multi-Monitor Configurations ... 81
Using Fonts in Graphic Displays ... 90
Printing Graphics ... 91

Chapter 4
Animations .. 93
Overview of Motion JPEG2000 ... 94
Creating a Motion JPEG2000 Animation .. 96
Adding Data to MJ2 Animations ... 98
Playing a Motion JPEG2000 Animation .. 103
Controlling the Playback Rate ... 106
High Speed MJ2 Reading and Writing .. 108

Chapter 5
Map Projections .. 111
Overview of Mapping .. 112
Graphics Techniques for Mapping ... 113
Map Projection Types .. 115
Azimuthal Projections .. 116
Contents Using IDL

5

Cylindrical Projections .. 125
Pseudocylindrical Projections ... 130
High-Resolution Continent Outlines ... 134
References ... 136

Chapter 6
Signal Processing ... 137
Overview of Signal Processing ... 138
Digital Signals ... 139
Signal Analysis Transforms .. 141
The Fourier Transform .. 142
Interpreting FFT Results ... 143
Displaying FFT Results ... 144
Using Windows ... 148
Aliasing ... 151
FFT Algorithm Details .. 152
The Hilbert Transform ... 153
The Wavelet Transform ... 155
Convolution ... 156
Correlation and Covariance ... 157
Digital Filtering ... 158
Finite Impulse Response (FIR) Filters .. 159
FIR Filter Implementation ... 161
Infinite Impulse Response (IIR) Filters ... 163
References ... 166

Chapter 7
Mathematics .. 167
Overview of Mathematics in IDL ... 168
IDL’s Numerical Recipes Functions ... 169
Correlation Analysis .. 170
Curve and Surface Fitting .. 174
Eigenvalues and Eigenvectors ... 176
Gridding and Interpolation .. 182
Hypothesis Testing .. 183
Integration ... 185
Linear Systems .. 190
Using IDL Contents

6

Nonlinear Equations ... 197
Optimization .. 199
Sparse Arrays ... 201
Time-Series Analysis ... 204
Multivariate Analysis ... 207
References .. 213

Index .. 217
Contents Using IDL

Chapter 1

Importing and Writing
Data into Variables
This chapter provides an introduction to accessing, reading and writing data using the dialogs, and
routines found in IDL.
Overview of Data Access in IDL 8
Accessing Files Using Dialogs 9
Reading ASCII Data 11
Reading Binary Data 12
Accessing Files Programmatically 14

Accessing Image Data Programmatically . 16
Accessing Non-Image Data Programmatically
20
Using IDL Macros 22
File Access Routines 29
Using IDL 7

8 Chapter 1: Importing and Writing Data into Variables
Overview of Data Access in IDL

There are several ways to open files and access the data that they contain in IDL.You
can open a file using interface elements, or using routines. In order of increasing
complexity and flexibility, your options are:

• Accessing data in iTools — use File → Open from an iTool, and browse to
select a file. This option automatically displays data (that is a supported type)
in the iTool. See Chapter 2, “Importing and Exporting Data” (iTool User’s
Guide) for details.

• Accessing files using dialogs — launch an IDL dialog and browse to select or
save a file. After accessing the file, use an IDL routine to access the data
within the file. You can then preform additional data processing task or create
a display. See “Accessing Files Using Dialogs” on page 9 for details.

• Accessing files programmatically — you can access data without requiring
user interaction by using IDL statements in a program or at the command line.
This give you the greatest control over the state of data at all times, but
requires slightly more programming than the previous option. See “Accessing
Files Programmatically” on page 14 for details.

There are advantages and disadvantages for each option. When you open a file using
File → Open in the iTools, there is no opportunity to do pre-processing on the data.
However, the display is created for you, and there are numerous interactive
operations available.

You can combine the flexibility of accessing data using routines with the power of an
iTool display by launching the iTool from the command line as described in
“Parameter Data and the Command Line” (Chapter 2, iTool User’s Guide). See
“Accessing Image Data Programmatically” on page 16 and “Accessing Non-Image
Data Programmatically” on page 20 for examples.

When you access data from the command line or in an IDL program, you have the
greatest control over data modification. The iTools incorporate the functionality of
many of the common data processing and manipulation routines. However, if you
need greater control over data modification, want to create a custom display or object
class, or need to use functionality that is not exposed through and iTool, you can
import, export, and/or create your data programmatically.

Regardless of the method selected, it is important to note that only the options
involving iTools will automatically display data for you. In other instances, you will
need to configure a display yourself.
Overview of Data Access in IDL Using IDL

Chapter 1: Importing and Writing Data into Variables 9
Accessing Files Using Dialogs

DIALOG_PICKFILE and DIALOG_READ_IMAGE are the two primary file access
dialogs in IDL. Use DIALOG_PICKFILE to select any type of file. You can select
multiple files, define the directory or define file filters using keywords. Use
DIALOG_READ_IMAGE to access supported image formats (listed in “Image File
Formats” (Chapter 2, IDL Interface)). This dialog offers preview capabilities and
basic image information. The corollary DIALOG_WRITE_IMAGE allows you to
write data to a select image file type.

See the following topics for more information:

• “Accessing Any File Type Using a Dialog” below

• “Importing an Image File Using a Dialog” on page 10

• “Saving an Image File Using a Dialog” on page 10

You can use other dialogs to access ASCII, binary and HDF data as described in:

• “Reading ASCII Data” on page 11

• “Reading Binary Data” on page 12

Also, several pre-defined IDL macros are provided to help you import data into the
IDLDE. Each returns a structure, which you access programmatically in order to
retrieve data. See “Using IDL Macros” on page 22 for details.

Note
Also see “CW_FILESEL” (IDL Reference Guide) for an example that configures a
compound widget to open image files.

Accessing Any File Type Using a Dialog

The DIALOG_PICKFILE function lets you interactively pick a file using the
platform’s own native graphical file selection dialog. This function returns a string or
an array of strings that contain the full path name of the selected file or files. The user
can also enter the name of the file. The following statement opens the selection dialog
and shows any .pro files in the current working directory. If you select a file and
click Open, the file variable contains the full file path.

file = DIALOG_PICKFILE(/READ, FILTER = '*.pro')

Other keywords allow you to specify the initial directory, the dialog title, the filter
list, and whether multiple file selection is permitted. See “DIALOG_PICKFILE”
(IDL Reference Guide) for details.
Using IDL Accessing Files Using Dialogs

10 Chapter 1: Importing and Writing Data into Variables
After you select a file using DIALOG_PICKFILE, you can then use one of the file
I/O routines to access the data within the file. See “Accessing Image Data
Programmatically” on page 16 or “Accessing Non-Image Data Programmatically” on
page 20 for more information.

Importing an Image File Using a Dialog

The DIALOG_READ_IMAGE function opens a graphical user interface which lets
you read image files. This interface simplifies the use of IDL image file I/O. You can
preview images with a quick and simple browsing mechanism which also reports
important information about the image file. You can also control the preview mode.

The following statement opens the dialog so that you can select among .gif, tiff,
.dcm, .png and .jpg files.

result = DIALOG_READ_IMAGE(FILE=selectedFile, IMAGE=image)

See “Using the Select Image File Dialog Interface” under
“DIALOG_READ_IMAGE” (IDL Reference Guide) for additional information if
desired. When you select a file and click Open, the file path is stored in
selectedFile variable and the image data is stored in the image variable. Enter
the following line to display image data in an iImage display.

IF result EQ 1 THEN iImage, image

Saving an Image File Using a Dialog

The DIALOG_WRITE_IMAGE function displays a graphical user interface that lets
you write and save image files. This interface simplifies the use of IDL image file
I/O. The following statements create and write a simple image to a .tif file name
myimage.tif:

myimage = DIST(100)
result = DIALOG_WRITE_IMAGE(myimage, FILENAME='myimage.tif')

When you select Save, it creates a .tif file in your current working directory or the
directory of your choice. See “DIALOG_WRITE_IMAGE” (IDL Reference Guide)
for a complete list of keywords and a description of the dialog interface.
Accessing Files Using Dialogs Using IDL

Chapter 1: Importing and Writing Data into Variables 11
Reading ASCII Data

IDL recognizes two types of ASCII data files: free format files, and explicit format
files. A free format file uses commas or tabs and spaces to distinguish each element
in the file. An explicit format file distinguishes elements according to the commands
specified in a format statement. Most ASCII files are free format files.

Note
If you prefer not to use an interactive dialog (described below), you can also use the
READ/READF, or READS procedures to access ASCII data. The READ procedure
reads free format data from standard input, READF reads free format data from a
file, and READS reads free format data from a string variable.

Launching the ASCII Template Dialog

The ASCII_TEMPLATE function launches a dialog that you can use to configure the
structure of data in an ASCII file. Access this feature in one of the following ways:

• From an iTool — select File → Open (or click the Import File button in the
Data Manager or Insert Visualization dialog) and select a text file

• From the IDLDE — select Macros → Import ASCII and select a text file

• From the IDL command line — use the following syntax to call
ASCII_TEMPLATE and select a text file:

sTemplate = ASCII_TEMPLATE()

Note
If you specify a Filename argument to ASCII_TEMPLATE, the dialog
allowing you to browse to select a file will not appear. See
“ASCII_TEMPLATE” (IDL Reference Guide) if you want specify a file and
other parameters programmatically.

See “Using the ASCII Template Dialog” under “ASCII_TEMPLATE” (IDL
Reference Guide) for instructions on how to use the dialog to define the structure of
your ASCII data.
Using IDL Reading ASCII Data

12 Chapter 1: Importing and Writing Data into Variables
Reading Binary Data

Data is sometimes stored in files as arrays of bytes instead of a known format like
JPEG or TIFF. These files are referred to as binary files. Binary data or binary data
files are more compact than ASCII data files and are frequently used for large data
files. Binary data files are stored as one long stream of bytes in a file. You will need
to define the structure of the fields in the file in order to correctly read in the binary
data.

The BINARY_TEMPLATE and READ_BINARY functions are designed to define
and access binary data. The READ_BINARY function, which reads binary data, is
either invoked internally (when you open a binary file from the iTools or use the
Import Binary macro), or is explicitly called from the command line. This function
is intended to read raw binary data that requires no special processing (except
possibly byte-order swapping). This function is not designed to read commercial
spreadsheet or word processing files.

Note
If you prefer not to use an interactive Binary Template dialog (described below) to
define the structure of the data in the binary file, you can use the READU
procedure. To read binary data files, define the variables, open the file for reading,
and read the bytes into those variables. Each variable reads as many bytes out of the
file as required by the specified data type and organizational structure.

If you need to open a single binary file, it may be easier to use READ_BINARY to
directly define data characteristics using keywords instead of creating a template
using the Binary Template dialog (described below). See “READ_BINARY” (IDL
Reference Guide) for an example.

Launching the Binary Template Dialog

The BINARY_TEMPLATE function launches a dialog that you can use to define the
structure of data in an binary file. Access this feature in one of the following ways:

• From an iTool — select File → Open (or click the Import File button in the
Data Manager or Insert Visualization dialog) and select a binary file

• From the IDLDE — select Macros → Import Binary and select a binary file

• From the IDL command line — use the following syntax to call
BINARY_TEMPLATE and select a text file:

sTemplate = BINARY_TEMPLATE()
Reading Binary Data Using IDL

Chapter 1: Importing and Writing Data into Variables 13
Note
If you specify a Filename argument to BINARY_TEMPLATE, the dialog
allowing you to browse to select a file will not appear. See
“BINARY_TEMPLATE” (IDL Reference Guide) if you want specify a file
and other parameters programmatically.

See “Using the BINARY_TEMPLATE Interface” under “BINARY_TEMPLATE”
(IDL Reference Guide) for instructions on how to use the dialog to define the
structure of your binary file.
Using IDL Reading Binary Data

14 Chapter 1: Importing and Writing Data into Variables
Accessing Files Programmatically

Regardless of the data type, there are several routines that are commonly used to
access files and data. To read data into an IDL variable, you must identify the file
containing the data, and then extract the data from the file. This section discusses file
access. Following sections (discuss data access.

File Access

One of the most common file access routines is FILEPATH. Use this to select a
named file in a specified directory. For example, to select a file in the
examples/data directory of the existing working directory, use the statement:

file = FILEPATH('mr_brain.dcm', SUBDIRECTORY=['examples', 'data'])

To access a file outside the existing working directory, use the ROOT_DIR keyword.
The following statement opens a file named testImg.tif in the C:\tempImages
directory.

file = FILEPATH('testImg.tif', ROOT_DIR='C:', $
SUBDIRECTORY='tempImages')

Cross-platform File Access

If your application requires a cross-platform path, one that is not specific to UNIX or
Windows, consider using the DIALOG_PICKFILE routine with the GET_PATH
keyword. This lets you choose a file and store the operating system native path to the
file in a variable. In the following example, you choose an image file and the full
directory path to the selected image is stored in path:

sFile = DIALOG_PICKFILE(/MUST_EXIST, $
 TITLE = 'Select an Image File', $
 FILTER = ['*.bmp', '*.jpg', '*.png', '*.ppm', '*.tif'], $

GET_PATH=path)

When you need to access a file in the directory stored in path, you can use the
PATH_SEP function to return the correct path separation character for the operating
system. Suppose you have a file called myTestFile.jpg that you want to delete
before a program ends. FILE_DELETE requires a string File argument that is in the
native syntax for the current operating system. To delete this file, you can use the
directory information stored in path, plus the PATH_SEP function, plus the name of
the file to delete as follows (the + operator concatenates strings):

FILE_DELETE, path+PATH_SEP()+'myTestFile.jpg', /ALLOW_NONEXISTENT
Accessing Files Programmatically Using IDL

Chapter 1: Importing and Writing Data into Variables 15
IDL also provides an extensive number of other file manipulation routines. See
“General File Access” under the functional category “Input/Output” (IDL Quick
Reference) for a list.

FILEPATH is often used in conjunction with routines that access the data from a file,
as shown in the following section.
Using IDL Accessing Files Programmatically

16 Chapter 1: Importing and Writing Data into Variables
Accessing Image Data Programmatically

You can access image data using routines designed for general image file access,
designed specifically for an image file format, or using unformatted data access
routines. Which option you choose depends on the file type and the level of control
you want over reading and writing the file. See the following topics for details:

• “Importing Formatted Image Data Programmatically” below

• “Importing Unformatted Image Files” on page 17

• “Exporting Formatted Image Files Programmatically” on page 18

• “Exporting Unformatted Image Files” on page 19

Note
These sections describe how to load data into a variable and includes examples of
passing variable data to an iTool programmatically. See “Importing Data from the
IDL Session” (Chapter 2, iTool User’s Guide) if you want information on how you
can access variable data from the iTools Data Manager.

Importing Formatted Image Data Programmatically

The majority of IDL image data access routine require a file specification, indicating
the file from which to access the data. The FILEPATH routine is often used within a
data access routine as shown in the following example.

Note
To validate that an image file can be accessed using READ_* routines, you can
query the image first. See “Returning Image File Information” on page 33 for
details.

The following example opens a JPEG file from the examples/data directory,
performs feature extraction, and displays both images using IIMAGE.

; Open a file and access the data.
file = FILEPATH('n_vasinfecta.jpg', $
 SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, image, /GRAYSCALE

; Mask out pixel values greater than 120
; and create a distance map.
binaryImg = image LT 120
distanceImg = MORPH_DISTANCE(binaryImg, NEIGHBOR_SAMPLING = 1)
Accessing Image Data Programmatically Using IDL

Chapter 1: Importing and Writing Data into Variables 17
; Launch iImage, creating a 2 column, 1 row layout.
; Display the original and distanceImg in the two views.
IIMAGE, image, VIEW_GRID=[2,1]
IIMAGE, distanceImg, /VIEW_NEXT, /OVERPLOT

In the previous example, you could use the READ_IMAGE function instead of the
READ_JPEG function by replacing the following statement:

READ_JPEG, file, image, /GRAYSCALE

with

image = READ_IMAGE(file)

In this instance, you do not have control over the color table associated with the
image. It is often more useful to use a specific READ_* routine or object designed
for the image file format to precisely control characteristics of the imported image.

For a list of available image access, import and export routines and objects, see
“Image Data Formats” under the functional category “Input/Output” (IDL Quick
Reference).

Note
IDL can also import images stored in scientific data formats, such as HDF and
netCDF. For more information on these formats, see the Scientific Data Formats
manual.

Importing Unformatted Image Files

Images in unformatted binary files can be imported with the READ_BINARY
function using the DATA_DIMS and DATA_TYPE keywords as follows:

• You must specify the size of the image within the file using the DATA_DIMS
keyword. This is required because the READ_BINARY function assumes the
data values are arranged in a single vector (a one-dimensional array). The
DATA_DIMS keyword is used to specify the size of the two- or three-
dimensional image array.

• You can set the DATA_TYPE keyword to the image’s data type using the
associated IDL type code (see “IDL Type Codes and Names” under the SIZE
function in the IDL Reference Guide for a complete list of type code). Most
images in binary files are of the byte data type, which is the default setting for
the DATA_TYPE keyword.

No standard exists by which image parameters are provided in an unformatted binary
file. Often, these parameters are not provided at all. In this case, you should already
Using IDL Accessing Image Data Programmatically

18 Chapter 1: Importing and Writing Data into Variables
be familiar with the size and type parameters of any images you need to access within
binary files.

For example, the worldelv.dat file is a binary file that contains an image. You can
only import this image by supplying the information that the data values of the image
are byte and that the image has dimensions of 360 pixels by 360 pixels. Before using
the READ_BINARY function to access this image, you must first determine the path
to the file:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

Define the size parameters of the image with a vector:

imageSize = [360, 360]

An image type parameter is not required because we know that the data values of
image are byte, which is the default type for the READ_BINARY function.

The READ_BINARY function can now be used to import the image contained in the
worldelv.dat file:

image = READ_BINARY(file, DATA_DIMS = imageSize)
IIMAGE, image

Exporting Formatted Image Files Programmatically

Images can be exported to common image file formats using the WRITE_IMAGE
procedure. The WRITE_IMAGE procedure requires three inputs: the exported file’s
name, the image file type, and the image itself. You can also provide the red, green,
and blue color components to an associated color table if these components exist.

For example, you can import the image from the worldelv.dat binary file:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [360, 360]
image = READ_BINARY(file, DATA_DIMS = imageSize)

You can export this image to an image file (a JPEG file) with the WRITE_IMAGE
procedure:

WRITE_IMAGE, 'worldelv.dat', 'JPEG', image

IDL also provides format-specific WRITE_* routines that are similar to the
WRITE_IMAGE procedure, but provide more flexibility when exporting a specific
image file type. See “Image Data Formats” under the functional category
“Input/Output” (IDL Quick Reference) for a list of available image access, import and
export routines and objects.
Accessing Image Data Programmatically Using IDL

Chapter 1: Importing and Writing Data into Variables 19
Note
IDL can also export images stored in scientific data formats, such as HDF and
netCDF. For more information on these formats, see the Scientific Data Formats
manual.

Exporting Unformatted Image Files

Images can be exported to an unformatted binary file with the WRITEU procedure.
Before using the WRITEU procedure, you must open a file to which the data will be
written using the OPENW procedure. Any file you open must be specifically closed
using either the FREE_LUN or CLOSE procedure when you are done exporting the
image.

For example, you can import the image from the rose.jpg image file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_IMAGE(file)

You can export this image to a binary file by first opening a new file:

OPENW, unit, 'rose.dat', /GET_LUN

Then, use the WRITEU procedure to write the image to the open file:

WRITEU, unit, image

You must remember to close the file once the data has been written to it:

FREE_LUN, unit

Note
For complete details about reading, writing and formatting unformatted data, see
Chapter 18, “Files and Input/Output” (Application Programming).
Using IDL Accessing Image Data Programmatically

20 Chapter 1: Importing and Writing Data into Variables
Accessing Non-Image Data Programmatically

There are a number of options available for reading non-image data into IDL.
Depending upon the file type, consider using one of the following:

• Formatted data — use a data-type-specific routine (such as READ_ASCII or
READ_BINARY). See “Reading Binary Data in a Volume” below for more
information.

• Unformatted data — use a general data access routines (such as OPEN or
WRITE). For complete details about reading, writing and formatting
unformatted data, see Chapter 18, “Files and Input/Output” (Application
Programming).

• SAVE file data — use the RESTORE procedure to access variable data in a
SAVE file. See “Reading Contour Data from a SAVE File” on page 21 for an
example.

Note
These sections describe how to load data into a variable and includes examples of
passing variable data to an iTool programmatically. See “Importing Data from the
IDL Session” (Chapter 2, iTool User’s Guide) if you want information on how you
can access variable data from the iTools Data Manager.

Reading Binary Data in a Volume

The following example uses READ_BINARY to access binary data (head.dat)
consisting of a stack of 57 images slices of the human head. After reading the data,
create a display using IVOLUME. Enter the following at the IDL command prompt:

file = FILEPATH('head.dat', $
SUBDIRECTORY = ['examples', 'data'])

dataSize = [80,100,57]
volume= READ_BINARY(file, DATA_DIMS = dataSize)
iVolume, volume, /AUTO_RENDER

Note
You can also create a template for binary file access. See “Reading Binary Data” on
page 12 for options.
Accessing Non-Image Data Programmatically Using IDL

Chapter 1: Importing and Writing Data into Variables 21
Reading Contour Data from a SAVE File

You can also access information from a SAVE file. This example restores a SAVE
file containing variable data (marbells.dat), configures the data, and displays it
using ICONTOUR.

PRO maroonBellsContour_doc

; Restore Maroon Bells data into the IDL variable "elev".
RESTORE, FILEPATH('marbells.dat', SUBDIR=['examples','data'])

; Create x and y vectors giving the position of each
; column and row.
X = 326.850 + .030 * FINDGEN(72)
Y = 4318.500 + .030 * FINDGEN(92)

; Set missing data points to a large value. Reduce to a
; 72 x 92 matrix.
elev (WHERE (elev EQ 0)) = 1E6
new = REBIN(elev, 360/5, 460/5)

iContour, new, X, Y, C_VALUE = 2750 + FINDGEN(6) * 250.,$
 XSTYLE = 1, YSTYLE = 1, YMARGIN = 5, MAX_VALUE = 5000, $
 C_LINESTYLE = [1, 0], $
 C_THICK = [1, 1, 1, 1, 1, 3], $
 XTITLE = 'UTM Coordinates (KM)'

End

Note
See Chapter 4, “Creating SAVE Files of Programs and Data” (Application
Programming) for complete details on creating and restoring SAVE files.
Using IDL Accessing Non-Image Data Programmatically

22 Chapter 1: Importing and Writing Data into Variables
Using IDL Macros

When you are working in the IDLDE, you can use a pre-defined macro to help you
import image, ASCII, binary or HDF data. These macros call internal functions and
return structures containing data. From the IDL command line, you can access and
display data elements contained in the structures. These macros are available through
the Macros menu and also through IDL toolbar buttons.

See the follow sections for more information:

• “Using Macros to Import Image Files” on page 23

• “Using Macros to Import ASCII Files” on page 25

• “Using Macros to Import Binary Files” on page 27

• “Using Macros to Import HDF Files” on page 28

Figure 1-1: Macro Toolbar Buttons

Import ASCII File Import Binary File

Import HDF
File

Import Image
File
Using IDL Macros Using IDL

Chapter 1: Importing and Writing Data into Variables 23
Using Macros to Import Image Files

To import an image file into IDL using a macro, complete the following steps:

1. Select the Import Image toolbar button. The Select Image File dialog is
displayed.

2. Select a file to import. For example, select the
IDL_DIR/examples/data/muscle.jpg file where IDL_DIR is the
installation directory for IDL. See “Using the Select Image File Dialog
Interface” under “DIALOG_READ_IMAGE” (IDL Reference Guide) for
additional information if desired.

3. Click Open.

The muscle.jpg image data has been opened into a structure variable named
MUSCLE_IMAGE. The Import Image macro opens and stores image data in a
structure variable named filename_IMAGE where filename is the name of the file
you opened without the extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

The MUSCLE_IMAGE structure contains the following fields:

• IMAGE — The actual image array.

• R — The red color table vectors.

• G — The green color table vectors.

• B — The blue color table vectors.

• QUERY — Contains information about the image.

• CHANNELS — The number of channels in the image.

• HAS_PALETTE — Specifies if the palette is present. 1 if the palette is
present, else 0. If your image is n-by-m the palette is usually present and
the R, G, and B color table vectors mentioned above will contain values. If
your image is 3-by-n-by-m, the palette will not be present and the R,G, and
B color table vectors will not contain any values.
Using IDL Using Macros to Import Image Files

24 Chapter 1: Importing and Writing Data into Variables
• IMAGE_INDEX — The index of the image of the file. The default is 0,
the first image in the file. If there are multiple images in the file that you
read, this will be the number (or index) of the image.

• NUM_IMAGES — The number of images in the original file.

• PIXEL_TYPE — The IDL Type Code of the image pixel format. Valid
types are described in “IDL Type Codes and Names” under “SIZE” (IDL
Reference Guide).

• TYPE — The image format type.

The structure can be viewed in the Variable Watch Window.

You can specify which part of the structure variable you want to access by using the
following syntax:

variable_name.element_name[.element_name]

For example, if you want to view the image, enter the following:

IIMAGE, MUSCLE_IMAGE.IMAGE

If you want to know the file type, enter the following:

PRINT, MUSCLE_IMAGE.QUERY.TYPE

IDL prints:

JPEG

Figure 1-2: Variable Watch Window Showing MUSCLE_IMAGE Structure
Using Macros to Import Image Files Using IDL

Chapter 1: Importing and Writing Data into Variables 25
Using Macros to Import ASCII Files

To import an ASCII file into IDL using a macro, complete the following steps:

1. Select the Import ASCII toolbar button. The Select an ASCII file to read
dialog appears.

2. Select a file to import.

3. See “Using the ASCII Template Dialog” under “ASCII_TEMPLATE” (IDL
Reference Guide) for instructions on how to use the dialog to define the
structure of your ASCII data.

ASCII files opened with the Import ASCII macro are stored in structure variables
which are named filename_ASCII where filename is the name of the file you opened
without the extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

For example, if you opened ascii.txt, the data is now in the structure variable
named ASCII_ASCII. Each field (named in the ASCII Template dialog) is an
element of the structure.

The structure can be viewed in the Variable Watch Window.

Figure 1-3: Variable Watch Window Showing ASCII_ASCII Structure
Using IDL Using Macros to Import ASCII Files

26 Chapter 1: Importing and Writing Data into Variables
You can specify which part of the structure variable you want to access by using the
following syntax:

variable_name.element_name

For example, if you want to view the Longitude field data, enter the following:

Print, ASCII_ASCII.LONGITUDE

If you want to plot the Temperature data, enter the following:

IPLOT, ASCII_ASCII.TEMPERATURE

The following figure results.

Figure 1-4: Plot of ASCII_ASCII.TEMPERATURE
Using Macros to Import ASCII Files Using IDL

Chapter 1: Importing and Writing Data into Variables 27
Using Macros to Import Binary Files

To import a binary file into IDL using a macro, complete the following steps:

1. Select the Import Binary toolbar button. The Select a binary file to read
dialog appears.

2. Select a file to import. For example, select the surface.dat from the
examples/data directory in your IDL installation directory. Click Open.

3. See Using the BINARY_TEMPLATE Interface under
“BINARY_TEMPLATE” (IDL Reference Guide) for instructions on how to
use the dialog to define the structure of your binary data.

Binary files opened with the Import Binary File macro are stored in structure
variables which are named filename_BINARY where filename is the name of the file
you opened without the extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

So, the file we just opened (surface.dat) is now in the structure variable named
SURFACE_BINARY. The variable is a structure, and contains elements that are the
field names defined in the Binary Template dialog. In this case the single field is
named marbells. The structure can be viewed in the Variable Watch Window.

Access data from the structure variable using the following syntax:

variable_name.element_name

For example, display the surface by entering:

ISURFACE, SURFACE_BINARY.marbells

Figure 1-5: Variable Watch Window Showing MARBELLS_BINARY Structure
Using IDL Using Macros to Import Binary Files

28 Chapter 1: Importing and Writing Data into Variables
Using Macros to Import HDF Files

To import a Hierarchical Data Format (HDF), HDF-EOS, or NETCDF file into IDL,
complete the following steps:

1. Select the Import HDF File toolbar button. The Select a valid HDF,
NETCDF or HDF-EOS file dialog is displayed.

2. Select a file to import. Click Open.

3. See “Using the HDF Browser Interface” under “HDF_BROWSER” for
instructions on how to use the dialog.

After selecting to import data and clicking OK, HDF, NETCDF, or HDF-EOS files
read with the Import HDF macro are stored in structure variables which are named
filename_DF where filename is the name of the file you opened without the
extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any illegal characters within filename are removed.

The variable is a structure with each data or metadata name being an element of the
structure. You can specify which part of the structure variable you want to access by
using the following syntax:

variable_name.data_name

For example, if you imported two data elements out of a file named hydrogen.hdf
and you named the elements IMAGE1 and IMAGE2, you could access each individual
data element using the following:

HYDROGEN_DF.IMAGE1
HYDROGEN_DF.IMAGE2

If you wanted to view IMAGE1, you would enter:

IIMAGE, HYDTROGEN_DF.IMAGE1

For more information on IDL support of HDF and other scientific data formats, see
the Scientific Data Formats manual.

For information on importing HDF5 files using the HDF5 Browser dialog, see
“H5_BROWSER” (IDL Reference Guide)
Using Macros to Import HDF Files Using IDL

Chapter 1: Importing and Writing Data into Variables 29
File Access Routines

See the following categories under “Input/Output” (IDL Quick Reference) for a list of
available file and data access routines:

• “Image Data Formats” — includes read and write routines for supported image
formats (such as JPEG, TIFF, DICOM, etc.), and routines that launch dialogs
for image file access.

• “Scientific Data Formats” — includes CDF, EOS, NCDF, HDF, and HDF5
routines.

• “Other Data Formats” — includes routines that access ASCII, BINARY,
XML, and other non-image data formats.

• “General Input/Output” — includes READ, WRITE and other routines
commonly used when accessing unformatted data. Also see Chapter 18, “Files
and Input/Output” for information on using these routines and formatting your
data.
Using IDL File Access Routines

30 Chapter 1: Importing and Writing Data into Variables
File Access Routines Using IDL

Chapter 2

Getting Information
About Files and Data
The following topics are covered in this chapter:
Investigating Files and Data 32
Returning Image File Information 33
Returning Type and Size Information 38

Getting Information About SAVE Files . . . 40
Returning Object Type and Validity 45
Returning Information About a File 47
Using IDL 31

32 Chapter 2: Getting Information About Files and Data
Investigating Files and Data

There are a number of routines and functions in IDL that allow you to quickly access
information about your data. While it is always a good idea to know your data before
processing, the routines in this chapter can help you uncover details of arrays,
expressions, SAVE files, objects, or specific images.

Accessing Information in iTools

When you are working in the iTools, there are a number of ways to get information
about variable data, an object’s properties, an image’s statistical information, and the
data hierarchy. For more information about these options, see the following topics:

• “About the Data Manager” (Chapter 2, iTool User’s Guide) provides
information on data associated with a visualization

• “The Visualization Browser” (Chapter 6, iTool User’s Guide) provides
information on the properties of a visualization

• “Additional Operations” (Chapter 7, iTool User’s Guide) describes the
Histogram and Statistics windows available in iTools
Investigating Files and Data Using IDL

Chapter 2: Getting Information About Files and Data 33
Returning Image File Information

When accessing formatted image data (not contained in a binary file), there are a
number of ways to get information about the data characteristics. The most flexible is
the QUERY_IMAGE routine, which returns a structure that includes the number of
image channels, pixel data type and palette information. If you need specific
information from a formatted image file, you can use the QUERY* routine
specifically designed for images of that format.

Note
You can also use the SIZE function to quickly return the size of an image array. See
“Using SIZE to Return Image Dimensions” on page 39 for details.

Using the QUERY_IMAGE Info Structure

Common image file formats contain standardized header information that can be
queried. IDL provides the QUERY_IMAGE function to return valuable information
about images stored in supported image file formats.

For example, using the QUERY_IMAGE function, you can return information about
the mineral.png file in the examples/data directory. First, access the file. Then
use the QUERY_IMAGE function to return information about the file:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

queryStatus = QUERY_IMAGE(file, info)

To determine the success of the QUERY_IMAGE function, print the value of the
query variable:

PRINT, 'Status = ', queryStatus

IDL prints

queryStatus = 1

If queryStatus is zero, the file cannot be accessed with IDL. If queryStatus is one, the
file can be accessed. Because the query was successful, the info variable is now an
IDL structure containing image parameters. The tags associated with this structure
variable are standard across image files. You can view the tags of this structure by
setting the STRUCTURE keyword to the HELP command with the info variable as
its argument:

HELP, info, /STRUCTURE
Using IDL Returning Image File Information

34 Chapter 2: Getting Information About Files and Data
IDL displays the following text in the Output Log:

** Structure <1407e70>, 7 tags, length=36, refs=1:
 CHANNELS LONG 1
 DIMENSIONS LONG Array[2]
 HAS_PALETTE INT 1
 IMAGE_INDEX LONG 0
 NUM_IMAGES LONG 1
 PIXEL_TYPE INT 1
 TYPE STRING 'PNG'

The structure tags provide the following information:

Tag Description

CHANNELS Provides the number of dimensions within the image array:

• 1 – two-dimensional array

• 3 – three-dimensional array

Print the number of dimensions using:

PRINT, 'Number of Channels: ', info.channels

For the mineral.png file, IDL prints:

Number of Channels: 1

DIMENSIONS Contains image array information including the width and
height. Print the image dimensions using:

PRINT, 'Size: ', info.dimensions

For the mineral.png file, IDL prints:

Size: 288 216

HAS_PALETTE Describes the presence or absence of a color palette:

• 1 (True) – the image has an associated palette

• 0 (False) – the image does not have an associated palette

Print whether a palette is present or not using:

PRINT, 'Is Palette Available?: ', info.has_palette

For the mineral.png file, IDL prints:

Is Palette Available?: 1

Table 2-1: Image Structure Tag Information
Returning Image File Information Using IDL

Chapter 2: Getting Information About Files and Data 35
IMAGE_INDEX Gives the zero-based index number of the current image. Print
the index of the image using:

PRINT, 'Image Index: ', info.image_index

For the mineral.png file, IDL prints:

Image Index: 0

NUM_IMAGES Provides the number of images in the file. Print the number of
images in the file using:

PRINT, 'Number of Images: ', info.num_images

For the mineral.png file, IDL prints:

Number of Images: 1

Tag Description

Table 2-1: Image Structure Tag Information (Continued)
Using IDL Returning Image File Information

36 Chapter 2: Getting Information About Files and Data
From the contents of the info variable, it can be determined that the single image
within the mineral.png file is an indexed image because it has only one channel (is
a two-dimensional array) and it has a color palette. The image also has byte pixel
data.

PIXEL_TYPE Provides the IDL type code for the image pixel data type:

• 0 – Undefined

• 1 – Byte

• 2 – Integer

• 3 – Longword integer

• 4 – Floating point

• 5 – Double-precision floating

• 6 – Complex floating

• 9 – Double-precision complex

• 12 – Unsigned Integer

• 13 – Unsigned Longword Integer

• 14 – 64-bit Integer

• 15 – Unsigned 64-bit Integer

See “IDL Type Codes and Names” under the SIZE function in
the IDL Reference Guide for a complete list of type codes.

Print the data type of the pixels in the image using:

PRINT, 'Data Type: ', info.pixel_type

For the mineral.png file, IDL displays the following text in
the Output Log:

Data Type: 1

TYPE Identifies the image file format. Print the format of the file
containing the image using:

PRINT, 'File Type: ' + info.type

For the mineral.png file, IDL prints:

File Type: PNG

Tag Description

Table 2-1: Image Structure Tag Information (Continued)
Returning Image File Information Using IDL

Chapter 2: Getting Information About Files and Data 37
Note
When working with RBG images (with a CHANNELS value of 3) it is important to
determine the interleaving (the arrangement of the red, green, and blue channels of
data) in order to properly display these image. See “RGB Image Interleaving”
(Chapter 3, Using IDL) for an example that shows you how to determine the
arrangement of these channels.

Using Specific QUERY_* Routines

All of the QUERY_* routines return a status, which determines if the file can be read
using the corresponding READ_ routine. All of these routines also return the Info
structure, (described in the previous section), which reports image dimensions,
number of samples per pixel, pixel type, palette info, and the number of images in the
file. However, some of the QUERY_* routines (such as QUERY_MRSID and
QUERY_TIFF) return more detailed information particular to that specific image
format. See “Query Routines” (IDL Quick Reference) for a complete list of the
available QUERY_* routines.
Using IDL Returning Image File Information

38 Chapter 2: Getting Information About Files and Data
Returning Type and Size Information

The SIZE function returns size and type information for a given expression. The
returned vector is always of longword type.

• The first element is equal to the number of dimensions of the parameter and is
zero if the parameter is a scalar.

• The next elements contain the size of each dimension.

• After the dimension sizes, the last two elements indicate the data type and the
total number of elements, respectively.

See “IDL Type Codes and Names” under the SIZE function in the IDL Reference
Guide for a complete list of type codes. See the following examples for more
information on the SIZE function:

• “Determining if a Variable is a Scalar or an Array” below

• “Using SIZE to Return Image Dimensions” on page 39

In addition to the examples listed above, also see the following SIZE function
examples in the IDL Reference Guide:

• “Example: Returning Array Dimension Information”

• “Example: Returning the IDL Type Code of an Expression”

Determining if a Variable is a Scalar or an Array

The SIZE function can be used to determine whether a variable holds a scalar value
or an array. Setting the DIMENSIONS keyword causes the SIZE function to return a
0 if the variable is a scalar, or the dimensions if the variable is an array:

A = 1
B = [1]
C = [1,2,3]
D = [[1,2],[3,4]]

PRINT, SIZE(A, /DIMENSIONS)
PRINT, SIZE(B, /DIMENSIONS)
PRINT, SIZE(C, /DIMENSIONS)
PRINT, SIZE(D, /DIMENSIONS)

IDL Prints:

0
1
3

Returning Type and Size Information Using IDL

Chapter 2: Getting Information About Files and Data 39
2 2

Using SIZE to Return Image Dimensions

The following example reads an image array and uses the SIZE function
DIMENSIONS keyword to access the number of rows and columns in the image file.
In this simple example, the information is used to create a display window of the
correct size.

PRO ex_displayImage

; Select and read the image file.
earth = READ_PNG (FILEPATH ('avhrr.png', $

SUBDIRECTORY = ['examples', 'data']), R, G, B)

; Load the color table and designate white to occupy the
; final position in the red, green and blue bands.
TVLCT, R, G, B
maxColor = !D.TABLE_SIZE - 1
TVLCT, 255, 255, 255, maxColor

; Prepare the display device.
DEVICE, DECOMPOSED = 0, RETAIN = 2

; Get the size of the original image array.
earthSize = SIZE(earth, /DIMENSIONS)

; Prepare a window and display the new image.
WINDOW, 0, XSIZE = earthSize[0], YSIZE = earthSize[1]
TV, earth

END
Using IDL Returning Type and Size Information

40 Chapter 2: Getting Information About Files and Data
Getting Information About SAVE Files

The IDL_Savefile object provides an object-oriented interface that allows you to
query a SAVE file for information and restore one or more individual items from the
file. Using IDL_Savefile, you can retrieve information about the user, machine, and
system that created the SAVE file, as well as the number and size of the various items
contained in the file (variables, common blocks, routines, etc). Individual items can
be selectively restored from the SAVE file.

Use IDL_Savefile in preference to the RESTORE procedure when you need to obtain
detailed information on the items contained within a SAVE file without first restoring
it, or when you wish to restore only selected items. Use RESTORE when you want to
restore everything from the SAVE file using a simple interface.

Note
The IDL_Savefile object does not provide methods that allow you to modify an
existing SAVE file. The only way to modify an existing SAVE file is to restore its
contents into a fresh IDL session, modify the contained routines or variables as
necessary, and use the SAVE procedure to create a new version of the file.

To use the IDL_Savefile object to restore items from an existing SAVE file, do the
following:

• Create a Savefile Object

• Query the Savefile Object

• Restore Items from the Savefile Object

• Destroy the Savefile Object

The following sections describe each of these steps. For complete information on the
IDL_Savefile object and its methods, see “IDL_Savefile” (Chapter 11, IDL
Reference Guide).

Create a Savefile Object

When an IDL_Savefile object is instantiated, it opens the actual SAVE file for
reading and creates an in-memory representation of its contents — without actually
restoring the file. The savefile object persists until it is explicitly destroyed (or until
the IDL session ends); the SAVE file itself is held open for reading as long as the
savefile object exists.
Getting Information About SAVE Files Using IDL

Chapter 2: Getting Information About Files and Data 41
To create a savefile object from the draw_arrow.sav file created in “Example: A
SAVE File of a Simple Routine” (Chapter 4, Application Programming), use the
following command:

myRoutines = OBJ_NEW('IDL_Savefile', 'draw_arrow.sav')

Similarly, to create a savefile object from the saved image data, use the following
command:

myImage = OBJ_NEW('IDL_Savefile', 'imagefile.sav')

Query the Savefile Object

Once you have created a savefile object, three methods allow you to retrieve
information about its contents:

• The Contents method provides information about the SAVE file including the
number and type of items contained therein.

• The Names method allows you to retrieve the names of routines and variables
stored in the file.

• The Size method allows you to retrieve size and type information about the
variables stored in the file.

Contents Method

The Contents method returns a structure variable that describes the SAVE file and its
contents. The individual fields in the returned structure are described in detail in
“IDL_Savefile::Contents” (Chapter 11, IDL Reference Guide).

In addition to providing information about the system that created the SAVE file, the
Contents method allows you to determine the number of each type of saved item
(variable, procedure, function, etc.) in the file. This information can be used to
programmatically restore items from the SAVE file.

Assuming you have created the myRoutines savefile object, the data returned by the
Contents method looks like this:

savefileInfo = myRoutines->Contents()
HELP, savefileInfo, /STRUCTURE

IDL Prints:

** Structure IDL_SAVEFILE_CONTENTS, 17 tags, length=176, data leng
th=172:

FILENAME STRING '/itt/test/draw_arrow.sav'
DESCRIPTION STRING ''
FILETYPE STRING 'Portable (XDR)'
Using IDL Getting Information About SAVE Files

42 Chapter 2: Getting Information About Files and Data
USER STRING 'dquixote'
HOST STRING 'DULCINEA'
DATE STRING 'Thu May 08 12:04:46 2003'
ARCH STRING 'x86'
OS STRING 'Win32'
RELEASE STRING '6.4'
N_COMMON LONG64 0
N_VAR LONG64 0
N_SYSVAR LONG64 0
N_PROCEDURE LONG64 2
N_FUNCTION LONG64 0
N_OBJECT_HEAPVAR LONG64 0
N_POINTER_HEAPVAR LONG64 0
N_STRUCTDEF LONG64 0

From this you can determine the name of the SAVE file from which the information
was extracted, the names of the user and computer who created the file, the creation
date, and information about the IDL system that created the file. You can also see that
the SAVE file contains definitions for two procedures and nothing else.

Names Method

The Names method returns a string array containing the names of the variables,
procedures, functions, or other items contained in the SAVE file. By default, the
method returns the names of variables; keywords allow you to specify that names of
other items should be retrieved. The available keyword options are described in
“IDL_Savefile::Names” (Chapter 11, IDL Reference Guide).

The names of items retrieved using the Names method can be supplied to the Size
method to retrieve size and type information about the specific items, or to the
Restore method to restore individual items.

For example, calling the Names method with the PROCEDURE keyword on the
myRoutines savefile object yields the names of the two procedures saved in the file:

PRINT, myRoutines->Names(/PROCEDURE)

IDL Prints:

ARROW DRAW_ARROW

Similarly, to retrieve the name of the variable saved in imagefile.sav, which is
referred to by the myImage savefile object:

PRINT, myImage->Names()

IDL Prints:

IMAGE
Getting Information About SAVE Files Using IDL

Chapter 2: Getting Information About Files and Data 43
Size Method

The Size method returns the same information about a variable stored in a SAVE file
as the SIZE function does about a regular IDL variable. It accepts the same keywords
as the SIZE function, and returns the same information using the same formats. The
Size method differs only in that the argument is a string or integer identifier string
(returned by the Names method) that specifies an item within a SAVE file, rather
than an in-memory expression. See “IDL_Savefile::Size” (Chapter 11, IDL Reference
Guide) for additional details.

For example, to determine the dimensions of the image stored in the
imagefile.sav file, do the following:

imagesize = myImage->Size('image', /DIMENSIONS)
PRINT, 'Image X size:', imagesize[0]
PRINT, 'Image Y size:', imagesize[1]

IDL Prints:

Image X size: 256
Image Y size: 256

Restore Items from the Savefile Object

The Restore method allows you to selectively restore one or more items from the
SAVE file associated with a savefile object. Items to be restored are specified using
the item name strings returned by the Names method. In addition to functions,
procedures, and variables, you can also restore COMMON block definitions,
structure definitions, and heap variables. See “IDL_Savefile::Restore” (Chapter 11,
IDL Reference Guide) for additional details.

For example, to restore the DRAW_ARROW procedure without restoring the
ARROW procedure, do the following:

myRoutines->Restore, 'draw_arrow'

Note on Restoring Objects and Pointers

Object references and pointers rely on special IDL variables called heap variables.
When you restore a regular IDL variable that contains an object reference or a
pointer, the associated heap variable is restored automatically; there is no need to
restore the heap variables separately. It is, however, possible to restore the heap
variables independently of any regular IDL variables; see “Restoring Heap Variables
Directly” (Chapter 11, IDL Reference Guide) for complete details.
Using IDL Getting Information About SAVE Files

44 Chapter 2: Getting Information About Files and Data
Destroy the Savefile Object

To destroy a savefile object, use the OBJ_DESTROY procedure:

OBJ_DESTROY, myRoutines
OBJ_DESTROY, myImage

Destroying the savefile object will close the SAVE file with which the object is
associated.
Getting Information About SAVE Files Using IDL

Chapter 2: Getting Information About Files and Data 45
Returning Object Type and Validity

Three IDL routines allow you to obtain information about an existing object:
OBJ_CLASS, OBJ_ISA, and OBJ_VALID.

OBJ_CLASS

Use the OBJ_CLASS function to obtain the class name of a specified object, or to
obtain the names of a specified object’s direct superclasses. For example, if we create
the following class structures:

struct = {class1, data1:0.0 }
struct = {class2, data2a:0, data2b:0L, INHERITS class1 }

We can now create an object and use OBJ_CLASS to determine its class and
superclass membership.

; Create an object.
A = OBJ_NEW('class2')

; Print A’s class membership.
PRINT, OBJ_CLASS(A)

IDL prints:

CLASS2

Or you can print as superclasses:

; Print A’s superclasses.
PRINT, OBJ_CLASS(A, /SUPERCLASS)

IDL prints:

CLASS1

See “OBJ_CLASS” (IDL Reference Guide) for further details.

OBJ_ISA

Use the OBJ_ISA function to determine whether a specified object is an instance or
subclass of a specified object. For example, if we have defined the object A as above:

IF OBJ_ISA(A, 'class2') THEN $
PRINT, 'A is an instance of class2.'

IDL prints:

A is an instance of class2.

See “OBJ_ISA” (IDL Reference Guide) for further details.
Using IDL Returning Object Type and Validity

46 Chapter 2: Getting Information About Files and Data
OBJ_VALID

Use the OBJ_VALID function to verify that one or more object references refer to
valid and currently existing object heap variables. If supplied with a single object
reference as its argument, OBJ_VALID returns TRUE (1) if the reference refers to a
valid object heap variable, or FALSE (0) otherwise. If supplied with an array of
object references, OBJ_VALID returns an array of TRUE and FALSE values
corresponding to the input array. For example:

; Create a class structure.
struct = {cname, data:0.0}

; Create a new object.
A = OBJ_NEW('CNAME')

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:

A refers to a valid object.

If we destroy the object:

; Destroy the object.
OBJ_DESTROY, A

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:

A does not refer to a valid object.

See “OBJ_VALID” (IDL Reference Guide) for further details.
Returning Object Type and Validity Using IDL

Chapter 2: Getting Information About Files and Data 47
Returning Information About a File

You can use the FILE_INFO function to retrieve information about a file that is not
currently open. To get information about an open file (for which there is an IDL
Logical Unit Number), use the HELP procedure or the FSTAT function. See
“Returning Information About a File Unit” (Chapter 18, Application Programming).

The FILE_INFO function returns a structure expression of type FILE_INFO
containing information about the file. For example, get information on dist.pro:

HELP,/STRUCTURE, FILE_INFO(FILEPATH('dist.pro',
SUBDIRECTORY='lib'))

The above command will produce output similar to:

** Structure FILE_INFO, 21 tags, length=72:
 NAME STRING '/usr/local/itt/idl/lib/dist.pro'
 EXISTS BYTE 1
 READ BYTE 1
 WRITE BYTE 0
 EXECUTE BYTE 0
 REGULAR BYTE 1
 DIRECTORY BYTE 0
 BLOCK_SPECIAL BYTE 0
 CHARACTER_SPECIAL
 BYTE 0
 NAMED_PIPE BYTE 0
 SETGID BYTE 0
 SETUID BYTE 0
 SOCKET BYTE 0
 STICKY_BIT BYTE 0
 SYMLINK BYTE 0
 DANGLING_SYMLINK
 BYTE 0
 MODE LONG 420
 ATIME LONG64 970241431
 CTIME LONG64 970241595
 MTIME LONG64 969980845
 SIZE LONG64 1717

The fields of the FILE_INFO structure provide various information about the file,
such as the size of the file, and the dates of last access, creation, and last
modification. For more information on the fields of the FILE_INFO structure, see
“FILE_INFO” (IDL Reference Guide). See “FILE_LINES” (IDL Reference Guide)
for information on how to retrieve the number of lines of text in a file.
Using IDL Returning Information About a File

48 Chapter 2: Getting Information About Files and Data
Returning Information About a File Using IDL

Chapter 3

Graphic Display
Essentials
The following topics are covered in this chapter:
IDL Visual Display Systems 50
IDL Coordinate Systems 53
Coordinates of 3-D Graphics 55
Coordinate Conversions 58
Interpolation Methods 61
Polygon Shading Method 63
Color Systems . 64

Display Device Color Schemes 67
Colors and IDL Graphic Systems 69
Indexed and RGB Image Organization . . . 73
Loading a Default Color Table 78
Multi-Monitor Configurations 81
Using Fonts in Graphic Displays 90
Printing Graphics . 91
Using IDL 49

50 Chapter 3: Graphic Display Essentials
IDL Visual Display Systems

When creating visualizations in IDL, you can choose to create a visualization in an
IDL Intelligent Tool (iTool), in an Object Graphics display, or in a Direct Graphics
display:

• iTools — introduced in IDL 6.0, the IDL Intelligent Tools (iTools) provide the
power and flexibility of Object Graphics with a pre-built visualization system
that offers a great deal of interactivity. This set of interactive utilities combine
data analysis and visualization with the task of producing presentation quality
graphics. See “iTools Visualizations” below for more information.

• Object Graphics — introduced in IDL 5.0, Object Graphics use an object-
oriented programmers’ interface to create graphic objects, which must then be
drawn, explicitly, to a destination of the programmer’s choosing. See “IDL
Object Graphics” on page 51 for more information.

• Direct Graphics — the oldest visualization system of the three, Direct
Graphics rely on the concept of a current graphics device to quickly create
simple static visualizations using IDL commands like PLOT or SURFACE.
See “IDL Direct Graphics” on page 52 for information.

This chapter introduces the IDL display systems and provides information on
common topics shared by the systems. Topics include a discussion on coordinates,
coordinate conversion, interpolation, color systems and color schemes, and fonts.

iTools Visualizations

The new IDL Intelligent Tools (iTools) are a set of interactive utilities that combine
data analysis and visualization with the task of producing presentation quality
graphics. Based on the IDL Object Graphics system, the iTools are designed to help
you get the most out of your data with minimal effort. They allow you to continue to
benefit from the control of a programming language, while enjoying the convenience
of a point-and-click environment.

The main enhancements the new iTools provide are more mouse interactivity,
WYSIWYG (What-You-See-Is-What-You-Get) printing, built-in analysis, undo-redo
capabilities, layout control, and better-looking plots. These robust, pre-built tools
reduce the amount of programming IDL users must do to create interactive
visualizations. At the same time, the iTools integrate in a seamless manner with the
IDL Command Line, user interface controls, and custom algorithms. In this way, the
iTools maintain and enhance the control and flexibility IDL users rely on for data
IDL Visual Display Systems Using IDL

Chapter 3: Graphic Display Essentials 51
exploration, algorithm design, and rapid application development. The following
manuals provide more information:

• iTool User’s Guide — describes how to create visualization using iTools

• iTool Programming — describes how to create and customize an iTool

IDL Object Graphics

The salient features of Object Graphics are:

• Object graphics are device independent. There is no concept of a current
graphics device when using object-mode graphics; any graphics object can be
displayed on any physical device for which a destination object can be created.

• Object graphics are object-oriented. Graphic objects are meant to be created
and re-used; you may create a set of graphic objects, modify their attributes,
draw them to a window on your computer screen, modify their attributes again,
then draw them to a printer device without reissuing all of the IDL commands
used to create the objects. Graphics objects also encapsulate functionality; this
means that individual objects include method routines that provide
functionality specific to the individual object.

• Object graphics are rendered in three dimensions. Rendering implies many
operations not needed when drawing Direct Graphics, including calculation of
normal vectors for lines and surfaces, lighting considerations, and general
object overhead. As a result, the time needed to render a given object—a
surface, say—will often be longer than the time taken to draw the analogous
image in Direct Graphics.

• Object Graphics use a programmer’s interface. Unlike Direct Graphics, which
are well suited for both programming and interactive, ad hoc use, Object
Graphics are designed to be used in programs that are compiled and run. While
it is still possible to create and use graphics objects directly from the IDL
command line, the syntax and naming conventions make it more convenient to
build a program offline than to create graphics objects on the fly.

• Because Object Graphics persist in memory, there is a greater need for the
programmer to be cognizant of memory issues and memory leakage. Efficient
design—remembering to destroy unused object references and cleaning up—
will avert most problems, but even the best designs can be memory-intensive if
large numbers of graphic objects (or large datasets) are involved.
Using IDL IDL Visual Display Systems

52 Chapter 3: Graphic Display Essentials
For more information on creating Object Graphic visualizations see:

• Object Programming — this manual introduces using IDL objects and also
describes how to create custom objects in IDL.

• “Object Class and Method Reference” (IDL Reference Guide) — this section
in the IDL Reference Guide provides complete reference material describing
IDL’s object classes

• iTool User’s Guide and iTool Programming — these manuals provide
complete details about using and creating object-based iTool displays

IDL Direct Graphics

IDL Direct Graphics is the original graphics rendering system introduced in IDL.
Graphic displays creating using Direct Graphics are static — once created, no
changes can be made without recreating the visualization being displayed. If you
have used routines such as PLOT or SURFACE, you are already familiar with this
graphics system. The salient features of Direct Graphics are:

• Direct Graphics use a graphics device (X for X-windows systems displays,
WIN for Microsoft Windows displays, PS for PostScript files, etc.). You
switch between graphics devices using the SET_PLOT command, and control
the features of the current graphics device using the DEVICE command.

• IDL commands that existed in IDL 4.0 use Direct Graphics. Commands like
PLOT, SURFACE, XYOUTS, MAP_SET, etc. all draw their output directly
on the current graphics device.

• Once a direct-mode graphic is drawn to the graphics device, it cannot be
altered or re-used. This means that if you wish to re-create the graphic on a
different device, you must re-issue the IDL commands to create the graphic.

• When you add a new item to an existing direct-mode graphic (using a routine
like OPLOT or XYOUTS), the new item is drawn in front of the existing
items.

See “Direct Graphics” (IDL Quick Reference) for a list of available routines.
IDL Visual Display Systems Using IDL

Chapter 3: Graphic Display Essentials 53
IDL Coordinate Systems

You can specify coordinates to IDL in one of the following coordinate systems:

DATA Coordinates

This coordinate system is established by the most recent PLOT, CONTOUR, or
SURFACE procedure. This system usually spans the plot window, the area bounded
by the plot axes, with a range identical to the range of the plotted data. The system
can have two or three dimensions and can be linear, logarithmic, or semi-logarithmic.
The mechanisms of converting from one coordinate system to another are described
below.

DEVICE Coordinates

This coordinate system is the physical coordinate system of the selected plotting
device. Device coordinates are integers, ranging from (0, 0) at the bottom-left corner
to (Vx –1, Vy –1) at the upper-right corner. Vx and Vy are the number of columns and
rows addressed by the device. These numbers are stored in the system variable !D as
!D.X_SIZE and !D.Y_SIZE. In a widget base, device coordinates are measures from
the upper-left corner

NORMAL Coordinates

The normalized coordinate system ranges from zero (0) to one (1) over each of the
three axes.

Almost all of the IDL graphics procedures accept parameters in any of these
coordinate systems. Most procedures use the data coordinate system by default.
Routines beginning with the letters TV are notable exceptions. They use device
coordinates by default. You can explicitly specify the coordinate system to be used
by including one of the keyword parameters /DATA, /DEVICE, or /NORMAL in the
call.

Understanding Windows and Related Device
Coordinates

Images are displayed within a window (Direct Graphics) or within an instance of a
window object (Object Graphics). In Direct Graphics, the WINDOW procedure is
used to initialize the coordinates system for the image display. In Object Graphics,
Using IDL IDL Coordinate Systems

54 Chapter 3: Graphic Display Essentials
the IDLgrWindow, IDLgrView, and IDLgrModel objects are used to initialize the
coordinate system for the image display.

A coordinate system determines how and where the image appears within the
window. You can specify coordinates to IDL using one of the following coordinate
systems:

• Data Coordinates — This system usually spans the window with a range
identical to the range of the data. The system can have two or three dimensions
and can be linear, logarithmic, or semi-logarithmic.

• Device Coordinates — This coordinate system is the physical coordinate
system of the selected device. Device coordinates are integers, ranging from
(0, 0) at the bottom-left corner to (Vx –1, Vy –1) at the upper-right corner of the
display. Vx and Vy are the number of columns and rows of the device (a display
window for example).

Note
For images, the data coordinates are the same as the device coordinates. The
device coordinates of an image are directly related to the pixel locations
within an image. Unless otherwise specified, IDL draws each image pixel per
each device pixel.

• Normal Coordinates — The normalized coordinate system ranges from zero to
one over columns and rows of the device.
IDL Coordinate Systems Using IDL

Chapter 3: Graphic Display Essentials 55
Coordinates of 3-D Graphics

Points in xyz space are expressed by vectors of homogeneous coordinates. These
vectors are translated, rotated, scaled, and projected onto the two-dimensional
drawing surface by multiplying them by transformation matrices. The geometrical
transformations used by IDL, and many other graphics packages, are taken from
Chapters 7 and 8 of Foley and Van Dam (Foley, J.D., and A. Van Dam (1982),
Fundamentals of Interactive Computer Graphics, Addison-Wesley Publishing Co.).
The reader is urged to consult this book for a detailed description of homogeneous
coordinates and transformation matrices since this section presents only an overview.
Three-dimensional graphics, coordinate systems, and transformations also are
included in this chapter.

Homogeneous Coordinates

A point in homogeneous coordinates is represented as a four-element column vector
of three coordinates and a scale factor w ¼¼≠ 0. For example:

P(wx, wy, wz, w) ≡ P(x/w, y/w, z/w, 1) ≡ (x, y, z)

One advantage of this approach is that translation, which normally must be expressed
as an addition, can be represented as a matrix multiplication. Another advantage is
that homogeneous coordinate representations simplify perspective transformations.
The notion of rows and columns used by IDL is opposite that of Foley and Van Dam
(1982). In IDL, the column subscript is first, while in Foley and Van Dam (1982) the
row subscript is first. This changes all row vectors to column vectors and transposes
matrices.

Right-Handed Coordinate System

The coordinate system is right-handed so that when looking from a positive axis to
the origin, a positive rotation is counterclockwise. As usual, the x-axis runs across the
display, the y-axis is vertical, and the positive z-axis extends out from the display to
the viewer. For example, a 90-degree positive rotation about the z-axis transforms the
x-axis to the y-axis.

Transformation Matrices

Transformation matrices, which post-multiply a point vector to produce a new point
vector, must be (4, 4). A series of transformation matrices can be concatenated into a
single matrix by multiplication. If A1, A2, and A3 are transformation matrices to be
Using IDL Coordinates of 3-D Graphics

56 Chapter 3: Graphic Display Essentials
applied in order, and the matrix A is the product of the three matrices, the following
applies.

((P • A1) • A2) • A3 ≡ P • ((A1 • A2) • A3) = P • A

In Object Graphics, IDL the model object that contains the displayed object stores the
transformation matrix. In Direct Graphics, IDL stores the concatenated
transformation matrix in the system variable field !P.T.

Note
When displaying objects in a three-dimensional view, you can precisely configure
the object position using transformation matrices. See “Translating, Rotating and
Scaling Objects” (Chapter 3, Object Programming) for details.

Note
For most Direct Graphic applications, it is not necessary to create, manipulate, or to
even understand transformation matrices. See the T3D procedure, which
implements most of the common transformations.

Each of the operations of translation, scaling, rotation, and shearing can be
represented by a transformation matrix.

Translation

The transformation matrix to translate a point by (Dx, Dy, Dz) is shown below.

Scaling

Scaling by factors of Sx, Sy, and Sz about the x-, y-, and z-axes respectively, is
represented by the matrix below.
Coordinates of 3-D Graphics Using IDL

Chapter 3: Graphic Display Essentials 57
Rotation

Rotation about the x-, y-, and z-axes is represented respectively by the following three
matrices:
Using IDL Coordinates of 3-D Graphics

58 Chapter 3: Graphic Display Essentials
Coordinate Conversions

Depending upon the data and type of visualization, you may want to convert between
normalized, data or device coordinates (described in “IDL Coordinate Systems” on
page 53). This section details two-dimensional and three-dimensional coordinate
system characteristics provides resources for various coordinate conversions. See the
following for details:

• “Two-Dimensional Coordinate Conversion” on page 58

• “Three-Dimensional Coordinate Conversion” on page 59

• “Using Coordinate Conversions” on page 59

Two-Dimensional Coordinate Conversion

This section describes the formulae for conversions to and from each coordinate
system. In the following discussion, Dx is a data coordinate, Nx is a normalized
coordinate, and Rx is a raw device coordinate. Let Vx and Vy represent the size of the
visible area of the currently selected display or drawing surface.

The field S is a two-element array of scaling factors used to convert X coordinates
from data units to normalized units. S contains the parameters of the linear equation,
converting data coordinates to normalized coordinates. S[0] is the intercept, and S[1]
is the slope. Also, let Dx be the data coordinate, Nx the normalized coordinate, Rx the
device coordinate, Vx the device X size (in device coordinates).

With the above variables defined, the linear two-dimensional coordinate conversions
for the x coordinate can be written as follows:

Coordinate
Conversion

Linear Logarithmic

Data to normal

Data to device

Normal to device

Normal to data

Device to data

Device to normal

Table 3-1: Equations for X-axis Coordinate Conversion

Nx S0 S1Dx+= Nx S0 S1 Dxlog+=

Rx Vx S S1Dx+()= Rx Vx S0 S1 Dxlog+()=

Rx NxVx= Rx NxVx=

Dx Nx S0–() S1⁄= Dx 10 Nx S0–() S1⁄=

Dx Rx Vx⁄ S0–() S1⁄= Dx 10 Rx Vx⁄ S0–() S1⁄=

Nx Rx Vx⁄= Nx Rx Vx⁄=
Coordinate Conversions Using IDL

Chapter 3: Graphic Display Essentials 59
The y- and z-axis coordinates are converted in exactly the same manner, with the
exception that there is no z device coordinate and that logarithmic z-axes are not
permitted.

This coordinate conversion functionality is built into object graphics through the
XCOORD_CONVERT and YCOORD_CONVERT properties or each type of
visualization object. If you are working with a Direct Graphics display, you can use
the CONVERT_COORD function.

Three-Dimensional Coordinate Conversion

To convert from a three-dimensional coordinate to a two-dimensional coordinate,
IDL follows these steps:

• Data coordinates are converted to three-dimensional normalized coordinates.
To convert the x coordinate from data to normalized coordinates, use the
formula Nx = X0 + X1Dx. The same process is used to convert the y and z
coordinates using !Y.S and !Z.S.

• The three-dimensional normalized coordinate, P = (Nx, Ny, Nz), whose
homogeneous representation is (Nx, Ny, Nz, 1), is multiplied by the
concatenated transformation matrix !P.T:

P′ = P • !P.T

• The vector P′ is scaled by dividing by w, and the normalized two-dimensional
coordinates are extracted:

N′x = P′x/P′w and N′y = P′y/P′w
• The normalized xy coordinate is converted to device coordinates as described

in “Two-Dimensional Coordinate Conversion” on page 58.

Using Coordinate Conversions

How coordinate conversions are defined depend upon the display type as follows:

• iTools — in an iTool display, the interactive nature of the tool makes
coordinate conversions transparent. There is no need to programmatically
configure the transformation matrices of the objects. See Chapter 4,
“Manipulating the Display” (iTool User’s Guide) for information on zooming,
scaling and translation.

• Object Graphics — converting an object’s data coordinates into normalized
coordinates for display is a common task. See “Positioning Visualizations in a
View” (Chapter 3, Object Programming) for details on the elements involved
Using IDL Coordinate Conversions

60 Chapter 3: Graphic Display Essentials
in defining an object’s position. Chapter 3, “Positioning Objects in a View”
(Object Programming) also includes information on how to use coordinate
conversions (see “Converting Data to Normal Coordinates”) and information
on programmatically defining the object’s placement in a view (see
“Translating, Rotating and Scaling Objects”).

• Direct Graphics — the IDL Direct Graphics system automatically positions
and sizes static visualizations so there is no need to set up a transformation
matrix. However, you can convert between the supported coordinate systems.
See “CONVERT_COORD” (IDL Reference Guide) for information on this
conversion in Direct Graphics.
Coordinate Conversions Using IDL

Chapter 3: Graphic Display Essentials 61
Interpolation Methods

When a visualization undergoes a geometric transformation, the location of each
transformed pixel may not map directly to a center of a pixel location in the output
visualization as shown in the following figure.

When the transformed pixel center does not directly coincide with a pixel in the
output visualization, the pixel value must be determined using some form of
interpolation. The appearance and quality of the output image is determined by the
amount of error created by the chosen interpolation method. Note the differences in
the line edges between the following two interpolated images.

Figure 3-1: Original Pixel Center Locations (Left) and Rotated Pixel Center
Locations (Right)

Figure 3-2: Simple Examples of Image Interpolation

Original Image Nearest Neighbor Bilinear Interpolation
Using IDL Interpolation Methods

62 Chapter 3: Graphic Display Essentials
There are a variety of possible interpolation methods available when using geometric
transforms in IDL. Interpolation methods include:

Nearest-neighbor interpolation — Assigns the value of the nearest pixel to
the pixel in the output visualization. This is the fastest interpolation method but
the resulting image may contain jagged edges.

Linear interpolation — Surveys the 2 closest pixels, drawing a line between
them and designating a value along that line as the output pixel value.

Bilinear interpolation — Surveys the 4 closest pixels, creates a weighted
average based on the nearness and brightness of the surveyed pixels and
assigns that value to the pixel in the output image.

Use cubic convolution if a higher degree of accuracy is needed. However, with
still images, the difference between images interpolated with bilinear and
cubic convolution methods is usually undetectable.

Trilinear interpolation — Surveys the 8 nearest pixels occurring along the
x, y, and z dimensions, creates a weighted average based on the nearness and
brightness of the surveyed pixels and assigns that value to the pixel in the
output image.

Cubic Convolution interpolation — Approximates a sinc interpolation by
using cubic polynomial waveforms instead of linear waveforms when
resampling a pixel. With a one-dimension source, this method surveys 4
neighboring pixels. With a two-dimension source, the method surveys 16
pixels. Interpolation of three-dimension sources is not supported. This
interpolation method results in the least amount of error, thus preserving the
highest amount of fine detail in the output image. However, cubic interpolation
requires more processing time.

Note
The IDL Reference Guide details the interpolation options available for each
geometric transformation function.
Interpolation Methods Using IDL

Chapter 3: Graphic Display Essentials 63
Polygon Shading Method

The shading applied to each polygon, defined by its four surrounding elevations, can
be either constant over the entire cell or interpolated. Constant shading takes less time
because only one shading value needs to be computed for the entire polygon.
Interpolated shading gives smoother results. The Gouraud method of interpolation is
used: the shade values are computed at each elevation point, coinciding with each
polygon vertex. The shading is then interpolated along each edge, finally, between
edges along each vertical scan line.

Light-source shading is computed using a combination of depth cueing, ambient
light, and diffuse reflection, adapted from Foley and Van Dam, Chapter 19 (Foley,
J.D., and A. Van Dam (1982), Fundamentals of Interactive Computer Graphics,
Addison-Wesley Publishing Co.):

I = Ia + dIp(L • N)

where

In Direct Graphics, the SET_SHADING method modifies the light source shading
parameters. In Object Graphics similar OpenGL functionality is available through the
SHADING property of objects such as IDLgrPolygon, IDLgrPolyline, IDLSurface
and IDLgrContour.

Ia Term due to ambient light. All visible objects have at least this
intensity, which is approximately 20 percent of the maximum
intensity.

Ip(L • N) Term due to diffuse reflection. The reflected light is
proportional to the cosine of the angle between the surface
normal vector N and the vector pointing to the light source, L.
Ip is approximately 0.9.

d Term for depth cueing, causing surfaces further away from the
observer to appear dimmer. The normalized depth is
d=(z+2)/3, ranging from zero for the most distant point to one
for the closest.
Using IDL Polygon Shading Method

64 Chapter 3: Graphic Display Essentials
Color Systems

Color can play a critical role in the display and perception of digital imagery. This
section provides a basic overview of color systems, display devices, image types, and
the interaction of these elements within IDL. The remainder of the chapter builds
upon these fundamental concepts by describing how to load and modify color tables,
convert between image types, utilize color tables to highlight features, and apply
color annotations to images.

Color Schemes

Color can be encoded using a number of different schemes. Many of these schemes
utilize a color triple to represent a location within a three-dimensional color space.
Examples of these systems include RGB (red, green, and blue), HSV (hue, saturation,
and value), HLS (hue, lightness, and saturation), and CMY (cyan, magenta, and
yellow). Algorithms exist to convert colors from one system to another.

Computer display devices typically rely on the RGB color system. In IDL, the RGB
color space is represented as a three-dimensional Cartesian coordinate system, with
the axes corresponding to the red, green, and blue contributions, respectively. Each
axis ranges in value from 0 (no contribution) to 255 (full contribution). By design,
this range from 0 to 255 maps nicely to the full range of a byte data type.

An individual color is encoded as a coordinate within this RGB space. Thus, a color
consists of three elements: a red value, a green value, and a blue value.

The following figure shows that each displayable color corresponds to a location
within a three-dimensional color cube. The origin, (0, 0, 0), where each color
coordinate is 0, is black. The point at (255, 255, 255) is white, representing an
additive mixture of the full intensity of each of the three colors. Points along the main
diagonal - where intensities of each of the three primary colors are equal - are shades
Color Systems Using IDL

Chapter 3: Graphic Display Essentials 65
of gray. The color yellow is represented by the coordinate (255, 255, 0), or a mixture
of 100% red, plus 100% green, and no blue.

Typically, digital display devices represent each component of an RGB color
coordinate as an n-bit integer in the range of 0 to 2n –1. Each displayable color is an
RGB coordinate triple of n-bit numbers yielding a palette containing 23n total colors.
Therefore, for 8-bit colors, each color coordinate can range from 0 to 255, and the
total palette contains 224 or 16,777,216 colors.

A display with an m-bit pixel can represent 2m colors simultaneously, given enough
pixels. In the case of 8-bit colors, 24-bit pixels are required to represent all colors.
The more common case is a display with 8 bits per pixel which allows the display of
28 = 256 colors selected from the much larger palette.

If there are not enough bits in a pixel to represent all colors, m < 23n, a color
translation table is used to associate the value of a pixel with a color triple. This table
is an array of color triples with an element for each possible pixel value. Given 8-bit
pixels, a color table containing 28 = 256 elements is required. The color table element
with an index of i specifies the color for pixels with a value of i.

To summarize, given a display with an n-bit color representation and an m-bit pixel,
the color translation table, C, is a 2m long array of RGB triples:

Ci = {ri, gi, bi}, 0 ≤ i < 2m

0 ≤ ri, gi, bi < 2n

Objects containing a value, or color index, of i are displayed with a color of Ci.

Figure 3-3: RGB Color Cube (Note: grays are on the main diagonal.)
Using IDL Color Systems

66 Chapter 3: Graphic Display Essentials
See “Color Table Manipulation” (IDL Quick Reference) for a list of color-related
routines including those that covert RGB color triples to other color schemes.

Converting to Other Color Systems

IDL defaults to the RGB color system, but if you are more accustomed to other color
systems, IDL is not restricted to working with only the RGB color system. You can
also use either the HSV (hue, saturation, and value) system or the HLS (hue,
lightness, and saturation) system. The HSV or HLS system can be specified by
setting the appropriate keyword (for example /HSV or /HLS) when using IDL color
routines.

IDL also contains routines to create color tables based on these color systems. The
HSV routine creates a color table based on the Hue, Saturation, and Value (HSV)
color system. The HLS routine creates a color table based on the Hue, Lightness,
Saturation (HLS) color system. You can also convert values of a color from any of
these systems to another with the COLOR_CONVERT routine. See COLOR_QUAN in
the IDL Reference Guide for more information.
Color Systems Using IDL

Chapter 3: Graphic Display Essentials 67
Display Device Color Schemes

Most modern computer monitors use one of two basic schemes for displaying color at
each pixel:

• Indexed - A color is specified using an index into a hardware color lookup
table (or palette). Each entry of the color lookup table corresponds to an
individual color, and consists of a red value, a green value, and a blue value.
The size of the lookup table depends upon the hardware.

• RGB - A color is specified using an RGB triple: [red, green, blue]. The
number of bits used to represent each of the red, green, and blue components
depends upon the hardware.

The description of how color is to be interpreted on a given display device is referred
to as a visual. Each visual typically has a name that indicates how color is to be
represented. Two very common visual names are PseudoColor (which uses an
indexed color scheme) and TrueColor (which uses an RGB color scheme).

A visual also has a depth associated with it that describes how many bits are used to
represent a given color. Common bit depths include 8-bit (for PseudoColor visuals)
and 16- or 24-bit (for TrueColor visuals). An n-bit visual is capable of displaying 2n
total colors. Thus, an 8-bit PseudoColor visual can display 28 or 256 colors. A 24-bit
TrueColor visual can display 224 or 16,777,216 colors.

PseudoColor visuals rely heavily upon the display device’s hardware color table for
image display. If the color table is modified, all images being displayed using that
color table will automatically update to reflect the change.

TrueColor visuals do not typically use a color table. The red, green, and blue
components are provided directly.

Note
You can display TrueColor images on pseudo-color displays by using the
COLOR_QUAN function. This function creates a pseudo-color palette for
displaying the TrueColor image and then maps the TrueColor image to the new
palette. See COLOR_QUAN in the IDL Reference Guide for more information.

Setting a Visual on UNIX Platforms

On UNIX platforms, an application (such as IDL) may choose from among the set of
X visuals that are supported for the current display. Each visual is either grayscale or
color. Its corresponding color table may be either fixed (read-only), or it may be
changeable from within IDL (read-write). The color interpretation scheme is either
Using IDL Display Device Color Schemes

68 Chapter 3: Graphic Display Essentials
indexed or RGB. The following table shows the supported visuals for a given display,
which may include any combination:

The most common of these is PseudoColor and TrueColor. Refer to the section
“Colors and IDL Graphic Systems” on page 69 to learn more about how IDL selects a
visual for image display.

To get the list of supported X visual classes on a given system, type the following
command at the UNIX command line:

xdpyinfo

Setting a Visual on Windows Platforms

On Windows platforms, the visual is selected via the system Control Panel. To open
the Control Panel, select the Settings → Control Panel item from the Start menu.
Click on the Display and then select the Settings tab. Alter the Color quality setting
to modify the visual before starting an IDL session. The following table shows three
visuals are supported (for the particular display configuration used in this example):

Visual Description

StaticGray grayscale, read-only, indexed

GrayScale grayscale, read-write, indexed

StaticColor color, read-only, indexed

PseudoColor color, read-write, indexed

TrueColor color, read-only, RGB

DirectColor color, read-write, RGB

Table 3-2: Visuals Supported in IDL on UNIX Platforms

Visual Equivalence to UNIX Visuals

256 Colors 8-bit PseudoColor

High Color (16 bit) 16-bit TrueColor

True Color (32 bit) 32-bit TrueColor

Table 3-3: Visuals Supported in IDL on Windows Platforms
Display Device Color Schemes Using IDL

Chapter 3: Graphic Display Essentials 69
Colors and IDL Graphic Systems

IDL supports two graphics systems: Object Graphics and Direct Graphics. This
section provides detailed descriptions of how color is represented and interpreted in
the Direct Graphics system.

Using Color in Object Graphics

For complete details regarding color and Object Graphics, see “Color in Object
Graphics” (Chapter 2, Object Programming).

Using Color in Direct Graphics

More information on the following topics is available in “X Windows Visuals”
(Appendix A, IDL Reference Guide).

Visuals on UNIX Platforms

When IDL creates its first Direct Graphics window, it must select a visual to be
associated with that window. By default, IDL selects an X Visual Class by requesting
(in order) from the following table until a supported visual is found, but a specific
visual can be explicitly requested at the beginning of an IDL session by setting the
appropriate keyword to the DEVICE procedure:

To request an 8-bit PseudoColor visual, the syntax would be:

DEVICE, PSEUDO_COLOR=8

Order Visual Depth Related Keyword

First TrueColor 24-bit (then 16-bit, then
15-bit)

TRUE_COLOR

Second PseudoColor 8-bit, then 4-bit PSEUDO_COLOR

Third DirectColor 24-bit DIRECT_COLOR

Fourth StaticColor 8-bit, then 4-bit STATIC_COLOR

Fifth GrayScale any depth GRAY_SCALE

Sixth StaticGray any depth STATIC_GRAY

Table 3-4: Order of Visuals and their Related DEVICE Keywords
Using IDL Colors and IDL Graphic Systems

70 Chapter 3: Graphic Display Essentials
Another approach to setting the visual information is to include the idl.gr_visual
and idl.gr_depth resources in your .Xdefaults file.

A visual is selected once per IDL session (when the first graphic window is created).
Once selected, the same visual will be used for all Direct Graphics windows in that
IDL session.

Private versus Shared Colormaps

On UNIX platforms, when a window manager is started, it creates a default colormap
that can be shared among applications using the display. This is called the shared
colormap.

A given application may request to use its own colormap that is not shared with other
applications. This is called a private colormap.

IDL attempts, whenever possible, to get color table entries in the shared colormap. If
enough colors are not available in the shared colormap, a private colormap is used. If
an X Visual class and depth are specified and they do not match the default visual of
the screen (see xdpyinfo), a private colormap is used.

If a private colormap is used, then colormap flashing may occur when an IDL
window is made current (in which case, the colors of other applications on the
desktop may no longer appear as you would expect), or when an application using the
shared colormap is made current (in which case, the colors within the IDL graphics
window may no longer appear as you would expect). This flashing behavior is to be
expected. By design, the IDL graphics window has been assigned a dedicated color
table so that the full range of requested colors can be utilized for image display.

Visuals on Windows Platforms

On Windows platforms, the visual that IDL uses is dependent upon the system
setting. For more information, “Setting a Visual on Windows Platforms” on page 68.

IDL Color Table

IDL maintains a single current color table for Direct Graphics. Refer to the sections
“Loading a Default Color Table” on page 78 and “Modifying and Converting Color
Tables” on page 79. IDL provides 41 pre-defined color tables.

Foreground Color

In IDL Direct Graphics, colors used for drawing graphic primitives (such as lines,
text annotations, etc.) are represented in one of two ways:

• Indexed - each color is an index into the current IDL color table
Colors and IDL Graphic Systems Using IDL

Chapter 3: Graphic Display Essentials 71
• RGB - each color is a long integer that contains the red value in the first eight
bits, the green value in the next eight bits, and the blue value in the next eight
bits. In other words, a color can be represented using the following equation:

color = red + 256*green + (256^2)*blue

The RGB form is only supported on TrueColor display devices.

The DECOMPOSED keyword to the DEVICE procedure is used to notify IDL
whether color is to be interpreted as an index or as a composite RGB value. IDL then
maps any requested color to an encoding that is appropriate for the current display
device.

The foreground color (used for drawing) can be set by assigning a color value to the
!P.COLOR system variable field (or by setting the COLOR keyword on the
individual graphic routine).

If a color value is to be interpreted as an index, then inform IDL by setting the
DECOMPOSED keyword of the DEVICE routine to 0:

DEVICE, DECOMPOSED = 0

The foreground color can then be specified by setting !P.COLOR to an index into the
IDL color table. For example, if the foreground color is to be set to the RGB value
stored at entry 25 in the IDL color table, then use the following IDL command:

!P.COLOR = 25

If a color value is to be interpreted as a composite RGB value, then inform IDL by
setting the DECOMPOSED keyword of the DEVICE routine to 1:

DEVICE, DECOMPOSED = 1

The foreground color can then be specified by setting !P.COLOR to a composite
RGB value. For example, if the foreground color is to be set to the color yellow,
[255,255,0], then use the following IDL command:

!P.COLOR = 255 + (256*255)

Image Colors

Color for image data is handled in a fashion similar to other graphic primitives,
except that some special cases apply based upon the organization of the image data
and the visual of the current display device.

If the image is organized as a:

• two-dimensional array -

• If the display device is PseudoColor, then each pixel is interpreted as an
index into the IDL color table
Using IDL Colors and IDL Graphic Systems

72 Chapter 3: Graphic Display Essentials
• If the display device is TrueColor and if the DECOMPOSED keyword for
the DEVICE procedure is set to 0, then each pixel value is interpreted as
an index into the IDL color table (thereby emulating a PseudoColor
display device).

• If the display device is TrueColor and if the DECOMPOSED keyword for
the DEVICE procedure is set to 1, then each pixel value is interpreted as
the value to be copied to each of the red, green, and blue components of
the RGB color.

• RGB array - (Supported only for TrueColor display devices)

• Each pixel is interpreted as an RGB color composed of the three elements
in the extra color dimension of the array.

To display an RGB image on a PseudoColor device, use the COLOR_QUAN routine
to convert it to an indexed form. Refer to the section “Converting Between Image
Types” on page 77.

The TV command can be used to display the image in IDL. For RGB images, the
TRUE keyword can be used to indicate which form of interleaving is used.
Colors and IDL Graphic Systems Using IDL

Chapter 3: Graphic Display Essentials 73
Indexed and RGB Image Organization

IDL can display four types of images: binary, grayscale, indexed, and RGB. How an
image is displayed depends upon its type. Binary images have only two values, zero
and one. Grayscale images represent intensities and use a normal grayscale color
table. Indexed images use an associated color table. RGB images contain their own
color information in layers known as bands or channels. Any of these images can be
displayed with iImage, Object Graphics, or Direct Graphics.

An image consists of a two-dimensional array of pixels. The value of each pixel
represents the intensity and/or color of that position in the scene. Images of this form
are known as sampled or raster images, because they consist of a discrete grid of
samples. Such images come from many different sources and are a common form of
representing scientific and medical data.

Numerous standards have been developed over the years to describe how an image
can be stored within a file. However, once the image is loaded into memory, it
typically takes one of two forms: indexed or RGB. An indexed image is a two-
dimensional array, and is usually stored as byte data. A two-dimensional array of a
different data type can be made into an indexed image by scaling it to the range from
0 to 255 using the BYTSCL function. See the BYTSCL description in the IDL
Reference Guide for more information.

Image Orientation

The screen coordinate system for image displays puts the origin, (0, 0), at the lower-
left corner of the device. The upper-right corner has the coordinate (xsize–1, ysize–1),
where xsize and ysize are the dimensions of the visible area of the display. The
descriptions of the image display routines that follow assume a display size of
512 x 512, although other sizes may be used.

The system variable !ORDER controls the order in which the image is written to the
screen. Images are normally output with the first row at the bottom, i.e., in bottom-to-
top order, unless !ORDER is 1, in which case images are written on the screen from
top to bottom. The ORDER keyword also can be specified with TV and TVSCL. It
works in the same manner as !ORDER except that its effect only lasts for the duration
of the single call—the default reverts to that specified by !ORDER.

An image can be displayed with any of the eight possible combinations of axis
reversal and transposition by combining the display procedures with the ROTATE
function.
Using IDL Indexed and RGB Image Organization

74 Chapter 3: Graphic Display Essentials
Indexed Images

An indexed image does not explicitly contain any color information. Its pixel values
represent indices into a color Look-Up Table (LUT). Colors are applied by using
these indices to look up the corresponding RGB triplet in the LUT. In some cases, the
pixel values of an indexed image reflect the relative intensity of each pixel. In other
cases, each pixel value is simply an index, in which case the image is usually
intended to be associated with a specific LUT. In this case, the LUT is typically
stored with the image when it is saved to a file. For information on the LUTs
provided with IDL, see “Loading a Default Color Table” on page 78.

RGB Image Interleaving

An RGB (red, green, blue) image is a three-dimensional byte array that explicitly
stores a color value for each pixel. RGB image arrays are made up of width, height,
and three channels of color information. Scanned photographs are commonly stored
as RGB images. The color information is stored in three sections of a third dimension
of the image. These sections are known as color channels, color bands, or color
layers. One channel represents the amount of red in the image (the red channel), one
channel represents the amount of green in the image (the green channel), and one
channel represents the amount of blue in the image (the blue channel).

Color interleaving is a term used to describe which of the dimensions of an RGB
image contain the three color channel values. Three types of color interleaving are
supported by IDL. In Object Graphics, an RGB image is contained within an image
object where the INTERLEAVE property dictates the arrangement of the channels
within the image file.

• Pixel interleaving (3, w, h) — the color information is contained in the first
dimension, INTERLEAVE is set to 0.

• Line interleaving (w, 3, h) — the color information is contained in the second
dimension, INTERLEAVE is set to 1.

• Planar interleaving (w, h, 3) — the color information is contained in the third
dimension, INTERLEAVE is set to 2. This is also known as, image
interleaving.

Note
In Direct Graphics, set the TRUE keyword of TV or TVSCL to match the
interleaving of the image.
Indexed and RGB Image Organization Using IDL

Chapter 3: Graphic Display Essentials 75
Determining RGB Image Interleaving

You can determine if an image file contains an RGB image by querying the file. The
CHANNELS tag of the resulting query structure will equal 3 if the file’s image is
RGB. The query does not determine which interleaving is used in the image, but the
array returned in DIMENSIONS tag of the query structure can be used to determine
the type of interleaving.

The following example queries and imports a pixel-interleaved RGB image from the
rose.jpg image file. This RGB image is a close-up photograph of a red rose. It is
pixel interleaved. Complete the following steps for a detailed description of the
process.

Example Code
See displayrgbimage_object.pro in the examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determine the path to the rose.jpg file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:

queryStatus = QUERY_IMAGE(file, imageInfo)

3. Output the results of the file query:

PRINT, 'Query Status = ', queryStatus
HELP, imageInfo, /STRUCTURE

The following text appears in the Output Log:

Query Status = 1
** Structure <14055f0>, 7 tags, length=36, refs=1:
 CHANNELS LONG 3
 DIMENSIONS LONG Array[2]
 HAS_PALETTE INT 0
 IMAGE_INDEX LONG 0
 NUM_IMAGES LONG 1
 PIXEL_TYPE INT 1
 TYPE STRING 'JPEG'

The CHANNELS tag has a value of 3. Thus, the image is an RGB image.

4. Set the image size parameter from the query information:

imageSize = imageInfo.dimensions
Using IDL Indexed and RGB Image Organization

RSI_PROCODE/examples/doc/image/displayrgbimage_object.pro

76 Chapter 3: Graphic Display Essentials
The type of interleaving can be determined from the image size parameter and
actual size of each dimension of the image. To determine the size of each
dimension, you must first import the image.

5. Use READ_IMAGE to import the image from the file:

image = READ_IMAGE(file)

6. Determine the size of each dimension within the image:

imageDims = SIZE(image, /DIMENSIONS)

7. Determine the type of interleaving by comparing the dimension sizes to the
image size parameter from the file query:

interleaving = WHERE((imageDims NE imageSize[0]) AND $
(imageDims NE imageSize[1]))

8. Output the results of the interleaving computation:

PRINT, 'Type of Interleaving = ', interleaving

The following text appears in the Output Log:

Type of Interleaving = 0

The image is pixel interleaved. If the resulting value was 1, the image would
have been line interleaved. If the resulting value was 2, the image would have
been planar interleaved.

9. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, TITLE = 'An RGB Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

10. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, $
INTERLEAVE = interleaving[0])

11. Add the image object to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView
Indexed and RGB Image Organization Using IDL

Chapter 3: Graphic Display Essentials 77
The following figure shows the resulting RGB image display.

12. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Converting Between Image Types

Sometimes an image type must be converted from indexed to RGB, RGB to
grayscale, or RGB to indexed. For example, an image may be imported into IDL as
an indexed image (from a PNG file for example) but it may need to be exported as an
RGB image (to a JPEG file for example). The opposite may also need to be done. See
“Foreground Color” on page 70 for more information on grayscale, indexed, and
RGB images.

See the following routines s in the IDL Reference Guide for examples:

• RGB to grayscale — REFORM extracts the individual channels of data from
an RGB image so that it can be displayed as a grayscale image

• RGB to indexed — COLOR_QUAN decomposes the millions of possible
colors in an RGB image into the 256 used by an indexed image

• Indexed to RGB — TVLCT extracts the indexed image color table
information, which is then assigned to an RGB image

Figure 3-4: RGB Image in Object Graphics
Using IDL Indexed and RGB Image Organization

78 Chapter 3: Graphic Display Essentials
Loading a Default Color Table

Although you can define your own color tables, IDL provides 41 pre-defined color
lookup tables (LUTs). Each color table contained within this routine is specified
through an index value ranging from 0 to 40, shown in the following table.

Tip
If you are running IDL on a TrueColor display, set DEVICE, DECOMPOSED = 0
before your first color table related routine is used within an IDL session or
program. See “Foreground Color” on page 70 for more information.

Number Name Number Name

0 Black & White Linear 21 Hue Sat Value 1

1 Blue/White Linear 22 Hue Sat Value 2

2 Green-Red-Blue-White 23 Purple-Red +
Stripes

3 Red Temperature 24 Beach

4 Blue-Green-Red-Yellow 25 Mac Style

5 Standard Gamma-II 26 Eos A

6 Prism 27 Eos B

7 Red-Purple 28 Hardcandy

8 Green/White Linear 29 Nature

9 Green/White Exponential 30 Ocean

10 Green-Pink 31 Peppermint

11 Blue-Red 32 Plasma

12 16 Level 33 Blue-Red 2

13 Rainbow 34 Rainbow 2

14 Steps 35 Blue Waves

Table 3-5: Pre-defined Color Tables
Loading a Default Color Table Using IDL

Chapter 3: Graphic Display Essentials 79
You can load a default color table in an iImage display, an Object Graphics Display
or a Direct Graphics display as follows:

• iImage — select the Edit Palette button on the image panel. See “Using the
Image Panel” (Chapter 10, iTool User’s Guide) for details.

• Object Graphics — use the LoactCT method of an IDLgrPalette object to
define the color table (see “IDLgrPalette::LoadCT” (IDL Reference Guide) for
details). Associate the palette object with another object using the Palette
property (for example, see the PALETTE property of the IDLgrImage object).
Also see “Color in Object Graphics” (Chapter 2, Object Programming) for
information on using color with indexed and RGB color models in Object
Graphics.

• Direct Graphics — use the LOADCT routine or another color table related
routine to set the color table. Also see “Using Color in Direct Graphics” on
page 69.

Note
See “Color Table Manipulation” (IDL Quick Reference) for a list of related
routines.

Modifying and Converting Color Tables

IDL contains two graphical user interface (GUI) utilities for modifying a color table,
XLOADCT and XPALETTE (. The MODIFYCT routine lets you create or modify

15 Stern Special 36 Volcano

16 Haze 37 Waves

17 Blue-Pastel-Red 38 Rainbow18

18 Pastels 39 Rainbow + white

19 Hue Sat Lightness 1 40 Rainbow + black

20 Hue Sat Lightness 2

Number Name Number Name

Table 3-5: Pre-defined Color Tables (Continued)
Using IDL Loading a Default Color Table

80 Chapter 3: Graphic Display Essentials
and store a new color table. See the following topics in the IDL Reference Guide for
examples:

• XLOADCT — allows you to preview and select among pre-defined color
tables

• XPALETTE — allows you to preview and adjust pre-defined color tables

• MODIFYCT — shows how to add modified color tables to IDL’s list of pre-
defined color tables.

These examples are based on the default RGB (red, green, and blue) color system.
IDL also contains routines that allow you to use other color systems including hue,
saturation, and value (HSV) and hue, lightness, and saturation (HLS). These routines
and color systems are explained in “Converting to Other Color Systems” on page 66.

Highlighting Features with a Color Table

For indexed images, custom color tables can be derived to highlight specific features.
Color tables are usually designed to vary within certain ranges to show dramatic
changes within an image. Some color tables are designed to highlight features with
drastic color change in adjacent ranges (for example setting 0 through 20 to black and
setting 21 through 40 to white).

Note
Color tables are associated with indexed images. RGB images already contain their
own color information. If you want to derive a color table for an RGB image, you
should convert it to an indexed image with the COLOR_QUAN routine. You
should also set COLOR_QUAN’s CUBE keyword to 6 to insure the resulting
indexed image is an intensity representation of the original RGB image. See
COLOR_QUAN in the IDL Reference Guide for more information

See the following topics in the IDL Reference Guide for examples:

• IDLgrPalette provides an example that creates, defines and applies a palette
object to an image

• TVLCT creates, defines and applies a color table in a Direct Graphics display

• H_EQ_CT applies histogram equalization to a color table to reveal previously
indistinguishable feature
Loading a Default Color Table Using IDL

Chapter 3: Graphic Display Essentials 81
Multi-Monitor Configurations

IDL allows you to position windows on multiple monitors attached to the same
computer. Such multi-monitor configurations may appear to the user (and to you as
an IDL programmer) as a single extended desktop consisting of multiple physical
monitors, or as a series of individual desktops appearing on multiple physical
monitors.

IDL’s support for multi-monitor configurations includes the following:

• The IDLsysMonitorInfo object, which allows you to query the system for the
current monitor configuration and to determine the screen geometry of the
various monitors.

• Keyword support for extended (or multiple) desktops within routines that draw
a window on the monitor screen. For example, the XOFFSET, YOFFSET, and
DISPLAY_NAME keywords to the WIDGET_BASE function and
WIDGET_CONTROL procedure allow you to position widget applications
anywhere on any available monitor. Similarly, the LOCATION and
DISPLAY_NAME properties of the IDLgrWindow object afford you the same
control for object graphics windows.

It is important to note that support for multi-monitor configurations is quite different
on Windows and UNIX systems, and that as a result IDL’s support varies by
platform. By understanding how multi-monitor configurations are supported on each
platform, you can create cross-platform IDL applications that will take advantage of
multiple monitors when they are present. See the following sections for platform-
specific details.

• “Windows Multi-Monitor Configurations” on page 83

• “UNIX Multi-Monitor Configurations” on page 87

See “Example: Multi-Monitor Window Positioning” on page 89 for example code
that uses the IDL’s multi-monitor support.

Multi-Monitor Terminology

In this discussion of IDL’s multi-monitor support, the following terms are used with
the meanings listed below.

Desktop — An onscreen user work area. Multiple desktops are generally managed
either by the operating system itself or by a desktop management system and are
dependant on the physical monitor configuration — that is, you can have multiple
desktops on a single monitor.
Using IDL Multi-Monitor Configurations

82 Chapter 3: Graphic Display Essentials
Display — On UNIX systems, the word Display describes the connection between an
X client and an X server. Do not confuse this with monitor.

Extended Desktop — A term for an onscreen user work area that may span multiple
monitors. It is often used to describe the minimum bounding box that encloses the
user work area defined by each monitor in the system. There may be “holes” in an
extended desktop if two monitors with different display resolutions are used.
Extended desktops are characterized by their ability to drag windows between
monitors on the desktop.

Monitor — A physical display device such as a CRT or LCD.

Primary Monitor — In an extended desktop system, the primary monitor is the
monitor that contains the origin (0,0). If the desktop is not extended, then the primary
monitor is the one that is considered “default” by the graphics system.

Screen — On UNIX systems, the word Screen describes one of a display’s drawing
surfaces. A single X server can control more than one Screen, but is generally
operated or controlled by a single user with a single keyboard and pointing device.

Secondary Monitor — In an extended desktop system, a secondary monitor is any
monitor that is not the primary monitor. If the desktop is not extended, then a
secondary monitor is the one that is not considered “default” by the graphics system.

Virtual Desktop — A desktop configured so that it is larger than the monitor used to
display it. The user can “pan” the desktop around to cause the desired parts of it to be
visible on the monitor.

X Server — A program that runs on the machine to which the graphics adapter is
attached. It owns the graphics adapter and is responsible for drawing on it.

X Client — A program that connects to an X server, sending commands to the X
server to draw on the display device. The X client is typically the application and may
or may not be executing on the same machine as the X server.

X Multi-Screen — The “core” method for an X server to handle more than one
monitor. Each monitor is assigned a Screen; the user can move the pointing device
from one monitor to another, but cannot drag windows between monitors. Each
Screen is addressed by the final digit in the X Display name (e.g., the 1 in
ajax:0.1).

XINERAMA — An X11 extension that allows a single X11 screen to be displayed
across multiple monitors. This allows an application to open windows on any monitor
using the same Display/Screen connection. This is an example of an extended
desktop implementation for UNIX systems and is essentially a way to emulate the
extended desktop that Windows presents to the user.
Multi-Monitor Configurations Using IDL

Chapter 3: Graphic Display Essentials 83
Windows Multi-Monitor Configurations

A multi-monitor configuration on a Windows system is always presented as an
extended desktop, with the work area spanning the configured monitors. You can
drag windows from one monitor to the other, or they can span monitors.

The extended desktop configuration works best when using a single graphics adapter
with two video outputs. If you use multiple graphics adaptors, features such as 3D
hardware video acceleration may only be available on one monitor.

To configure a multi-monitor configuration using the Windows Display applet;
either:

• Right-click on the desktop and select Properties

• Select Start → Settings → Control Panel → Display

Figure 3-5 shows the Display Properties control panel for a common dual-monitor
configuration. The left-hand image shows the primary display selected and identified
as monitor 1. The right-hand image shows the secondary display selected and
identified as monitor 2. The coordinates of the upper-left corner of the secondary
display are shown in the tool-tip (“Secondary Display (1600, 0)”). Also, the
Extend my Windows desktop onto this monitor checkbox is selected to extend the
desktop onto the secondary monitor.

Figure 3-5: Multi-monitor Configuration in Windows Display Properties
Using IDL Windows Multi-Monitor Configurations

84 Chapter 3: Graphic Display Essentials
The extended desktop configured in Figure 3-5 appears as in Figure 3-6, with a dotted
line showing where the two monitors meet in one desktop.

In this example, there are no windows on the secondary monitor. The crosshatched
area in the lower right exists because the monitor on the right has fewer pixel rows
than the monitor on the left.

The Display Properties dialog allows you to change the location of the secondary
monitor relative to the primary monitor. Note that pixel (0,0) is defined as being the
upper left corner of the primary monitor. Figure 3-7 shows a configuration in which
the secondary monitor is positioned “above” the primary monitor; the tooltip shows
that the upper left corner of the secondary monitor is positioned 1480 pixels to the

Figure 3-6: The Extended Desktop
Windows Multi-Monitor Configurations Using IDL

Chapter 3: Graphic Display Essentials 85
right of and -1024 pixels below pixel (0,0). Figure 3-8 shows the shape of the
resulting extended desktop area.

Figure 3-7: Moving the Location of the Second Monitor

Figure 3-8: The Rearranged Desktop Configuration
Using IDL Windows Multi-Monitor Configurations

86 Chapter 3: Graphic Display Essentials
There is now more “empty” space (represented by the crosshatched area). The
handling of empty space depends on the graphics adapter vendor. For example, many
desktop managers let you control whether or not an application can create a window
in this empty space. (Remember that if you do create a window in empty space, there
would be no way to drag the window back onto a visible portion of the desktop.)
Many desktop managers also contain controls for opening windows and repositioning
dialog boxes.

Warning
Third-party desktop managers may enforce their own positioning rules, overriding
requests from other applications such as IDL. If you have trouble positioning
windows on the screen using IDL, investigate whether your desktop manager’s
control over other applications can be changed or relaxed.
Windows Multi-Monitor Configurations Using IDL

Chapter 3: Graphic Display Essentials 87
UNIX Multi-Monitor Configurations

Because the UNIX platform encompasses multiple vendors, multi-monitor support
can be more complex to configure. There are two primary multi-monitor solutions for
UNIX platforms:

• Use the X Multi-Screen mechanism, wherein a distinct X11 Screen is
displayed on each monitor to create multiple desktops. IDL supports this
mechanism on all UNIX systems.

• Use the XINERAMA extension to create a single extended desktop. IDL 6.3
provides client support for the XINERAMA extension Macintosh OS X and
several Linux distributions.

Note
Configure your UNIX multi-monitor systems using XINERAMA wherever
possible. This gives you the most functionality and increases commonality with
Windows.

Using X Multi-Screen

An X server running on a computer using multiple monitors can be configured so that
a different Screen is assigned to each monitor. This is the traditional way for a UNIX
system to support multiple monitors, and it is the only option available on IDL
platforms for which there is no XINERAMA support.

In a multi-screen configuration, windows and dialogs cannot be dragged between
windows interactively, and cannot span multiple monitors. Each monitor has a
different display name and coordinate system with its own origin.

Using XINERAMA

The XINERAMA extension creates an extended desktop similar to that presented on
Windows systems. Windows and dialogs can be dragged between windows
interactively, and can span multiple monitors. All configured monitors share the
same display name and have a common origin.

Stable XINERAMA support is only available on selected X Windows System
releases. As of the IDL 6.3 release, IDL provides client support on Macintosh OS X
and several Linux distributions. In addition, If the X server is running Macintosh OS
X, Linux, or Solaris 10, IDL can treat multiple monitors as an extended desktop even
though no information about individual monitor geometries is available.
Using IDL UNIX Multi-Monitor Configurations

88 Chapter 3: Graphic Display Essentials
UNIX systems that provide XINERAMA support are rarely configured to do so by
default; consult your operating system documentation for configuration information.
Some vendors supply configuration tools and desktop management controls to help
use their systems. In addition, some X window managers are “XINERAMA-aware”
and let you configure some multi-monitor-related behaviors.

Warning
Third-party desktop managers may enforce their own positioning rules, overriding
requests from other applications such as IDL. If you have trouble positioning
windows on the screen using IDL, investigate whether your desktop manager’s
control over other applications can be changed or relaxed.

XINERAMA Client/Server Interactions

When using networked UNIX systems, you are generally seated at an X workstation
that is running an X server and some local programs such as command shells. You
then log in remotely to another machine and execute X client programs (like IDL)
with their DISPLAY environment variable pointing back to the X server you are
using. The client program may be running on a machine that is of completely
different architecture and capability than the machine running the X server. Table 3-6
shows the IDL X client’s interactions with X servers on systems that do or do not
support XINERAMA.

Client supports
XINERAMA?

Server supports XINERAMA?

Yes No

Yes —
IDL running on
Linux, OS X

IDL detects extended
desktop with monitor
information for each
physical monitor.

IDL detects
independent desktops
with monitor
information for each
physical monitor.

No —
IDL running on
other UNIX
platforms

IDL detects extended
desktop with monitor
information for single
desktop spanning all
monitors. Individual
monitor information
is not available.

IDL detects
independent desktops
with monitor
information for each
physical monitor

Table 3-6: Possible XINERAMA Client/Server Combinations
UNIX Multi-Monitor Configurations Using IDL

Chapter 3: Graphic Display Essentials 89
Example: Multi-Monitor Window Positioning

The IDL distribution contains example .pro code that illustrates how to use the
IDLsysMonitorInfo object to position application windows on multiple monitors.
With a little care, you can design the code to work on Windows, XINERAMA, and X
Multi-Screen platforms and handle all monitor configurations.

The example code displays a simple splash screen in the middle of the primary
monitor and opens a simple application GUI on the nth monitor in a system with n
monitors.

Example Code
The application window positioning for multi-monitor example is included in the
file multimon_ex1.pro in the examples/doc/utilities subdirectory of
the IDL distribution.
Using IDL Example: Multi-Monitor Window Positioning

RSI_PROCODE/examples/doc/utilities/multimon_ex1.pro

90 Chapter 3: Graphic Display Essentials
Using Fonts in Graphic Displays

IDL uses three font systems for writing characters on the graphics device, whether
that device be a display monitor or a printer: Hershey (vector) fonts, TrueType
(outline) fonts, and device (hardware) fonts. Fonts are discussed in detail in
Appendix H, “Fonts” (IDL Reference Guide).

Both TrueType and Vector fonts are displayed identically on all of the platforms that
support IDL. This means that if your cross-platform application uses either the
TrueType fonts supplied with IDL or the Vector fonts, there is no need for platform-
dependent code.

In a widget application, specify a font using the FONT keyword. If you choose a
device font, you may need to write platform-dependent code. See “Fonts Used in
Widget Applications” (Chapter 9, Application Programming) for details.

To set the font in an Object Graphics display, create an IDLgrFont object and assign
this object to a text object using the IDLgrText object FONT property. See “Font
Objects” (Chapter 9, Object Programming) for more information.

Note
Within the IDLDE, you can specify what font is used in various areas (e.g., the
Editor window or the Output Log window). See “Font Preferences” (Chapter 4, IDL
Interface) for details.
Using Fonts in Graphic Displays Using IDL

Chapter 3: Graphic Display Essentials 91
Printing Graphics

Beginning with IDL version 5.0, IDL interacts with a system-level printer manager to
allow printing of both IDL Direct Graphics and IDL Object Graphics. On Windows
platforms, IDL uses the operating system’s built-in printing facilities; on UNIX
platforms, IDL uses the Xprinter print manager from Bristol Technology.

Use the DIALOG_PRINTERSETUP and DIALOG_PRINTJOB functions to
configure your system printer and control individual print jobs from within IDL.

Printing IDL Direct Graphics

To print IDL Direct Graphics, you must first use the SET_PLOT procedure to make
PRINTER your current device. Issue IDL commands as normal to create the graphics
you wish to print, then use the CLOSE_DOCUMENT keyword to DEVICE to
actually initiate the print job and print something from your printer. You can also
create multiple pages before closing the document as well as being able to use tile
graphics with the !P.MULTI system command.

See “Printing Graphics Output Files” (Appendix A, IDL Reference Guide) for details
and examples.

Printing IDL Object Graphics

To print IDL Object Graphics, you must create a printer object to use as a destination
for your Draw operations. You can also print multiple documents with the
IDLgrPrinter object. See “Printer Objects” (Chapter 12, Object Programming)for
information about printer objects and examples of their use. Also see “Bitmap and
Vector Graphic Output” (Chapter 12, Object Programming) for information of when
to output to bitmap or vector graphics based on picture content.
Using IDL Printing Graphics

92 Chapter 3: Graphic Display Essentials
Printing Graphics Using IDL

Chapter 4

Animations
This chapter describes how to create and play Motion JPEG2000 animations using the
IDLffMJPEG2000 object. See the following topics for details:
Overview of Motion JPEG2000 94
Creating a Motion JPEG2000 Animation . . 96
Adding Data to MJ2 Animations 98

Playing a Motion JPEG2000 Animation . 103
Controlling the Playback Rate 106
High Speed MJ2 Reading and Writing . . 108
Using IDL 93

94 Chapter 4: Animations
Overview of Motion JPEG2000

Motion JPEG2000 is an extension of the still image JPEG2000 image format that is
designed for storing animations. A Motion JPEG2000 file (MJ2) consists of a
collection of frames. Each frame is an independent JPEG2000 image, and like
JPEG2000 images, each frame may be made up of one or more components (bands or
channels of data). The individual frame components may also be composed of tiles or
contain regions.

The Motion JPEG2000 format offers several features that make it an excellent choice
for data storage in scientific, security, and research arenas:

• Lossless compression option — the original image data can be retrieved from
the file.

• Granular access — an animation can consist of individual components, tiles or
regions in addition to entire frames.

• Intra-frame encoding — each frame is an independent entity and a true
representation of the data at a single point in time. The older MPEG standard
uses inter-frame encoding where interdependencies between the frames makes
it impossible to extract a singular frame of data.

You can create and play Motion JPEG2000 (MJ2) files in IDL using the
IDLffMJPEG2000 object. This chapter describes how to create and play your own
MJ2 files. In brief, an IDLffMJPEG2000 object can open an MJ2 file (identified by a
Filename argument) for playback or creation based on the value of the WRITE
property. When you create (write) a file, you will use the IDLffMJPEG2000::SetData
method to add frames, components or tiles of data to the file. When the animation is
complete, call the IDLffMJPEG2000::Commit method to close the file. See
“Creating a Motion JPEG2000 Animation” on page 96 for details.

Note
The same IDLffMJPEG2000 object cannot be used to both write and read an MJ2
file. You can write a file with one object (where WRITE=1), but you must create a
separate object (where WRITE=0, the default) in order to read or play the new MJ2
file.

The IDLffMJPEG2000 object supports sequential and random playback. To create a
sequential playback, you will use a group of methods to start the reading process,
retrieve the frame, release the frame and stop the reading process. These methods are
described in “Playing a Motion JPEG2000 Animation” on page 103. If you want to
Overview of Motion JPEG2000 Using IDL

Chapter 4: Animations 95
control the playback rate, you will need to include some sort of timer mechanism as
described in “Controlling the Playback Rate” on page 106.

When creating and playing an MJ2 file, IDL uses an internal background processing
thread to compress or decompress frames into a frame buffer. Depending upon the
size and complexity of the frame, creation or playback may be delayed if frame
compression or decompression takes longer than the associated method call. To avoid
such a delay, modify the FRAME_BUFFER_LENGTH property as described in
“High Speed MJ2 Reading and Writing” on page 108.

Sample Motion JPEG2000 Player and Writer

The IDL distribution includes a sample MJ2 player and an MJ2 writer as follows:

• The sample IDL Motion JPEG2000 Player can display RGB and monochrome
MJ2 files. This example code, mj2_player.pro, and a sample image,
idl_mjpeg2000_example.mj2, are located in the
IDL_DIR\examples\mjpeg2000 directory where IDL_DIR is the directory
where you have installed IDL.

• The sample IDL Motion JPEG2000 Writer, mj2_writer_rgb.pro, creates
an MJ2 animation. This example is located in the
IDL_DIR\examples\mjpeg2000 directory where IDL_DIR is the directory
where you have installed IDL. Running the example creates a new MJ2 file,
which is written to your application user directory, a subdirectory of your
home directory.

Supported Platforms

The IDLffMJPEG2000 object is not supported on AIX or IRIX. See “Feature Support
by Operating System” (Chapter 1, Installation and Licensing Guide) for details.
Using IDL Overview of Motion JPEG2000

96 Chapter 4: Animations
Creating a Motion JPEG2000 Animation

To create a Motion JPEG2000 file, create a new IDLffMJPEG2000 object and set the
WRITE property equal to 1. During initialization, you must specify a filename, which
is the path and location of the MJ2 file to be created.

Note
If you specify an existing MJ2 file as the Filename argument during initialization,
and also set the WRITE keyword, the existing file will be overwritten without
prompting and all existing data will be replaced with the new data. It is not possible
to append data to an MJ2 file.

To create a file, you will need to use the IDLffMJPEG2000::SetData and
IDLffMJPEG2000::Commit methods. The SetData method lets you add entire frames
of data, or individual frame components or frame tiles to the MJ2 file. However,
before the first call to SetData, there are several properties you may need to set.

Property Brief Description

BIT_DEPTH Specifies the bit depth of the data to be written
to the file. If not set, the default value of 8 will
specify byte data.

Note - To write short or long integer data, you
must set the BIT_DEPTH and SIGNED
properties before calling SetData.

COMMENT Specifies a descriptive comment for the file.

FRAME_BUFFER_LENGTH Defaults to 3, the number of frame slots in the
frame buffer. See “High Speed MJ2 Reading
and Writing” on page 108 for information on
how modifying this value can enable high-speed
reading and writing of MJ2 files.

N_LAYERS Defines the number of quality levels used to
build the frame. If not set, the default value (1) is
used.

Table 4-1: Properties that Must be Set Before Calling the SetData Method
Creating a Motion JPEG2000 Animation Using IDL

Chapter 4: Animations 97
The following properties will be automatically set based on the first frame of data
passed to SetData if not specified before the first call. If you are passing in a single
frame component or tile component in each call to SetData, you need to set the
related properties (N_COMPONENTS or TILE_DIMENSIONS) prior to the first call
to SetData in order for the data to be written to the file correctly.

Note
See “IDLffMJPEG2000 Properties” (IDL Reference Guide) for details.

N_LEVELS Defines the number of wavelet decompression
levels. The default is 5 unless the PALETTE
property is set, in which case the default is 0.

PALETTE Set to a 3-by-n or an n-by-3 array of byte or
integer values where n is the number of intensity
values for the three (r, g, b) color channels.

REVERSIBLE Set to 1 (lossless) to be able to retrieve the
original data. The default is 0 (lossy) unless the
PALETTE property has been set.

SIGNED Set to 1 to write signed data. Otherwise, data
will be written as unsigned (0, the default).

Property Description

COLOR_SPACE Defines the color space of the file. If the input data has 1
component, the default is monochrome; if it has 3
components, the default is RGB (unless the YCC
property is set).

DIMENSIONS Defaults to the width, height of the first frame of input
data. The dimensions of each data array must match.

N_COMPONENTS Defaults to the number of components in the first frame.

TILE_DIMENSIONS Defaults to the DIMENSIONS of the frame if not set.

Table 4-2: Properties Set Based on SetData Input if Not Specified

Property Brief Description

Table 4-1: Properties that Must be Set Before Calling the SetData Method
Using IDL Creating a Motion JPEG2000 Animation

98 Chapter 4: Animations
Adding Data to MJ2 Animations

The source of the data for the MJ2 file can be existing data or incremental captures
from data processing or data display. Regardless of the source of the data to be added
to the MJ2 file, you will need to call the IDLffMJPEG2000::SetData method multiple
times (minimally, once for each frame of the animation). Each SetData call adds the
data to the frame buffer where it is compressed by a background processing thread.
This processing thread is automatically started with the first SetData call. After all of
the data has been added to the file, you must call the IDLffMJPEG2000::Commit
method to stop the processing thread and close the file.

The first call to the IDLffMJPEG2000::SetData property is key. If you have not
previously defined a number of object properties (noted in “Creating a Motion
JPEG2000 Animation” on page 96), then the values are taken from the dimensions of
the data that is passed in during the first SetData call. For example, if you pass in
three arrays (data1, data2 and data3) in the first SetData call, the COLOR_SPACE
property will automatically be set to sRGB. If you are passing in three monochrome
data arrays, this property would need to be set to sLUM prior to the first call to
SetData to avoid unexpected results.

Note
It is possible to call SetData faster than the background processing thread can
compress the data and write it to a file. If this is an issue, see “High Speed MJ2
Reading and Writing” on page 108 for additional file creation options.

When creating a new MJ2 file you can choose from the following options:

• “Animating Existing Data” on page 99 — add frames, components or tiles of
data to the MJ2 file

• “Animating Screen Captures” on page 102 — add the contents of an object
graphics animation to the MJ2 file

• “Animating Data Captures” on page 102—add newly created data to the MJ2
file

Note
The following examples use a simple WAIT statement mechanism for controlling
the playback rate. In reality, you will likely use a more robust mechanism. See
“Controlling the Playback Rate” on page 106 for options and information about a
related example.
Adding Data to MJ2 Animations Using IDL

Chapter 4: Animations 99
These examples, which are comparatively short and simple, use the GetData method
instead of the group of methods described in “Sequential Motion JPEG2000
Playback” on page 103. Examples showing the use of the sequential playback
methods are located in “Controlling the Playback Rate” on page 106 and the
Examples section of “IDLffMJPEG2000::GetSequentialData” (IDL Reference
Guide).

Animating Existing Data

The IDLffMJPEG2000 object stores entire frames of data as well as bands or
channels of frame data (components) or frame tiles. The new MJ2 file can contain a
series of images, components, or tiles as long as the dimensions and numbers of
components are the same for each element. Examples of animating existing data
include:

• “MJ2 Monochrome Frame Animation”

• “MJ2 Animation of an Image with a Palette” on page 100

• “MJ2 RGB Tile Animation” on page 101

The following examples write MJ2 files to your temporary directory. Use PRINT,
FILEPATH(' ', /TMP) to display this location.

MJ2 Monochrome Frame Animation

The following simple example creates a short animation from a series of MRI frames
of data contained in a binary file. An animation consisting of all available quality
layers for a dozen frames is then displayed.

PRO mj2_frames_doc

; Read image data, which contains 57 frames.
nFrames = 57
head = READ_BINARY(FILEPATH('head.dat', $
 SUBDIRECTORY=['examples','data']), $
 DATA_DIMS=[80,100, 57])

; Create new MJ2 file in the temporary directory.
file = FILEPATH("mj2_frames_ex.mj2",/TMP)

; Create an IDLffMJPEG2000 object.
oMJ2write=OBJ_NEW('IDLffMJPEG2000', file, /WRITE, /REVERSIBLE, $
 N_LAYERS=10)

; Write the data of each frame into the MJ2 file.
FOR i=0, nFrames-1 DO BEGIN
Using IDL Adding Data to MJ2 Animations

100 Chapter 4: Animations
 data = head[*,*,i]
 result = oMJ2write->SetData(data)
ENDFOR

; Commit and close the IDLffMJPEG2000 object.
return = oMJ2write->Commit(10000)
OBJ_DESTROY, oMJ2write

; Create a new IDLffMJPEG2000 object to access MJ2 file.
oMJ2read=OBJ_NEW("IDLffMJPEG2000", file)
oMJ2read->GetProperty,N_FRAMES=nFrames, DIMENSIONS=dims

; Create a window and display simple animation.
WINDOW, 0, XSIZE=2*dims[0], YSIZE=2*dims[1], TITLE="MJ2 Layers"

; Display all quality layers (j) of a dozen frames (i).
FOR i=25, 36 DO BEGIN
 ; Return data and display magnified version. Pause
 ; between each frame for visibility. Unless a timer
 ; is used in conjunction with the FRAME_PERIOD and
 ; TIMESCALE properties, playback will occur as fast
 ; as the frames can be decompressed.
 FOR j=0, 10 DO BEGIN
 data = oMJ2read->GetData(i, MAX_LAYERS=j)
 TVSCL, CONGRID(data, 2*dims[0], 2*dims[1])
 WAIT, 0.1
 ENDFOR
ENDFOR

; Cleanup.
OBJ_DESTROY, oMJ2read

End

This example is also available in the IDL distribution.

Example Code
This example, mj2_frames_doc.pro, is located in the
examples/doc/objects subdirectory of the IDL distribution. Run the example
procedure by entering mj2_frames_doc at the IDL command prompt or view the
file in an IDL Editor window by entering .EDIT mj2_frames_doc.pro.

MJ2 Animation of an Image with a Palette

The following example accesses the palette associated with a PNG file and assigns
the values to the IDLffMJPEG2000 object PALETTE property. The image data is
then modified in such a way that the resulting animation appears to be a shrinking
Adding Data to MJ2 Animations Using IDL

RSI_PROCODE/examples/doc/objects/mj2_frames_doc.pro

Chapter 4: Animations 101
view of the image. However, the shrunken image is padded to maintain the original
image dimensions, which is a requirement of SetData. Each frame must have the
same dimensions.

The following lines, abstracted from the entire example, show accessing the palette
from the PNG file and assigning it to the new MJ2 file.

; Access image data and associated palette.
world = READ_PNG (FILEPATH ('avhrr.png', $
 SUBDIRECTORY = ['examples', 'data']), R, G, B)
;...
; Create an MJ2 file in the temporary directory. Assign the
; palette arrays to the PALETTE property.
file =FILEPATH("mj2_palette_ex.mj2", /TMP)
oMJ2write = OBJ_NEW('IDLffMJPEG2000', file, /WRITE, $
 PALETTE=[[R], [G], [B]])

See the following for the complete program.

Example Code
This example mj2_palette_doc.pro, is located in the
examples/doc/objects subdirectory of the IDL distribution. Run the example
procedure by entering mj2_palette_doc at the IDL command prompt or view
the file in an IDL Editor window by entering .EDIT mj2_palette_doc.pro.

MJ2 RGB Tile Animation

The following example creates a tiled, RGB JPEG2000 image from a 5,000 by
5,0000 pixel JPEG image. The JPEG2000 image tile data is then written to a Motion
JPEG2000 image file. As shown in the following code, a smaller version of each tile
is extracted from the MJ2 file and displayed sequentially in a window.

; Create object to read new MJ2 file. Set PERSISTENT to access
; tiled data. Set DISCARD_LEVELS to display smaller versions of
; the tiles.
oMJ2read = OBJ_NEW('IDLffMJPEG2000', file, /PERSISTENT)
oMJ2read->GetProperty, N_TILES=nTiles, TILE_DIMENSIONS=tileDims
WINDOW, 0, XSIZE=625, YSIZE=625
For j=0, nTiles-1 DO BEGIN
 data = oMJ2read->GetData(0, DISCARD_LEVELS=3, $

TILE_INDEX=j, /RGB)
 TVSCL, data, j, TRUE=1
 WAIT, 0.3
ENDFOR

See the following for the complete program. A noticeable amount of time will be
required the first time you run the example as several large files must be created.
Using IDL Adding Data to MJ2 Animations

RSI_PROCODE/examples/doc/objects/mj2_palette_doc.pro

102 Chapter 4: Animations
Example Code
This example mj2_tile_doc.pro, is located in the examples/doc/objects
subdirectory of the IDL distribution. Run the example procedure by entering
mj2_tile_doc at the IDL command prompt or view the file in an IDL Editor
window by entering .EDIT mj2_tile_doc.pro.

Animating Screen Captures

You can capture the visible contents of an IDLgrWindow using the IDLgrWindow
IMAGE_DATA property. The captured data can then be passed to the MJ2 file via the
IDLffMJPEG2000::SetData method. This method of MJ2 creation is useful for
recording an existing animation. For information on creating animations in an object
graphics window see Chapter 10, “Animating Objects” (Object Programming). For
an example that creates an MJ2 file using this method, see “Sample Motion
JPEG2000 Player and Writer” on page 95, which describes the example,
mj2_writer_rgb.pro, located in the IDL_DIR\examples\mjpeg2000
directory.

A timer mechanism can be used to control the rate of the animation and the rate at
which data is captured and written to an MJ2 file. See “Timer Mechanisms” on
page 107 for more information.

Animating Data Captures

In addition to adding existing data to an MJ2 file, you can also add incremental data
captures - snapshots of data at specified intervals. Data captured at any point during
program execution can be added as long as each element passed to SetData has the
same dimensions. The following example captures the incremental application of a
thinning operator to an image, creating an animation that shows the changes to the
original data.

Example Code
This example mj2_morphthin_doc.pro, is located in the
examples/doc/objects subdirectory of the IDL distribution. Run the example
procedure by entering m2_morphthin_doc at the IDL command prompt or view
the file in an IDL Editor window by entering .EDIT m2_morphthin_doc.pro.
Adding Data to MJ2 Animations Using IDL

RSI_PROCODE/examples/doc/objects/mj2_tile_doc.pro
RSI_PROCODE/examples/doc/objects/mj2_morphthin_doc.pro

Chapter 4: Animations 103
Playing a Motion JPEG2000 Animation

You can use the IDLffMJPEG2000 object to access frames sequentially or randomly
from a Motion JPEG2000 file (MJ2). Sequential access plays an animation, which
can consist of entire frames, or can consist of frame components, tiles or regions, and
uses a background processing thread. Random access plays selected frames, which
can also consist of entire frames, or frame components, tiles or regions, without the
use of a background processing thread. See the following sections for details:

• “Sequential Motion JPEG2000 Playback” on page 103

• “Random Motion JPEG2000 Playback” on page 104

Regardless of the type of playback, it is important to understand that unless you
implement a timer mechanism to control playback, the default rate will be as fast as
the frames can be decompressed. Options for timer mechanisms include widget timer
and the more robust IDLitWindow timer mechanism.

Warning
Avoid using the WAIT procedure to control the sequential playback rate. On UNIX
platforms there is an internal conflict between the background processing thread
and the WAIT procedure. To avoid cross-platform compatibility issues, always use
a widget timer or IDLitWindow timer mechanism to control the sequential playback
rate.

The timer mechanism will typically use the FRAME_PERIOD and TIMESCALE
properties to control the rate. See “Controlling the Playback Rate” on page 106 for
more information.

Note
If you find the rate at which the frames can be decompressed is slower than the
desired playback speed, see “High Speed Sequential Playback” on page 108 for an
optional playback method.

Sequential Motion JPEG2000 Playback

To playback a large series of MJ2 frames, components, tiles or regions sequentially,
your program will need to include the following methods and elements:

• IDLffMJPEG2000::StartSequentialReading—start the background
decompression thread. You can indicate what data to display (the entire frame,
Using IDL Playing a Motion JPEG2000 Animation

104 Chapter 4: Animations
or a component, tile, or region of the frame) as well as the resolution (level) of
data. You can also specify the start and stop frames for the sequential playback.

• Timer—start a widget timer or IDLitWindow timer mechanism to play back
frames at the desired rate. Within the timer event, call the following methods:

• IDLffMJPEG2000::GetSequentialData—points at the data being retrieved
from the frame buffer. This is not a copy of the data.

• IDLffMJPEG2000::ReleaseSequentialData—releases the data from the
frame buffer.

Note
You should always include a timer mechanism to control the playback rate.
Without a timer, the playback rate will be equal to the rate at which the
frames can be decompressed. See “Controlling the Playback Rate” on
page 106 for details and an example.

• IDLffMJPEG2000::StopSequentialReading— releases the decompressed
frames from the frame buffer memory and stops the background processing
thread, (if it is still running). Call this method when the sequential playback is
complete.

When playback ends, turn off the timer mechanism to stop the animation.

Examples showing the use of the sequential playback methods are located in
“Controlling the Playback Rate” on page 106 and the Examples section of
“IDLffMJPEG2000::GetSequentialData” (IDL Reference Guide).

Random Motion JPEG2000 Playback

To access a specified frame, use the IDLffMJPEG2000::GetData method. When
using GetData, you can return an entire frame, or a component, tile, or region of a
frame. You can also specify the resolution (level) of data to return.

The GetData method returns data when it has been decompressed. Unlike
GetSequentialData, GetData does not use a background processing thread and there
is no frame buffer involved. This means that the data returned by GetData can be
accessed. (The data returned by GetSequentialData cannot be accessed as it returns
only a pointer to the data on the frame buffer.) Since no background processing thread
is involved, a simple WAIT statement can be used to control the playback rate when
there is no need to implement a more robust timer mechanism.

Use GetData when you need to access a small number of distinct frames. Use
GetSequentialData and the background processing thread when you want to playback
Playing a Motion JPEG2000 Animation Using IDL

Chapter 4: Animations 105
a large number of frames at a specified rate as described in “Sequential Motion
JPEG2000 Playback” on page 103.

Simple examples that use the GetData method are described in “Adding Data to MJ2
Animations” on page 98.
Using IDL Playing a Motion JPEG2000 Animation

106 Chapter 4: Animations
Controlling the Playback Rate

Sequential playback relies on the interaction of four IDLffMJPEG2000 methods,
described in “Sequential Motion JPEG2000 Playback” on page 103. When you call
StartSequentialReading, a background processing thread is started, and the selected
data is decompressed and added to the frame buffer. Within a timer event, you must
call the GetSequentialData and ReleaseSequentialData methods as a pair. These
methods work cooperatively to access and then to release the frame data so that there
is room for the decompression of the next frame.

Tip
If playback is delayed because there are not frame buffer slots available, you can
modify the size of the frame buffer using the FRAME_BUFFER_LENGTH
property. See “High Speed MJ2 Reading and Writing” on page 108 for details.

The timer mechanism can access the decompressed data from the frame buffer at
intervals specified by a combination of the FRAME_PERIOD and TIMESCALE
properties. The number of seconds allotted each frame is equal to the
FRAME_PERIOD divided by the TIME_SCALE property (see the discussion under
“FRAME_PERIOD” (IDL Reference Guide) for details). Access the required
properties from an IDLffMJPEG2000 object (oMJ2) as follows:

oMJ2->GetProperty,N_FRAMES=nFrames, DIMENSIONS=dims, $
FRAME_PERIOD=vFramePeriod, TIMESCALE=vTimeScale

; Compute seconds per frame.
vFrameRate = FLOAT(vFramePeriod)/vTimeScale

In the previous line, the FLOAT function ensures the return of a floating point frame
rate value and avoids errors caused by attempting to divide by zero. This frame rate
value can then be passed to the timer mechanism to control playback rate. For an MJ2
file that has frames with varied FRAME_PERIOD property values, computing the
frame rate for each frame and passing it to the timer mechanism will alter the
playback speed. The following example creates an MJ2 file with varied frame period
values and then uses these values to compute a value to be passed to a widget timer
event, which alters the playback rate to reflect the frame period of each frame.

Example Code
This example mj2_timer_doc.pro, is located in the examples/doc/objects
subdirectory of the IDL distribution. Run the example procedure by entering
mj2_timer_doc at the IDL command prompt or view the file in an IDL Editor
window by entering .EDIT mj2_timer_doc.pro.
Controlling the Playback Rate Using IDL

RSI_PROCODE/examples/doc/objects/mj2_timer_doc.pro

Chapter 4: Animations 107
Timer Mechanisms

There are two primary options for timer mechanisms that can be used to control the
playback rate of an MJ2 animation in an IDL application:

Of the two options listed above, the IDLitWindow timer will more accurately reflect
true frame rates. The widget timer will show rate changes, but may not have the same
degree of accuracy as the IDLitWindow timer mechanism.

Option Description

IDLitWindow A number of IDLitWindow methods work in concert to control
what happens during a timer event:

• IDLitWindow::SetEventMask — use this method to turn
timer events on and off

• IDLitWindow::SetTimerInterval — set this equal to the
desired frame rate (seconds/frame)

• IDLitWindow::OnTimer — write code in this procedure to
get and release frame data at the rate specified in
SetTimerInterval

The sample MJ2 player, mj2_player.pro, located in the
IDL_DIR\examples\mjpeg2000 directory uses an
IDLitWindow timer mechanism. See “Sample Motion JPEG2000
Player and Writer” on page 95 for more information.

Widget Timer A timer event can be associated with a number of widgets
although it is typically associated with one that has no events of its
own such as a base or label. The WIDGET_CONTROL procedure
associates a timer with a widget and sets the rate.

The mj2_timer_doc.pro example, located in the
examples/doc/objects subdirectory of the IDL distribution,
shows how to control playback rate with a widget timer. See
“Timer Events” (Chapter 4, Widget Application Programming)
for more information on these events.

Table 4-3: Timer Mechanisms Options for MJ2 Playback
Using IDL Controlling the Playback Rate

108 Chapter 4: Animations
High Speed MJ2 Reading and Writing

Animation playback or creation can be delayed due to the time required to
decompress or compress frame data. The following sections describe ways to avoid
such delays during file reading or writing.

High Speed Sequential Playback

If the desired playback speed exceeds the rate at which frames can be decompressed
(as described in “Sequential Motion JPEG2000 Playback” on page 103), you can
decompress all of the frames before starting the playback. To do so, you need to set
the FRAME_BUFFER_LENGTH property to the total number of frames to be
played back before calling IDLffMJPEG2000::StartSequentialReading.

When you call StartSequentialReading, the background processing thread will begin
decompressing the frames and storing them in the frame buffer. Before calling the
GetSequentialData/ReleaseSequentialData pair of methods, make sure that all frames
have been read into the frame buffer. You can check this using one of the following:

• Check the STATE property—if frames are still being decompressed by the
processing thread, the property returns 1 (running). When all frames have been
decompressed, the background processing thread shuts down and the STATE
property returns to 0 (idle).

• Check the FRAMES_IN_BUFFER property—if the number of frames in the
buffer equals the FRAME_BUFFER_LENGTH property you set prior to
starting the decompression, then all of the desired frames have been
decompressed.

Note
This technique, decompressing all the desired frames prior to playback, can
consume large amounts of memory depending on the number and size of the
frames. Also, remember that the decompressed frames will remain in the frame
buffer until you call the StopSequentialReading method.

High Speed MJ2 File Writing

In some situations, the desired write speed may exceed the rate at which frames can
be compressed. When you call SetData, the data is added to the frame buffer where it
is compressed by a background processing thread. If compression cannot keep up
with the SetData calls, the frame buffer fills up and SetData must wait for an available
frame buffer slot before it can return.
High Speed MJ2 Reading and Writing Using IDL

Chapter 4: Animations 109
To avoid such a delay, you can make sure there is always a slot available for the
SetData call by increasing the FRAME_BUFFER_LENGTH property value. This
technique ensures there is no delay caused by file compression, but can consume
large amounts of memory depending on the number and size of the frames.
Using IDL High Speed MJ2 Reading and Writing

110 Chapter 4: Animations
High Speed MJ2 Reading and Writing Using IDL

Chapter 5

Map Projections
The following topics are covered in this chapter:
Overview of Mapping 112
Graphics Techniques for Mapping 113
Map Projection Types 115
Azimuthal Projections 116

Cylindrical Projections 125
Pseudocylindrical Projections 130
High-Resolution Continent Outlines 134
References . 136
Using IDL 111

112 Chapter 5: Map Projections
Overview of Mapping

This section introduces graphic map display considerations as well as information
about common map projections. This section does not describe how to create a map
display. See the following topic for these resources.

Creating a Map Display

IDL provides interactive and static map display functionality. You can use the iMap
iTool to interactively configure a map display. If you prefer a static display, you can
use map routines. See the following for details:

• Interactive iMap display — see Chapter 15, “Working with Maps” (iTool
User’s Guide)

• Map-related routines — see “Mapping” (IDL Quick Reference)

Examples of Creating Map Displays

See the following resources in the IDL Reference Guide for examples:

• IMAP — provides examples of displaying images and contours over a map
projection.

• MAP_PROJ_FORWARD — creates a latitude and longitude grid with labels
for a Goodes Homolosine map projection in an Object Graphics display.
Typically MAP_PROJ_INIT is used with MAP_PROJ_FORWARD and
MAP_PROJ_INVERSE.

• MAP_SET — establishes the coordinate conversion mechanism for mapping
points on a globe’s surface to points on a plane, according to the selected
projections type. You can then use MAP_GRID and MAP_CONTINENTS to
add grid lines and continents to the map display. See MAP_IMAGE for an
example of warping an image to a projection.
Overview of Mapping Using IDL

Chapter 5: Map Projections 113
Graphics Techniques for Mapping

Standard graphics techniques are insufficient when projecting areas on a sphere to a
two-dimensional surface for two reasons. First, two points on a sphere are connected
by two different lines. Second, areas may wrap around the edges of cylindrical and
pseudo-cylindrical projections.

Graphical entities on the surface of a sphere can be properly represented on any map
by using a combination of the following four stages: splitting, 3D clipping,
projection, and rectangular clipping. The IMAP and MAP_SET procedures
automatically sets up the proper mapping technique to best fit the projection selected
by the user.

Warning
For proper rendering, splitting, and clipping, polygons must be traversed in counter-
clockwise order when observed from outside the sphere. If this requirement is not
met, the exterior, instead of the interior, of the polygons may be filled. Also, vectors
connecting the points spanning the singular line for cylindrical projections will be
drawn in the wrong direction if polygons are not traversed in the correct order.

Splitting

The splitting stage is used for cylindrical and pseudo-cylindrical projections. The
singular line, one half of a great circle line, is located opposite the center of the
projection; points on this line appear on both edges of the map. The singular line is
the intersection of the surface of the sphere with a plane passing through the center of
projection, one of the poles of projections, and the center of the sphere.

3D Clipping

Map graphics are clipped to one side of an arbitrary clipping plane in one or more
clipping stages. For example, to draw a hemisphere centered on a given point, the
clipping plane passes through the center of the sphere and has a normal vector that
coincides with the given point.

Projection

In the projection stage, a point expressed in latitude and longitude is transformed to a
point on the mapping plane.
Using IDL Graphics Techniques for Mapping

114 Chapter 5: Map Projections
Rectangular Clipping

After the map graphics have been projected onto the mapping plane, a conventional
rectangular clipping stage ensures that the graphics are properly bounded and closed
in the rectangular display area.
Graphics Techniques for Mapping Using IDL

Chapter 5: Map Projections 115
Map Projection Types

In the following sections, the available IDL projections are discussed in detail. The
projections are grouped within three categories:

• “Azimuthal Projections” on page 116

• “Cylindrical Projections” on page 125

• “Pseudocylindrical Projections” on page 130

Note
The General Cartographic Transformation Package (GCTP) map projections are not
described here. Documentation for the GCTP package is available from the US
Geologic Survey at http://mapping.usgs.gov.

Note
In this text, the plane of the projection is referred to as the UV plane with horizontal
axis u and vertical axis v.
Using IDL Map Projection Types

116 Chapter 5: Map Projections
Azimuthal Projections

With azimuthal projections, the UV plane is tangent to the globe. The point of
tangency is projected onto the center of the plane and its latitude and longitude are
the points at the center of the map projection, respectively. Rotation is the angle
between North and the v-axis.

Important characteristics of azimuthal maps include the fact that directions or
azimuths are correct from the center of the projection to any other point, and great
circles through the center are projected to straight lines on the plane.

The IDL mapping package includes the following azimuthal projections:

• “Orthographic Projection” on page 117

• “Stereographic Projection” on page 117

• “Gnomonic Projection” on page 118

• “Azimuthal Equidistant Projection” on page 119

• “Aitoff Projection” on page 120

• “Lambert’s Equal Area Projection” on page 121

• “Hammer-Aitoff Projection” on page 122

• “Satellite Projection” on page 123
Azimuthal Projections Using IDL

Chapter 5: Map Projections 117
Orthographic Projection

The orthographic projection was known by the Egyptians and Greeks 2000 years ago.
This projection looks like a globe because it is a perspective projection from infinite
distance. As such, it maps one hemisphere of the globe into the UV plane. Distortions
are greatest along the rim of the hemisphere where distances and land masses are
compressed.

The following figure shows an orthographic projection centered over Eastern Spain
at a scale of 70 million to 1.

Stereographic Projection

The stereographic projection is a true perspective projection with the globe being
projected onto the UV plane from the point P on the globe diametrically opposite to
the point of tangency. The whole globe except P is mapped onto the UV plane. There
is great distortion for regions close to P, since P maps to infinity.

The stereographic projection is the only known perspective projection that is also
conformal. It is frequently used for polar maps. For example, a stereographic view of
the north pole has the south pole as its point of perspective.

Figure 5-1: Orthographic Projection
Using IDL Azimuthal Projections

118 Chapter 5: Map Projections
The following figure shows an equatorial stereographic projection with the
hemisphere centered on the equator at longitude –105 degrees.

Gnomonic Projection

The gnomonic projection (also called Central or Gnomic) projects all great circles to
straight lines. The gnomonic projection is the perspective, azimuthal projection with
point of perspective at the center of the globe. Hence, with the gnomonic projection,
the interior of a hemispherical region of the globe is projected to the UV plane with
the rim of the hemisphere going to infinity. Except at the center, there is great
distortion of shape, area, and scale. The default clipping region for the gnomonic
projection is a circle with a radius of 60 degrees at the center of projection.

The projection in the following figure is centered around the point at latitude 40
degrees and longitude –105 degrees. The region on the globe that is mapped lies

Figure 5-2: An Azimuthal Projection
Azimuthal Projections Using IDL

Chapter 5: Map Projections 119
between 20 degrees and 70 degrees of latitude and –130 degrees and –70 degrees of
longitude.

Azimuthal Equidistant Projection

The azimuthal equidistant projection is also not a true perspective projection, because
it preserves correctly the distances between the tangent point and all other points on
the globe. Any line drawn through the tangent point reports distance correctly.
Therefore, this projection type is useful for determining flight distances. The point P
opposite the tangent point is mapped to a circle on the UV plane, and hence, the
whole globe is mapped to the plane. There is infinite distortion close to the outer rim
of the map, which is the circular image of P.

Figure 5-3: A Gnomonic Projection
Using IDL Azimuthal Projections

120 Chapter 5: Map Projections
The following Azimuthal projection is centered at the South Pole and shows the
entire globe.

Aitoff Projection

The Aitoff projection modifies the equatorial aspect of one hemisphere of the
azimuthal equidistant projection, described above. Lines parallel to the equator are
stretched horizontally and meridian values are doubled, thereby displaying the world
as an ellipse with axes in a 2:1 ratio. Both the equator and the central meridian are
represented at true scale; however, distances measured between the point of tangency
and any other point on the map are no longer true to scale.

Figure 5-4: An Azimuthal Equidistant Projection
Azimuthal Projections Using IDL

Chapter 5: Map Projections 121
An Aitoff projection centered on the international dateline is shown in the following
figure.

Lambert’s Equal Area Projection

Lambert’s equal area projection adjusts projected distances in order to preserve area.
Hence, it is not a true perspective projection. Like the stereographic projection, it
maps to infinity the point P diametrically opposite the point of tangency. Note also
that to preserve area, distances between points become more contracted as the points
become closer to P. Lambert’s equal area projection has less overall scale variation
than the other azimuthal projections.

Figure 5-5: An Aitoff Projection
Using IDL Azimuthal Projections

122 Chapter 5: Map Projections
The following figure shows the Northern Hemisphere rotated counterclockwise 105
degrees, and filled continents.

Hammer-Aitoff Projection

Although the Hammer-Aitoff projection is not truly azimuthal, it is included in this
section because it is derived from the equatorial aspect of Lambert’s equal area
projection limited to a hemisphere (in the same way Aitoff’s projection is derived
from the equatorial aspect of the azimuthal equidistant projection). In this derivation,
the hemisphere is represented inside an ellipse with the rest of the world in the lunes
of the ellipse.

Because the Hammer-Aitoff projection produces an equal area map of the entire
globe, it is useful for visual representations of geographically related statistical data
and distributions. Astronomers use this projection to show the entire celestial sphere
on one map in a way that accurately depicts the relative distribution of the stars in
different regions of the sky.

Figure 5-6: A Lambert’s Equal Area Projection
Azimuthal Projections Using IDL

Chapter 5: Map Projections 123
A Hammer-Aitoff projection centered on the international dateline is shown in the
following figure:

Satellite Projection

The satellite projection, also called the General Perspective projection, simulates a
view of the globe as seen from a camera in space. If the camera faces the center of the
globe, the projection is called a Vertical Perspective projection (note that the
orthographic, stereographic, and gnomonic projections are special cases of this
projection), otherwise the projection is called a Tilted Perspective projection.

The globe is viewed from a point in space, with the viewing plane touching the
surface of the globe at the point directly beneath the satellite (the sub-satellite point).
If the projection plane is perpendicular to the line connecting the point of projection
and the center of the globe, a Vertical Perspective projection results. Otherwise, the
projection plane is horizontally turned Γ degrees clockwise from the north, then tilted
ω degrees downward from horizontal.

Figure 5-7: The Hammer-Aitoff Projection
Using IDL Azimuthal Projections

124 Chapter 5: Map Projections
The map in the accompanying figure shows the eastern seaboard of the United States
from an altitude of about 160km, above Newburgh, NY.

Figure 5-8: Satellite Projection
Azimuthal Projections Using IDL

Chapter 5: Map Projections 125
Cylindrical Projections

A cylindrical projection maps the globe to a cylinder which is formed by wrapping
the UV plane around the globe with the u-axis coinciding with a great circle. The
parameters P0lat, P0lon, and Rot determine the great circle that passes through the
point C=(P0lat, P0lon). In the discussions below, this great circle is sometimes
referred to as EQ. Rot is the angle between North at the map’s center and the v-axis
(which is perpendicular to the great circle). The cylinder is cut along the line parallel
to the v-axis and passing through the point diametrically opposite to C. It is then
rolled out to form a plane.

The cylindrical projections in IDL include: Mercator, Transverse Mercator,
cylindrical equidistant, Miller, Lambert’s conformal conic, and Alber’s equal-area
conic.

Mercator Projection

Mercator’s projection is partially developed by projecting the globe onto the cylinder
from the center of the globe. This is a partial explanation of the projection because
vertical distances are subjected to additional transformations to achieve conformity—
that is, local preservation of shape. Therefore, uses include navigation maps and
equatorial maps. To properly use the projection, the user should be aware that the two
points on the globe 90 degrees from the central great circle (e.g., the North and South
Poles in the case that the selected great circle is the equator) are mapped to infinite
distances. Limits are typically specified because of the great distortions around the
poles when the equator is selected.
Using IDL Cylindrical Projections

126 Chapter 5: Map Projections
A simple mercator projection with latitude ranges from –80 degrees to 80 degrees is
shown in the following figure.

Transverse Mercator Projection

The Transverse Mercator (also called the UTM, and Gauss-Krueger in Europe)
projection rotates the equator of the Mercator projection 90 degrees so that it follows
a specified central meridian. In other words, the Transverse Mercator involves
projecting the Earth onto a cylinder which is always in contact with a meridian
instead of with the Equator.

The central meridian intersects two meridians and the Equator at right angles; these
four lines are straight. All other meridians and parallels are complex curves which are
concave toward the central meridian. Shape is true only within small areas and the
areas increase in size as they move away from the central meridian. Most other IDL
projections are scaled in the range of +/– 1 to +/– 2 Pi; the UV plane of the
Transverse Mercator projection is scaled in meters. The conformal nature of this

Figure 5-9: Simple Mercator Projection
Cylindrical Projections Using IDL

Chapter 5: Map Projections 127
projection and its use of the meridian makes it useful for north-south regions. The
Clarke 1866 ellipsoid is used for the default.

The following Transverse Mercator map shows North and South America, with a
central meridian of –90 degrees West and centered on the Equator.

Cylindrical Equidistant Projection

The cylindrical equidistant projection is one of the simplest projections to construct.
If EQ is the equator, this projection simply lays out horizontal and vertical distances
on the cylinder to coincide numerically with their measurements in latitudes and
longitudes on the sphere. Hence, the equidistant cylindrical projection maps the
entire globe to a rectangular region bounded by

Figure 5-10: Transverse Mercator Projection

–180 ≤ u ≤ 180

and

–90 ≤ v ≤ 90
Using IDL Cylindrical Projections

128 Chapter 5: Map Projections
If EQ is the equator, meridians and parallels will be equally spaced parallel lines.

The following figure shows a simple cylindrical equidistant projection and an oblique
cylindrical equidistant projection rotated by 45°.

Miller Cylindrical Projection

The Miller projection is a simple mathematical modification of the Mercator
projection, incorporating some aspects of cylindrical projections. It is not equal-area,
conformal or equidistant along the meridians. Meridians are equidistant from each
other, but latitude parallels are spaced farther apart as they move away from the
Equator, thereby keeping shape and area distortion to a minimum. The meridians and
parallels intersect each other at right angles, with the poles shown as straight lines.
The Equator is the only line shown true to scale and free of distortion.

Conic Projection

The Lambert’s conformal conic with two standard parallels is constructed by
projecting the globe onto a cone passing through two parallels. Additional scaling
achieves conformity. The pole under the cone’s apex is transformed to a point, and
the other pole is mapped to infinity. The scale is correct along the two standard
parallels. Parallels can be specified and are projected onto circles and meridians onto
equally spaced straight lines. The following figure shows the map shown in the

Figure 5-11: Cylindrical Projections
Cylindrical Projections Using IDL

Chapter 5: Map Projections 129
accompanying figure, which features North America with standard parallels at 20
degrees and 60 degrees.

Albers Equal-Area Conic Projection

The Albers Equal-Area Conic is like most other conics in that meridians are equally
spaced radii, parallels are concentric arcs of circles and scale is constant along any
parallel. To maintain equal area, the scale factor along meridians is the reciprocal of
the scale factor along parallels, with the scale along the parallels between the two
standard parallels too small, and the scale beyond the standard parallels too large.
Standard parallels are correct in scale along the parallel, as well as in every direction.

The Albers projection is particularly useful for predominantly east-west regions. Any
keywords for the Lambert conformal conic also apply to the Albers conic.

Figure 5-12: Lambert’s Conformal Conic with Standard Parallels at 20° and 60°
Using IDL Cylindrical Projections

130 Chapter 5: Map Projections
Pseudocylindrical Projections

Pseudocylindrical projections are distinguished by the fact that in their simplest form,
lines of latitude are parallel straight lines and meridians are curved lines.

Robinson Cylindrical

This pseudocylindrical projection was designed by Arthur Robinson in 1963 for
Rand McNally. It is suitable for World maps and is a compromise to best fulfill a
number of conflicting requirements, including an uninterrupted format, minimal
shearing, minimal apparent area-scale distortion for major continents, and simplicity.
It was designed to make the world look right. Since its introduction, it has been
adopted by the National Geographic Society for many of their world maps.

Each individual parallel is equally divided by the meridians. The poles are
represented by lines rather than points to avoid compressing the northern land
masses. The central meridian should always be 0 degrees longitude to retain the
correct balance of shapes, sizes, and relative positions.

The following figure shows a Robinson projection.

Figure 5-13: Robinson Projection
Pseudocylindrical Projections Using IDL

Chapter 5: Map Projections 131
Sinusoidal Projection

With the sinusoidal projection, the central meridian is a straight line and all other
meridians are equally spaced sinusoidal curves. The scaling is true along the central
meridian as well as along all parallels.

The sinusoidal projection is one of the easiest projections to construct. The formulas
below from Snyder (1987) give the relationship between the latitude φ and longitude
λ of a point on the globe and its image on the UV plane.

The following shows the sinusoidal map of the whole globe centered at longitude 0
degrees and latitude 0 degrees.

Mollweide Projection

With the Mollweide projection, the central meridian is a straight line, the meridians
90 degrees from the central meridian are circular arcs and all other meridians are
elliptical arcs. The Mollweide projection maps the entire globe onto an ellipse in the
UV plane. The circular arcs encompass a hemisphere and the rest of the globe is
contained in the lunes on either side.

u = λcosφ

v = φ

Figure 5-14: Sinusoidal Projection
Using IDL Pseudocylindrical Projections

132 Chapter 5: Map Projections
The following figure shows a Mollweide projection in oblique form.

Since the center of the projection is not on the equator, parallels of latitude are not
straight lines, just as they are not straight lines with an oblique Mercator or
cylindrical equidistant projection.

Goode’s Homolosine Projection

The Goode interrupted Homolosine projection, developed by J. Paul Goode, in 1923,
is designed for World maps to show the continents with minimal scale and shape
distortion. This is accomplished by interrupting the projection and choosing several
central meridians to coincide with large land masses. This projection is a fusion of the
Sinusoidal projection between the latitudes of 44.7 degrees North and South, and the
Mollweide projection between these parallels and the poles.

Figure 5-15: Mollweide Projection
Pseudocylindrical Projections Using IDL

Chapter 5: Map Projections 133
The following figure shows an example of Goode’s Homolosine projection.

Figure 5-16: Goode’s Homolosine Projection
Using IDL Pseudocylindrical Projections

134 Chapter 5: Map Projections
High-Resolution Continent Outlines

IDL supports two different datasets that contain continent outlines and other
geographical and political boundaries. The default data set is a low-resolution
continental outline database that is automatically installed when you install IDL. The
high-resolution database was adapted from the 1993 CIA World Map database by
Thomas Oetli of the Swiss Meteorological Institute. The high-resolution outlines are
found in an optional data set that may not have been installed when your copy of IDL
was first installed.

To access the high-resolution data set, simply set the HIRES keyword when calling
MAP_CONTINENTS with the COASTS, COUNTRIES, FILL_CONTINENTS, or
RIVERS keywords. You can also get high-resolution continent boundaries by calling
MAP_SET with the HIRES and CONTINENTS keywords set. See
MAP_CONTINENTS in the IDL Reference Guide for an example of using the high-
resolution outlines.

Resolution of Map Databases

Data points in the CIA World Map database are approximately one kilometer apart.
Note, however, that in the case of the coast and river databases, actual distances
between the data points may be much smaller because of convolutions in the
coastline or riverbed.

Data points in the low-resolution map database are either a subset of the high-
resolution database (rivers and country boundaries) or are based on the continental
map database used in previous versions of IDL (the file supmap.dat in the
resource/maps subdirectory of the IDL distribution). Data points in the low-
resolution database are approximately 10 kilometers apart.

Neither of the map databases is intended for high-precision work.
High-Resolution Continent Outlines Using IDL

Chapter 5: Map Projections 135
The following table compares the low-resolution and high-resolution map databases:

Feature Low-Resolution High-Resolution

Coastlines, islands, and
lakes (including
continental outlines)

Data in file supmap.dat. Entire CIA World Map

Continental polygons Data extracted from
supmap.dat.

Every 20th point of CIA
World Map.

Rivers Every 250th point of the CIA
World Map.

Entire CIA World Map.

National boundaries Every 100th point of CIA
World Map.

Entire CIA World Map.

Table 5-1: Comparison of Low- and High-resolution Map Databases
Using IDL High-Resolution Continent Outlines

136 Chapter 5: Map Projections
References

Greenwood, David (1964), Mapping, University of Chicago Press, Chicago.

Pearson, Frederick II (1990), Map Projections: Theory and Applications, CRC Press,
Inc., Boca Raton.

Snyder, John P. (1987), Map Projections—A Working Manual, U.S. Geological
Survey Professional Paper 1395, U.S.Government Printing Office, Washington, D.C.
References Using IDL

Chapter 6

Signal Processing
The following topics are covered in this chapter:
Overview of Signal Processing 138
Digital Signals . 139
Signal Analysis Transforms 141
The Fourier Transform 142
Interpreting FFT Results 143
Displaying FFT Results 144
Using Windows . 148
Aliasing . 151
FFT Algorithm Details 152
The Hilbert Transform 153

The Wavelet Transform 155
Convolution . 156
Correlation and Covariance 157
Digital Filtering . 158
Finite Impulse Response (FIR) Filters . . . 159
FIR Filter Implementation 161
Infinite Impulse Response (IIR) Filters . . 163
Routines for Signal Processing 138
References . 166
Using IDL 137

138 Chapter 6: Signal Processing
Overview of Signal Processing

A signal, by definition, contains information. Any signal obtained from a physical
process also contains noise. It is often difficult or impossible to make sense of the
information contained in a digital signal by looking at it in its raw form—that is, as a
sequence of real values at discrete points in time. Signal analysis transforms offer
natural, meaningful, alternate representations of the information contained in a
signal.

This chapter describes IDL’s digital signal processing tools. Most of the procedures
and functions mentioned here work in two or more dimensions. For simplicity, only
one dimensional signals are used in the examples.

Routines for Signal Processing

For a list of IDL signal processing routines, see the functional category of “Signal
Processing” (IDL Quick Reference). There you will find a brief introduction to the
routines. More detailed information is available in the IDL Reference Guide.

Running the Example Code

The examples in this chapter are written to take advantage of iTools. The example
code is part of the IDL distribution. All of the files mentioned are located in the
examples/doc/signal subdirectory of the IDL distribution. By default, this
directory is part of IDL’s path; if you have not changed your path, you will be able to
run the examples as described here. See “!PATH” (Appendix D, IDL Reference
Guide) for information on IDL’s path.
Overview of Signal Processing Using IDL

Chapter 6: Signal Processing 139
Digital Signals

A one-dimensional digital signal is a sequence of data, represented as a vector in an
array-oriented language like IDL. The term digital actually describes two different
properties:

1. The signal is defined only at discrete points in time as a result of sampling, or
because the instrument which measured the signal is inherently discrete-time
in nature. Usually, the time interval between measurements is constant.

2. The signal can take on only discrete values.

In this discussion, we assume that the signal is sampled at a time interval. The
concepts and techniques presented here apply equally well to any type of signal—the
independent variable may represent time, space, or any abstract quantity.

The following IDL commands create a simulated digital signal u(k), sampled at an
interval delt. This simulated signal will be used in examples throughout this
chapter. The simulated signal contains 1024 time samples, with a sampling interval
of 0.02 seconds. The signal contains a DC component and components at 2.8, 6.5,
and 11.0 cycles per second.

Enter the following commands at the IDL prompt to create the simulated signal:

N = 1024 ; number of samples
delt = 0.02 ; sampling interval

; Simulated signal.
u = -0.3 $

+ 1.0 * SIN(2 * !PI * 2.8 * delt * FINDGEN(N)) $
+ 1.0 * SIN(2 * !PI * 6.25 * delt * FINDGEN(N)) $
+ 1.0 * SIN(2 * !PI * 11.0 * delt * FINDGEN(N))

Example Code
Alternately, type @sigprc01 at the IDL prompt to run the sigprc01batch file that
creates the signal. See “Running the Example Code” on page 138 if IDL does not
find the batch file.
Using IDL Digital Signals

RSI_PROCODE/examples/doc/signal/sigprc01

140 Chapter 6: Signal Processing
Because the signal is digital, the conventional way to display it is with a histogram (or
step) plot. To create a histogram plot, set the PSYM keyword to the PLOT routine equal
to 10. A section of the example signal u(k) is plotted in the figure below.

Note
When the number of sampled data points is large, the steps in the histogram plot are
too small to see. In such cases you should not plot in histogram mode.

Example Code
Type @sigprc02 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc02, in the examples/doc/signal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Figure 6-1: Histogram Plot of Sample Signal u(k)
Digital Signals Using IDL

RSI_PROCODE/examples/doc/signal/sigprc02

Chapter 6: Signal Processing 141
Signal Analysis Transforms

Most signals can be decomposed into a sum of discrete (usually sinusoidal) signal
components.The result of such decomposition is a frequency spectrum that can
uniquely identify the signal. IDL provides three transforms to decompose a signal
and prepare it for analysis: the Fourier transform, the Hilbert transform, and the
wavelet transform.
Using IDL Signal Analysis Transforms

142 Chapter 6: Signal Processing
The Fourier Transform

The Discrete Fourier Transform (DFT) is the most widely used method for
determining the frequency spectra of digital signals. This is due to the development
of an efficient algorithm for computing DFTs known as the Fast Fourier Transform
(FFT).

The discrete Fourier transform, v(m), of an N-element, one-dimensional function,
u(k), is defined as:

The inverse transform is defined as:

IDL implements the Fast Fourier Transform in the FFT function. You can find details
on using IDL’s FFT function in the following sections and in “FFT” (IDL Reference
Guide).

v m() 1
N
---- u k()exp j2πmk N⁄–[]

k 0=

N 1–

∑=

u k() v m()exp j2πmk N⁄[]
m 0=

N 1–

∑=
The Fourier Transform Using IDL

Chapter 6: Signal Processing 143
Interpreting FFT Results

Just as the sampled time data represents the value of a signal at discrete points in
time, the result of a (forward) Fast Fourier Transform represents the spectrum of the
signal at discrete frequencies. These discrete frequencies are a function of the
frequency index (m), the number of samples collected (N), and the sampling interval
(δ):

The frequencies for which the FFT of a sampled signal are defined are sometimes
called frequency bins, which refers to the histogram-like nature of a discrete
spectrum. The width of each frequency bin is 1/(N * δ).

Due to the complex exponential in the definition of the DFT, the spectrum has a
cyclic dependence on the frequency index m. That is:

for p = any integer.

The frequency spectrum computed by IDL’s FFT function for a one-dimensional
time sequence is stored in a vector with indices running from 0 to N–1, which is also
a valid range for the frequency index m. However, the frequencies associated with
frequency indices greater than N/2 are above the Nyquist frequency and are not
physically meaningful for sampled signals. Many textbooks choose to define the
range of the frequency index m to be from – (N/2 – 1) to N/2 so that it is (nearly)
centered around zero. From the cyclic relation above with p = –1:

v(– (N/2 – 1)) = v(N/2 + 1 – N) = v(N/2 + 1)

v(– (N/2 – 2)) = v(N/2 + 2 – N) = v(N/2 + 2)

...

v(–2) = v(N – 2 – N) = v(N – 2)

v(–1) = v(N – 1 – N) = v(N – 1)

This index shift is easily accomplished in IDL with the SHIFT function. See “Real
and Imaginary Components” on page 144 for an example.

f m() m
Nδ
-------=

v m pN+() v m()=
Using IDL Interpreting FFT Results

144 Chapter 6: Signal Processing
Displaying FFT Results

Depending on the application, there are many ways to display spectral data, the result
of the (forward) FFT function.

Real and Imaginary Components

The most direct way is to plot the real and imaginary parts of the spectrum as a
function of frequency index or as a function of the corresponding frequencies. The
following figure displays the real and imaginary parts of the spectrum v(m) of the
sampled signal u(k) for frequencies from –(N/2 – 1)/(N * δ) to (N/2)/(N * δ) cycles
per second.

Figure 6-2: Real and Imaginary Parts of the Sample Signal
Displaying FFT Results Using IDL

Chapter 6: Signal Processing 145
Example Code
Type @sigprc03 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc03, in the examples/doc/signal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

IDL’s FFT function always returns a single- or double-precision complex array with
the same dimensions as the input argument. In the case of a forward FFT performed
on a one-dimensional vector of N real values, the result is an N-element vector of
complex quantities, which takes 2N real values to represent. It would seem that there
is twice as much information in the spectral data as there is in the time sequence data.
This is not the case. For a real valued time sequence, half of the information in the
frequency sequence is redundant. Specifically:

; 1 redundant value:
IMAGINARY(v(0)) = 0.0
; 1 redundant value:
IMAGINARY(v(N/2)) = 0.0

and

; for m=1 to N/2-1, N-2 redundant values:
v(N-m) = CONJ(v(m))

so that exactly N of the single- or double-precision values used to represent the
frequency spectrum are redundant. This redundancy is evident in the previous figure.
Notice that the real part of the spectrum is an even function (symmetric about zero),
and the imaginary part of the spectrum is an odd function (anti-symmetric about
zero). This is always the case for the spectra of real-valued time sequences.

Because of the redundancy in such spectra, it is common to display only half of the
spectrum of a real time sequence. That is, only the spectral values with frequency
indices from 0 to N/2, which correspond to frequencies from 0 to 1/(2 * δ), the
Nyquist frequency. This vector of positive frequencies is generated in IDL with the
following command:

; f = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]
F = FINDGEN(N/2+1)/(N*delt)

Magnitude and Phase

It is also common to display the magnitude and phase of the spectrum, which have
physical significance, as opposed to the real and imaginary parts of the spectrum,
which do not have physical significance. Since there is a one-to-one correspondence
between a complex number and its magnitude and phase, no information is lost in the
transformation from a complex spectrum to its magnitude and phase. In IDL, the
Using IDL Displaying FFT Results

RSI_PROCODE/examples/doc/signal/sigprc03

146 Chapter 6: Signal Processing
magnitude is easily determined with the absolute value (ABS) function, and the phase
with the arc-tangent (ATAN) function. By one widely used convention, the
magnitude of the spectrum is plotted in decibels (dB) and the phase is plotted in
degrees, against frequency on a logarithmic scale. The magnitude and phase of our
sample signal are plotted in the same data space, shown in the figure below.

Example Code
Type @sigprc04 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc04, in the examples/doc/signal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Using a logarithmic scale for the frequency axis has the advantage of spreading out
the lower frequencies, while higher frequencies are crowded together. Note that the
spectrum at zero frequency (DC) is lost completely on a semi-logarithmic plot.

The previous figure shows the strong frequency components at 2.8, 6.25, and 11.0
cycles/second as peaks in the magnitude plot, and as discontinuities in the phase plot.
The magnitude peak at 6.25 cycles/second is a narrow spike, as would be expected
from the pure sine wave component at that frequency in the time data sequence. The
peaks at 2.8 and 11.0 cycles/second are more spread out, due to an effect known as
smearing or leakage. This effect is a direct result of the definition of the DFT and is
not due to any inaccuracy in the FFT. Smearing is reduced by increasing the length of

Figure 6-3: Magnitude (Solid LIne) and Phase (Dashed Line)
of the Sample Signal
Displaying FFT Results Using IDL

RSI_PROCODE/examples/doc/signal/sigprc04

Chapter 6: Signal Processing 147
the time sequence, or by choosing a sample size which includes an integral number of
cycles of the frequency component of interest. There are an integral number of cycles
of the 6.25 cycles/second component in the time sequence used for this example,
which is why the peak at that frequency is sharper.

The apparent discontinuity in the phase plot at around 7.45 cycles/second is an
anomaly known as phase wrapping. It is a result of resolving the phase from the real
and imaginary parts of the spectrum with the arctangent function (ATAN), which
returns principal values between –180 and +180 degrees.

Power Spectrum

Finally, for many applications, the phase information is not useful. For these, it is
often customary to plot the power spectrum, which is the square of the magnitude of
the complex spectrum. The resulting plot is shown in the figure below.

Example Code
Type @sigprc05 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc05, in the examples/doc/signal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Figure 6-4: Power Spectrum of the Sample Signal
Using IDL Displaying FFT Results

RSI_PROCODE/examples/doc/signal/sigprc05

148 Chapter 6: Signal Processing
Using Windows

The smearing or leakage effect mentioned previously is a direct consequence of the
definition of the Discrete Fourier Transform and of the fact that a finite time sample
of a signal often does not include an integral number of some of the frequency
components in the signal. The effect of this truncation can be reduced by increasing
the length of the time sequence or by employing a windowing algorithm. IDL’s
HANNING function computes two windows which are widely used in signal
processing: the Hanning window and the Hamming window.

Hanning Window

The Hanning window is defined as:

The resulting vector is multiplied element-by-element with the sampled signal vector
before applying the FFT. For example, the following IDL command computes the
Hanning window and then applies the FFT function:

v_n = FFT(HANNING(N)*U)

The power spectrum of the Hanning windowed signal shows the mitigation of the
truncation effect (see the figure below).

Figure 6-5: Time Series Multiplied by Hanning Window (Left)
and Power Spectrum (Right) with Hanning Window (Solid) and without (Dashed)

w k() 1
2
--- 1

2πk
N

---------- 
 cos– 

 =
Using Windows Using IDL

Chapter 6: Signal Processing 149
Example Code
Type @sigprc06 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc06, in the examples/doc/signal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Hamming Window

The Hamming window is defined as:

The resulting vector is multiplied element-by-element with the sampled signal vector
before applying the FFT. For example, the following IDL command computes the
Hamming window and then applies the FFT function:

v_m = FFT(HANNING(N, ALPHA=0.56)*U)

The power spectrum of the Hamming windowed signal shows the mitigation of the
truncation effect (see the figure below).

Figure 6-6: Power Spectrum with Hamming Window (Solid)
and without (Dashed)

w k() 0.54 0.46
2πk
N

---------- 
 cos–=
Using IDL Using Windows

RSI_PROCODE/examples/doc/signal/sigprc06

150 Chapter 6: Signal Processing
Example Code
Type @sigprc07 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc07, in the examples/doc/signal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.
Using Windows Using IDL

RSI_PROCODE/examples/doc/signal/sigprc07

Chapter 6: Signal Processing 151
Aliasing

Aliasing is a well known phenomenon in sampled data analysis. It occurs when the
signal being sampled has components at frequencies higher than the Nyquist
frequency, which is equal to half the sampling frequency. Aliasing is a consequence
of the fact that after sampling, every periodic signal at a frequency greater than the
Nyquist frequency looks exactly like some other periodic signal at a frequency less
than the Nyquist frequency. For example, suppose we add a 30 cycle per second
periodic component to our sampled data sequence u(t). The power spectrum of the
augmented signal appears below.

Because the frequency of the new component is above the Nyquist frequency of 25
cycles per second (25 = 1/(2*delt)), the power spectrum shows the contribution of the
new component as an alias at 20 cycles per second. To prevent aliasing, frequency
components of a signal above the Nyquist frequency must be removed before
sampling.

Example Code
Type @sigprc08 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc08, in the examples/doc/signal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Figure 6-7: Power Spectrum of the Sample Signal
After Adding a 30 Cycles per Second Component
Using IDL Aliasing

RSI_PROCODE/examples/doc/signal/sigprc08

152 Chapter 6: Signal Processing
FFT Algorithm Details

IDL’s implementation of the fast Fourier transform is based on the Cooley-Tukey
algorithm. The algorithm takes advantage of the fact that the discrete Fourier
transform (DFT) of a discrete time series with an even number of points is equal to
the sum of two DFTs, each half the length of the original. For data lengths that are a
power of 2, this algorithm is used recursively, each iteration subdividing the data into
smaller sets to be transformed. In the IDL FFT, this method is also extended to
powers of 3 and 5. If the number of points in the original time series does not contain
powers of 2, 3, or 5, the original data are still subdivided into data sets with lengths
equal to the prime factors of N. The resulting subdivisions with lengths equal to
prime numbers other than 2, 3, or 5 must be transformed using a slow DFT. The slow
DFT is mathematically equivalent to the FFT, but requires N2 operations instead of
Nlog2(N).

This implementation means that the FFT function is fastest when the number of
points is rich in powers of 2, 3, or 5. The slowest case is when the number of samples
is a large prime number. In this case, a significant improvement in efficiency can be
gained by padding the data set with zeros to increase the number of data points to a
power of 2, 3, or 5.

For real input data of even lengths, the FFT algorithm also takes advantage of the fact
that the real array can be packed into a complex array of half the length, and
unpacked at the end, thus cutting the running time in half.
FFT Algorithm Details Using IDL

Chapter 6: Signal Processing 153
The Hilbert Transform

The Hilbert transform is a time-domain to time-domain transformation which shifts
the phase of a signal by 90 degrees. Positive frequency components are shifted by
+90 degrees, and negative frequency components are shifted by – 90 degrees.
Applying a Hilbert transform to a signal twice in succession shifts the phases of all of
the components by 180 degrees, and so produces the negative of the original signal.
IDL’s HILBERT function accepts both real and complex valued signals as inputs; the
imaginary part of the result is zero for real inputs.

In optics and signal analysis, the Hilbert transform of the time signal r(t) is known as
the quadrature function of r(t), which is used to form a complex function known as
the analytic signal. The analytic signal is defined as:

where j is the square root of –1 and H is the Hilbert function.

The projection of the analytic signal onto the plane defined by the real axis and the
time axis is the original signal. The projection onto the plane defined by the
imaginary axis and the time axis is the Hilbert transform of the original signal.

r̂ t() r t() jH r t()()–=
Using IDL The Hilbert Transform

154 Chapter 6: Signal Processing
The following example plots the complex analytic signal of a periodic time signal
with a slowly varying amplitude.

Example Code
Type @sigprc09 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc09, in the examples/doc/signal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Figure 6-8: Analytic Signal for r(t)
The Hilbert Transform Using IDL

RSI_PROCODE/examples/doc/signal/sigprc09

Chapter 6: Signal Processing 155
The Wavelet Transform

Like the discrete Fourier transform, the discrete wavelet transform (DWT) is a linear
operation that defines a forward and inverse relationship between the time-domain
and the frequency-domain, also called the wavelet domain. This relationship is
expressed through the use of basis functions. In the case of the DFT, trigonometric
sines and cosines of varying angles are used. In the case of the DWT, the basis
functions are more complicated and usually called mother functions or wavelets.
Also like the DFT, the DWT is orthogonal, making many operations computationally
efficient. For example, the inverse wavelet transform, when viewed as a matrix
operator, is simply the transpose of the forward transform.

Most of the usefulness of wavelets relies on the fact that wavelet transforms can
usefully be severely truncated—that is, they can be effectively turned into sparse
expressions. This property is a result of the simultaneous compact representation of
the wavelet basis functions in the time and frequency domains. See “WTN” (IDL
Reference Guide) for an example using the wavelet transform. Also see “Wavelet
Toolkit” (IDL Quick Reference) for a brief description of the available wavelet
routines.
Using IDL The Wavelet Transform

156 Chapter 6: Signal Processing
Convolution

Discrete convolution in digital signal processing is used (among other things) to
smooth sampled signals using a weighted moving average. It also has many
applications outside of signal processing.

IDL has two functions for doing discrete convolution: BLK_CON and CONVOL.
BLK_CON takes advantage of the fact that the convolution of two signals is the
Inverse Fourier transform of the product of the Fourier transforms of the two signals.
BLK_CON is faster than CONVOL, but not as flexible. Among the many
applications for discrete convolution is the implementation of digital filters. See the
example in the “Finite Impulse Response (FIR) Filters” on page 159.
Convolution Using IDL

Chapter 6: Signal Processing 157
Correlation and Covariance

Correlation and covariance (which is correlation with any non-zero mean values of
the signals removed beforehand) are closely related to convolution. They are useful in
analyzing signals with random components. Autocorrelation and autocovariance of
signals are computed with the A_CORRELATE function, and crosscorrelation and
crosscovariance are computed with the C_CORRELATE function. See “Time-Series
Analysis” on page 204 for details.
Using IDL Correlation and Covariance

158 Chapter 6: Signal Processing
Digital Filtering

Digital filters can be implemented on a computer to remove unwanted frequency
components (noise) from a sampled signal. Two broad classes of filters are Finite
Impulse Response (FIR) or Moving Average (MA) filters, and Infinite Impulse
Response (IIR) or AutoRegressive Moving Average (ARMA) filters. Both of these
classes of filters are described in the following sections:

• “Finite Impulse Response (FIR) Filters” on page 159

• “Infinite Impulse Response (IIR) Filters” on page 163

Note
IDL’s IR_FILTER function filters data with an infinite impulse response (IIR) or
finite impulse response (FIR) filter. See “IR_FILTER” (IDL Reference Guide) for
more information.
Digital Filtering Using IDL

Chapter 6: Signal Processing 159
Finite Impulse Response (FIR) Filters

Digital filters that have an impulse response which reaches zero in a finite number of
steps are (appropriately enough) called Finite Impulse Response (FIR) filters. An FIR
filter can be implemented non-recursively by convolving its impulse response (which
is often used to define an FIR filter) with the time data sequence it is filtering. FIR
filters are somewhat simpler than Infinite Impulse Response (IIR) filters, which
contain one or more feedback terms and must be implemented with difference
equations or some other recursive technique.

IDL’s DIGITAL_FILTER function computes the impulse response of an FIR filter
based on Kaiser’s window, which in turn is based on the modified Bessel function.
The Kaiser filter is “nearly optimum in the sense of having the largest energy in the
mainlobe for a given peak sidelobe level” [Jackson, Leland B., Digital Filters and
Signal Processing]. The DIGITAL_FILTER function constructs lowpass, highpass,
bandpass, or bandstop filters. The figure below plots a bandstop filter which
suppresses frequencies between 7 cycles per second and 15 cycles per second for data
sampled every 0.02 seconds.

Example Code
Type @sigprc10 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc10, in the examples/doc/signal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Figure 6-9: Bandstop FIR Filter
Using IDL Finite Impulse Response (FIR) Filters

RSI_PROCODE/examples/doc/signal/sigprc10

160 Chapter 6: Signal Processing
Other FIR filters can be designed based on the Hanning and Hamming windows (see
“Using Windows” on page 148), or any other user-defined window function. The
design procedure is simple:

1. Compute the impulse response of an ideal filter using the inverse FFT.

2. Apply a window to the impulse response. The modified impulse response
defines the FIR filter.

The figure below shows the plot using the same sampling period and frequency
cutoffs as above, and the corresponding ideal filter is constructed in the frequency
domain using the Hanning window.

Example Code
Type @sigprc11 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc11, in the examples/doc/signal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Figure 6-10: Bandstop Filter Using Hanning Window
Finite Impulse Response (FIR) Filters Using IDL

RSI_PROCODE/examples/doc/signal/sigprc11

Chapter 6: Signal Processing 161
FIR Filter Implementation

The simplest FIR (Finite Impulse Response) filter to apply to a signal is the
rectangular or boxcar filter, which is implemented with IDL’s SMOOTH function, or
the closely related MEDIAN function.

Applying other FIR filters to signals is straightforward since the filter is non-
recursive. The filtered signal is simply the convolution of the impulse response of the
filter with the original signal. The impulse response of the filter is computed with the
DIGITAL_FILTER function or by the procedure in the previous section.

IDL’s BLK_CON function provides a simple and efficient way to convolve a filter
with a signal. Using u(k) from the previous example and the bandstop filter created
above creates the plot shown in the figure below.

Example Code
Type @sigprc12 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc12, in the examples/doc/signal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Figure 6-11: Digital Signal Before and After Filtering
Using IDL FIR Filter Implementation

RSI_PROCODE/examples/doc/signal/sigprc12

162 Chapter 6: Signal Processing
The frequency response of the filtered signal shows that the frequency component at
11.0 cycles / second has been filtered out, while the frequency components at 2.8 and
6.25 cycles / second, as well as the DC component, have been passed by the filter.
FIR Filter Implementation Using IDL

Chapter 6: Signal Processing 163
Infinite Impulse Response (IIR) Filters

Digital filters which must be implemented recursively are called Infinite Impulse
Response (IIR) filters because, theoretically, the response of these filters to an
impulse never settles to zero. In practice, the impulse response of many IIR filters
approaches zero asymptotically, and may actually reach zero in a finite number of
samples due to the finite word length of digital computers.

One method of designing digital filters starts with the Laplace transform
representation of an analog filter with the required frequency response. For example,
the Laplace transform representation (or continuous transfer function) of a second
order notch filter with the notch at f0 cycles per second is:

where s is the Laplace transform variable. Then the continuous transfer function is
converted to the equivalent discrete transfer function using one of several techniques.
One of these is the bilinear (Tustin) transform, where

(2/δ)*(z-1)/(z+1)

is substituted for the Laplace transform variable s. In this expression, z is the unit
delay operator.

For the notch filter above, the bilinear transformation yields the following discrete
transfer function:

where c = (1 – π*f0*δ) / (1 + π*f0*δ).

Enter the following IDL statements to compute the coefficients of the discrete
transfer function:

delt = 0.02
; Notch frequency in cycles per second:
f0 = 6.5
c = (1.0-!PI*F0*delt) / (1.0+!PI*F0*delt)

y s()
u s()

f0

2π
------ s

2
+ 

 

1 2s
f0

2π
------ 
  s

2
+ + 

 
--=

y z()
u z()

1 c
2

+
2

-------------- 2cz– 1 c
2

+
2

--------------z
2

+ 
 

c
2

2cz– z
2

+()
---=
Using IDL Infinite Impulse Response (IIR) Filters

164 Chapter 6: Signal Processing
b = [(1+c^2)/2, -2*c, (1+c^2)/2]
a = [c^2, -2*c, 1]

Example Code
Alternately, type @sigprc13 at the IDL prompt to run the sigprc13 batch file
and create the plot variables. See “Running the Example Code” on page 138 if IDL
does not find the batch file.

IIR Filter Implementation

Since an Infinite Impulse Response filter contains feedback loops, its output at every
time step depends on previous outputs, and the filter must be implemented
recursively with difference equations. The discrete transfer function

is implemented with the difference equation

An IIR filter is stable if the absolute values of the roots of the denominator of the
discrete transfer function a(z) are all less than one. The impulse response of a stable
IIR filter approaches zero as the time index k approaches infinity. The frequency
response function of a stable IIR filter is the Discrete Fourier Transform of the filter’s
impulse response.

y z()
b0 b1z … bnbz

nb
+ + +

a0 a1z … anaz
nb

+ + +

 
 
 

u z()=

y k()
b0u k nb–() b1u k nb– 1+() … bnbu k() a0y k na–()– a1y k na– 1+() …– ana 1– y k 1–()––+ + +()

ana
--=
Infinite Impulse Response (IIR) Filters Using IDL

RSI_PROCODE/examples/doc/signal/sigprc13

Chapter 6: Signal Processing 165
The figure below plots the impulse and frequency response functions of the notch
filter defined above using recursive difference equations.

Example Code
Type @sigprc14 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc14, in the examples/doc/signal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Note
Because the impulse response approaches zero, IDL may warn of floating-point
underflow errors. This is an expected consequence of the digital implementation of
an Infinite Impulse Response filter.

The same code could be used to filter any input sequence u(k).

Figure 6-12: Impulse and Frequency Response of a Notch Filter
Using IDL Infinite Impulse Response (IIR) Filters

RSI_PROCODE/examples/doc/signal/sigprc14

166 Chapter 6: Signal Processing
References

Bracewell, Ronald N., The Fourier Transform and Its Applications, New York:
McGraw-Hill, 1978. ISBN 0-07-007013-X

Chen, Chi-Tsong, One-Dimensional Digital Signal Processing, New York: Marcel
Dekker, Inc., 1979. ISBN 0-8247-6877-9

Jackson, Leland B., Digital Filters and Signal Processing, Boston: Kluwer Academic
Publishers, 1986. ISBN 0-89838-174-6

Mayeda, Wataru, Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1993. ISBN 0-13-211301-5

Morgera, Salvatore D. and Krishna, Hari, Digital Signal Processing: Applications to
Communications and Algebraic Coding Theories, Boston: Academic Press, 1989.
ISBN 0-12-506995-2

Oppenheim, Alan V. and Schafer, Ronald W., Discrete-time signal processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN 0-13-216292-X

Peled, Abraham and Liu, Bede, Digital Signal Processing, New York: John Wiley &
Sons, Inc., 1976. ISBN 0-471-01941-0

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Proakis, John G. and Manolakis, Dimitris G., Digital Signal Processing: Principles,
Algorithms, and Applications, New York: Macmillan Publishing Company, 1992.
ISBN 0-02-396815-X

Rabiner, Lawrence R. and Gold, Bernard, Theory and application of digital signal
processing, Englewood Cliffs, NJ: Prentice-Hall, 1975. ISBN 0-139-14101-4

Strang, Gilbert and Nguyen, Truong, Wavelets and Filter Banks, Wellesley, MA:
Wellesley-Cambridge Press, 1996. ISBN 0-961-40887-1
References Using IDL

Chapter 7

Mathematics
The following topics are covered in this chapter:
Overview of Mathematics in IDL 168
IDL’s Numerical Recipes Functions 169
Correlation Analysis 170
Curve and Surface Fitting 174
Eigenvalues and Eigenvectors 176
Gridding and Interpolation 182
Hypothesis Testing 183
Integration . 185

Linear Systems . 190
Nonlinear Equations 197
Optimization . 199
Sparse Arrays . 201
Time-Series Analysis 204
Multivariate Analysis 207
References . 213
Using IDL 167

168 Chapter 7: Mathematics
Overview of Mathematics in IDL

This chapter documentsIDL’s mathematics and statistics procedures and functions.
These include Numerical Recipes™ algorithms published in Numerical Recipes in C:
The Art of Scientific Computing (Second Edition). For a list of IDL mathematical
routines, see the functional category of “Mathematics” (IDL Quick Reference). There
you will find a brief introduction to the routines. Detailed information is available in
the IDL Reference Guide. This chapter also includes introductory discussions of the
following topics and an overview of the way IDL handles the particular problems
involved:

• “Correlation Analysis” on page 170

• “Curve and Surface Fitting” on page 174

• “Eigenvalues and Eigenvectors” on page 176

• “Gridding and Interpolation” on page 182

• “Hypothesis Testing” on page 183

• “Integration” on page 185

• “Linear Systems” on page 190

• “Nonlinear Equations” on page 197

• “Optimization” on page 199

• “Sparse Arrays” on page 201

• “Time-Series Analysis” on page 204

• “Multivariate Analysis” on page 207

References are provided at the end of each section for a more detailed description and
understanding of the topic.

ITT Visual Information Solutions is extremely interested in the accuracy of its
algorithms. Bug reports, documentation errors and suggestions for mathematics and
statistics enhancements can be sent to ITT Visual Information Solutions via:

Internet: support@ittvis.com

Fax: (303) 786-9909

Note
Floating-point numbers are inherently inaccurate. See “Accuracy and Floating
Point Operations” on page 274 for details on roundoff and truncation errors.
Overview of Mathematics in IDL Using IDL

mailto:support@ittvis.com

Chapter 7: Mathematics 169
IDL’s Numerical Recipes Functions

IDL includes a number of routines based on algorithms published in Numerical
Recipes in C: The Art of Scientific Computing (Second Edition). Routines derived
from Numerical Recipes are noted as such in the IDL Reference Guide and in the IDL
Online Help.

In IDL versions up to and including IDL version 3.6, mathematics functions based on
Numerical Recipes algorithms required that input be in column-major format. This is
no longer the case. Routines based on Numerical Recipes algorithms have been
reworked and renamed, so that all IDL functions now expect input arrays to be in
row-major format (composed of row vectors).

Note
To maintain compatibility with IDL programs based on earlier versions, the old
routines (using the older input convention) are still available. No alterations need be
made to existing code as a result of this change in IDL. We recommend that all new
IDL programs take advantage of the new names and input convention.
Using IDL IDL’s Numerical Recipes Functions

170 Chapter 7: Mathematics
Correlation Analysis

Given two n-element sample populations, X and Y, it is possible to quantify the
degree of fit to a linear model using the correlation coefficient. The correlation
coefficient, r, is a scalar quantity in the interval [-1.0, 1.0], and is defined as the ratio
of the covariance of the sample populations to the product of their standard
deviations.

or

The correlation coefficient is a direct measure of how well two sample populations
vary jointly. A value of r = +1 or r = –1 indicates a perfect fit to a positive or negative
linear model, respectively. A value of r close to +1 or –1 indicates a high degree of
correlation and a good fit to a linear model. A value of r close to 0 indicates a poor fit
to a linear model.

Correlation Example

The following sample populations represent a perfect positive linear correlation.

X = [-8.1, 1.0, -14.3, 4.2, -10.1, 4.3, 6.3, 5.0, 15.1, -2.2]
Y = [-9.8, -0.7, -16.0, 2.5, -11.8, 2.6, 4.6, 3.3, 13.4, -3.9]
;Compute the correlation coefficient of X and Y.
PRINT, CORRELATE(X, Y)

r covariance of X and Y
standard deviation of X() standard deviation of Y()

---=

r

1
N 1–
------------- xi

xk

N

k 0=

N 1–

∑–
 
 
 
 

yi
yk

N

k 0=

N 1–

∑–
 
 
 
 

i 0=

N 1–

∑

1
N 1–
------------- xi

xk

N

k 0=

N 1–

∑–
 
 
 
  2

i 0=

N 1–

∑ 1
N 1–
------------- yi

yk

N

k 0=

N 1–

∑–
 
 
 
  2

i 0=

N 1–

∑

--=
Correlation Analysis Using IDL

Chapter 7: Mathematics 171
IDL prints:

1.00000

The following sample populations represent a high negative linear correlation.

X = [1.8, -2.7, 0.7, -0.5, -1.3, -0.9, 0.6, -1.5, 2.5, 3.0]
Y = [-4.7, 9.8, -3.7, 2.8, 5.1, 3.9, -3.6, 5.8, -7.3, -7.4]
;Compute the correlation coefficient of X and Y:
PRINT, CORRELATE(X, Y)

IDL prints:

-0.979907

The following sample populations represent a poor linear correlation.

X = [-1.8, 0.1, -0.1, 1.9, 0.5, 1.1, 1.9, 0.3, -0.2, -1.0]
Y = [1.5, -1.0, -0.6, 1.1, 0.7, -0.7, 1.1, -0.1, 0.6, -0.1]
;Compute the correlation coefficient of X and Y:
PRINT, CORRELATE(X, Y)

IDL prints:

0.0322859

Notes on Interpreting the Correlation Coefficient

When interpreting the value of the correlation coefficient, it is important to remember
the following two caveats:

1. Although a high degree of correlation (a value close to +1 or –1) indicates a
good mathematical fit to a linear model, its applied interpretation may be
completely nonsensical. For example, there may be a high degree of
correlation between the number of scientists using IDL to study atmospheric
phenomena and the consumption of alcohol in Russia, but the two events are
clearly unrelated.

2. Although a correlation coefficient close to 0 indicates a poor fit to a linear
model, it does not mean that there is no correlation between the two sample
populations. It is possible that the relationship between X and Y is accurately
described by a nonlinear model. See “Curve and Surface Fitting” on page 174
for further details on fitting data to linear and nonlinear models.

Multiple Linear Models

The fundamental principles of correlation that apply to the linear model of two
sample populations may be extended to the multiple-linear model. The degree of
relationship between three or more sample populations may be quantified using the
Using IDL Correlation Analysis

172 Chapter 7: Mathematics
multiple correlation coefficient. The degree of relationship between two sample
populations when the effects of all other sample populations are removed may be
quantified using the partial correlation coefficient. Both of these coefficients are
scalar quantities in the interval [0.0, 1.0]. A value of +1 indicates a perfect linear
relationship between populations. A value close to +1 indicates a high degree of
linear relationship between populations; whereas a value close to 0 indicates a poor
linear relationship between populations. (Although a value of 0 indicates no linear
relationship between populations, remember that there may be a nonlinear
relationship.)

Partial Correlation Example

Define the independent (X) and dependent (Y) data.

X = [[0.477121, 2.0, 13.0], $
[0.477121, 5.0, 6.0], $
[0.301030, 5.0, 9.0], $
[0.000000, 7.0, 5.5], $
[0.602060, 3.0, 7.0], $
[0.698970, 2.0, 9.5], $
[0.301030, 2.0, 17.0], $
[0.477121, 5.0, 12.5], $
[0.698970, 2.0, 13.5], $
[0.000000, 3.0, 12.5], $
[0.602060, 4.0, 13.0], $
[0.301030, 6.0, 7.5], $
[0.301030, 2.0, 7.5], $
[0.698970, 3.0, 12.0], $
[0.000000, 4.0, 14.0], $
[0.698970, 6.0, 11.5], $
[0.301030, 2.0, 15.0], $
[0.602060, 6.0, 8.5], $
[0.477121, 7.0, 14.5], $
[0.000000, 5.0, 9.5]]

Y = [97.682, 98.424, 101.435, 102.266, 97.067, 97.397, $
99.481, 99.613, 96.901, 100.152, 98.797, 100.796, $
98.750, 97.991, 100.007, 98.615, 100.225, 98.388, $
98.937, 100.617]

Compute the multiple correlation of Y on the first column of X. The result should be
0.798816.

PRINT, M_CORRELATE(X[0,*], Y)

IDL prints:

0.798816
Correlation Analysis Using IDL

Chapter 7: Mathematics 173
Compute the multiple correlation of Y on the first two columns of X. The result
should be 0.875872.

PRINT, M_CORRELATE(X[0:1,*], Y)

IDL prints:

0.875872

Compute the multiple correlation of Y on all columns of X. The result should be
0.877197.

PRINT, M_CORRELATE(X, Y)

IDL prints:

0.877197
;Define the five sample populations.
X0 = [30, 26, 28, 33, 35, 29]
X1 = [0.29, 0.33, 0.34, 0.30, 0.30, 0.35]
X2 = [65, 60, 65, 70, 70, 60]
X3 = [2700, 2850, 2800, 3100, 2750, 3050]
Y = [37, 33, 32, 37, 36, 33]

Compute the partial correlation of X1 and Y with the effects of X0, X2 and X3
removed.

PRINT, P_CORRELATE(X1, Y, REFORM([X0,X2,X3], 3, N_ELEMENTS(X1)))

IDL prints:

0.996017

Routines for Computing Correlations

See “Correlation Analysis” (in the functional category “Mathematics” (IDL Quick
Reference)) for a brief description of IDL routines for computing correlations.
Detailed information is available in the IDL Reference Guide.
Using IDL Correlation Analysis

174 Chapter 7: Mathematics
Curve and Surface Fitting

The problem of curve fitting may be stated as follows:

Given a tabulated set of data values {xi, yi} and the general form of a mathematical
model (a function f(x) with unspecified parameters), determine the parameters of the
model that minimize an error criterion. The problem of surface fitting involves
tabulated data of the form {xi, yi, zi} and a function f(x, y) of two spatial dimensions.

For example, we can use the CURVEFIT routine to determine the parameters A and B
of a user-supplied function f(x), such that the sums of the squares of the residuals
between the tabulated data {xi, yi} and function are minimized. We will use the
following function and data:

f (x) = a (1 –e-bx)

xi = [0.25, 0.75, 1.25, 1.75, 2.25]

yi = [0.28, 0.57, 0.68, 0.74, 0.79]

First we must provide a procedure written in IDL to evaluate the function, f, and its
partial derivatives with respect to the parameters a0 and a1:

PRO funct, X, A, F, PDER
F = A[0] * (1.0 - EXP(-A[1] * X))
; If the function is called with four parameters,
; calculate the partial derivatives:
IF N_PARAMS() GE 4 THEN BEGIN

; PDER’s column dimension is equal to the number of
; elements in xi and its row dimension is equal to
; the number of parameters in the function F:
pder = FLTARR(N_ELEMENTS(X), 2)
; Compute the partial derivatives with respect to
; a0 and place in the first row of PDER:
pder[*, 0] = 1.0 - EXP(-A[1] * X)
; Compute the partial derivatives with respect to
; a1 and place in the second row of PDER:
pder[*, 1] = A[0] * x * EXP(-A[1] * X)

ENDIF
END

Note
The function will not calculate the partial derivatives unless it is called with four
parameters. This allows the calling routine (in this case CURVEFIT) to avoid the
extra computation in cases when the partial derivatives are not needed.

Next, we can use the following IDL commands to find the function’s parameters:
Curve and Surface Fitting Using IDL

Chapter 7: Mathematics 175
;Define the vectors of tabulated:
X = [0.25, 0.75, 1.25, 1.75, 2.25]
;data values:
Y = [0.28, 0.57, 0.68, 0.74, 0.79]
;Define a vector of weights:
W = 1.0 / Y
;Provide an initial guess of the function’s parameters:
A = [1.0, 1.0]
;Compute the parameters a0 and a1:
yfit = CURVEFIT(X, Y, W, A, SIGMA_A, FUNCTION_NAME = 'funct')
;Print the parameters, which are returned in A:
PRINT, A

IDL prints:

0.787386 1.71602

Thus the nonlinear function that best fits the data is:

f (x) = 0.787386 (1 -–e-1.71602x)

Routines for Curve and Surface Fitting

See “Curve and Surface Fitting” (in the functional category “Mathematics” (IDL
Quick Reference)) for a brief description of IDL routines for curve and surface fitting.
Detailed information is available in the IDL Reference Guide.
Using IDL Curve and Surface Fitting

176 Chapter 7: Mathematics
Eigenvalues and Eigenvectors

Consider a system of equations that satisfies the array-vector relationship Ax = λx,
where A is an n-by-n array, x is an n-element vector, and λ is a scalar. A scalar λ and
nonzero vector x that simultaneously satisfy this relationship are referred to as an
eigenvalue and an eigenvector of the array A, respectively. The set of all eigenvectors
of the array A is then referred to as the eigenspace of A. Ideally, the eigenspace will
consist of n linearly-independent eigenvectors, although this is not always the case.

IDL computes the eigenvalues and eigenvectors of a real symmetric n-by-n array
using Householder transformations and the QL algorithm with implicit shifts. The
eigenvalues of a real, n-by-n nonsymmetric array are computed from the upper
Hessenberg form of the array using the QR algorithm. Eigenvectors are computed
using inverse subspace iteration.

Although it is not practical for numerical computation, the problem of computing
eigenvalues and eigenvectors can also be defined in terms of the determinant
function. The eigenvalues of an n-by-n array A are the roots of the polynomial
defined by det(A – λI), where I is the identity matrix (an array with 1s on the main
diagonal and 0s elsewhere) with the same dimensions as A. By expressing
eigenvalues as the roots of a polynomial, we see that they can be either real or
complex. If an eigenvalue is complex, its corresponding eigenvectors are also
complex.

The following examples demonstrate how to use IDL to compute the eigenvalues and
eigenvectors of real, symmetric and nonsymmetric n-by-n arrays. Note that it is
possible to check the accuracy of the computed eigenvalues and eigenvectors by
algebraically manipulating the definition given above to read Ax – λx = 0; in this case
0 denotes an n-element vector, all elements of which are zero.

Symmetric Array with n Distinct Real Eigenvalues

To compute eigenvalues and eigenvectors of a real, symmetric, n-by-n array, begin
with a symmetric array A.

Note
The eigenvalues and eigenvectors of a real, symmetric n-by-n array are real
numbers.

A = [[3.0, 1.0, -4.0], $
[1.0, 3.0, -4.0], $
[-4.0, -4.0, 8.0]]
Eigenvalues and Eigenvectors Using IDL

Chapter 7: Mathematics 177
; Compute the tridiagonal form of A:
TRIRED, A, D, E
; Compute the eigenvalues (returned in vector D) and
; the eigenvectors (returned in the rows of the array A):
TRIQL, D, E, A
; Print eigenvalues:
PRINT, D

IDL prints:

2.00000 4.76837e-07 12.0000

The exact values are: [2.0, 0.0, 12.0].

;Print the eigenvectors, which are returned as row vectors in A:
PRINT, A

IDL prints:

0.707107 -0.707107 0.00000
-0.577350 -0.577350 -0.577350
-0.408248 -0.408248 0.816497

The exact eigenvectors are:

Nonsymmetric Array with n Distinct Real and
Complex Eigenvalues

To compute the eigenvalues and eigenvectors of a real, nonsymmetric n-by-n array,
begin with an array A. In this example, there are n distinct eigenvalues and n linearly-
independent eigenvectors.

A = [[1.0, 0.0, 2.0], $
[0.0, 1.0, -1.0], $
[-1.0, 1.0, 1.0]]

; Reduce to upper Hessenberg format:
hes = ELMHES(A)
; Compute the eigenvalues:
evals = HQR(hes)
; Print the eigenvalues:
PRINT, evals

IDL prints:

1 2⁄ 1– 2⁄ 0

1– 3⁄ 1– 3⁄ 1– 3⁄

1– 6⁄ 1– 6⁄ 2 6⁄
Using IDL Eigenvalues and Eigenvectors

178 Chapter 7: Mathematics
(1.00000, -1.73205)(1.00000, 1.73205)
(1.00000, 0.00000)

Note
The three eigenvalues are distinct, and that two are complex. Note also that
complex eigenvalues of an n-by-n real, nonsymmetric array always occur in
complex conjugate pairs.

; Initialize a variable to contain the residual:
residual = 1
; Compute the eigenvectors and the residual for each
; eigenvalue/eigenvector pair, using double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE, RESIDUAL=residual)
; Print the eigenvectors, which are returned as
; row vectors in evecs:
PRINT, evecs[*,0]

IDL prints:

(0.68168704, 0.18789033)(-0.34084352, -0.093945164)
(0.16271780, -0.59035830)
PRINT, evecs[*,1]

IDL prints:

(0.18789033, 0.68168704)(-0.093945164, -0.34084352)
(-0.59035830, 0.16271780)
PRINT, evecs[*,2]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)
(-2.3570226e-21, 0.0000000)

We can check the accuracy of these results using the relation Ax – λx = 0. The array
contained in the variable specified by the RESIDUAL keyword contains the result of
this computation.

PRINT, residual

IDL prints:

(-1.2021898e-07, 1.1893681e-07)(6.0109490e-08, -5.9468404e-08)
(1.0300230e-07, 1.0411269e-07)
(1.1893681e-07, -1.2021898e-07)(-5.9468404e-08, 6.0109490e-08)
(1.0411269e-07, 1.0300230e-07)
(0.0000000, 0.0000000)(0.0000000, 0.0000000)

The results are all zero to within machine precision.
Eigenvalues and Eigenvectors Using IDL

Chapter 7: Mathematics 179
Repeated Eigenvalues

To compute the eigenvalues and eigenvectors of a real, nonsymmetric n-by-n array,
begin with an array A. In this example, there are fewer than n distinct eigenvalues, but
n independent eigenvectors are available.

A = [[8.0, 0.0, 3.0], $
[2.0, 2.0, 1.0], $
[2.0, 0.0, 3.0]]

; Reduce A to upper Hessenberg form and compute the eigenvalues.
; Note that both operations can be combined into a single command.
evals = HQR(ELMHES(A))
; Print the eigenvalues:
PRINT, evals

IDL prints:

(9.00000, 0.00000) (2.00000, 0.00000)
(2.00000, 0.00000)

Note
The three eigenvalues are real, but only two are distinct.

; Initialize a variable to contain the residual:
residual = 1
; Compute the eigenvectors and residual, using
; double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE, RESIDUAL=residual)
; Print the eigenvectors:
PRINT, evecs[*,0]

IDL prints:

(0.90453403, 0.0000000)(0.30151134, 0.0000000)
(0.30151134, 0.0000000)
PRINT, evecs[*,1]

IDL prints:

(-0.27907279, 0.0000000)(-0.78140380, 0.0000000)
(0.55814557, 0.0000000)
PRINT, evecs[*,2]

IDL prints:

(-0.27907279, 0.0000000)(-0.78140380, 0.0000000)
(0.55814557, 0.0000000)
Using IDL Eigenvalues and Eigenvectors

180 Chapter 7: Mathematics
We can compute an independent eigenvector for the repeated eigenvalue (2.0) by
perturbing it slightly, allowing the algorithm EIGENVEC to recognize the eigenvalue
as distinct and to compute a linearly-independent eigenvector.

newresidual = 1
evecs[*,2] = EIGENVEC(A, evals[2]+1.0e-6, /DOUBLE, $

RESIDUAL = newresidual)
PRINT, evecs[*,2]

IDL prints:

(-0.33333333, 0.0000000)(0.66666667, 0.0000000)
(0.66666667, 0.0000000)

Once again, we can check the accuracy of these results by checking that each element
in the residuals —for both the original eigenvectors and the perturbed eigenvector—
is zero to within machine precision.

The So-called Defective Case

In the so-called defective case, there are fewer than n distinct eigenvalues and fewer
than n linearly-independent eigenvectors. Begin with an array A:

A = [[2.0, -1.0], $
[1.0, 0.0]]

; Reduce A to upper Hessenberg form and compute the eigenvalues.
; Note that both operations can be combined into a single command.
evals = HQR(ELMHES(A))
; Print the eigenvalues:
PRINT, evals

IDL prints:

(1.00000, 0.00000)(1.00000, 0.00000)

Note
The two eigenvalues are real, but not distinct.

; Compute the eigenvectors, using double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE)
; Print the eigenvectors:
PRINT, evecs[*,0]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)
PRINT, evecs[*,1]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)
Eigenvalues and Eigenvectors Using IDL

Chapter 7: Mathematics 181
We attempt to compute an independent eigenvector using the method described in the
previous example:

evecs[*,1] = EIGENVEC(A, evals[1]+1.0e-6, /DOUBLE)
PRINT, evecs[1,*]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)

In this example, n independent eigenvectors do not exist. This situation is termed the
defective case and cannot be resolved analytically or numerically.

Routines for Computing Eigenvalues and
Eigenvectors

See “Eigenvalues and Eigenvectors” (in the functional category “Mathematics” (IDL
Quick Reference)) for a brief description of IDL routines for computing eigenvalues
and eigenvectors. Detailed information is available in the IDL Reference Guide.
Using IDL Eigenvalues and Eigenvectors

182 Chapter 7: Mathematics
Gridding and Interpolation

Given a set of tabulated data in n-dimensions with each dimension being described as
follows:

1. {xi, yi = f (xi)},

2. {xi, yi, zi = f (xi, yi)}, or

3. {xi, yi, zi, wi = f (xi, yi, zi)}

it is possible to calculate intermediate values of the function f using interpolation.
IDL includes a variety of routines to solve this type of problem.

The determination of intermediate values is based upon an interpolating function that
establishes a relationship between the tabulated data points. Different algorithms
employ different types of interpolating functions suitable for different types of data
trends.

Unlike curve-fitting algorithms, interpolation requires that the interpolating function
be an exact fit at each of the tabulated data points. Interpolation does not use any type
of error analysis and its accuracy depends upon the behavior of the interpolating
function between successive data points. Polynomial, spline, and nearest-neighbor
are among the interpolation methods used in IDL. Kriging is another interpolation
method, one which does not require an exact fit at each tabulated data point. Kriging
applies a weighting to each of the tabulated data points based on spatial variance and
trends among the points. Weights are computed by combining calculations of spatial
continuity and anistropy within either an exponential or spherical semivariogram
model.

Gridding, a topic closely related to interpolation, is the problem of creating
uniformly-spaced planar data from irregularly-spaced data. IDL handles this type of
problem by constructing a Delaunay triangulation. This method is highly accurate
and has great utility since many of IDL’s graphics routines require uniformly-gridded
data. Extrapolation, the estimation of values outside the range of tabulated data, is
also possible using this method.

Routines for Gridding and Interpolation

See “Gridding and Interpolation” (in the functional category “Mathematics” (IDL
Quick Reference)) for a brief description of IDL routines for gridding and
interpolation. Detailed information is available in the IDL Reference Guide.
Gridding and Interpolation Using IDL

Chapter 7: Mathematics 183
Hypothesis Testing

Hypothesis testing tests one or more sample populations for a statistical characteristic
or interaction. The results of the testing process are generally used to formulate
conclusions about the probability distributions of the sample populations.

Hypothesis testing involves four steps:

• The formulation of a hypothesis.

• The selection and collection of sample population data.

• The application of an appropriate test.

• The interpretation of the test results.

For example, suppose the FDA wishes to establish the effectiveness of a new drug in
the treatment of a certain ailment. Researchers test the assumption that the drug is
effective by administering it to a sample population and collecting data on the
patients’ health. Once the data are collected, an appropriate statistical test is selected
and the results analyzed. If the interpretation of the test results suggests a statistically
significant improvement in the patients’ condition, the researchers conclude that the
drug will be effective in general.

It is important to remember that a valid or successful test does not prove the proposed
hypothesis. Only by disproving competing or opposing hypotheses can a given
assumption’s validity be statistically established.

One- and Two-sided Tests

In the above example, only the hypothesis that the drug would significantly improve
the condition of the patients receiving it was tested. This type of test is called one-
sided or one-tailed, because it is concerned with deviation in one direction from the
norm (in this case, improvement of the patients’ condition). A hypothesis designed to
test the improvement or ill-effect of the trial drug on the patient group would be
called two-sided or two-tailed.

Parametric and Nonparametric Tests

Tests of hypothesis are usually classified into parametric and nonparametric methods.
Parametric methods make assumptions about the underlying distribution from which
sample populations are selected. Nonparametric methods make no assumptions about
a sample population’s distribution and are often based upon magnitude-based
ranking, rather than actual measurement data. In many cases it is possible to replace a
Using IDL Hypothesis Testing

184 Chapter 7: Mathematics
parametric test with a corresponding nonparametric test without significantly
affecting the conclusion.

The following example demonstrates this by replacing the parametric T-means test
with the nonparametric Wilcoxon Rank-Sum test to test the hypothesis that two
sample populations have significantly different means of distribution.

Define two sample populations.

X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $
305, 270, 260, 251, 275, 288, 242, 304, 267]

Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $
271, 214, 216, 175, 192, 208, 150, 281, 196]

Compute the T-statistic and its significance, using IDL’s TM_TEST function,
assuming that X and Y belong to Normal populations with the same variance.

PRINT, TM_TEST(X, Y)

IDL prints:

5.52839 2.52455e-06

The small value of the significance (2.52455e-06) indicates that X and Y have
significantly different means.

Compute the Wilcoxon Rank-Sum Test, using IDL’s RS_TEST function, to test the
hypothesis that X and Y have the same mean of distribution.

PRINT, RS_TEST(X, Y)

IDL prints:

-4.26039 1.01924e-05

The small value of the computed probability (1.01924e-05) requires the rejection of
the proposed hypothesis and the conclusion that X and Y have significantly different
means of distribution.

Each of IDL’s 11 parametric and nonparametric hypothesis testing functions is based
upon a well-known and widely-accepted statistical test. Each of these functions
returns a two-element vector containing the statistic on which the test is based and its
significance. Examples are provided and demonstrate how the result is interpreted.

Routines for Hypothesis Testing

See “Hypothesis Testing” (in the functional category “Mathematics” (IDL Quick
Reference)) for a brief description of IDL routines for hypothesis testing. More
detailed information is available in the IDL Reference Guide.
Hypothesis Testing Using IDL

Chapter 7: Mathematics 185
Integration

Numerical methods of approximating integrals are important in many areas of pure
and applied science. For a function of a single variable, f (x), it is often the case that
the antiderivative F = ∫ f (x) dx is unavailable using standard techniques such as
trigonometric substitutions and integration-by-parts formulas. These standard
techniques become increasingly unusable when integrating multivariate functions,
f (x, y) and f (x, y, z). Numerically approximating the integral operator provides the
only method of solution when the antiderivative is not explicitly available. IDL offers
the following numerical methods for the integration of uni-, bi-, and trivariate
functions:

• Integration of a univariate function over an open or closed interval is possible
using one of several routines based on well known methods developed by
Romberg and Simpson.

• The problem of integrating over a tabulated set of data { xi, yi = f (xi) } can be
solved using a highly accurate 5-point Newton-Cotes formula. This method is
more accurate and efficient than using interpolation or curve-fitting to find an
approximate function and then integrating.

• Integration of a bivariate function over a regular or irregular region in the x-y
plane is possible using an iterated Gaussian Quadrature routine.

• Integration of a trivariate function over a regular or irregular region in x-y-z
space is possible using an iterated Gaussian Quadrature routine.

I f x() xd
x a=

x b=

∫=

I f x y,() yd xd
y p x()=

y q x()=

∫
x a=

x b=

∫=

I f x y z, ,() zd yd xd
z u x y,()=

z v x y,()=

∫
y p x()=

y q x()=

∫
x a=

x b=

∫=
Using IDL Integration

186 Chapter 7: Mathematics
Note
IDL’s iterated Gaussian Quadrature routines, INT_2D and INT_3D, follow the dy-
dx and dz-dy-dx order of evaluation, respectively. Problems not conforming to this
standard must be changed as described in the following example.

A Bivariate Function

Suppose that we wish to evaluate

The order of integration is initially described as a dx-dy region in the x-y plane. Using
the diagram below, you can easily change the integration order to dy-dx.

The integral is now of the form

The new expression can be evaluated using the INT_2D function.

To use INT_2D, we must specify the function to be integrated and expressions for the
upper and lower limits of integration. First, we write an IDL function for the
integrand, the function f (x, y):

FUNCTION fxy, X, Y
RETURN, Y * COS(X^5)

END

Figure 7-1: The Bivariate Function

y x
5()cos⋅ xd yd

x y=

x 2=

∫
y 0=

y 4=

∫

Y

X

x y=

x 2=

2 4,()

dy
dx

y x
5()cos⋅ yd xd

y 0=

y x2=

∫
x 0=

x 2=

∫

Integration Using IDL

Chapter 7: Mathematics 187
Next, we write a function for the limits of integration of the inner integral. Note that
the limits of the outer integral are specified numerically, in vector form, while the
limits of the inner integral must be specified as an IDL function even if they are
constants. In this case, the function is:

FUNCTION pq_limits, X
RETURN, [0.0, X^2]

END

Now we can use the following IDL commands to print the value of the integral
expressed above. First, we define a variable AB_LIMITS containing the vector of
lower and upper limits of the outer integral. Next, we call INT_2D. The first
argument is the name of the IDL function that represents the integrand (FXY, in this
case). The second argument is the name of the variable containing the vector of limits
for the outer integral (AB_LIMITS, in this case). The third argument is the name of
the IDL function defining the lower and upper limits of the inside integral
(PQ_LIMITS, in this case). The fourth argument (48) refers to the number of
transformation points used in the computation. As a general rule, the number of
transformation points used with iterated Gaussian Quadrature should increase as the
integrand becomes more oscillatory or the region of integration becomes more
irregular.

ab_limits = [0.0, 2.0]
PRINT, INT_2D('fxy', ab_limits, 'pq_limits', 48)

IDL prints:

0.055142668

This is the exact solution to 9 decimal accuracy.

A Trivariate Function

Suppose that we wish to evaluate

This integral can be evaluated using the INT_3D function. As with INT_2D, we must
specify the function to be integrated and expressions for the upper and lower limits of
integration. Note that in this case IDL functions must be provided for the upper and
lower integration limits of both inside integrals.

For the above integral, the required functions are the integrand f (x, y, z):

z x
2

y
2

z
2

+ +()
3 2⁄

zd yd xd
z 0=

z 4 x2– y2–=

∫
y 4 x2––=

y 4 x2–=

∫
x 2–=

x 2=

∫

Using IDL Integration

188 Chapter 7: Mathematics
FUNCTION fxyz, X, Y, Z
RETURN, Z * (X^2 + Y^2 + Z^2)^1.5

END

The limits of integration of the first inside integral:

FUNCTION pq_limits, X
RETURN, [-SQRT(4.0 - X^2), SQRT(4.0 -X^2)]

END

The limits of integration of the second inside integral:

FUNCTION uv_limits, X, Y
RETURN, [0.0, SQRT(4.0 - X^2 - Y^2)]

END

We can use the following IDL commands to determine the value of the above integral
using 6, 10, 20 and 48 transformation points.

For 6 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 6)

IDL prints:

57.417720

For 10 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 10)

IDL prints:

57.444248

20 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 20)

IDL prints:

57.446201

48 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 48)

IDL prints:

57.446265

The exact solution to 6-decimal accuracy is 57.446267.
Integration Using IDL

Chapter 7: Mathematics 189
Routines for Differentiation and Integration

See “Differentiation and Integration” (in the functional category “Mathematics” (IDL
Quick Reference)) for a brief description of IDL routines for differentiation and
integration. Detailed information is available in the IDL Reference Guide.
Using IDL Integration

190 Chapter 7: Mathematics
Linear Systems

IDL offers a variety of methods for the solution of simultaneous linear equations. In
order to use these routines successfully, the user should consider both existence and
uniqueness criteria and the potential difficulties in finding the solution numerically.

The solution vector x of an n-by-n linear system Ax = b is guaranteed to exist and to
be unique if the coefficient array A is invertible. Using a simple algebraic
manipulation, it is possible to formulate the solution vector x in terms of the inverse
of the coefficient array A and the right-side vector b: x = A-1b. Although this
relationship provides a concise mathematical representation of the solution, it is
never used in practice. Array inversion is computationally expensive (requiring a
large number of floating-point operations) and prone to severe round-off errors.

An alternate way of describing the existence of a solution is to say that the system
Ax = b is solvable if and only if the vector b may be expressed as a linear
combination of the columns of A. This definition is important when considering the
solutions of non-square (over- and under-determined) linear systems.

While the invertabiltiy of the coefficient array A may ensure that a solution exists, it
does not help in determining the solution. Some systems can be solved accurately
using numerical methods whereas others cannot. In order to better understand the
accuracy of a numerical solution, we can classify the condition of the system it
solves.

The scalar quantity known as the condition number of a linear system is a measure of
a solution’s sensitivity to the effects of finite-precision arithmetic. The condition
number of an n-by-n linear system Ax = b is computed explicitly as |A||A-1| (where | |
denotes a Euclidean norm). A linear system whose condition number is small is
considered well-conditioned and well suited to numerical computation. A linear
system whose condition number is large is considered ill-conditioned and prone to
computational errors. To some extent, the solution of an ill-conditioned system may
be improved using an extended-precision data type (such as double-precision float).
Other situations require an approximate solution to the system using its Singular
Value Decomposition.

The following two examples show how the singular value decomposition may be
used to find solutions when a linear system is over- or underdetermined.

Overdetermined Systems

In the case of the overdetermined system (when there are more linear equations than
unknowns), the vector b cannot be expressed as a linear combination of the columns
Linear Systems Using IDL

Chapter 7: Mathematics 191
of array A. (In other words, b lies outside of the subspace spanned by the columns of
A.) Using IDL’s SVDC procedure, it is possible to determine a projected solution of
the overdetermined system (b is projected onto the subspace spanned by the columns
of A and then the system is solved). This type of solution has the property of
minimizing the residual error E = b – Ax in a least-squares sense.

Suppose that we wish to solve the following linear system:

The vector b does not lie in the two-dimensional subspace spanned by the columns of
A (there is no linear combination of the columns of A that yield b), and therefore an
exact solution is not possible.

It is possible, however, to find a solution to this system that minimizes the residual
error by orthogonally projecting the vector b onto the two-dimensional subspace
spanned by the columns of the array A. The projected vector is then used as the right-
hand side of the system. The orthogonal projection of b onto the column space of A
may be expressed with the array-vector product A(ATA)-1ATb, where A(ATA)-1AT is
known as the projection matrix, P.

Figure 7-2: Overdetermined System Diagram

1.0 2.0

1.0 3.0

0.0 0.0

x0

x1

4.0

5.0

6.0

=

Pb

column 1

column 2

b

Using IDL Linear Systems

192 Chapter 7: Mathematics
In this example, the array-vector product Pb yields:

and we wish to solve the linear system

In many cases, the explicit calculation of the projected solution is numerically
unstable, resulting in large accumulated round-off errors. For this reason it is best to
use singular value decomposition to effect the orthogonal projection of the vector b
onto the subspace spanned by the columns of the array A.

The following IDL commands use singular value decomposition to solve the system
in a numerically stable manner. Begin with the array A:

A = [[1.0, 2.0], $
[1.0, 3.0], $
[0.0, 0.0]]

; Define the right-hand side vector B:
B = [4.0, 5.0, 6.0]
; Compute the singular value decomposition of A:
SVDC, A, W, U, V

Create a diagonal array WP of reciprocal singular values from the output vector W.
To avoid overflow errors when the reciprocal values are calculated, only elements
with absolute values greater than or equal to 1.0 × 10-5 are reciprocated.

N = N_ELEMENTS(W)
WP = FLTARR(N, N)
FOR K = 0, N-1 DO $

IF ABS(W(K)) GE 1.0e-5 THEN WP(K, K) = 1.0/W(K)

We can now express the solution to the linear system as a array-vector product. (See
Section 2.6 of Numerical Recipes for a derivation of this formula.)

X = V ## WP ## TRANSPOSE(U) ## B
; Print the solution:
PRINT, X

4.0

5.0

0.0

1.0 2.0

1.0 3.0

0.0 0.0

x0

x1

4.0

5.0

0.0

 where
x0

x1

= 2.0

1.0
=

Linear Systems Using IDL

Chapter 7: Mathematics 193
IDL Prints:

2.00000
1.00000

Underdetermined Systems

In the case of the underdetermined system (when there are fewer linear equations
than unknowns), a unique solution is not possible. Using IDL’s SVDC procedure it is
possible to determine the minimal norm solution. Given a vector norm, this type of
solution has the property of having the minimal length of all possible solutions with
respect to that norm.

Suppose that we wish to solve the following linear system.

Using elementary row operations it is possible to reduce the system to

It is now possible to express the solution x in terms of x1 and x3:

The values of x1 and x3 are completely arbitrary. Setting x1 = 0 and x3 = 0 results in
one possible solution of this system:

Another possible solution is obtained using singular value decomposition and results
in the minimal norm condition. The minimal norm solution for this system is:

1.0 3.0 3.0 2.0

2.0 6.0 9.0 5.0

1.0– 3.0– 3.0 0.0

x0

x1

x2

x3

1.0

5.0

5.0

=

1.0 3.0 3.0 2.0

0.0 0.0 3.0 1.0

0.0 0.0 0.0 0.0

x0

x1

x2

x3

1.0

3.0

0.0

=

x

2– 3x1– x3–

x1

1 x3 3⁄–

x3

=

Using IDL Linear Systems

194 Chapter 7: Mathematics
Note that this vector also satisfies the solution x as it is expressed in terms of x1
and x3.

The following IDL commands use singular value decomposition to find the minimal
norm solution. Begin with the array A:

A = [[1.0, 3.0, 3.0, 2.0], $
[2.0, 6.0, 9.0, 5.0], $
[-1.0, -3.0, 3.0, 0.0]]

; Define the right-hand side vector B:
B = [1.0, 5.0, 5.0]
; Compute the decomposition of A:
SVDC, A, W, U, V

Create a diagonal array WP of reciprocal singular values from the output vector W.
To avoid overflow errors when the reciprocal values are calculated, only elements
with absolute values greater than or equal to 1.0 × 10-5 are reciprocated.

N = N_ELEMENTS(W)
WP = FLTARR(N, N)
FOR K = 0, N-1 DO $

IF ABS(W(K)) GE 1.0e-5 THEN WP(K, K) = 1.0/W(K)

We can now express the solution to the linear system as a array-vector product. (See
Section 2.6 of Numerical Recipes for a derivation of this formula.) The solution is
expressed in terms of x1 and x3 with minimal norm.

X = V ## WP ## TRANSPOSE(U) ## B
;Print the solution:
PRINT, X

IDL Prints:

-0.211009
-0.633027
0.963303

x

2.0–

0.0
1.0

0.0

=

x

0.211009–

0.633027–

0.963303

0.110092

=

Linear Systems Using IDL

Chapter 7: Mathematics 195
0.110092

Complex Linear Systems

We can use IDL’s LU_COMPLEX function to compute the solution to a linear system
with real and complex coefficients. Suppose we wish to solve the following linear system:

;First we define the real part of the complex coefficient array:
re = [[-1, 1, 2, 3], $

[-2, -1, 0, 3], $
[3, 0, 0, 0], $
[2, 1, 2, 2]]

;Next, we define the imaginary part of the coefficient array:
im = [[0, -3, 0, 3], $

[0, 3, 1, 1], $

[0, 4, -1, -3], $
[0, 1, 1, 1]]

; Combine the real and imaginary parts to form
; a single complex coefficient array:
A = COMPLEX(re, im)
; Define the right-hand side vector B:
B = [COMPLEX(15,-2), COMPLEX(-2,-1), COMPLEX(-20,11), $

COMPLEX(-10,10)
; Compute the solution using double-precision complex arithmetic:
Z = LU_COMPLEX(A, B, /DOUBLE)
PRINT, TRANSPOSE(Z), FORMAT = '(f5.2, ",", f5.2, "i")'

IDL prints:

-4.00, 1.00i
 2.00, 2.00i
 0.00, 3.00i
-0.00,-1.00i

We can check the accuracy of the computed solution by computing the residual,
Az–b:

PRINT, A##Z-B

1– 0i+ 1 3i– 2 0i+ 3 3i+

2– 0i+ 1– 3i+ 0– 1i+ 3 1i+

3 0i+ 0 4i+ 0 1i– 0– 3i–

2 0i+ 1 1i+ 2 1i+ 2 1i+

z0

z1

z2

z3

15 2i–

2– 1i–

20– 11i+

10– 10i+

=

Using IDL Linear Systems

196 Chapter 7: Mathematics
IDL prints:

(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)

Routines for Solving Simultaneous Linear Equations

See “Linear Systems” (in the functional category “Mathematics” (IDL Quick
Reference)) for a brief description of IDL routines for solving simultaneous linear
equations. Detailed information is available in the IDL Reference Guide.
Linear Systems Using IDL

Chapter 7: Mathematics 197
Nonlinear Equations

The problem of finding a solution to a system of n nonlinear equations, F(x) = 0, may
be stated as follows:

given F: Rn → Rn, find x* (an element of Rn) such that F(x*) = 0

For example:

x* = [0, 3] or x* = [3, 0]

Note
A solution to a system of nonlinear equations is not necessarily unique.

The most powerful and successful numerical methods for solving systems of
nonlinear equations are loosely based upon a simple two-step iterative method
frequently referred to as Newton’s method. This method begins with an initial guess
and constructs a solution by iteratively approximating the n-dimensional nonlinear
system of equations with an n-by-n linear system of equations.

The first step formulates an n-by-n linear system of equations (Js = – F) where the
coefficient array J is the Jacobian (the array of first partial derivatives of F), s is a
solution vector, and – F is the negative of the nonlinear system of equations. Both J
and – F are evaluated at the current value of the n-element vector x.

J(xk) sk = – F(xk)

The second step uses the solution sk of the linear system as a directional update to the
current approximate solution xk of the nonlinear system of equations. The next
approximate solution xk+1 is a linear combination of the current approximate solution
xk and the directional update sk.

xk+1 = xk + sk

The success of Newton’s method relies primarily on providing an initial guess close
to a solution of the nonlinear system of equations. In practice this proves to be quite
difficult and severely limits the application of this simple two-step method.

IDL provides two algorithms that are designed to overcome the restriction that the
initial guess be close to a solution. These algorithms implement a line search which
checks, and if necessary modifies, the course of the algorithm at each step ensuring

F x()
x0 x1 3–+

x0
2

x1
2

9–+
=

Using IDL Nonlinear Equations

198 Chapter 7: Mathematics
progress toward a solution of the nonlinear system of equations. IDL’s NEWTON
and BROYDEN functions are among a class of algorithms known as quasi-Newton
methods.

The solution of an n-dimensional system of nonlinear equations, F(x) = 0, is often
considered a root of that system. As a one-dimensional counterpart to NEWTON and
BROYDEN, IDL provides the FX_ROOT and FZ_ROOTS functions.

Routines for Solving Nonlinear Equations

See “Nonlinear Equations” (in the functional category “Mathematics” (IDL Quick
Reference)) for a brief description of IDL routines for solving systems of nonlinear
equations. Detailed information is available in the IDL Reference Guide.
Nonlinear Equations Using IDL

Chapter 7: Mathematics 199
Optimization

The problem of finding an unconstrained minimizer of an n-dimensional function, f,
may be stated as follows:

given f: Rn → R, find x* (an element of Rn) such that f(x*) is a minimum of f.

For example:

f (x) = (x0 – 3)4 + (x1 - 2)2

x* = [3, 2]

In minimizing an n-dimensional function f, it is a necessary condition that the
gradient at the minimizer x*, ∇ f(x*), be the zero vector. Mathematically expressing
this condition defines the following system of nonlinear equations.

This relation might suggest that finding a minimizer is equivalent to solving a system
of linear equations based on the gradient. In most cases, however, this is not true. It is
just as likely that a solution, x*, of ∇ f(x)=0 be a maximizer or a local minimizer of f.
Thus the gradient alone does not provide sufficient information in determining the
role of x*.

IDL provides two algorithms that do sufficiently determine the global minimizer of
an n-dimensional function. IDL’s DFPMIN routine is among a class of algorithms
known as variable metric methods and requires a user-supplied analytic gradient of
the function to be minimized. IDL’s POWELL routine implements a direction-set
method that does not require a user-supplied analytic gradient. The utility of the
POWELL routine is evident as the function to be minimized becomes more
complicated and partial derivatives become more difficult to calculate.

f x()∂
x0∂

f x()∂
x1∂

…
f x()∂
xn 1–∂

0
0

…
0

=

Using IDL Optimization

200 Chapter 7: Mathematics
Routines for Optimization

See “Optimization” (in the functional category “Mathematics” (IDL Quick
Reference)) for a brief description of IDL routines for optimization. Detailed
information is available in the IDL Reference Guide.
Optimization Using IDL

Chapter 7: Mathematics 201
Sparse Arrays

The occurrence of zero elements in a large array is both a computational and storage
inconvenience. An array in which a large percentage of elements are zeros is referred
to as being sparse.

Because standard linear algebra techniques are highly inefficient when dealing with
sparse arrays, IDL incorporates a collection of routines designed to handle them
effectively. These routines use the row-indexed sparse storage method, which stores
the array in structure form, as a vector of data and a vector of indices. The length of
each vector is equal to 1 plus the number of diagonal elements of the array plus the
number of off-diagonal elements with an absolute magnitude greater than or equal to
a specified threshold value. Diagonal elements of the array are always retained even
if their absolute magnitude is less than the specified threshold. Sparse array routines
that handle array-vector and array-array multiplication, file input/output, and the
solution of systems of simultaneous linear equations are included.

Note
For more information on IDL’s sparse array storage method, see section 2.7,
“Sparse Linear Systems,” in Numerical Recipes in C: The Art of Scientific
Computing (Second Edition), published by Cambridge University Press.

When considering using IDL’s sparse array routines, remember that the
computational savings gained by working in sparse storage format is at least partially
offset by the need to first convert the arrays to that format. Although an absolute
determination of when to use sparse format is not possible, the example below
demonstrates the time savings when solving a 500 by 500 linear system in which
approximately 50% of the coefficient array’s elements as zeros.

Diagonally-Dominant Array

Create a 500-by-500 element pseudo-random diagonally-dominant floating-point
array in which approximately 50% of the elements as zeros. (In a diagonally-
dominant array, the diagonal element in a given row is greater than the sum of the
absolute values of the non-diagonal elements in that row.)

N = 500L
A = RANDOMN(SEED, N, N)*10
; Set elements with absolute magnitude greater than or
; equal to eight to zero:
I = WHERE(ABS(A) GE 8)
A[I] = 0.0
; Set each diagonal element to the absolute sum of
Using IDL Sparse Arrays

202 Chapter 7: Mathematics
; its row elements plus 1.0:
diag = TOTAL(ABS(A), 1)
A(INDGEN(N) * (N+1)) = diag + 1.0
; Create a right-hand side vector, b, in which 40% of
; the elements are ones and 60% are twos.
B = [REPLICATE(1.0, 0.4*N), REPLICATE(2.0, 0.6*N)]

We now calculate a solution to this system using two different methods, measuring
the time elapsed. First, we compute the solution using the iterative biconjugate
gradient method and a sparse array storage format. Note that we include everything
between the start and stop timer commands as a single operation, so that only
computation time (as opposed to typing time) is recorded.

; Begin with an initial guess:
X = REPLICATE(1.0, N_ELEMENTS(B))
; Start the timer:
start = SYSTIME(1) & $
; Solve the system:
result1 = LINBCG(SPRSIN(A), B, X) & $
; Stop the timer.
stop = SYSTIME(1)
; Print the time taken, in seconds:
PRINT, 'Time for Iterative Biconjugate Gradient:', stop-start

IDL prints:

Time for Iterative Biconjugate Gradient 1.1259040

Remember that your result will depend on your hardware configuration.

Next, we compute the solution using LU decomposition.

; Start the timer:
start = SYSTIME(1) & $
; Compute the LU decomposition of A:
LUDC, A, index & $
; Compute the solution:
result2 = LUSOL(A, index, B) & $
; Stop the timer:
stop = SYSTIME(1)
; Print the time taken, in seconds:
PRINT, 'Time for LU Decomposition:', stop-start

IDL prints:

Time for LU decomposition 14.871168

Finally, we can compare the absolute error between result1 and result2. The
following commands will print the indices of any elements of the two results that
differ by more than 1.0 × 10-5, or a –1 if the two results are identical to within five
decimal places.
Sparse Arrays Using IDL

Chapter 7: Mathematics 203
error = ABS(result1-result2)
PRINT, WHERE(error GT 1.0e-5)

IDL prints:

-1

See the documentation for the WTN function for an example using IDL’s sparse
array functions with image data.

Note
The times shown here were recorded on a DEC 3000 Alpha workstation running
OSF/1; they are shown as examples only. Your times will depend on your specific
computing platform.

Routines for Handling Sparse Arrays

See “Sparse Arrays” (in the functional category “Mathematics” (IDL Quick
Reference)) for a brief description of IDL routines for handling sparse arrays. More
detailed information is available in the IDL Reference Guide.
Using IDL Sparse Arrays

204 Chapter 7: Mathematics
Time-Series Analysis

A time-series is a sequential collection of data observations indexed over time. In
most cases, the observed data is continuous and is recorded at a discrete and finite set
of equally-spaced points. An n-element time-series is denoted as x = (x0, x1, x2, ... ,
xn–1), where the time-indexed distance between any two successive observations is
referred to as the sampling interval.

A widely held theory assumes that a time-series is comprised of four components:

• A trend or long term movement.

• A cyclical fluctuation about the trend.

• A pronounced seasonal effect.

• A residual, irregular, or random effect.

Collectively, these components make the analysis of a time-series a far more
challenging task than just fitting a linear or nonlinear regression model. Adjacent
observations are unlikely to be independent of one another. Clusters of observations
are frequently correlated with increasing strength as the time intervals between them
become shorter. Often the analysis is a multi-step process involving graphical and
numerical methods.

The first step in the analysis of a time-series is the transformation to stationary series.
A stationary series exhibits statistical properties that are unchanged as the period of
observation is moved forward or backward in time. Specifically, the mean and
variance of a stationary time-series remain fixed in time. The sample autocorrelation
function is a commonly used tool in determining the stationarity of a time-series. The
autocorrelation of a time-series measures the dependence between observations as a
function of their time differences or lag. A plot of the sample autocorrelation
coefficients against corresponding lags can be very helpful in determining the
stationarity of a time-series.

For example, suppose the IDL variable X contains time-series data:

X = [5.44, 6.38, 5.43, 5.22, 5.28, $
5.21, 5.23, 4.33, 5.58, 6.18, $
6.16, 6.07, 6.56, 5.93, 5.70, $
5.36, 5.17, 5.35, 5.61, 5.83, $
5.29, 5.58, 4.77, 5.17, 5.33]
Time-Series Analysis Using IDL

Chapter 7: Mathematics 205
The following IDL commands plot both the time-series data and the sample
autocorrelation versus the lags.

; Set the plotting window to hold two plots and plot the data:
IPLOT, X, VIEW_GRID=[1,2]

Compute the sample autocorrelation function for time lagged values 0 – 20 and plot.

lag = INDGEN(21)
result = A_CORRELATE(X, lag)
IPLOT, lag, result, /VIEW_NEXT
; Add a reference line at zero:
IPLOT, [0,20], [0,0], /OVERPLOT

The following figure shows the resulting graphs.

The top graph plots time-series data. The bottom graph plots the autocorrelation of
that data versus the lag. Because the time-series has a significant autocorrelation up
to a lag of seven, it must be considered non-stationary.

Nonstationary components of a time-series may be eliminated in a variety of ways.
Two frequently used methods are known as moving averages and forward
differencing. The method of moving averages dampens fluctuations in a time-series

Figure 7-3: Time-series data (Top) and Autocorrelation of that Data
Versus the Lag (Bottom)
Using IDL Time-Series Analysis

206 Chapter 7: Mathematics
by taking successive averages of groups of observations. Each successive
overlapping sequence of k observations in the series is replaced by the mean of that
sequence. The method of forward differencing replaces each time-series observation
with the difference of the current observation and its adjacent observation one step
forward in time. Differencing may be computed recursively to eliminate more
complex nonstationary components.

Once a time-series has been transformed to stationarity, it may be modeled using an
autoregressive process. An autoregressive process expresses the current observation,
xt, as a combination of past time-series values and residual white noise. The simplest
case is known as a first order autoregressive model and is expressed as

xt = φxt–1 + ωt

The coefficient φ is estimated using the time-series data. The general autoregressive
model of order p is expressed as

xt = φ1xt–1 +φ2xt–2 + ... + φpxt–p + ωt

Modeling a stationary time-series as a p-th order autoregressive process allows the
extrapolation of data for future values of time. This process is know as forecasting.

Routines for Time-Series Analysis

See “Time-Series Analysis” (in the functional category “Mathematics” (IDL Quick
Reference)) for a brief description of IDL routines for time-series analysis. Detailed
information is available in the IDL Reference Guide.
Time-Series Analysis Using IDL

Chapter 7: Mathematics 207
Multivariate Analysis

IDL provides a number of tools for analyzing multivariate data. These tools are
broadly grouped into two categories: Cluster Analysis and Principal Components
Analysis.

Cluster Analysis

Cluster Analysis attempts to construct a sensible and informative classification of an
initially unclassified sample population using a set of common variables for each
individual. The clusters are constructed so as to group samples with the similar
features, based upon a set of variables. The samples (contained in the rows of an
input array) are each assigned a cluster number based upon the values of their
corresponding variables (contained in the columns of an input array).

In computing a cluster analysis, a predetermined number of cluster centers are
formed and then each sample is assigned to the unique cluster which minimizes a
distance criterion based upon the variables of the data. Given an m-column, n-row
array, IDL’s CLUST_WTS and CLUSTER functions compute n cluster centers and n
clusters, respectively. Conceivably, some clusters will contain multiple samples
while other clusters will contain none. The choice of clusters is arbitrary; in general,
however, the user will want to specify a number less than the default (the number of
rows in the input array). The cluster number (the number that identifies the cluster
group) assigned to a particular sample or group of samples is not necessarily unique.

It is possible that not all variables play an equal role in the classification process. In
this situation, greater or lesser importance may be given to each variable using the
VARIABLE_WTS keyword to the CLUST_WTS function. The default behavior is to
assume all variables contained in the data array are of equal importance.

Under certain circumstances, a classification of variables may be desired. The
CLUST_WTS and CLUSTER functions provide this functionality by first
transposing the m-column, n-row input array using the TRANSPOSE function and
then interchanging the roles of variables and samples.

Example of Cluster Analysis

Define an array with 5 variables (columns) and 9 samples (rows):

array = [[99, 79, 63, 87, 249], $
[67, 41, 36, 51, 114], $
[67, 41, 36, 51, 114], $
[94, 191, 160, 173, 124], $
[42, 108, 37, 51, 41], $
Using IDL Multivariate Analysis

208 Chapter 7: Mathematics
[67, 41, 36, 51, 114], $
[94, 191, 160, 173, 124], $
[99, 79, 63, 87, 249], $
[67, 41, 36, 51, 114]]

; Compute the cluster weights with four cluster centers:
weights = CLUST_WTS(array, N_CLUSTERS = 4)
; Compute the cluster assignments, for each sample,
; into one of four clusters:
result = CLUSTER(array, weights, N_CLUSTERS = 4)
; Display the cluster assignment and corresponding sample (row):
FOR k = 0, 8 DO $

PRINT, result[k], array[*, k]

IDL prints:

1 99 79 63 87 249
3 67 41 36 51 114
3 67 41 36 51 114
0 94 191 160 173 124
2 42 108 37 51 41
3 67 41 36 51 114
0 94 191 160 173 124
1 99 79 63 87 249
3 67 41 36 51 114

Samples 0 and 7 contain identical data and are assigned to cluster #1. Samples 1, 2, 5,
and 8 contain identical data and are assigned to cluster #3. Samples 3 and 6 contain
identical data and are assigned to cluster #0. Sample 4 is unique and is assigned to
cluster #2.

If this example is run several times, each time computing new cluster weights, it is
possible that the cluster number assigned to each grouping of samples may change.

Principal Components Analysis

Principal components analysis is a mathematical technique which describes a
multivariate set of data using derived variables. The derived variables are formulated
using specific linear combinations of the original variables. The derived variables are
uncorrelated and are computed in decreasing order of importance; the first variable
accounts for as much as possible of the variation in the original data, the second
variable accounts for the second largest portion of the variation in the original data,
and so on. Principal components analysis attempts to construct a small set of derived
variables which summarize the original data, thereby reducing the dimensionality of
the original data.

The principal components of a multivariate set of data are computed from the
eigenvalues and eigenvectors of either the sample correlation or sample covariance
Multivariate Analysis Using IDL

Chapter 7: Mathematics 209
matrix. If the variables of the multivariate data are measured in widely differing units
(large variations in magnitude), it is usually best to use the sample correlation matrix
in computing the principal components; this is the default method used in IDL’s
PCOMP function.

Another alternative is to standardize the variables of the multivariate data prior to
computing principal components. Standardizing the variables essentially makes them
all equally important by creating new variables that each have a mean of zero and a
variance of one. Proceeding in this way allows the principal components to be
computed from the sample covariance matrix. IDL’s PCOMP function includes
COVARIANCE and STANDARDIZE keywords to provide this functionality.

For example, suppose that we wish to restate the following data using its principal
components. There are three variables, each consisting of five samples.

We compute the principal components (the coefficients of the derived variables) to 2
decimal accuracy and store them by row in the following array.

The derived variables {z1, z2, z3} are then computed as follows:

Var 1 Var 2 Var 3

Sample 1 2.0 1.0 3.0

Sample 2 4.0 2.0 3.0

Sample 3 4.0 1.0 0.0

Sample 4 2.0 3.0 3.0

Sample 5 5.0 1.0 9.0

Table 7-1: Data for Principal Component Analysis

0.87 0.70– 0.69

0.01 0.64– 0.66–

0.49 0.32 0.30–
Using IDL Multivariate Analysis

210 Chapter 7: Mathematics
In this example, analysis shows that the derived variable z1 accounts for 57.3% of the
total variance of the original data, the derived variable z2 accounts for 28.2% of the
total variance of the original data, and the derived variable z3 accounts for 14.5% of
the total variance of the original data.

Example of Derived Variables from Principal Components

The following example constructs an appropriate set of derived variables, based upon
the principal components of the original data, which may be used to reduce the
dimensionality of the data. The data consist of four variables, each containing of
twenty samples.

; Define an array with 4 variables and 20 samples:
data = [[19.5, 43.1, 29.1, 11.9], $

[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 37.0, 18.7], $
[29.8, 54.3, 31.1, 20.1], $
[19.1, 42.2, 30.9, 12.9], $

z1 0.87()

2.0

4.0

4.0

2.0

5.0

0.70–()

1.0

2.0

1.0

3.0

1.0

0.69()

3.0

3.0

0.0

3.0

9.0

+ +=

z2 0.01()

2.0

4.0

4.0

2.0

5.0

0.64–()

1.0

2.0

1.0

3.0

1.0

0.66–()

3.0

3.0

0.0

3.0

9.0

+ +=

z3 0.49()

2.0

4.0

4.0

2.0

5.0

0.32()

1.0

2.0

1.0

3.0

1.0

0.30–()

3.0

3.0

0.0

3.0

9.0

+ +=
Multivariate Analysis Using IDL

Chapter 7: Mathematics 211
[25.6, 53.9, 23.7, 21.7], $
[31.4, 58.5, 27.6, 27.1], $
[27.9, 52.1, 30.6, 25.4], $
[22.1, 49.9, 23.2, 21.3], $
[25.5, 53.5, 24.8, 19.3], $
[31.1, 56.6, 30.0, 25.4], $
[30.4, 56.7, 28.3, 27.2], $
[18.7, 46.5, 23.0, 11.7], $
[19.7, 44.2, 28.6, 17.8], $
[14.6, 42.7, 21.3, 12.8], $
[29.5, 54.4, 30.1, 23.9], $
[27.7, 55.3, 25.7, 22.6], $
[30.2, 58.6, 24.6, 25.4], $
[22.7, 48.2, 27.1, 14.8], $
[25.2, 51.0, 27.5, 21.1]]

The variables that will contain the values returned by the COEFFICIENTS,
EIGENVALUES, and VARIANCES keywords to the PCOMP routine must be
initialized as nonzero values prior to calling PCOMP.

coef = 1 & eval = 1 & var = 1
; Compute the derived variables based upon
; the principal components.
result = PCOMP(data, COEFFICIENTS = coef, $

EIGENVALUES = eval, VARIANCES = var)
; Display the array of derived variables:
PRINT, result, FORMAT = '(4(f5.1, 2x))'

IDL prints:

81.4 15.5 -5.5 0.5
102.7 11.1 -4.1 0.6
109.9 20.3 -6.2 0.5
110.5 13.8 -6.3 0.6
81.8 17.1 -4.9 0.6
104.8 6.2 -5.4 0.6
121.3 8.1 -5.2 0.6
111.3 12.6 -4.0 0.6
97.0 6.4 -4.4 0.6
102.5 7.8 -6.1 0.6
118.5 11.2 -5.3 0.6
118.9 9.1 -4.7 0.6
81.5 8.8 -6.3 0.6
88.0 13.4 -3.9 0.6
74.3 7.5 -4.8 0.6
113.4 12.0 -5.1 0.6
109.7 7.7 -5.6 0.6
117.5 5.5 -5.7 0.6
91.4 12.0 -6.1 0.6
102.5 10.6 -4.9 0.6
Using IDL Multivariate Analysis

212 Chapter 7: Mathematics
Display the percentage of total variance for each derived variable:

PRINT, var

IDL prints:

0.712422
0.250319
0.0370950
0.000164269

Display the percentage of variance for the first two derived variables; the first two
columns of the resulting array above.

PRINT, TOTAL(var[0:1])

IDL prints:

0.962741

This indicates that the first two derived variables (the first two columns of the
resulting array) account for 96.3% of the total variance of the original data, and thus
could be used to summarize the original data.

Routines for Multivariate Analysis

See “Multivariate Analysis” (in the functional category “Mathematics” (IDL Quick
Reference)) for a brief description of IDL routines for multivariate analysis. Detailed
information is available in the IDL Reference Guide.
Multivariate Analysis Using IDL

Chapter 7: Mathematics 213
References

Correlation Analysis

Harnet, Donald L. Introduction to Statistical Methods. Reading, Massachusetts:
Addison-Wesley, 1975. ISBN 0-201-02752-6

Neter, John., William Wasserman, and G.A. Whitmore. Applied Statistics. Newton,
Massachusetts: Allyn and Bacon, 1988. ISBN 0-205-10328-6

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Curve and Surface Fitting

Bevington, Philip R. Data Reduction and Error Analysis for the Physical Sciences.
New York: McGraw-Hill, 1969.

Lancaster, Peter and Kestutis Salkauskas. Curve and Surface Fitting (An
Introduction). San Diego: Academic Press, 1986. ISBN 0-124-36060-0

Eigenvalues and Eigenvectors

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Strang, Gilbert. Linear Algebra and Its Applications. San Diego: Harcourt Brace
Jovanovich, 1988. ISBN 0-155-551005-3

Gridding and Interpolation

Lancaster, Peter and Kestutis Salkauskas. Curve and Surface Fitting (An
Introduction). San Diego: Academic Press, 1986. ISBN 0-124-36060-0

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Hypothesis Testing

Harnett, Donald H. Introduction to Statistical Methods. Reading, Massachusetts:
Addison-Wesley, 1975. ISBN 0-201-02752-6
Using IDL References

214 Chapter 7: Mathematics
Kraft, Charles H. and Constance Van Eeden. A Nonparametric Introduction to
Statistics. New York: Macmillan, 1968.

Sprent, Peter. Applied Nonparametric Statistical Methods. London: Chapman and
Hall, 1989. ISBN 0-412-30600-X

Integration

Chapra, Steven C. and Raymond P. Canale. Numerical Methods for Engineers. New
York: McGraw-Hill, 1988. ISBN 0-070-79984-9

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Linear Systems

Golub, Gene H. and Van Loan, Charles F. Matrix Computations. Baltimore: Johns
Hopkins University Press, 1989. ISBN 0-8018-3772-3

Kreyszig, Erwin. Advanced Engineering Mathematics. New York: Wiley & Sons,
Inc., 1993. ISBN 0-471-55380-8

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Strang, Gilbert. Linear Algebra and Its Applications. San Diego: Harcourt Brace
Jovanovich, 1988. ISBN 0-155-551005-3

Nonlinear Equations

Dennis, J.E. Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
ISBN 0-136-27216-9

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Optimization

Dennis, J.E. Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
ISBN 0-136-27216-9

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5
References Using IDL

Chapter 7: Mathematics 215
Sparse Arrays

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Time-Series Analysis

Chatfield, C. The Analysis of Time Series. London: Chapman and Hall, 1975. ISBN
0-412-31820-2

Neter, John., William Wasserman, and G.A. Whitmore. Applied Statistics. Newton,
Massachusetts: Allyn and Bacon, 1988. ISBN 0-205-10328-6

Multivariate Analysis

Jackson, Barbara Bund. Multivariate Data Analysis. Homewood, Illinois: R.D. Irwin,
1983. ISBN 0-256-02848-6

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Kachigan, Sam Kash. Multivariate Statistical Analysis. New York: Radius Press,
1991. ISBN 0-942154-91-6
Using IDL References

216 Chapter 7: Mathematics
References Using IDL

Index

Symbols
!ORDER system variable, 73

A
accuracy, numerical algorithms, 168
Aitoff map projection, 120
Albers equal area conic map projection, 129
aliasing, 151
analytic signal, 153
animation

controlling rate, 107
Motion JPEG2000

about, 94
creating, 96
high-speed read/write, 108
playing, 103

performance, 108
ARMA filter, 163
arrays

determining data type, 38
rotating, 57
sparse, 201
stored in structure form, 201

ASCII files
IDLDE import macro, 25
reading, 11

autoregressive moving average filters, 163
azimuthal equidistant map projection, 119
azimuthal map projections, 116

B
bandpass
Using IDL 217

218
filters, 159
bandstop filters, 159
bilinear

interpolation, 62
transform, 163

binary files
IDLDE import macro, 27
reading, 12

boxcar filter, 161
Bristol Technology

printing graphics, 91

C
central map projection, 118
CIA World Map database, 134
cluster analysis

routines, 212
CMY color system, 64
color

channels, 74
Direct Graphics, 70
images

Direct Graphics, 71
systems

CMY, 64
converting, 66
HLS, 64
HSV, 64
RGB, 64

tables. See color tables
visuals

Unix, 67
Windows, 68

color tables
highlighting image features, 80
indexed image (LUT), 74
modifying, 79

colormaps, 70
conformal conic map projection, 128
converting

color systems, 66
color tables, 79
image types, 77

Cooley-Tukey algorithm, 152
coordinate systems

device, 54
normalized, 54
window, 53

coordinates
converting

three-dimensional coordinates, 59
converting two-dimensional coordinates, 58
data, 53
device, 53
homogeneous, 55
normal, 53

copyrights, 2
correlation analysis

about, 170
correlation coefficient

about, 170
interpretation, 171

correlation routines, 173
cubic convolution interpolation, 62
curve fitting

discussion, 174
routines, 175

cyclical fluctuation, 204
cylindrical equidistant map projection, 127
cylindrical map projections, 125

D
data

access, 7
data coordinates

about, 53
data types

determining array size, 38
IDL indices, 36
type codes
Index Using IDL

219
pixel data types, 36
Delaunay triangulation, 182
derived variables, 208
device

coordinates, 53
independent graphics, 51

DFT, 142
differentiation routines, 189
digital filters, 158
digital signal processing, 139
DIGITAL_FILTER function, 159
Direct Graphics

about, 52
color

indexed, 70
RGB, 71

printing, 91
visuals

Unix, 69
Windows, 70

window coordinates, 54
discrete Fourier transform, 142
discrete wavelet transform, 155
display, on multiple monitors

See multi-monitor.
displayrgbimage_object.pro, 75
DWT (discrete wavelet transform), 155

E
eigenvalues

complex, 177
real, 176
repeated, 179, 180
routines for computing, 181

eigenvectors
complex, 177
real, 176
repeated, 180
routines for computing, 181

equal-area map projection, 129

examples
batch files

sigprc01, 139
sigprc02, 140
sigprc03, 145
sigprc04, 146
sigprc05, 147
sigprc06, 149
sigprc07, 150
sigprc08, 151
sigprc09, 154
sigprc10, 159
sigprc11, 160
sigprc12, 161
sigprc13, 164
sigprc14, 165

image
displayrgbimage_object.pro, 75

multimon_ex1.pro, 89
objects

mj2_frames_doc.pro, 100
mj2_morphthin_doc.pro, 102
mj2_palette_doc.pro, 101
mj2_tile_doc.pro, 102
mj2_timer_doc.pro, 106

exporting
formatted image files, 18
unformatted image files, 19

expressions
determining data type

SIZE function, 38

F
Fast Fourier transform

Cooley-Tukey algorithm, 152
defined, 142
discrete, 142
implementation, 152
using windowing algorithms, 148

file
Using IDL Index

220
See also files.
access, 7

file access
See also reading.
about, 8
routines, 29

file information
returning, 32

file selection
using dialogs, 9

FILE_INFO function
using, 47

files
See also file.
accessing, 7
exporting

See also writing.
formatted, 18
unformatted, 19

importing
See also reading.
formatted, 16
unformatted, 17

querying, 32
returning

file information, 32
filtering

autoregressive moving average, 163
bandpass, 159
bandstop, 159
boxcar, 161
digital, 158
FIR, 159
highpass, 159
lowpass, 159
rectangular, 161

filters
IIR filter, 163
Kaiser’s window, 159
moving average, 159
notch, 163

finite impulse response filters, 159
FIR filter, 159
frequency plot leakage, 146
frequency plot smearing, 146
frequency response function, 164

G
Gaussian

iterated quadrature, 185
Gauss-Krueger map projection, 126
general perspective map projection, 123
geometric transformations

interpolation methods, 61
gnomic map projection, 118
gnomonic map projection, 118
Gouraud shading, 63
graphics

coordinate systems, 55
device independent graphics, 51
devices

direct graphics, 52
modes, 50
object-oriented, 51

gridding
data extrapolation, 182
Delaunay triangulation, 182
routines, 182
uniformly-spaced planar data, 182

H
Hammer-Aitoff map projection, 122
Hamming window

defined, 149
Hanning window

defined, 148
HDF files

IDLDE import macros, 28
HDF-EOS
Index Using IDL

221
IDLDE import macro, 28
highlighting

image features, 80
highpass filters, 159
high-resolution continent outlines, 134
Hilbert transform, 153
histogram

plot, 140
HLS color system

color schemes, 64
homogeneous coordinates, 55
HSV color system

color schemes, 64
hypothesis testing

routines, 184
statistics, 183

I
IDL

direct graphics, 52
iTools, 50
object graphics, 51

IDLffMJPEG2000
animations

about, 94
creating, 96
playing, 103
timer example, 106

IIR filter
digital filtering, 163
using, 163

image display
interleaving, 74
RGB, 74

image interleaving, 74
image objects

displaying
RGB, 75

interleaving, 74
pixel interleaving, 74

saving to Motion JPEG2000, 98
images

dialog for reading, 9
dialog for saving, 10
exporting files, 18, 19
file selection

using a dialog, 9
highlighting features, 80
import macro, 23
importing files, 17
info structure, 33
orientation, 73
QUERY_IMAGE, 37
querying, 33
raster, 73
RGB interleaving, 75

import macro, IDLDE
ASCII files, 25
binary files, 27
image files, 23
scientific data formats, 28

importing
data, 7, 7
unformatted image files, 17

indexed images
color tables, 74

infinite impulse response filters, 163
integration

bivariate functions, 186
discussion, 185
numerical, 185
routines, 189
trivariate functions, 187

interleaving
determining, 75
image, 74
image objects, 74
line, 74
pixel, 74
planar, 74

interpolation
Using IDL Index

222
bilinear, 62
cubic convolution, 62
image quality, 61
linear, 62
methods, 62
nearest-neighbor, 62
routines, 182
tabulated data points, 182
trilinear, 62

K
Kaiser filter, 159

L
Lambert’s conformal conic map projection,

128
Lambert’s equal area map projection, 121
leakage, 146
legalities, 2
light source

shading, 63
line interleaving, 74
linear

algebra, 170
correlation, 170
systems

condition number, 190
overdetermined, 190
solving simultaneous equations, 190
underdetermined, 193

linear equations, simultaneous, 196
linear interpolation, 62
linear systems, routines, 196
Look-Up Table (LUT), 74
lowpass filters, 159

M
macros

IDLDE
pre-defined, 22

magnitude
signal spectra, 145

map projections
Aitoff, 120
Albers equal-area conic, 129
azimuthal, 116
azimuthal equidistant, 119
central gnomic, 118
cylindrical, 125
cylindrical equidistant, 127
general perspective, 123
gnomonic, 118
Hammer-Aitoff, 122
high-resolution outlines, 134
Lambert’s conformal conic, 128
Lambert’s equal area, 121
Mercator, 125
Miller cylindrical, 128
Mollweide, 131
orthographic, 117
overview, 112
pseudocylindrical, 130
Robinson, 130
satellite, 123
sinusoidal, 131
stereographic, 117
Transverse Mercator, 126

mathematics
routines, 168

memory
object graphics system, 51

Mercator map projection, 125
Miller cylindrical map projection, 128
minimization

about, 199
See also optimization

MJ2 files. See Motion JPEG2000
Index Using IDL

223
mj2_frames_doc.pro, 100
mj2_morphthin_doc.pro, 102
mj2_palette_doc.pro, 101
mj2_tile_doc.pro, 102
mj2_timer_doc.pro, 106
MJPEG2000 files. See Motion JPEG2000
modifying color tables, 79
Mollweide map projection, 131
monitors, multiple

See multi-monitor.
Motion JPEG2000

about animations, 94
creating animations, 96
data sources, 98
examples

data capture, 102
monochrome frames, 99
palette, 100
RBG tiles, 101
screen captures, 102
sequential playback, 106
timed playback, 106

high-speed read/write, 108
playback rate, 106
playback, random, 104
playback, sequential, 103
sample reader, writer, 95

movies
Motion JPEG2000, 94

moving average filter, 159
multimon_ex1.pro, 89
multi-monitor

about, 81
configurations

UNIX, 87
Windows, 83

example, 89
terminology, 81

multiple correlation coefficient, 172
multiple monitors

See multi-monitor.

multivariate analysis
routines, 212

N
nearest-neighbor interpolation, 62
netCDF files

IDLDE import macro, 28
Newton’s method, 197
nonlinear equations

discussion, 197
routines, 198

nonparametric hypothesis tests, 183
normal

coordinates, 53
notch filter, 163
numerical integration, 185
Numerical Recipes in C, 169
Nyquist frequency, 151

O
OBJ_CLASS function

using, 45
OBJ_ISA function

using, 45
OBJ_VALID function

using, 46
Object Graphics

images
RGB image, 75

object graphics
about, 51
printing, 91

objects
information about, 45
object-oriented

graphics, 51
Oetli, Thomas, 134
one-tailed hypothesis tests, 183
Using IDL Index

224
optimization
discussion, 199
routines, 200

origin
image data, 73

orthographic map projection, 117

P
parametric hypothesis tests, 183
partial correlation coefficient, 172
phase

signal spectra, 145
pixels

data
information (QUERY_IMAGE), 36

interleaving, 74
two-dimensional image arrays, 73

planar interleaving, 74
plotting

frequency smearing, 146
step plots, 140

power spectrum, 147
principal components analysis, 208
print manager, 91
printing

direct graphics
overview, 91

graphics, 91
private colormaps, 70
projections

Aitoff, 120
Albers equal-area conic, 129
azimuthal, 116
azimuthal equidistant, 119
central gnomic, 118
cylindrical, 125
cylindrical equidistant, 127
general perspective, 123
gnomonic, 118
Hammer-Aitoff, 122

high-resolution continent outlines, 134
Lambert’s conformal conic, 128
Lambert’s equal area, 121
Mercator, 125
Miller cylindrical, 128
Mollweide, 131
orthographic, 117
projection matrix, 191
pseudocylindrical, 130
Robinson, 130
satellite, 123
sinusoidal, 131
stereographic, 117
Transverse Mercator, 126

PseudoColor visuals, 67
pseudocylindrical map projections, 130

Q
quadrature function, 153
querying

images, 33
structure tags, 33

R
raster images, 73
reading

ASCII data, 11, 25
binary data, 12, 27
HDF files, 28
HDF-EOS files, 28
image files, 9, 23
netCDF files, 28
scientific format data, 28

rectangular filter, 161
resampling

images
see also interpolation

resolution of map databases, 134
Index Using IDL

225
RGB color system
about color schemes, 64

RGB images
displaying

Object Graphics, 75
interleaving, 75

right-handed coordinate system, 55
Robinson map projection, 130
rotating

arrays, 57
images

matrices, 57
routines

cluster analysis, 212
correlation, 173
curve and surface fitting, 175
differentiation/integration, 189
eigenvalues/eigenvectors, 181
gridding/interpolation, 182
hypothesis testing, 184
linear systems, 196
mathematical, 168
multivariate analysis, 212
nonlinear equations, 198
optimization, 200
signal processing, 138
sparse arrays, 203
time-series analysis, 206

row-indexed sparse storage method, 201

S
sampled

data analysis, 151
images, 73

sampling, aliasing data, 151
satellite map projection, 123
saving

image files, 10
scaling

matrices, 56

scientific data format
IDLDE import macro, 28

seasonal effect, 204
shading

Gouraud interpolation, 63
light source, 63

shared colormaps
about, 70

reading. See file access.
signal

analysis transforms, 141
processing, 139

signal processing
routines, 138

sigprc01 batch file, 139
sigprc02 batch file, 140
sigprc03 batch file, 145
sigprc04 batch file, 146
sigprc05 batch file, 147
sigprc06 batch file, 149
sigprc07 batch file, 150
sigprc08 batch file, 151
sigprc09 batch file, 154
sigprc10 batch file, 159
sigprc11 batch file, 160
sigprc12 batch file, 161
sigprc13 batch file, 164
sigprc14 batch file, 165
simultaneous linear equations, 190
singular value decomposition, 190
sinusoidal map projection, 131
smearing frequency plots, 146
SMOOTH function, 161
sparse arrays, 201

routines, 203
standardized variables, 209
stationary series, 204
statistics

hypothesis testing, 183
routines, 168

step plot, 140
Using IDL Index

226
stereographic map projection, 117
structure tags

image query, 33
structures

arrays stored in structure form, 201
surface fitting

discussion, 174
routines, 175

system variables
!ORDER, 73

T
three-dimensional

coordinate conversion, 59
graphics, 55
transformations

matrices, 55
three-dimensional transformations

matrices, 55
timers

timer mechanisms, 107
time-series analysis

about, 204
routines, 206

trademarks, 2
transformation matrices, 55
transforms

Fourier, 142
Hilbert, 153
Tustin bilinear, 163
wavelet, 155

translation, 56
Transverse Mercator map projection, 126
trend analysis, 204
trilinear interpolation, 62

TrueColor visuals, 67, 71
Tustin transform, 163
two-tailed hypothesis tests, 183

U
unconstrained minimizer, 199
UTM (Transverse Mercator) map projection,

126

V
variables

data type, determining
SIZE function, 38

derived, 208
standardized, 208

W
wavelet transform

about, 155
windowing

Hamming windowed signal, 149
HANNING function, 148

writing
image files, 10

X
X Multi-Screen, 87
XINERAMA, 87
Xprinter

printing graphics, 91
Index Using IDL

	Online Manuals
	IDL Documentation
	What's New in IDL 6.4
	Installation and Licensing
	Getting Started with IDL
	IDL Interface Guide
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Analyst Reference Guide
	ION Documentation
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Using IDL
	Contents
	Importing and Writing Data into Variables
	Overview of Data Access in IDL
	Accessing Files Using Dialogs
	Accessing Any File Type Using a Dialog
	Importing an Image File Using a Dialog
	Saving an Image File Using a Dialog

	Reading ASCII Data
	Launching the ASCII Template Dialog

	Reading Binary Data
	Launching the Binary Template Dialog

	Accessing Files Programmatically
	File Access

	Accessing Image Data Programmatically
	Importing Formatted Image Data Programmatically
	Importing Unformatted Image Files
	Exporting Formatted Image Files Programmatically
	Exporting Unformatted Image Files

	Accessing Non-Image Data Programmatically
	Reading Binary Data in a Volume
	Reading Contour Data from a SAVE File

	Using IDL Macros
	Using Macros to Import Image Files
	Using Macros to Import ASCII Files
	Using Macros to Import Binary Files
	Using Macros to Import HDF Files

	File Access Routines

	Getting Information About Files and Data
	Investigating Files and Data
	Accessing Information in iTools

	Returning Image File Information
	Using the QUERY_IMAGE Info Structure
	Using Specific QUERY_* Routines

	Returning Type and Size Information
	Determining if a Variable is a Scalar or an Array
	Using SIZE to Return Image Dimensions

	Getting Information About SAVE Files
	Create a Savefile Object
	Query the Savefile Object
	Restore Items from the Savefile Object
	Destroy the Savefile Object

	Returning Object Type and Validity
	Returning Information About a File

	Graphic Display Essentials
	IDL Visual Display Systems
	iTools Visualizations
	IDL Object Graphics
	IDL Direct Graphics

	IDL Coordinate Systems
	DATA Coordinates
	DEVICE Coordinates
	NORMAL Coordinates
	Understanding Windows and Related Device Coordinates

	Coordinates of 3-D Graphics
	Homogeneous Coordinates
	Right-Handed Coordinate System
	Transformation Matrices
	Translation
	Scaling
	Rotation

	Coordinate Conversions
	Two-Dimensional Coordinate Conversion
	Three-Dimensional Coordinate Conversion
	Using Coordinate Conversions

	Interpolation Methods
	Polygon Shading Method
	Color Systems
	Color Schemes
	Converting to Other Color Systems

	Display Device Color Schemes
	Colors and IDL Graphic Systems
	Using Color in Object Graphics
	Using Color in Direct Graphics

	Indexed and RGB Image Organization
	Image Orientation
	Indexed Images
	RGB Image Interleaving
	Converting Between Image Types

	Loading a Default Color Table
	Modifying and Converting Color Tables
	Highlighting Features with a Color Table

	Multi-Monitor Configurations
	Multi-Monitor Terminology
	Windows Multi-Monitor Configurations
	UNIX Multi-Monitor Configurations
	Example: Multi-Monitor Window Positioning

	Using Fonts in Graphic Displays
	Printing Graphics
	Printing IDL Direct Graphics
	Printing IDL Object Graphics

	Animations
	Overview of Motion JPEG2000
	Sample Motion JPEG2000 Player and Writer
	Supported Platforms

	Creating a Motion JPEG2000 Animation
	Adding Data to MJ2 Animations
	Animating Existing Data
	Animating Screen Captures
	Animating Data Captures

	Playing a Motion JPEG2000 Animation
	Sequential Motion JPEG2000 Playback
	Random Motion JPEG2000 Playback

	Controlling the Playback Rate
	Timer Mechanisms

	High Speed MJ2 Reading and Writing
	High Speed Sequential Playback
	High Speed MJ2 File Writing

	Map Projections
	Overview of Mapping
	Creating a Map Display

	Graphics Techniques for Mapping
	Splitting
	3D Clipping
	Projection
	Rectangular Clipping

	Map Projection Types
	Azimuthal Projections
	Orthographic Projection
	Stereographic Projection
	Gnomonic Projection
	Azimuthal Equidistant Projection
	Aitoff Projection
	Lambert’s Equal Area Projection
	Hammer-Aitoff Projection
	Satellite Projection

	Cylindrical Projections
	Mercator Projection
	Transverse Mercator Projection
	Cylindrical Equidistant Projection
	Miller Cylindrical Projection
	Conic Projection
	Albers Equal-Area Conic Projection

	Pseudocylindrical Projections
	Robinson Cylindrical
	Sinusoidal Projection
	Mollweide Projection
	Goode’s Homolosine Projection

	High-Resolution Continent Outlines
	Resolution of Map Databases

	References

	Signal Processing
	Overview of Signal Processing
	Routines for Signal Processing
	Running the Example Code

	Digital Signals
	Signal Analysis Transforms
	The Fourier Transform
	Interpreting FFT Results
	Displaying FFT Results
	Using Windows
	Hanning Window
	Hamming Window

	Aliasing
	FFT Algorithm Details
	The Hilbert Transform
	The Wavelet Transform
	Convolution
	Correlation and Covariance
	Digital Filtering
	Finite Impulse Response (FIR) Filters
	FIR Filter Implementation
	Infinite Impulse Response (IIR) Filters
	References

	Mathematics
	Overview of Mathematics in IDL
	IDL’s Numerical Recipes Functions
	Correlation Analysis
	Correlation Example
	Notes on Interpreting the Correlation Coefficient
	Multiple Linear Models
	Routines for Computing Correlations

	Curve and Surface Fitting
	Routines for Curve and Surface Fitting

	Eigenvalues and Eigenvectors
	Symmetric Array with n Distinct Real Eigenvalues
	Nonsymmetric Array with n Distinct Real and Complex Eigenvalues
	Repeated Eigenvalues
	The So-called Defective Case
	Routines for Computing Eigenvalues and Eigenvectors

	Gridding and Interpolation
	Routines for Gridding and Interpolation

	Hypothesis Testing
	One- and Two-sided Tests
	Parametric and Nonparametric Tests
	Routines for Hypothesis Testing

	Integration
	A Bivariate Function
	A Trivariate Function
	Routines for Differentiation and Integration

	Linear Systems
	Overdetermined Systems
	Underdetermined Systems
	Complex Linear Systems
	Routines for Solving Simultaneous Linear Equations

	Nonlinear Equations
	Routines for Solving Nonlinear Equations

	Optimization
	Routines for Optimization

	Sparse Arrays
	Diagonally-Dominant Array
	Routines for Handling Sparse Arrays

	Time-Series Analysis
	Routines for Time-Series Analysis

	Multivariate Analysis
	Cluster Analysis
	Principal Components Analysis
	Routines for Multivariate Analysis

	References
	Correlation Analysis
	Curve and Surface Fitting
	Eigenvalues and Eigenvectors
	Gridding and Interpolation
	Hypothesis Testing
	Integration
	Linear Systems
	Nonlinear Equations
	Optimization
	Sparse Arrays
	Time-Series Analysis
	Multivariate Analysis

	Index

