
IDL Version 6.4
April 2007 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

Using IDL

0407IDL64USG



Restricted Rights Notice
The IDL®, ION Script™, ION Java™, IDL Analyst™, ENVI®, and ENVI Zoom™ software programs and the accompanying 
procedures, functions, and documentation described herein are sold under license agreement. Their use, duplication, and disclosure 
are subject to the restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to 
this document at any time and without notice.

Limitation of Warranty
ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the 
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any 
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to 
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such 
copies must contain the title page and this notice page in their entirety.

Export Control Information
This software and its associated documentation are subject to the controls of the Export Administration Regulations (EAR). It has 
been determined that this software is classified as EAR99 under U.S. Export Control laws and regulations, and may not be re-
transferred to any destination expressly prohibited by U.S. laws and regulations. The recipient is responsible for ensuring compliance 
to all applicable U.S. Export Control laws and regulations.

Acknowledgments
ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, ION Script™, 
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988–2001, The Board of Trustees of the University of Illinois. 
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998–2002, by the Board of Trustees of the University of 
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.

NetCDF Library. Copyright © 1993–1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991–2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995–1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835. 
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has a commercial license. Kakadu Software. Copyright © 
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

MODTRAN is licensed from the United States of America under U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.

FLAASH is licensed from Spectral Sciences, Inc. under a U.S. Patent Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin 
(http://www.csie.ntu.edu.tw/~cjlin/libsvm), adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.

IMSL is a trademark of Visual Numerics, Inc. Copyright © 1970–2006 by Visual Numerics, Inc. All Rights Reserved.

Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Contents
Chapter 1
Importing and Writing Data into Variables ............................................ 7
Overview of Data Access in IDL ......................................................................................  8
Accessing Files Using Dialogs ..........................................................................................  9
Reading ASCII Data ........................................................................................................  11
Reading Binary Data .......................................................................................................  12
Accessing Files Programmatically ..................................................................................  14
Accessing Image Data Programmatically .......................................................................  16
Accessing Non-Image Data Programmatically ...............................................................  20
Using IDL Macros ...........................................................................................................  22
File Access Routines .......................................................................................................  29

Chapter 2
Getting Information About Files and Data .......................................... 31
Investigating Files and Data ............................................................................................  32
Returning Image File Information ...................................................................................  33
Using IDL 3



4

Returning Type and Size Information .............................................................................. 38
Getting Information About SAVE Files .......................................................................... 40
Returning Object Type and Validity ................................................................................ 45
Returning Information About a File ................................................................................ 47

Chapter 3
Graphic Display Essentials .................................................................  49
IDL Visual Display Systems ............................................................................................ 50
IDL Coordinate Systems .................................................................................................. 53
Coordinates of 3-D Graphics ........................................................................................... 55
Coordinate Conversions ................................................................................................... 58
Interpolation Methods ...................................................................................................... 61
Polygon Shading Method ................................................................................................. 63
Color Systems .................................................................................................................. 64
Display Device Color Schemes ....................................................................................... 67
Colors and IDL Graphic Systems .................................................................................... 69
Indexed and RGB Image Organization ............................................................................ 73
Loading a Default Color Table ........................................................................................ 78
Multi-Monitor Configurations ......................................................................................... 81
Using Fonts in Graphic Displays ..................................................................................... 90
Printing Graphics ............................................................................................................. 91

Chapter 4
Animations ............................................................................................  93
Overview of Motion JPEG2000 ....................................................................................... 94
Creating a Motion JPEG2000 Animation ........................................................................ 96
Adding Data to MJ2 Animations ..................................................................................... 98
Playing a Motion JPEG2000 Animation ........................................................................ 103
Controlling the Playback Rate ....................................................................................... 106
High Speed MJ2 Reading and Writing .......................................................................... 108

Chapter 5
Map Projections ..................................................................................  111
Overview of Mapping .................................................................................................... 112
Graphics Techniques for Mapping ................................................................................. 113
Map Projection Types .................................................................................................... 115
Azimuthal Projections .................................................................................................... 116
Contents Using IDL



5

Cylindrical Projections ..................................................................................................  125
Pseudocylindrical Projections .......................................................................................  130
High-Resolution Continent Outlines .............................................................................  134
References .....................................................................................................................  136

Chapter 6
Signal Processing ............................................................................... 137
Overview of Signal Processing .....................................................................................  138
Digital Signals ...............................................................................................................  139
Signal Analysis Transforms ..........................................................................................  141
The Fourier Transform ..................................................................................................  142
Interpreting FFT Results ...............................................................................................  143
Displaying FFT Results .................................................................................................  144
Using Windows .............................................................................................................  148
Aliasing .........................................................................................................................  151
FFT Algorithm Details ..................................................................................................  152
The Hilbert Transform ...................................................................................................  153
The Wavelet Transform .................................................................................................  155
Convolution ...................................................................................................................  156
Correlation and Covariance ...........................................................................................  157
Digital Filtering .............................................................................................................  158
Finite Impulse Response (FIR) Filters ..........................................................................  159
FIR Filter Implementation .............................................................................................  161
Infinite Impulse Response (IIR) Filters .........................................................................  163
References .....................................................................................................................  166

Chapter 7
Mathematics ........................................................................................ 167
Overview of Mathematics in IDL .................................................................................  168
IDL’s Numerical Recipes Functions .............................................................................  169
Correlation Analysis ......................................................................................................  170
Curve and Surface Fitting ..............................................................................................  174
Eigenvalues and Eigenvectors .......................................................................................  176
Gridding and Interpolation ............................................................................................  182
Hypothesis Testing ........................................................................................................  183
Integration .....................................................................................................................  185
Linear Systems ..............................................................................................................  190
Using IDL Contents



6

Nonlinear Equations ....................................................................................................... 197
Optimization .................................................................................................................. 199
Sparse Arrays ................................................................................................................. 201
Time-Series Analysis ..................................................................................................... 204
Multivariate Analysis ..................................................................................................... 207
References ...................................................................................................................... 213

Index ....................................................................................................  217
Contents Using IDL



Chapter 1

Importing and Writing 
Data into Variables
This chapter provides an introduction to accessing, reading and writing data using the dialogs, and 
routines found in IDL.
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8 Chapter 1: Importing and Writing Data into Variables
Overview of Data Access in IDL

There are several ways to open files and access the data that they contain in IDL.You 
can open a file using interface elements, or using routines. In order of increasing 
complexity and flexibility, your options are:

• Accessing data in iTools — use File → Open from an iTool, and browse to 
select a file. This option automatically displays data (that is a supported type) 
in the iTool. See Chapter 2, “Importing and Exporting Data” (iTool User’s 
Guide) for details. 

• Accessing files using dialogs — launch an IDL dialog and browse to select or 
save a file. After accessing the file, use an IDL routine to access the data 
within the file. You can then preform additional data processing task or create 
a display. See “Accessing Files Using Dialogs” on page 9 for details. 

• Accessing files programmatically — you can access data without requiring 
user interaction by using IDL statements in a program or at the command line. 
This give you the greatest control over the state of data at all times, but 
requires slightly more programming than the previous option. See “Accessing 
Files Programmatically” on page 14 for details.

There are advantages and disadvantages for each option. When you open a file using 
File → Open in the iTools, there is no opportunity to do pre-processing on the data. 
However, the display is created for you, and there are numerous interactive 
operations available. 

You can combine the flexibility of accessing data using routines with the power of an 
iTool display by launching the iTool from the command line as described in 
“Parameter Data and the Command Line” (Chapter 2, iTool User’s Guide). See 
“Accessing Image Data Programmatically” on page 16 and “Accessing Non-Image 
Data Programmatically” on page 20 for examples.

When you access data from the command line or in an IDL program, you have the 
greatest control over data modification. The iTools incorporate the functionality of 
many of the common data processing and manipulation routines. However, if you 
need greater control over data modification, want to create a custom display or object 
class, or need to use functionality that is not exposed through and iTool, you can 
import, export, and/or create your data programmatically. 

Regardless of the method selected, it is important to note that only the options 
involving iTools will automatically display data for you. In other instances, you will 
need to configure a display yourself. 
Overview of Data Access in IDL Using IDL



Chapter 1: Importing and Writing Data into Variables 9
Accessing Files Using Dialogs

DIALOG_PICKFILE and DIALOG_READ_IMAGE are the two primary file access 
dialogs in IDL. Use DIALOG_PICKFILE to select any type of file. You can select 
multiple files, define the directory or define file filters using keywords. Use 
DIALOG_READ_IMAGE to access supported image formats (listed in “Image File 
Formats” (Chapter 2, IDL Interface)). This dialog offers preview capabilities and 
basic image information. The corollary DIALOG_WRITE_IMAGE allows you to 
write data to a select image file type. 

See the following topics for more information:

• “Accessing Any File Type Using a Dialog” below

• “Importing an Image File Using a Dialog” on page 10

• “Saving an Image File Using a Dialog” on page 10

You can use other dialogs to access ASCII, binary and HDF data as described in:

• “Reading ASCII Data” on page 11

• “Reading Binary Data” on page 12 

Also, several pre-defined IDL macros are provided to help you import data into the 
IDLDE. Each returns a structure, which you access programmatically in order to 
retrieve data. See “Using IDL Macros” on page 22 for details.

Note
Also see “CW_FILESEL” (IDL Reference Guide) for an example that configures a 
compound widget to open image files. 

Accessing Any File Type Using a Dialog

The DIALOG_PICKFILE function lets you interactively pick a file using the 
platform’s own native graphical file selection dialog. This function returns a string or 
an array of strings that contain the full path name of the selected file or files. The user 
can also enter the name of the file. The following statement opens the selection dialog 
and shows any .pro files in the current working directory. If you select a file and 
click Open, the file variable contains the full file path. 

file = DIALOG_PICKFILE(/READ, FILTER = '*.pro')

Other keywords allow you to specify the initial directory, the dialog title, the filter 
list, and whether multiple file selection is permitted. See “DIALOG_PICKFILE” 
(IDL Reference Guide) for details.
Using IDL Accessing Files Using Dialogs



10 Chapter 1: Importing and Writing Data into Variables
After you select a file using DIALOG_PICKFILE, you can then use one of the file 
I/O routines to access the data within the file. See “Accessing Image Data 
Programmatically” on page 16 or “Accessing Non-Image Data Programmatically” on 
page 20 for more information.

Importing an Image File Using a Dialog

The DIALOG_READ_IMAGE function opens a graphical user interface which lets 
you read image files. This interface simplifies the use of IDL image file I/O. You can 
preview images with a quick and simple browsing mechanism which also reports 
important information about the image file. You can also control the preview mode. 

The following statement opens the dialog so that you can select among .gif, tiff, 
.dcm, .png and .jpg files. 

result = DIALOG_READ_IMAGE(FILE=selectedFile, IMAGE=image)

See “Using the Select Image File Dialog Interface” under 
“DIALOG_READ_IMAGE” (IDL Reference Guide) for additional information if 
desired. When you select a file and click Open, the file path is stored in 
selectedFile variable and the image data is stored in the image variable. Enter 
the following line to display image data in an iImage display.

IF result EQ 1 THEN iImage, image

Saving an Image File Using a Dialog

The DIALOG_WRITE_IMAGE function displays a graphical user interface that lets 
you write and save image files. This interface simplifies the use of IDL image file 
I/O. The following statements create and write a simple image to a .tif file name 
myimage.tif:

myimage = DIST(100)
result = DIALOG_WRITE_IMAGE(myimage, FILENAME='myimage.tif') 

When you select Save, it creates a .tif file in your current working directory or the 
directory of your choice. See “DIALOG_WRITE_IMAGE” (IDL Reference Guide) 
for a complete list of keywords and a description of the dialog interface. 
Accessing Files Using Dialogs Using IDL
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Reading ASCII Data

IDL recognizes two types of ASCII data files: free format files, and explicit format 
files. A free format file uses commas or tabs and spaces to distinguish each element 
in the file. An explicit format file distinguishes elements according to the commands 
specified in a format statement. Most ASCII files are free format files.

Note
If you prefer not to use an interactive dialog (described below), you can also use the 
READ/READF, or READS procedures to access ASCII data. The READ procedure 
reads free format data from standard input, READF reads free format data from a 
file, and READS reads free format data from a string variable.

Launching the ASCII Template Dialog

The ASCII_TEMPLATE function launches a dialog that you can use to configure the 
structure of data in an ASCII file. Access this feature in one of the following ways: 

• From an iTool — select File → Open (or click the Import File button in the 
Data Manager or Insert Visualization dialog) and select a text file 

• From the IDLDE — select Macros → Import ASCII and select a text file

• From the IDL command line — use the following syntax to call 
ASCII_TEMPLATE and select a text file:

sTemplate = ASCII_TEMPLATE()

Note
If you specify a Filename argument to ASCII_TEMPLATE, the dialog 
allowing you to browse to select a file will not appear. See 
“ASCII_TEMPLATE” (IDL Reference Guide) if you want specify a file and 
other parameters programmatically. 

See “Using the ASCII Template Dialog” under “ASCII_TEMPLATE” (IDL 
Reference Guide) for instructions on how to use the dialog to define the structure of 
your ASCII data. 
Using IDL Reading ASCII Data



12 Chapter 1: Importing and Writing Data into Variables
Reading Binary Data

Data is sometimes stored in files as arrays of bytes instead of a known format like 
JPEG or TIFF. These files are referred to as binary files. Binary data or binary data 
files are more compact than ASCII data files and are frequently used for large data 
files. Binary data files are stored as one long stream of bytes in a file. You will need 
to define the structure of the fields in the file in order to correctly read in the binary 
data. 

The BINARY_TEMPLATE and READ_BINARY functions are designed to define 
and access binary data. The READ_BINARY function, which reads binary data, is 
either invoked internally (when you open a binary file from the iTools or use the 
Import Binary macro), or is explicitly called from the command line. This function 
is intended to read raw binary data that requires no special processing (except 
possibly byte-order swapping). This function is not designed to read commercial 
spreadsheet or word processing files.

Note
If you prefer not to use an interactive Binary Template dialog (described below) to 
define the structure of the data in the binary file, you can use the READU 
procedure. To read binary data files, define the variables, open the file for reading, 
and read the bytes into those variables. Each variable reads as many bytes out of the 
file as required by the specified data type and organizational structure.

If you need to open a single binary file, it may be easier to use READ_BINARY to 
directly define data characteristics using keywords instead of creating a template 
using the Binary Template dialog (described below). See “READ_BINARY” (IDL 
Reference Guide) for an example. 

Launching the Binary Template Dialog

The BINARY_TEMPLATE function launches a dialog that you can use to define the 
structure of data in an binary file. Access this feature in one of the following ways: 

• From an iTool — select File → Open (or click the Import File button in the 
Data Manager or Insert Visualization dialog) and select a binary file 

• From the IDLDE — select Macros → Import Binary and select a binary file

• From the IDL command line — use the following syntax to call 
BINARY_TEMPLATE and select a text file:

sTemplate = BINARY_TEMPLATE()
Reading Binary Data Using IDL
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Note
If you specify a Filename argument to BINARY_TEMPLATE, the dialog 
allowing you to browse to select a file will not appear. See 
“BINARY_TEMPLATE” (IDL Reference Guide) if you want specify a file 
and other parameters programmatically. 

See “Using the BINARY_TEMPLATE Interface” under “BINARY_TEMPLATE” 
(IDL Reference Guide) for instructions on how to use the dialog to define the 
structure of your binary file. 
Using IDL Reading Binary Data



14 Chapter 1: Importing and Writing Data into Variables
Accessing Files Programmatically

Regardless of the data type, there are several routines that are commonly used to 
access files and data. To read data into an IDL variable, you must identify the file 
containing the data, and then extract the data from the file. This section discusses file 
access. Following sections (discuss data access. 

File Access

One of the most common file access routines is FILEPATH. Use this to select a 
named file in a specified directory. For example, to select a file in the 
examples/data directory of the existing working directory, use the statement:

file = FILEPATH('mr_brain.dcm', SUBDIRECTORY=['examples', 'data'])

To access a file outside the existing working directory, use the ROOT_DIR keyword. 
The following statement opens a file named testImg.tif in the C:\tempImages 
directory. 

file = FILEPATH('testImg.tif', ROOT_DIR='C:', $
SUBDIRECTORY='tempImages')

Cross-platform File Access

If your application requires a cross-platform path, one that is not specific to UNIX or 
Windows, consider using the DIALOG_PICKFILE routine with the GET_PATH 
keyword. This lets you choose a file and store the operating system native path to the 
file in a variable. In the following example, you choose an image file and the full 
directory path to the selected image is stored in path: 

sFile = DIALOG_PICKFILE(/MUST_EXIST, $
   TITLE = 'Select an Image File', $
   FILTER = ['*.bmp', '*.jpg', '*.png', '*.ppm', '*.tif'], $

GET_PATH=path)

When you need to access a file in the directory stored in path, you can use the 
PATH_SEP function to return the correct path separation character for the operating 
system. Suppose you have a file called myTestFile.jpg that you want to delete 
before a program ends. FILE_DELETE requires a string File argument that is in the 
native syntax for the current operating system. To delete this file, you can use the 
directory information stored in path, plus the PATH_SEP function, plus the name of 
the file to delete as follows (the + operator concatenates strings): 

FILE_DELETE, path+PATH_SEP()+'myTestFile.jpg', /ALLOW_NONEXISTENT
Accessing Files Programmatically Using IDL
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IDL also provides an extensive number of other file manipulation routines. See 
“General File Access” under the functional category “Input/Output” (IDL Quick 
Reference) for a list. 

FILEPATH is often used in conjunction with routines that access the data from a file, 
as shown in the following section. 
Using IDL Accessing Files Programmatically
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Accessing Image Data Programmatically

You can access image data using routines designed for general image file access, 
designed specifically for an image file format, or using unformatted data access 
routines. Which option you choose depends on the file type and the level of control 
you want over reading and writing the file. See the following topics for details:

• “Importing Formatted Image Data Programmatically” below

• “Importing Unformatted Image Files” on page 17

• “Exporting Formatted Image Files Programmatically” on page 18

• “Exporting Unformatted Image Files” on page 19

Note
These sections describe how to load data into a variable and includes examples of 
passing variable data to an iTool programmatically. See “Importing Data from the 
IDL Session” (Chapter 2, iTool User’s Guide) if you want information on how you 
can access variable data from the iTools Data Manager. 

Importing Formatted Image Data Programmatically

The majority of IDL image data access routine require a file specification, indicating 
the file from which to access the data. The FILEPATH routine is often used within a 
data access routine as shown in the following example.

Note
To validate that an image file can be accessed using READ_* routines, you can 
query the image first. See “Returning Image File Information” on page 33 for 
details. 

The following example opens a JPEG file from the examples/data directory, 
performs feature extraction, and displays both images using IIMAGE. 

; Open a file and access the data. 
file = FILEPATH('n_vasinfecta.jpg', $
   SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, image, /GRAYSCALE

; Mask out pixel values greater than 120 
; and create a distance map.
binaryImg = image LT 120
distanceImg = MORPH_DISTANCE(binaryImg, NEIGHBOR_SAMPLING = 1)
Accessing Image Data Programmatically Using IDL
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; Launch iImage, creating a 2 column, 1 row layout. 
; Display the original and distanceImg in the two views. 
IIMAGE, image, VIEW_GRID=[2,1]
IIMAGE, distanceImg, /VIEW_NEXT, /OVERPLOT

In the previous example, you could use the READ_IMAGE function instead of the 
READ_JPEG function by replacing the following statement:

READ_JPEG, file, image, /GRAYSCALE

with

image = READ_IMAGE(file)

In this instance, you do not have control over the color table associated with the 
image. It is often more useful to use a specific READ_* routine or object designed 
for the image file format to precisely control characteristics of the imported image. 

For a list of available image access, import and export routines and objects, see 
“Image Data Formats” under the functional category “Input/Output” (IDL Quick 
Reference). 

Note
IDL can also import images stored in scientific data formats, such as HDF and 
netCDF. For more information on these formats, see the Scientific Data Formats 
manual.

Importing Unformatted Image Files

Images in unformatted binary files can be imported with the READ_BINARY 
function using the DATA_DIMS and DATA_TYPE keywords as follows:

• You must specify the size of the image within the file using the DATA_DIMS 
keyword. This is required because the READ_BINARY function assumes the 
data values are arranged in a single vector (a one-dimensional array). The 
DATA_DIMS keyword is used to specify the size of the two- or three-
dimensional image array.

• You can set the DATA_TYPE keyword to the image’s data type using the 
associated IDL type code (see “IDL Type Codes and Names” under the SIZE 
function in the IDL Reference Guide for a complete list of type code). Most 
images in binary files are of the byte data type, which is the default setting for 
the DATA_TYPE keyword.

No standard exists by which image parameters are provided in an unformatted binary 
file. Often, these parameters are not provided at all. In this case, you should already 
Using IDL Accessing Image Data Programmatically
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be familiar with the size and type parameters of any images you need to access within 
binary files.

For example, the worldelv.dat file is a binary file that contains an image. You can 
only import this image by supplying the information that the data values of the image 
are byte and that the image has dimensions of 360 pixels by 360 pixels. Before using 
the READ_BINARY function to access this image, you must first determine the path 
to the file:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

Define the size parameters of the image with a vector:

imageSize = [360, 360]

An image type parameter is not required because we know that the data values of 
image are byte, which is the default type for the READ_BINARY function.

The READ_BINARY function can now be used to import the image contained in the 
worldelv.dat file:

image = READ_BINARY(file, DATA_DIMS = imageSize)
IIMAGE, image

Exporting Formatted Image Files Programmatically

Images can be exported to common image file formats using the WRITE_IMAGE 
procedure. The WRITE_IMAGE procedure requires three inputs: the exported file’s 
name, the image file type, and the image itself. You can also provide the red, green, 
and blue color components to an associated color table if these components exist.

For example, you can import the image from the worldelv.dat binary file:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [360, 360]
image = READ_BINARY(file, DATA_DIMS = imageSize)

You can export this image to an image file (a JPEG file) with the WRITE_IMAGE 
procedure:

WRITE_IMAGE, 'worldelv.dat', 'JPEG', image

IDL also provides format-specific WRITE_* routines that are similar to the 
WRITE_IMAGE procedure, but provide more flexibility when exporting a specific 
image file type. See “Image Data Formats” under the functional category 
“Input/Output” (IDL Quick Reference) for a list of available image access, import and 
export routines and objects. 
Accessing Image Data Programmatically Using IDL
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Note
IDL can also export images stored in scientific data formats, such as HDF and 
netCDF. For more information on these formats, see the Scientific Data Formats 
manual.

Exporting Unformatted Image Files

Images can be exported to an unformatted binary file with the WRITEU procedure. 
Before using the WRITEU procedure, you must open a file to which the data will be 
written using the OPENW procedure. Any file you open must be specifically closed 
using either the FREE_LUN or CLOSE procedure when you are done exporting the 
image.

For example, you can import the image from the rose.jpg image file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_IMAGE(file)

You can export this image to a binary file by first opening a new file:

OPENW, unit, 'rose.dat', /GET_LUN

Then, use the WRITEU procedure to write the image to the open file:

WRITEU, unit, image

You must remember to close the file once the data has been written to it:

FREE_LUN, unit

Note
For complete details about reading, writing and formatting unformatted data, see 
Chapter 18, “Files and Input/Output” (Application Programming).
Using IDL Accessing Image Data Programmatically
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Accessing Non-Image Data Programmatically

There are a number of options available for reading non-image data into IDL. 
Depending upon the file type, consider using one of the following:

• Formatted data — use a data-type-specific routine (such as READ_ASCII or 
READ_BINARY). See “Reading Binary Data in a Volume” below for more 
information.

• Unformatted data — use a general data access routines (such as OPEN or 
WRITE). For complete details about reading, writing and formatting 
unformatted data, see Chapter 18, “Files and Input/Output” (Application 
Programming).

• SAVE file data — use the RESTORE procedure to access variable data in a 
SAVE file. See “Reading Contour Data from a SAVE File” on page 21 for an 
example.

Note
These sections describe how to load data into a variable and includes examples of 
passing variable data to an iTool programmatically. See “Importing Data from the 
IDL Session” (Chapter 2, iTool User’s Guide) if you want information on how you 
can access variable data from the iTools Data Manager. 

Reading Binary Data in a Volume

The following example uses READ_BINARY to access binary data (head.dat) 
consisting of a stack of 57 images slices of the human head. After reading the data, 
create a display using IVOLUME. Enter the following at the IDL command prompt:

file = FILEPATH('head.dat', $
SUBDIRECTORY = ['examples', 'data'])

dataSize = [80,100,57]
volume= READ_BINARY(file, DATA_DIMS = dataSize)
iVolume, volume, /AUTO_RENDER

Note
You can also create a template for binary file access. See “Reading Binary Data” on 
page 12 for options. 
Accessing Non-Image Data Programmatically Using IDL
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Reading Contour Data from a SAVE File

You can also access information from a SAVE file. This example restores a SAVE 
file containing variable data (marbells.dat), configures the data, and displays it 
using ICONTOUR.

PRO maroonBellsContour_doc

; Restore Maroon Bells data into the IDL variable "elev". 
RESTORE, FILEPATH('marbells.dat', SUBDIR=['examples','data'])

; Create x and y vectors giving the position of each 
; column and row.
X = 326.850 + .030 * FINDGEN(72)
Y = 4318.500 + .030 * FINDGEN(92)

; Set missing data points to a large value. Reduce to a
; 72 x 92 matrix. 
elev (WHERE (elev EQ 0)) = 1E6 
new = REBIN(elev, 360/5, 460/5) 

iContour, new, X, Y, C_VALUE = 2750 + FINDGEN(6) * 250.,$
 XSTYLE = 1, YSTYLE = 1, YMARGIN = 5, MAX_VALUE = 5000, $ 
   C_LINESTYLE = [1, 0], $ 
   C_THICK = [1, 1, 1, 1, 1, 3], $ 
   XTITLE = 'UTM Coordinates (KM)'
   
End 

Note
See Chapter 4, “Creating SAVE Files of Programs and Data” (Application 
Programming) for complete details on creating and restoring SAVE files. 
Using IDL Accessing Non-Image Data Programmatically
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Using IDL Macros

When you are working in the IDLDE, you can use a pre-defined macro to help you 
import image, ASCII, binary or HDF data. These macros call internal functions and 
return structures containing data. From the IDL command line, you can access and 
display data elements contained in the structures. These macros are available through 
the Macros menu and also through IDL toolbar buttons. 

See the follow sections for more information: 

• “Using Macros to Import Image Files” on page 23

• “Using Macros to Import ASCII Files” on page 25

• “Using Macros to Import Binary Files” on page 27

• “Using Macros to Import HDF Files” on page 28

Figure 1-1: Macro Toolbar Buttons 

Import ASCII File Import Binary File

Import HDF 
File

Import Image 
File
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Using Macros to Import Image Files

To import an image file into IDL using a macro, complete the following steps:

1. Select the Import Image toolbar button. The Select Image File dialog is 
displayed.

2. Select a file to import. For example, select the 
IDL_DIR/examples/data/muscle.jpg file where IDL_DIR is the 
installation directory for IDL. See “Using the Select Image File Dialog 
Interface” under “DIALOG_READ_IMAGE” (IDL Reference Guide) for 
additional information if desired. 

3. Click Open.

The muscle.jpg image data has been opened into a structure variable named 
MUSCLE_IMAGE. The Import Image macro opens and stores image data in a 
structure variable named filename_IMAGE where filename is the name of the file 
you opened without the extension. 

Note
IDL variables must begin with a letter, and may contain only letters, digits, the 
underscore character, or the dollar sign. If the first character of filename is not a 
letter, the prefix “var” is added to the variable name. Any spaces within filename 
are converted to underscores. Any other illegal characters within filename are 
removed.

The MUSCLE_IMAGE structure contains the following fields:

• IMAGE — The actual image array.

• R — The red color table vectors.

• G — The green color table vectors.

• B — The blue color table vectors.

• QUERY — Contains information about the image.

• CHANNELS — The number of channels in the image.

• HAS_PALETTE — Specifies if the palette is present. 1 if the palette is 
present, else 0. If your image is n-by-m the palette is usually present and 
the R, G, and B color table vectors mentioned above will contain values. If 
your image is 3-by-n-by-m, the palette will not be present and the R,G, and 
B color table vectors will not contain any values.
Using IDL Using Macros to Import Image Files
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• IMAGE_INDEX — The index of the image of the file. The default is 0, 
the first image in the file. If there are multiple images in the file that you 
read, this will be the number (or index) of the image.

• NUM_IMAGES — The number of images in the original file.

• PIXEL_TYPE — The IDL Type Code of the image pixel format. Valid 
types are described in “IDL Type Codes and Names” under “SIZE” (IDL 
Reference Guide).

• TYPE — The image format type. 

The structure can be viewed in the Variable Watch Window.

You can specify which part of the structure variable you want to access by using the 
following syntax:

variable_name.element_name[.element_name]

For example, if you want to view the image, enter the following:

IIMAGE, MUSCLE_IMAGE.IMAGE

If you want to know the file type, enter the following:

PRINT, MUSCLE_IMAGE.QUERY.TYPE

IDL prints:

JPEG

Figure 1-2: Variable Watch Window Showing MUSCLE_IMAGE Structure
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Using Macros to Import ASCII Files

To import an ASCII file into IDL using a macro, complete the following steps:

1. Select the Import ASCII toolbar button. The Select an ASCII file to read 
dialog appears. 

2. Select a file to import. 

3. See “Using the ASCII Template Dialog” under “ASCII_TEMPLATE” (IDL 
Reference Guide) for instructions on how to use the dialog to define the 
structure of your ASCII data. 

ASCII files opened with the Import ASCII macro are stored in structure variables 
which are named filename_ASCII where filename is the name of the file you opened 
without the extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the 
underscore character, or the dollar sign. If the first character of filename is not a 
letter, the prefix “var” is added to the variable name. Any spaces within filename 
are converted to underscores. Any other illegal characters within filename are 
removed.

For example, if you opened ascii.txt, the data is now in the structure variable 
named ASCII_ASCII. Each field (named in the ASCII Template dialog) is an 
element of the structure. 

The structure can be viewed in the Variable Watch Window.

Figure 1-3: Variable Watch Window Showing ASCII_ASCII Structure
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You can specify which part of the structure variable you want to access by using the 
following syntax:

variable_name.element_name

For example, if you want to view the Longitude field data, enter the following:

Print, ASCII_ASCII.LONGITUDE

If you want to plot the Temperature data, enter the following:

IPLOT, ASCII_ASCII.TEMPERATURE

The following figure results.

Figure 1-4: Plot of ASCII_ASCII.TEMPERATURE
Using Macros to Import ASCII Files Using IDL
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Using Macros to Import Binary Files

To import a binary file into IDL using a macro, complete the following steps:

1. Select the Import Binary toolbar button. The Select a binary file to read 
dialog appears.

2. Select a file to import. For example, select the surface.dat from the 
examples/data directory in your IDL installation directory. Click Open.

3. See Using the BINARY_TEMPLATE Interface under 
“BINARY_TEMPLATE” (IDL Reference Guide) for instructions on how to 
use the dialog to define the structure of your binary data. 

Binary files opened with the Import Binary File macro are stored in structure 
variables which are named filename_BINARY where filename is the name of the file 
you opened without the extension. 

Note
IDL variables must begin with a letter, and may contain only letters, digits, the 
underscore character, or the dollar sign. If the first character of filename is not a 
letter, the prefix “var” is added to the variable name. Any spaces within filename 
are converted to underscores. Any other illegal characters within filename are 
removed.

So, the file we just opened (surface.dat) is now in the structure variable named 
SURFACE_BINARY. The variable is a structure, and contains elements that are the 
field names defined in the Binary Template dialog. In this case the single field is 
named marbells. The structure can be viewed in the Variable Watch Window.

Access data from the structure variable using the following syntax:

variable_name.element_name

For example, display the surface by entering:

ISURFACE, SURFACE_BINARY.marbells

Figure 1-5: Variable Watch Window Showing MARBELLS_BINARY Structure
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Using Macros to Import HDF Files

To import a Hierarchical Data Format (HDF), HDF-EOS, or NETCDF file into IDL, 
complete the following steps:

1. Select the Import HDF File toolbar button. The Select a valid HDF, 
NETCDF or HDF-EOS file dialog is displayed.

2. Select a file to import. Click Open.

3. See “Using the HDF Browser Interface” under “HDF_BROWSER” for 
instructions on how to use the dialog. 

After selecting to import data and clicking OK, HDF, NETCDF, or HDF-EOS files 
read with the Import HDF macro are stored in structure variables which are named 
filename_DF where filename is the name of the file you opened without the 
extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the 
underscore character, or the dollar sign. If the first character of filename is not a 
letter, the prefix “var” is added to the variable name. Any spaces within filename 
are converted to underscores. Any illegal characters within filename are removed.

The variable is a structure with each data or metadata name being an element of the 
structure. You can specify which part of the structure variable you want to access by 
using the following syntax:

variable_name.data_name

For example, if you imported two data elements out of a file named hydrogen.hdf 
and you named the elements IMAGE1 and IMAGE2, you could access each individual 
data element using the following:

HYDROGEN_DF.IMAGE1
HYDROGEN_DF.IMAGE2

If you wanted to view IMAGE1, you would enter:

IIMAGE, HYDTROGEN_DF.IMAGE1

For more information on IDL support of HDF and other scientific data formats, see 
the Scientific Data Formats manual.

For information on importing HDF5 files using the HDF5 Browser dialog, see 
“H5_BROWSER” (IDL Reference Guide)
Using Macros to Import HDF Files Using IDL
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File Access Routines 

See the following categories under “Input/Output” (IDL Quick Reference) for a list of 
available file and data access routines: 

• “Image Data Formats” — includes read and write routines for supported image 
formats (such as JPEG, TIFF, DICOM, etc.), and routines that launch dialogs 
for image file access.

• “Scientific Data Formats” — includes CDF, EOS, NCDF, HDF, and HDF5 
routines.

• “Other Data Formats” — includes routines that access ASCII, BINARY, 
XML, and other non-image data formats.

• “General Input/Output” — includes READ, WRITE and other routines 
commonly used when accessing unformatted data. Also see Chapter 18, “Files 
and Input/Output” for information on using these routines and formatting your 
data. 
Using IDL File Access Routines
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Investigating Files and Data

There are a number of routines and functions in IDL that allow you to quickly access 
information about your data. While it is always a good idea to know your data before 
processing, the routines in this chapter can help you uncover details of arrays, 
expressions, SAVE files, objects, or specific images. 

Accessing Information in iTools

When you are working in the iTools, there are a number of ways to get information 
about variable data, an object’s properties, an image’s statistical information, and the 
data hierarchy. For more information about these options, see the following topics: 

• “About the Data Manager” (Chapter 2, iTool User’s Guide) provides 
information on data associated with a visualization

• “The Visualization Browser” (Chapter 6, iTool User’s Guide) provides 
information on the properties of a visualization

• “Additional Operations” (Chapter 7, iTool User’s Guide) describes the 
Histogram and Statistics windows available in iTools 
Investigating Files and Data Using IDL
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Returning Image File Information 

When accessing formatted image data (not contained in a binary file), there are a 
number of ways to get information about the data characteristics. The most flexible is 
the QUERY_IMAGE routine, which returns a structure that includes the number of 
image channels, pixel data type and palette information. If you need specific 
information from a formatted image file, you can use the QUERY* routine 
specifically designed for images of that format. 

Note
You can also use the SIZE function to quickly return the size of an image array. See 
“Using SIZE to Return Image Dimensions” on page 39 for details. 

Using the QUERY_IMAGE Info Structure

Common image file formats contain standardized header information that can be 
queried. IDL provides the QUERY_IMAGE function to return valuable information 
about images stored in supported image file formats.

For example, using the QUERY_IMAGE function, you can return information about 
the mineral.png file in the examples/data directory. First, access the file. Then 
use the QUERY_IMAGE function to return information about the file:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

queryStatus = QUERY_IMAGE(file, info)

To determine the success of the QUERY_IMAGE function, print the value of the 
query variable:

PRINT, 'Status = ', queryStatus

IDL prints

queryStatus = 1

If queryStatus is zero, the file cannot be accessed with IDL. If queryStatus is one, the 
file can be accessed. Because the query was successful, the info variable is now an 
IDL structure containing image parameters. The tags associated with this structure 
variable are standard across image files. You can view the tags of this structure by 
setting the STRUCTURE keyword to the HELP command with the info variable as 
its argument:

HELP, info, /STRUCTURE
Using IDL Returning Image File Information
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IDL displays the following text in the Output Log:

** Structure <1407e70>, 7 tags, length=36, refs=1:
   CHANNELS LONG 1
   DIMENSIONS LONG Array[2]
   HAS_PALETTE INT 1
   IMAGE_INDEX LONG 0
   NUM_IMAGES LONG 1
   PIXEL_TYPE INT 1
   TYPE STRING 'PNG'

The structure tags provide the following information:

Tag Description

CHANNELS Provides the number of dimensions within the image array:

• 1 – two-dimensional array

• 3 – three-dimensional array

Print the number of dimensions using:

PRINT, 'Number of Channels: ', info.channels

For the mineral.png file, IDL prints:

Number of Channels:           1

DIMENSIONS Contains image array information including the width and 
height. Print the image dimensions using:

PRINT, 'Size: ', info.dimensions

For the mineral.png file, IDL prints:

Size:           288         216

HAS_PALETTE Describes the presence or absence of a color palette:

• 1 (True) – the image has an associated palette

• 0 (False) – the image does not have an associated palette

Print whether a palette is present or not using:

PRINT, 'Is Palette Available?: ', info.has_palette

For the mineral.png file, IDL prints:

Is Palette Available?:           1

Table 2-1: Image Structure Tag Information
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IMAGE_INDEX Gives the zero-based index number of the current image. Print 
the index of the image using:

PRINT, 'Image Index: ', info.image_index

For the mineral.png file, IDL prints:

Image Index:           0

NUM_IMAGES Provides the number of images in the file. Print the number of 
images in the file using:

PRINT, 'Number of Images: ', info.num_images

For the mineral.png file, IDL prints:

Number of Images:           1

Tag Description

Table 2-1: Image Structure Tag Information (Continued)
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From the contents of the info variable, it can be determined that the single image 
within the mineral.png file is an indexed image because it has only one channel (is 
a two-dimensional array) and it has a color palette. The image also has byte pixel 
data. 

PIXEL_TYPE Provides the IDL type code for the image pixel data type:

• 0 – Undefined

• 1 – Byte

• 2 – Integer

• 3 – Longword integer

• 4 – Floating point

• 5 – Double-precision floating

• 6 – Complex floating

• 9 – Double-precision complex

• 12 – Unsigned Integer

• 13 – Unsigned Longword Integer

• 14 – 64-bit Integer

• 15 – Unsigned 64-bit Integer

See “IDL Type Codes and Names” under the SIZE function in 
the IDL Reference Guide for a complete list of type codes.

Print the data type of the pixels in the image using:

PRINT, 'Data Type: ', info.pixel_type

For the mineral.png file, IDL displays the following text in 
the Output Log:

Data Type:           1

TYPE Identifies the image file format. Print the format of the file 
containing the image using:

PRINT, 'File Type: ' + info.type

For the mineral.png file, IDL prints:

File Type: PNG

Tag Description

Table 2-1: Image Structure Tag Information (Continued)
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Note
When working with RBG images (with a CHANNELS value of 3) it is important to 
determine the interleaving (the arrangement of the red, green, and blue channels of 
data) in order to properly display these image. See “RGB Image Interleaving” 
(Chapter 3, Using IDL) for an example that shows you how to determine the 
arrangement of these channels. 

Using Specific QUERY_* Routines 

All of the QUERY_* routines return a status, which determines if the file can be read 
using the corresponding READ_ routine. All of these routines also return the Info 
structure, (described in the previous section), which reports image dimensions, 
number of samples per pixel, pixel type, palette info, and the number of images in the 
file. However, some of the QUERY_* routines (such as QUERY_MRSID and 
QUERY_TIFF) return more detailed information particular to that specific image 
format. See “Query Routines” (IDL Quick Reference) for a complete list of the 
available QUERY_* routines. 
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Returning Type and Size Information

The SIZE function returns size and type information for a given expression. The 
returned vector is always of longword type. 

• The first element is equal to the number of dimensions of the parameter and is 
zero if the parameter is a scalar.

• The next elements contain the size of each dimension.

• After the dimension sizes, the last two elements indicate the data type and the 
total number of elements, respectively. 

See “IDL Type Codes and Names” under the SIZE function in the IDL Reference 
Guide for a complete list of type codes. See the following examples for more 
information on the SIZE function:

• “Determining if a Variable is a Scalar or an Array” below

• “Using SIZE to Return Image Dimensions” on page 39

In addition to the examples listed above, also see the following SIZE function 
examples in the IDL Reference Guide:

• “Example: Returning Array Dimension Information”

• “Example: Returning the IDL Type Code of an Expression”

Determining if a Variable is a Scalar or an Array

The SIZE function can be used to determine whether a variable holds a scalar value 
or an array. Setting the DIMENSIONS keyword causes the SIZE function to return a 
0 if the variable is a scalar, or the dimensions if the variable is an array:

A = 1
B = [1]
C = [1,2,3]
D = [[1,2],[3,4]]

PRINT, SIZE(A, /DIMENSIONS)
PRINT, SIZE(B, /DIMENSIONS)
PRINT, SIZE(C, /DIMENSIONS)
PRINT, SIZE(D, /DIMENSIONS)

IDL Prints:

0
1
3

Returning Type and Size Information Using IDL
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2 2

Using SIZE to Return Image Dimensions

The following example reads an image array and uses the SIZE function 
DIMENSIONS keyword to access the number of rows and columns in the image file. 
In this simple example, the information is used to create a display window of the 
correct size. 

PRO ex_displayImage

; Select and read the image file.
earth = READ_PNG (FILEPATH ('avhrr.png', $

SUBDIRECTORY = ['examples', 'data']), R, G, B)

; Load the color table and designate white to occupy the
; final position in the red, green and blue bands.
TVLCT, R, G, B
maxColor = !D.TABLE_SIZE - 1
TVLCT, 255, 255, 255, maxColor

; Prepare the display device.
DEVICE, DECOMPOSED = 0, RETAIN = 2

; Get the size of the original image array.
earthSize = SIZE(earth, /DIMENSIONS)

; Prepare a window and display the new image.
WINDOW, 0, XSIZE = earthSize[0], YSIZE = earthSize[1]
TV, earth

END
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Getting Information About SAVE Files

The IDL_Savefile object provides an object-oriented interface that allows you to 
query a SAVE file for information and restore one or more individual items from the 
file. Using IDL_Savefile, you can retrieve information about the user, machine, and 
system that created the SAVE file, as well as the number and size of the various items 
contained in the file (variables, common blocks, routines, etc). Individual items can 
be selectively restored from the SAVE file.

Use IDL_Savefile in preference to the RESTORE procedure when you need to obtain 
detailed information on the items contained within a SAVE file without first restoring 
it, or when you wish to restore only selected items. Use RESTORE when you want to 
restore everything from the SAVE file using a simple interface.

Note
The IDL_Savefile object does not provide methods that allow you to modify an 
existing SAVE file. The only way to modify an existing SAVE file is to restore its 
contents into a fresh IDL session, modify the contained routines or variables as 
necessary, and use the SAVE procedure to create a new version of the file.

To use the IDL_Savefile object to restore items from an existing SAVE file, do the 
following:

• Create a Savefile Object

• Query the Savefile Object

• Restore Items from the Savefile Object

• Destroy the Savefile Object

The following sections describe each of these steps. For complete information on the 
IDL_Savefile object and its methods, see “IDL_Savefile” (Chapter 11, IDL 
Reference Guide).

Create a Savefile Object

When an IDL_Savefile object is instantiated, it opens the actual SAVE file for 
reading and creates an in-memory representation of its contents — without actually 
restoring the file. The savefile object persists until it is explicitly destroyed (or until 
the IDL session ends); the SAVE file itself is held open for reading as long as the 
savefile object exists.
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To create a savefile object from the draw_arrow.sav file created in “Example: A 
SAVE File of a Simple Routine” (Chapter 4, Application Programming), use the 
following command:

myRoutines = OBJ_NEW('IDL_Savefile', 'draw_arrow.sav')

Similarly, to create a savefile object from the saved image data, use the following 
command:

myImage = OBJ_NEW('IDL_Savefile', 'imagefile.sav')

Query the Savefile Object

Once you have created a savefile object, three methods allow you to retrieve 
information about its contents:

• The Contents method provides information about the SAVE file including the 
number and type of items contained therein. 

• The Names method allows you to retrieve the names of routines and variables 
stored in the file. 

• The Size method allows you to retrieve size and type information about the 
variables stored in the file.

Contents Method

The Contents method returns a structure variable that describes the SAVE file and its 
contents. The individual fields in the returned structure are described in detail in 
“IDL_Savefile::Contents” (Chapter 11, IDL Reference Guide).

In addition to providing information about the system that created the SAVE file, the 
Contents method allows you to determine the number of each type of saved item 
(variable, procedure, function, etc.) in the file. This information can be used to 
programmatically restore items from the SAVE file.

Assuming you have created the myRoutines savefile object, the data returned by the 
Contents method looks like this:

savefileInfo = myRoutines->Contents()
HELP, savefileInfo, /STRUCTURE

IDL Prints:

** Structure IDL_SAVEFILE_CONTENTS, 17 tags, length=176, data leng
th=172:

FILENAME STRING    '/itt/test/draw_arrow.sav'
DESCRIPTION STRING    ''
FILETYPE STRING    'Portable (XDR)'
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USER STRING    'dquixote'
HOST STRING    'DULCINEA'
DATE STRING    'Thu May 08 12:04:46 2003'
ARCH STRING    'x86'
OS STRING    'Win32'
RELEASE STRING    '6.4'
N_COMMON LONG64                         0
N_VAR LONG64                         0
N_SYSVAR LONG64                         0
N_PROCEDURE LONG64                         2
N_FUNCTION LONG64                         0
N_OBJECT_HEAPVAR LONG64                         0
N_POINTER_HEAPVAR LONG64                         0
N_STRUCTDEF LONG64                         0

From this you can determine the name of the SAVE file from which the information 
was extracted, the names of the user and computer who created the file, the creation 
date, and information about the IDL system that created the file. You can also see that 
the SAVE file contains definitions for two procedures and nothing else.

Names Method

The Names method returns a string array containing the names of the variables, 
procedures, functions, or other items contained in the SAVE file. By default, the 
method returns the names of variables; keywords allow you to specify that names of 
other items should be retrieved. The available keyword options are described in 
“IDL_Savefile::Names” (Chapter 11, IDL Reference Guide).

The names of items retrieved using the Names method can be supplied to the Size 
method to retrieve size and type information about the specific items, or to the 
Restore method to restore individual items.

For example, calling the Names method with the PROCEDURE keyword on the 
myRoutines savefile object yields the names of the two procedures saved in the file:

PRINT, myRoutines->Names(/PROCEDURE)

IDL Prints:

ARROW DRAW_ARROW

Similarly, to retrieve the name of the variable saved in imagefile.sav, which is 
referred to by the myImage savefile object:

PRINT, myImage->Names()

IDL Prints:

IMAGE
Getting Information About SAVE Files Using IDL
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Size Method

The Size method returns the same information about a variable stored in a SAVE file 
as the SIZE function does about a regular IDL variable. It accepts the same keywords 
as the SIZE function, and returns the same information using the same formats. The 
Size method differs only in that the argument is a string or integer identifier string 
(returned by the Names method) that specifies an item within a SAVE file, rather 
than an in-memory expression. See “IDL_Savefile::Size” (Chapter 11, IDL Reference 
Guide) for additional details.

For example, to determine the dimensions of the image stored in the 
imagefile.sav file, do the following:

imagesize = myImage->Size('image', /DIMENSIONS)
PRINT, 'Image X size:', imagesize[0]
PRINT, 'Image Y size:', imagesize[1]

IDL Prints:

Image X size:         256
Image Y size:         256

Restore Items from the Savefile Object

The Restore method allows you to selectively restore one or more items from the 
SAVE file associated with a savefile object. Items to be restored are specified using 
the item name strings returned by the Names method. In addition to functions, 
procedures, and variables, you can also restore COMMON block definitions, 
structure definitions, and heap variables. See “IDL_Savefile::Restore” (Chapter 11, 
IDL Reference Guide) for additional details.

For example, to restore the DRAW_ARROW procedure without restoring the 
ARROW procedure, do the following:

myRoutines->Restore, 'draw_arrow'

Note on Restoring Objects and Pointers

Object references and pointers rely on special IDL variables called heap variables. 
When you restore a regular IDL variable that contains an object reference or a 
pointer, the associated heap variable is restored automatically; there is no need to 
restore the heap variables separately. It is, however, possible to restore the heap 
variables independently of any regular IDL variables; see “Restoring Heap Variables 
Directly” (Chapter 11, IDL Reference Guide) for complete details.
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Destroy the Savefile Object

To destroy a savefile object, use the OBJ_DESTROY procedure:

OBJ_DESTROY, myRoutines
OBJ_DESTROY, myImage

Destroying the savefile object will close the SAVE file with which the object is 
associated.
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Returning Object Type and Validity

Three IDL routines allow you to obtain information about an existing object: 
OBJ_CLASS, OBJ_ISA, and OBJ_VALID. 

OBJ_CLASS

Use the OBJ_CLASS function to obtain the class name of a specified object, or to 
obtain the names of a specified object’s direct superclasses. For example, if we create 
the following class structures:

struct = {class1, data1:0.0 }
struct = {class2, data2a:0, data2b:0L, INHERITS class1 }

We can now create an object and use OBJ_CLASS to determine its class and 
superclass membership.

; Create an object.
A = OBJ_NEW('class2')

; Print A’s class membership.
PRINT, OBJ_CLASS(A)

IDL prints:

CLASS2

Or you can print as superclasses:

; Print A’s superclasses.
PRINT, OBJ_CLASS(A, /SUPERCLASS)

IDL prints:

CLASS1

See “OBJ_CLASS” (IDL Reference Guide) for further details.

OBJ_ISA

Use the OBJ_ISA function to determine whether a specified object is an instance or 
subclass of a specified object. For example, if we have defined the object A as above:

IF OBJ_ISA(A, 'class2') THEN $
PRINT, 'A is an instance of class2.'

IDL prints:

A is an instance of class2.

See “OBJ_ISA” (IDL Reference Guide) for further details.
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OBJ_VALID

Use the OBJ_VALID function to verify that one or more object references refer to 
valid and currently existing object heap variables. If supplied with a single object 
reference as its argument, OBJ_VALID returns TRUE (1) if the reference refers to a 
valid object heap variable, or FALSE (0) otherwise. If supplied with an array of 
object references, OBJ_VALID returns an array of TRUE and FALSE values 
corresponding to the input array. For example:

; Create a class structure.
struct = {cname, data:0.0}

; Create a new object.
A = OBJ_NEW('CNAME')

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:

A refers to a valid object.

If we destroy the object:

; Destroy the object.
OBJ_DESTROY, A

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:

A does not refer to a valid object.

See “OBJ_VALID” (IDL Reference Guide) for further details.
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Returning Information About a File

You can use the FILE_INFO function to retrieve information about a file that is not 
currently open. To get information about an open file (for which there is an IDL 
Logical Unit Number), use the HELP procedure or the FSTAT function. See 
“Returning Information About a File Unit” (Chapter 18, Application Programming). 

The FILE_INFO function returns a structure expression of type FILE_INFO 
containing information about the file. For example, get information on dist.pro: 

HELP,/STRUCTURE, FILE_INFO(FILEPATH('dist.pro', 
SUBDIRECTORY='lib')) 

The above command will produce output similar to: 

** Structure FILE_INFO, 21 tags, length=72:
        NAME            STRING  '/usr/local/itt/idl/lib/dist.pro'
        EXISTS          BYTE         1
        READ            BYTE         1
        WRITE           BYTE         0
        EXECUTE         BYTE         0
        REGULAR         BYTE         1
        DIRECTORY       BYTE         0
        BLOCK_SPECIAL   BYTE         0
        CHARACTER_SPECIAL
                        BYTE         0
        NAMED_PIPE      BYTE         0
        SETGID          BYTE         0
        SETUID          BYTE         0
        SOCKET          BYTE         0
        STICKY_BIT      BYTE         0
        SYMLINK         BYTE         0
        DANGLING_SYMLINK
                        BYTE         0
        MODE            LONG               420
        ATIME           LONG64                 970241431
        CTIME           LONG64                 970241595
        MTIME           LONG64                 969980845
        SIZE            LONG64                      1717

The fields of the FILE_INFO structure provide various information about the file, 
such as the size of the file, and the dates of last access, creation, and last 
modification. For more information on the fields of the FILE_INFO structure, see 
“FILE_INFO” (IDL Reference Guide). See “FILE_LINES” (IDL Reference Guide) 
for information on how to retrieve the number of lines of text in a file.
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IDL Visual Display Systems

When creating visualizations in IDL, you can choose to create a visualization in an 
IDL Intelligent Tool (iTool), in an Object Graphics display, or in a Direct Graphics 
display:

• iTools — introduced in IDL 6.0, the IDL Intelligent Tools (iTools) provide the 
power and flexibility of Object Graphics with a pre-built visualization system 
that offers a great deal of interactivity. This set of interactive utilities combine 
data analysis and visualization with the task of producing presentation quality 
graphics. See “iTools Visualizations” below for more information. 

• Object Graphics — introduced in IDL 5.0, Object Graphics use an object-
oriented programmers’ interface to create graphic objects, which must then be 
drawn, explicitly, to a destination of the programmer’s choosing. See “IDL 
Object Graphics” on page 51 for more information.

• Direct Graphics — the oldest visualization system of the three, Direct 
Graphics rely on the concept of a current graphics device to quickly create 
simple static visualizations using IDL commands like PLOT or SURFACE. 
See “IDL Direct Graphics” on page 52 for information.

This chapter introduces the IDL display systems and provides information on 
common topics shared by the systems. Topics include a discussion on coordinates, 
coordinate conversion, interpolation, color systems and color schemes, and fonts. 

iTools Visualizations

The new IDL Intelligent Tools (iTools) are a set of interactive utilities that combine 
data analysis and visualization with the task of producing presentation quality 
graphics. Based on the IDL Object Graphics system, the iTools are designed to help 
you get the most out of your data with minimal effort. They allow you to continue to 
benefit from the control of a programming language, while enjoying the convenience 
of a point-and-click environment.

The main enhancements the new iTools provide are more mouse interactivity, 
WYSIWYG (What-You-See-Is-What-You-Get) printing, built-in analysis, undo-redo 
capabilities, layout control, and better-looking plots. These robust, pre-built tools 
reduce the amount of programming IDL users must do to create interactive 
visualizations. At the same time, the iTools integrate in a seamless manner with the 
IDL Command Line, user interface controls, and custom algorithms. In this way, the 
iTools maintain and enhance the control and flexibility IDL users rely on for data 
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exploration, algorithm design, and rapid application development. The following 
manuals provide more information:

• iTool User’s Guide — describes how to create visualization using iTools

• iTool Programming — describes how to create and customize an iTool

IDL Object Graphics

The salient features of Object Graphics are:

• Object graphics are device independent. There is no concept of a current 
graphics device when using object-mode graphics; any graphics object can be 
displayed on any physical device for which a destination object can be created.

• Object graphics are object-oriented. Graphic objects are meant to be created 
and re-used; you may create a set of graphic objects, modify their attributes, 
draw them to a window on your computer screen, modify their attributes again, 
then draw them to a printer device without reissuing all of the IDL commands 
used to create the objects. Graphics objects also encapsulate functionality; this 
means that individual objects include method routines that provide 
functionality specific to the individual object.

• Object graphics are rendered in three dimensions. Rendering implies many 
operations not needed when drawing Direct Graphics, including calculation of 
normal vectors for lines and surfaces, lighting considerations, and general 
object overhead. As a result, the time needed to render a given object—a 
surface, say—will often be longer than the time taken to draw the analogous 
image in Direct Graphics. 

• Object Graphics use a programmer’s interface. Unlike Direct Graphics, which 
are well suited for both programming and interactive, ad hoc use, Object 
Graphics are designed to be used in programs that are compiled and run. While 
it is still possible to create and use graphics objects directly from the IDL 
command line, the syntax and naming conventions make it more convenient to 
build a program offline than to create graphics objects on the fly.

• Because Object Graphics persist in memory, there is a greater need for the 
programmer to be cognizant of memory issues and memory leakage. Efficient 
design—remembering to destroy unused object references and cleaning up—
will avert most problems, but even the best designs can be memory-intensive if 
large numbers of graphic objects (or large datasets) are involved.
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For more information on creating Object Graphic visualizations see: 

• Object Programming — this manual introduces using IDL objects and also 
describes how to create custom objects in IDL.

• “Object Class and Method Reference” (IDL Reference Guide) — this section 
in the IDL Reference Guide provides complete reference material describing 
IDL’s object classes

• iTool User’s Guide and iTool Programming — these manuals provide 
complete details about using and creating object-based iTool displays

IDL Direct Graphics

IDL Direct Graphics is the original graphics rendering system introduced in IDL. 
Graphic displays creating using Direct Graphics are static — once created, no 
changes can be made without recreating the visualization being displayed. If you 
have used routines such as PLOT or SURFACE, you are already familiar with this 
graphics system. The salient features of Direct Graphics are:

• Direct Graphics use a graphics device (X for X-windows systems displays, 
WIN for Microsoft Windows displays, PS for PostScript files, etc.). You 
switch between graphics devices using the SET_PLOT command, and control 
the features of the current graphics device using the DEVICE command.

• IDL commands that existed in IDL 4.0 use Direct Graphics. Commands like 
PLOT, SURFACE, XYOUTS, MAP_SET, etc. all draw their output directly 
on the current graphics device.

• Once a direct-mode graphic is drawn to the graphics device, it cannot be 
altered or re-used. This means that if you wish to re-create the graphic on a 
different device, you must re-issue the IDL commands to create the graphic.

• When you add a new item to an existing direct-mode graphic (using a routine 
like OPLOT or XYOUTS), the new item is drawn in front of the existing 
items.

See “Direct Graphics” (IDL Quick Reference) for a list of available routines. 
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IDL Coordinate Systems 

You can specify coordinates to IDL in one of the following coordinate systems:

DATA Coordinates

This coordinate system is established by the most recent PLOT, CONTOUR, or 
SURFACE procedure. This system usually spans the plot window, the area bounded 
by the plot axes, with a range identical to the range of the plotted data. The system 
can have two or three dimensions and can be linear, logarithmic, or semi-logarithmic. 
The mechanisms of converting from one coordinate system to another are described 
below. 

DEVICE Coordinates

This coordinate system is the physical coordinate system of the selected plotting 
device. Device coordinates are integers, ranging from (0, 0) at the bottom-left corner 
to (Vx –1, Vy –1) at the upper-right corner. Vx and Vy are the number of columns and 
rows addressed by the device. These numbers are stored in the system variable !D as 
!D.X_SIZE and !D.Y_SIZE. In a widget base, device coordinates are measures from 
the upper-left corner

NORMAL Coordinates

The normalized coordinate system ranges from zero (0) to one (1) over each of the 
three axes.

Almost all of the IDL graphics procedures accept parameters in any of these 
coordinate systems. Most procedures use the data coordinate system by default. 
Routines beginning with the letters TV are notable exceptions. They use device 
coordinates by default. You can explicitly specify the coordinate system to be used 
by including one of the keyword parameters /DATA, /DEVICE, or /NORMAL in the 
call. 

Understanding Windows and Related Device 
Coordinates

Images are displayed within a window (Direct Graphics) or within an instance of a 
window object (Object Graphics). In Direct Graphics, the WINDOW procedure is 
used to initialize the coordinates system for the image display. In Object Graphics, 
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the IDLgrWindow, IDLgrView, and IDLgrModel objects are used to initialize the 
coordinate system for the image display.

A coordinate system determines how and where the image appears within the 
window. You can specify coordinates to IDL using one of the following coordinate 
systems:

• Data Coordinates — This system usually spans the window with a range 
identical to the range of the data. The system can have two or three dimensions 
and can be linear, logarithmic, or semi-logarithmic.

• Device Coordinates — This coordinate system is the physical coordinate 
system of the selected device. Device coordinates are integers, ranging from 
(0, 0) at the bottom-left corner to (Vx –1, Vy –1) at the upper-right corner of the 
display. Vx and Vy are the number of columns and rows of the device (a display 
window for example).

Note
For images, the data coordinates are the same as the device coordinates. The 
device coordinates of an image are directly related to the pixel locations 
within an image. Unless otherwise specified, IDL draws each image pixel per 
each device pixel.

• Normal Coordinates — The normalized coordinate system ranges from zero to 
one over columns and rows of the device.
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Coordinates of 3-D Graphics

Points in xyz space are expressed by vectors of homogeneous coordinates. These 
vectors are translated, rotated, scaled, and projected onto the two-dimensional 
drawing surface by multiplying them by transformation matrices. The geometrical 
transformations used by IDL, and many other graphics packages, are taken from 
Chapters 7 and 8 of Foley and Van Dam (Foley, J.D., and A. Van Dam (1982), 
Fundamentals of Interactive Computer Graphics, Addison-Wesley Publishing Co.). 
The reader is urged to consult this book for a detailed description of homogeneous 
coordinates and transformation matrices since this section presents only an overview. 
Three-dimensional graphics, coordinate systems, and transformations also are 
included in this chapter.

Homogeneous Coordinates

A point in homogeneous coordinates is represented as a four-element column vector 
of three coordinates and a scale factor w ¼¼≠ 0. For example:

P(wx, wy, wz, w) ≡ P(x/w, y/w, z/w, 1) ≡ (x, y, z)

One advantage of this approach is that translation, which normally must be expressed 
as an addition, can be represented as a matrix multiplication. Another advantage is 
that homogeneous coordinate representations simplify perspective transformations. 
The notion of rows and columns used by IDL is opposite that of Foley and Van Dam 
(1982). In IDL, the column subscript is first, while in Foley and Van Dam (1982) the 
row subscript is first. This changes all row vectors to column vectors and transposes 
matrices.

Right-Handed Coordinate System

The coordinate system is right-handed so that when looking from a positive axis to 
the origin, a positive rotation is counterclockwise. As usual, the x-axis runs across the 
display, the y-axis is vertical, and the positive z-axis extends out from the display to 
the viewer. For example, a 90-degree positive rotation about the z-axis transforms the 
x-axis to the y-axis.

Transformation Matrices

Transformation matrices, which post-multiply a point vector to produce a new point 
vector, must be (4, 4). A series of transformation matrices can be concatenated into a 
single matrix by multiplication. If A1, A2, and A3 are transformation matrices to be 
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applied in order, and the matrix A is the product of the three matrices, the following 
applies.

((P •  A1) •  A2) •  A3 ≡ P •  ((A1 •  A2) •  A3) = P •  A

In Object Graphics, IDL the model object that contains the displayed object stores the 
transformation matrix. In Direct Graphics, IDL stores the concatenated 
transformation matrix in the system variable field !P.T. 

Note
When displaying objects in a three-dimensional view, you can precisely configure 
the object position using transformation matrices. See “Translating, Rotating and 
Scaling Objects” (Chapter 3, Object Programming) for details. 

Note
For most Direct Graphic applications, it is not necessary to create, manipulate, or to 
even understand transformation matrices. See the T3D procedure, which 
implements most of the common transformations.

Each of the operations of translation, scaling, rotation, and shearing can be 
represented by a transformation matrix.

Translation

The transformation matrix to translate a point by (Dx, Dy, Dz) is shown below.

 

Scaling

Scaling by factors of Sx, Sy, and Sz about the x-, y-, and z-axes respectively, is 
represented by the matrix below.
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Rotation

Rotation about the x-, y-, and z-axes is represented respectively by the following three 
matrices:
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Coordinate Conversions

Depending upon the data and type of visualization, you may want to convert between 
normalized, data or device coordinates (described in “IDL Coordinate Systems” on 
page 53). This section details two-dimensional and three-dimensional coordinate 
system characteristics provides resources for various coordinate conversions. See the 
following for details:

• “Two-Dimensional Coordinate Conversion” on page 58

• “Three-Dimensional Coordinate Conversion” on page 59

• “Using Coordinate Conversions” on page 59

Two-Dimensional Coordinate Conversion

This section describes the formulae for conversions to and from each coordinate 
system. In the following discussion, Dx is a data coordinate, Nx is a normalized 
coordinate, and Rx is a raw device coordinate. Let Vx and Vy represent the size of the 
visible area of the currently selected display or drawing surface.

The field S is a two-element array of scaling factors used to convert X coordinates 
from data units to normalized units. S contains the parameters of the linear equation, 
converting data coordinates to normalized coordinates. S[0] is the intercept, and S[1] 
is the slope. Also, let Dx be the data coordinate, Nx the normalized coordinate, Rx the 
device coordinate, Vx the device X size (in device coordinates).

With the above variables defined, the linear two-dimensional coordinate conversions 
for the x coordinate can be written as follows: 

Coordinate 
Conversion

Linear Logarithmic

Data to normal

Data to device

Normal to device

Normal to data

Device to data

Device to normal

Table 3-1: Equations for X-axis Coordinate Conversion

Nx S0 S1Dx+= Nx S0 S1 Dxlog+=

Rx Vx S S1Dx+( )= Rx Vx S0 S1 Dxlog+( )=

Rx NxVx= Rx NxVx=

Dx Nx S0–( ) S1⁄= Dx 10 Nx S0–( ) S1⁄=

Dx Rx Vx⁄ S0–( ) S1⁄= Dx 10 Rx Vx⁄ S0–( ) S1⁄=

Nx Rx Vx⁄= Nx Rx Vx⁄=
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The y- and z-axis coordinates are converted in exactly the same manner, with the 
exception that there is no z device coordinate and that logarithmic z-axes are not 
permitted.

This coordinate conversion functionality is built into object graphics through the 
XCOORD_CONVERT and YCOORD_CONVERT properties or each type of 
visualization object. If you are working with a Direct Graphics display, you can use 
the CONVERT_COORD function. 

Three-Dimensional Coordinate Conversion

To convert from a three-dimensional coordinate to a two-dimensional coordinate, 
IDL follows these steps:

• Data coordinates are converted to three-dimensional normalized coordinates. 
To convert the x coordinate from data to normalized coordinates, use the 
formula Nx = X0 + X1Dx. The same process is used to convert the y and z 
coordinates using !Y.S and !Z.S.

• The three-dimensional normalized coordinate, P = (Nx, Ny, Nz), whose 
homogeneous representation is (Nx, Ny, Nz, 1), is multiplied by the 
concatenated transformation matrix !P.T:

P′ = P •  !P.T

• The vector P′ is scaled by dividing by w, and the normalized two-dimensional 
coordinates are extracted:

N′x = P′x/P′w and N′y = P′y/P′w
• The normalized xy coordinate is converted to device coordinates as described 

in “Two-Dimensional Coordinate Conversion” on page 58.

Using Coordinate Conversions

How coordinate conversions are defined depend upon the display type as follows:

• iTools — in an iTool display, the interactive nature of the tool makes 
coordinate conversions transparent. There is no need to programmatically 
configure the transformation matrices of the objects. See Chapter 4, 
“Manipulating the Display” (iTool User’s Guide) for information on zooming, 
scaling and translation. 

• Object Graphics — converting an object’s data coordinates into normalized 
coordinates for display is a common task. See “Positioning Visualizations in a 
View” (Chapter 3, Object Programming) for details on the elements involved 
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in defining an object’s position. Chapter 3, “Positioning Objects in a View” 
(Object Programming) also includes information on how to use coordinate 
conversions (see “Converting Data to Normal Coordinates”) and information 
on programmatically defining the object’s placement in a view (see 
“Translating, Rotating and Scaling Objects”). 

• Direct Graphics — the IDL Direct Graphics system automatically positions 
and sizes static visualizations so there is no need to set up a transformation 
matrix. However, you can convert between the supported coordinate systems. 
See “CONVERT_COORD” (IDL Reference Guide) for information on this 
conversion in Direct Graphics. 
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Interpolation Methods

When a visualization undergoes a geometric transformation, the location of each 
transformed pixel may not map directly to a center of a pixel location in the output 
visualization as shown in the following figure. 

When the transformed pixel center does not directly coincide with a pixel in the 
output visualization, the pixel value must be determined using some form of 
interpolation. The appearance and quality of the output image is determined by the 
amount of error created by the chosen interpolation method. Note the differences in 
the line edges between the following two interpolated images.

Figure 3-1: Original Pixel Center Locations (Left) and Rotated Pixel Center 
Locations (Right)

Figure 3-2: Simple Examples of Image Interpolation

Original Image Nearest Neighbor Bilinear Interpolation
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There are a variety of possible interpolation methods available when using geometric 
transforms in IDL. Interpolation methods include:

Nearest-neighbor interpolation — Assigns the value of the nearest pixel to 
the pixel in the output visualization. This is the fastest interpolation method but 
the resulting image may contain jagged edges.

Linear interpolation — Surveys the 2 closest pixels, drawing a line between 
them and designating a value along that line as the output pixel value. 

Bilinear interpolation — Surveys the 4 closest pixels, creates a weighted 
average based on the nearness and brightness of the surveyed pixels and 
assigns that value to the pixel in the output image. 

Use cubic convolution if a higher degree of accuracy is needed. However, with 
still images, the difference between images interpolated with bilinear and 
cubic convolution methods is usually undetectable. 

Trilinear interpolation — Surveys the 8 nearest pixels occurring along the 
x, y, and z dimensions, creates a weighted average based on the nearness and 
brightness of the surveyed pixels and assigns that value to the pixel in the 
output image. 

Cubic Convolution interpolation — Approximates a sinc interpolation by 
using cubic polynomial waveforms instead of linear waveforms when 
resampling a pixel. With a one-dimension source, this method surveys 4 
neighboring pixels. With a two-dimension source, the method surveys 16 
pixels. Interpolation of three-dimension sources is not supported. This 
interpolation method results in the least amount of error, thus preserving the 
highest amount of fine detail in the output image. However, cubic interpolation 
requires more processing time. 

Note
The IDL Reference Guide details the interpolation options available for each 
geometric transformation function.
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Polygon Shading Method

The shading applied to each polygon, defined by its four surrounding elevations, can 
be either constant over the entire cell or interpolated. Constant shading takes less time 
because only one shading value needs to be computed for the entire polygon. 
Interpolated shading gives smoother results. The Gouraud method of interpolation is 
used: the shade values are computed at each elevation point, coinciding with each 
polygon vertex. The shading is then interpolated along each edge, finally, between 
edges along each vertical scan line.

Light-source shading is computed using a combination of depth cueing, ambient 
light, and diffuse reflection, adapted from Foley and Van Dam, Chapter 19 (Foley, 
J.D., and A. Van Dam (1982), Fundamentals of Interactive Computer Graphics, 
Addison-Wesley Publishing Co.):

I = Ia + dIp(L •  N)

where

In Direct Graphics, the SET_SHADING method modifies the light source shading 
parameters. In Object Graphics similar OpenGL functionality is available through the 
SHADING property of objects such as IDLgrPolygon, IDLgrPolyline, IDLSurface 
and IDLgrContour. 

Ia Term due to ambient light. All visible objects have at least this 
intensity, which is approximately 20 percent of the maximum 
intensity.

Ip(L •  N) Term due to diffuse reflection. The reflected light is 
proportional to the cosine of the angle between the surface 
normal vector N and the vector pointing to the light source, L. 
Ip is approximately 0.9.

d Term for depth cueing, causing surfaces further away from the 
observer to appear dimmer. The normalized depth is 
d=(z+2)/3, ranging from zero for the most distant point to one 
for the closest.
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Color Systems

Color can play a critical role in the display and perception of digital imagery. This 
section provides a basic overview of color systems, display devices, image types, and 
the interaction of these elements within IDL. The remainder of the chapter builds 
upon these fundamental concepts by describing how to load and modify color tables, 
convert between image types, utilize color tables to highlight features, and apply 
color annotations to images.

Color Schemes

Color can be encoded using a number of different schemes. Many of these schemes 
utilize a color triple to represent a location within a three-dimensional color space. 
Examples of these systems include RGB (red, green, and blue), HSV (hue, saturation, 
and value), HLS (hue, lightness, and saturation), and CMY (cyan, magenta, and 
yellow). Algorithms exist to convert colors from one system to another.

Computer display devices typically rely on the RGB color system. In IDL, the RGB 
color space is represented as a three-dimensional Cartesian coordinate system, with 
the axes corresponding to the red, green, and blue contributions, respectively. Each 
axis ranges in value from 0 (no contribution) to 255 (full contribution). By design, 
this range from 0 to 255 maps nicely to the full range of a byte data type.

An individual color is encoded as a coordinate within this RGB space. Thus, a color 
consists of three elements: a red value, a green value, and a blue value.

The following figure shows that each displayable color corresponds to a location 
within a three-dimensional color cube. The origin, (0, 0, 0), where each color 
coordinate is 0, is black. The point at (255, 255, 255) is white, representing an 
additive mixture of the full intensity of each of the three colors. Points along the main 
diagonal - where intensities of each of the three primary colors are equal - are shades 
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of gray. The color yellow is represented by the coordinate (255, 255, 0), or a mixture 
of 100% red, plus 100% green, and no blue.

Typically, digital display devices represent each component of an RGB color 
coordinate as an n-bit integer in the range of 0 to 2n –1. Each displayable color is an 
RGB coordinate triple of n-bit numbers yielding a palette containing 23n total colors. 
Therefore, for 8-bit colors, each color coordinate can range from 0 to 255, and the 
total palette contains 224 or 16,777,216 colors.

A display with an m-bit pixel can represent 2m colors simultaneously, given enough 
pixels. In the case of 8-bit colors, 24-bit pixels are required to represent all colors. 
The more common case is a display with 8 bits per pixel which allows the display of 
28 = 256 colors selected from the much larger palette.

If there are not enough bits in a pixel to represent all colors, m < 23n, a color 
translation table is used to associate the value of a pixel with a color triple. This table 
is an array of color triples with an element for each possible pixel value. Given 8-bit 
pixels, a color table containing 28 = 256 elements is required. The color table element 
with an index of i specifies the color for pixels with a value of i.

To summarize, given a display with an n-bit color representation and an m-bit pixel, 
the color translation table, C, is a 2m long array of RGB triples:

Ci = {ri, gi, bi}, 0 ≤ i < 2m

0 ≤ ri, gi, bi < 2n

Objects containing a value, or color index, of i are displayed with a color of Ci. 

Figure 3-3: RGB Color Cube (Note: grays are on the main diagonal.)
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See “Color Table Manipulation” (IDL Quick Reference) for a list of color-related 
routines including those that covert RGB color triples to other color schemes.

Converting to Other Color Systems

IDL defaults to the RGB color system, but if you are more accustomed to other color 
systems, IDL is not restricted to working with only the RGB color system. You can 
also use either the HSV (hue, saturation, and value) system or the HLS (hue, 
lightness, and saturation) system. The HSV or HLS system can be specified by 
setting the appropriate keyword (for example /HSV or /HLS) when using IDL color 
routines.

IDL also contains routines to create color tables based on these color systems. The 
HSV routine creates a color table based on the Hue, Saturation, and Value (HSV) 
color system. The HLS routine creates a color table based on the Hue, Lightness, 
Saturation (HLS) color system. You can also convert values of a color from any of 
these systems to another with the COLOR_CONVERT routine. See COLOR_QUAN in 
the IDL Reference Guide for more information.
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Display Device Color Schemes

Most modern computer monitors use one of two basic schemes for displaying color at 
each pixel:

• Indexed - A color is specified using an index into a hardware color lookup 
table (or palette). Each entry of the color lookup table corresponds to an 
individual color, and consists of a red value, a green value, and a blue value. 
The size of the lookup table depends upon the hardware.

• RGB - A color is specified using an RGB triple: [red, green, blue]. The 
number of bits used to represent each of the red, green, and blue components 
depends upon the hardware.

The description of how color is to be interpreted on a given display device is referred 
to as a visual. Each visual typically has a name that indicates how color is to be 
represented. Two very common visual names are PseudoColor (which uses an 
indexed color scheme) and TrueColor (which uses an RGB color scheme). 

A visual also has a depth associated with it that describes how many bits are used to 
represent a given color. Common bit depths include 8-bit (for PseudoColor visuals) 
and 16- or 24-bit (for TrueColor visuals). An n-bit visual is capable of displaying 2n 
total colors. Thus, an 8-bit PseudoColor visual can display 28 or 256 colors. A 24-bit 
TrueColor visual can display 224 or 16,777,216 colors.

PseudoColor visuals rely heavily upon the display device’s hardware color table for 
image display. If the color table is modified, all images being displayed using that 
color table will automatically update to reflect the change.

TrueColor visuals do not typically use a color table. The red, green, and blue 
components are provided directly.

Note
You can display TrueColor images on pseudo-color displays by using the 
COLOR_QUAN function. This function creates a pseudo-color palette for 
displaying the TrueColor image and then maps the TrueColor image to the new 
palette. See COLOR_QUAN in the IDL Reference Guide for more information.

Setting a Visual on UNIX Platforms

On UNIX platforms, an application (such as IDL) may choose from among the set of 
X visuals that are supported for the current display. Each visual is either grayscale or 
color. Its corresponding color table may be either fixed (read-only), or it may be 
changeable from within IDL (read-write). The color interpretation scheme is either 
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indexed or RGB. The following table shows the supported visuals for a given display, 
which may include any combination:

The most common of these is PseudoColor and TrueColor. Refer to the section 
“Colors and IDL Graphic Systems” on page 69 to learn more about how IDL selects a 
visual for image display.

To get the list of supported X visual classes on a given system, type the following 
command at the UNIX command line:

xdpyinfo

Setting a Visual on Windows Platforms

On Windows platforms, the visual is selected via the system Control Panel. To open 
the Control Panel, select the Settings → Control Panel item from the Start menu. 
Click on the Display and then select the Settings tab. Alter the Color quality setting 
to modify the visual before starting an IDL session. The following table shows three 
visuals are supported (for the particular display configuration used in this example):

Visual Description

StaticGray grayscale, read-only, indexed

GrayScale grayscale, read-write, indexed

StaticColor color, read-only, indexed

PseudoColor color, read-write, indexed

TrueColor color, read-only, RGB

DirectColor color, read-write, RGB

Table 3-2: Visuals Supported in IDL on UNIX Platforms

Visual Equivalence to UNIX Visuals

256 Colors 8-bit PseudoColor

High Color (16 bit) 16-bit TrueColor

True Color (32 bit) 32-bit TrueColor

Table 3-3: Visuals Supported in IDL on Windows Platforms
Display Device Color Schemes Using IDL



Chapter 3: Graphic Display Essentials 69
Colors and IDL Graphic Systems

IDL supports two graphics systems: Object Graphics and Direct Graphics. This 
section provides detailed descriptions of how color is represented and interpreted in 
the Direct Graphics system. 

Using Color in Object Graphics

For complete details regarding color and Object Graphics, see “Color in Object 
Graphics” (Chapter 2, Object Programming).

Using Color in Direct Graphics

More information on the following topics is available in “X Windows Visuals” 
(Appendix A, IDL Reference Guide).

Visuals on UNIX Platforms

When IDL creates its first Direct Graphics window, it must select a visual to be 
associated with that window. By default, IDL selects an X Visual Class by requesting 
(in order) from the following table until a supported visual is found, but a specific 
visual can be explicitly requested at the beginning of an IDL session by setting the 
appropriate keyword to the DEVICE procedure:

To request an 8-bit PseudoColor visual, the syntax would be:

DEVICE, PSEUDO_COLOR=8

Order Visual Depth Related Keyword

First TrueColor 24-bit (then 16-bit, then 
15-bit)

TRUE_COLOR

Second PseudoColor 8-bit, then 4-bit PSEUDO_COLOR

Third DirectColor 24-bit DIRECT_COLOR

Fourth StaticColor 8-bit, then 4-bit STATIC_COLOR

Fifth GrayScale any depth GRAY_SCALE

Sixth StaticGray any depth STATIC_GRAY

Table 3-4: Order of Visuals and their Related DEVICE Keywords
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Another approach to setting the visual information is to include the idl.gr_visual 
and idl.gr_depth resources in your .Xdefaults file.

A visual is selected once per IDL session (when the first graphic window is created). 
Once selected, the same visual will be used for all Direct Graphics windows in that 
IDL session.

Private versus Shared Colormaps

On UNIX platforms, when a window manager is started, it creates a default colormap 
that can be shared among applications using the display. This is called the shared 
colormap. 

A given application may request to use its own colormap that is not shared with other 
applications. This is called a private colormap. 

IDL attempts, whenever possible, to get color table entries in the shared colormap. If 
enough colors are not available in the shared colormap, a private colormap is used. If 
an X Visual class and depth are specified and they do not match the default visual of 
the screen (see xdpyinfo), a private colormap is used.

If a private colormap is used, then colormap flashing may occur when an IDL 
window is made current (in which case, the colors of other applications on the 
desktop may no longer appear as you would expect), or when an application using the 
shared colormap is made current (in which case, the colors within the IDL graphics 
window may no longer appear as you would expect). This flashing behavior is to be 
expected. By design, the IDL graphics window has been assigned a dedicated color 
table so that the full range of requested colors can be utilized for image display. 

Visuals on Windows Platforms

On Windows platforms, the visual that IDL uses is dependent upon the system 
setting. For more information, “Setting a Visual on Windows Platforms” on page 68.

IDL Color Table

IDL maintains a single current color table for Direct Graphics. Refer to the sections 
“Loading a Default Color Table” on page 78 and “Modifying and Converting Color 
Tables” on page 79. IDL provides 41 pre-defined color tables.

Foreground Color

In IDL Direct Graphics, colors used for drawing graphic primitives (such as lines, 
text annotations, etc.) are represented in one of two ways:

• Indexed - each color is an index into the current IDL color table
Colors and IDL Graphic Systems Using IDL
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• RGB - each color is a long integer that contains the red value in the first eight 
bits, the green value in the next eight bits, and the blue value in the next eight 
bits. In other words, a color can be represented using the following equation:

color = red + 256*green + (256^2)*blue

The RGB form is only supported on TrueColor display devices.

The DECOMPOSED keyword to the DEVICE procedure is used to notify IDL 
whether color is to be interpreted as an index or as a composite RGB value. IDL then 
maps any requested color to an encoding that is appropriate for the current display 
device.

The foreground color (used for drawing) can be set by assigning a color value to the 
!P.COLOR system variable field (or by setting the COLOR keyword on the 
individual graphic routine).

If a color value is to be interpreted as an index, then inform IDL by setting the 
DECOMPOSED keyword of the DEVICE routine to 0:

DEVICE, DECOMPOSED = 0

The foreground color can then be specified by setting !P.COLOR to an index into the 
IDL color table. For example, if the foreground color is to be set to the RGB value 
stored at entry 25 in the IDL color table, then use the following IDL command: 

!P.COLOR = 25

If a color value is to be interpreted as a composite RGB value, then inform IDL by 
setting the DECOMPOSED keyword of the DEVICE routine to 1:

DEVICE, DECOMPOSED = 1

The foreground color can then be specified by setting !P.COLOR to a composite 
RGB value. For example, if the foreground color is to be set to the color yellow, 
[255,255,0], then use the following IDL command:

!P.COLOR = 255 + (256*255)

Image Colors

Color for image data is handled in a fashion similar to other graphic primitives, 
except that some special cases apply based upon the organization of the image data 
and the visual of the current display device.

If the image is organized as a:

• two-dimensional array -

• If the display device is PseudoColor, then each pixel is interpreted as an 
index into the IDL color table
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• If the display device is TrueColor and if the DECOMPOSED keyword for 
the DEVICE procedure is set to 0, then each pixel value is interpreted as 
an index into the IDL color table (thereby emulating a PseudoColor 
display device).

• If the display device is TrueColor and if the DECOMPOSED keyword for 
the DEVICE procedure is set to 1, then each pixel value is interpreted as 
the value to be copied to each of the red, green, and blue components of 
the RGB color.

• RGB array - (Supported only for TrueColor display devices)

• Each pixel is interpreted as an RGB color composed of the three elements 
in the extra color dimension of the array.

To display an RGB image on a PseudoColor device, use the COLOR_QUAN routine 
to convert it to an indexed form. Refer to the section “Converting Between Image 
Types” on page 77.

The TV command can be used to display the image in IDL. For RGB images, the 
TRUE keyword can be used to indicate which form of interleaving is used.
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Indexed and RGB Image Organization

IDL can display four types of images: binary, grayscale, indexed, and RGB. How an 
image is displayed depends upon its type. Binary images have only two values, zero 
and one. Grayscale images represent intensities and use a normal grayscale color 
table. Indexed images use an associated color table. RGB images contain their own 
color information in layers known as bands or channels. Any of these images can be 
displayed with iImage, Object Graphics, or Direct Graphics. 

An image consists of a two-dimensional array of pixels. The value of each pixel 
represents the intensity and/or color of that position in the scene. Images of this form 
are known as sampled or raster images, because they consist of a discrete grid of 
samples. Such images come from many different sources and are a common form of 
representing scientific and medical data.

Numerous standards have been developed over the years to describe how an image 
can be stored within a file. However, once the image is loaded into memory, it 
typically takes one of two forms: indexed or RGB. An indexed image is a two-
dimensional array, and is usually stored as byte data. A two-dimensional array of a 
different data type can be made into an indexed image by scaling it to the range from 
0 to 255 using the BYTSCL function. See the BYTSCL description in the IDL 
Reference Guide for more information.

Image Orientation

The screen coordinate system for image displays puts the origin, (0, 0), at the lower-
left corner of the device. The upper-right corner has the coordinate (xsize–1, ysize–1), 
where xsize and ysize are the dimensions of the visible area of the display. The 
descriptions of the image display routines that follow assume a display size of 
512 x 512, although other sizes may be used. 

The system variable !ORDER controls the order in which the image is written to the 
screen. Images are normally output with the first row at the bottom, i.e., in bottom-to-
top order, unless !ORDER is 1, in which case images are written on the screen from 
top to bottom. The ORDER keyword also can be specified with TV and TVSCL. It 
works in the same manner as !ORDER except that its effect only lasts for the duration 
of the single call—the default reverts to that specified by !ORDER.

An image can be displayed with any of the eight possible combinations of axis 
reversal and transposition by combining the display procedures with the ROTATE 
function.
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Indexed Images

An indexed image does not explicitly contain any color information. Its pixel values 
represent indices into a color Look-Up Table (LUT). Colors are applied by using 
these indices to look up the corresponding RGB triplet in the LUT. In some cases, the 
pixel values of an indexed image reflect the relative intensity of each pixel. In other 
cases, each pixel value is simply an index, in which case the image is usually 
intended to be associated with a specific LUT. In this case, the LUT is typically 
stored with the image when it is saved to a file. For information on the LUTs 
provided with IDL, see “Loading a Default Color Table” on page 78. 

RGB Image Interleaving

An RGB (red, green, blue) image is a three-dimensional byte array that explicitly 
stores a color value for each pixel. RGB image arrays are made up of width, height, 
and three channels of color information. Scanned photographs are commonly stored 
as RGB images. The color information is stored in three sections of a third dimension 
of the image. These sections are known as color channels, color bands, or color 
layers. One channel represents the amount of red in the image (the red channel), one 
channel represents the amount of green in the image (the green channel), and one 
channel represents the amount of blue in the image (the blue channel).

Color interleaving is a term used to describe which of the dimensions of an RGB 
image contain the three color channel values. Three types of color interleaving are 
supported by IDL. In Object Graphics, an RGB image is contained within an image 
object where the INTERLEAVE property dictates the arrangement of the channels 
within the image file.

• Pixel interleaving (3, w, h) — the color information is contained in the first 
dimension, INTERLEAVE is set to 0. 

• Line interleaving (w, 3, h) — the color information is contained in the second 
dimension, INTERLEAVE is set to 1. 

• Planar interleaving (w, h, 3) — the color information is contained in the third 
dimension, INTERLEAVE is set to 2. This is also known as, image 
interleaving.

Note
In Direct Graphics, set the TRUE keyword of TV or TVSCL to match the 
interleaving of the image. 
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Determining RGB Image Interleaving

You can determine if an image file contains an RGB image by querying the file. The 
CHANNELS tag of the resulting query structure will equal 3 if the file’s image is 
RGB. The query does not determine which interleaving is used in the image, but the 
array returned in DIMENSIONS tag of the query structure can be used to determine 
the type of interleaving.

The following example queries and imports a pixel-interleaved RGB image from the 
rose.jpg image file. This RGB image is a close-up photograph of a red rose. It is 
pixel interleaved. Complete the following steps for a detailed description of the 
process. 

Example Code
See displayrgbimage_object.pro in the examples/doc/image 
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determine the path to the rose.jpg file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:

queryStatus = QUERY_IMAGE(file, imageInfo)

3. Output the results of the file query:

PRINT, 'Query Status = ', queryStatus
HELP, imageInfo, /STRUCTURE

The following text appears in the Output Log:

Query Status =            1
** Structure <14055f0>, 7 tags, length=36, refs=1:
   CHANNELS LONG 3
   DIMENSIONS LONG Array[2]
   HAS_PALETTE INT 0
   IMAGE_INDEX LONG 0
   NUM_IMAGES LONG 1
   PIXEL_TYPE INT 1
   TYPE STRING 'JPEG'

The CHANNELS tag has a value of 3. Thus, the image is an RGB image. 

4. Set the image size parameter from the query information:

imageSize = imageInfo.dimensions
Using IDL Indexed and RGB Image Organization
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The type of interleaving can be determined from the image size parameter and 
actual size of each dimension of the image. To determine the size of each 
dimension, you must first import the image.

5. Use READ_IMAGE to import the image from the file:

image = READ_IMAGE(file)

6. Determine the size of each dimension within the image:

imageDims = SIZE(image, /DIMENSIONS)

7. Determine the type of interleaving by comparing the dimension sizes to the 
image size parameter from the file query:

interleaving = WHERE((imageDims NE imageSize[0]) AND $
(imageDims NE imageSize[1]))

8. Output the results of the interleaving computation:

PRINT, 'Type of Interleaving = ', interleaving

The following text appears in the Output Log:

Type of Interleaving = 0

The image is pixel interleaved. If the resulting value was 1, the image would 
have been line interleaved. If the resulting value was 2, the image would have 
been planar interleaved.

9. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, TITLE = 'An RGB Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

10. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, $
INTERLEAVE = interleaving[0])

11. Add the image object to the model, which is added to the view, then display 
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView
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The following figure shows the resulting RGB image display.

12. Clean up the object references. When working with objects always remember 
to clean up any object references with the OBJ_DESTROY routine. Since the 
view contains all the other objects, except for the window (which is destroyed 
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Converting Between Image Types

Sometimes an image type must be converted from indexed to RGB, RGB to 
grayscale, or RGB to indexed. For example, an image may be imported into IDL as 
an indexed image (from a PNG file for example) but it may need to be exported as an 
RGB image (to a JPEG file for example). The opposite may also need to be done. See 
“Foreground Color” on page 70 for more information on grayscale, indexed, and 
RGB images.

See the following routines s in the IDL Reference Guide for examples:

• RGB to grayscale — REFORM extracts the individual channels of data from 
an RGB image so that it can be displayed as a grayscale image 

• RGB to indexed — COLOR_QUAN decomposes the millions of possible 
colors in an RGB image into the 256 used by an indexed image

• Indexed to RGB — TVLCT extracts the indexed image color table 
information, which is then assigned to an RGB image

Figure 3-4: RGB Image in Object Graphics
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Loading a Default Color Table

Although you can define your own color tables, IDL provides 41 pre-defined color 
lookup tables (LUTs). Each color table contained within this routine is specified 
through an index value ranging from 0 to 40, shown in the following table.

Tip
If you are running IDL on a TrueColor display, set DEVICE, DECOMPOSED = 0 
before your first color table related routine is used within an IDL session or 
program. See “Foreground Color” on page 70 for more information.

Number Name Number Name

0 Black & White Linear 21 Hue Sat Value 1

1 Blue/White Linear 22 Hue Sat Value 2

2 Green-Red-Blue-White 23 Purple-Red + 
Stripes

3 Red Temperature 24 Beach

4 Blue-Green-Red-Yellow 25 Mac Style

5 Standard Gamma-II 26 Eos A

6 Prism 27 Eos B

7 Red-Purple 28 Hardcandy

8 Green/White Linear 29 Nature

9 Green/White Exponential 30 Ocean

10 Green-Pink 31 Peppermint

11 Blue-Red 32 Plasma

12 16 Level 33 Blue-Red 2

13 Rainbow 34 Rainbow 2

14 Steps 35 Blue Waves

Table 3-5: Pre-defined Color Tables
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You can load a default color table in an iImage display, an Object Graphics Display 
or a Direct Graphics display as follows: 

• iImage — select the Edit Palette button on the image panel. See “Using the 
Image Panel” (Chapter 10, iTool User’s Guide) for details.

• Object Graphics — use the LoactCT method of an IDLgrPalette object to 
define the color table (see “IDLgrPalette::LoadCT” (IDL Reference Guide) for 
details). Associate the palette object with another object using the Palette 
property (for example, see the PALETTE property of the IDLgrImage object). 
Also see “Color in Object Graphics” (Chapter 2, Object Programming) for 
information on using color with indexed and RGB color models in Object 
Graphics.

• Direct Graphics — use the LOADCT routine or another color table related 
routine to set the color table. Also see “Using Color in Direct Graphics” on 
page 69. 

Note
See “Color Table Manipulation” (IDL Quick Reference) for a list of related 
routines.

Modifying and Converting Color Tables

IDL contains two graphical user interface (GUI) utilities for modifying a color table, 
XLOADCT and XPALETTE (. The MODIFYCT routine lets you create or modify 

15 Stern Special 36 Volcano

16 Haze 37 Waves

17 Blue-Pastel-Red 38 Rainbow18

18 Pastels 39 Rainbow + white

19 Hue Sat Lightness 1 40 Rainbow + black

20 Hue Sat Lightness 2

Number Name Number Name

Table 3-5: Pre-defined Color Tables (Continued)
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and store a new color table. See the following topics in the IDL Reference Guide for 
examples:

• XLOADCT — allows you to preview and select among pre-defined color 
tables

• XPALETTE — allows you to preview and adjust pre-defined color tables

• MODIFYCT — shows how to add modified color tables to IDL’s list of pre-
defined color tables. 

These examples are based on the default RGB (red, green, and blue) color system. 
IDL also contains routines that allow you to use other color systems including hue, 
saturation, and value (HSV) and hue, lightness, and saturation (HLS). These routines 
and color systems are explained in “Converting to Other Color Systems” on page 66.

Highlighting Features with a Color Table

For indexed images, custom color tables can be derived to highlight specific features. 
Color tables are usually designed to vary within certain ranges to show dramatic 
changes within an image. Some color tables are designed to highlight features with 
drastic color change in adjacent ranges (for example setting 0 through 20 to black and 
setting 21 through 40 to white).

Note
Color tables are associated with indexed images. RGB images already contain their 
own color information. If you want to derive a color table for an RGB image, you 
should convert it to an indexed image with the COLOR_QUAN routine. You 
should also set COLOR_QUAN’s CUBE keyword to 6 to insure the resulting 
indexed image is an intensity representation of the original RGB image. See 
COLOR_QUAN in the IDL Reference Guide for more information

See the following topics in the IDL Reference Guide for examples:

• IDLgrPalette provides an example that creates, defines and applies a palette 
object to an image

• TVLCT creates, defines and applies a color table in a Direct Graphics display

• H_EQ_CT applies histogram equalization to a color table to reveal previously 
indistinguishable feature
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Multi-Monitor Configurations

IDL allows you to position windows on multiple monitors attached to the same 
computer. Such multi-monitor configurations may appear to the user (and to you as 
an IDL programmer) as a single extended desktop consisting of multiple physical 
monitors, or as a series of individual desktops appearing on multiple physical 
monitors.

IDL’s support for multi-monitor configurations includes the following:

• The IDLsysMonitorInfo object, which allows you to query the system for the 
current monitor configuration and to determine the screen geometry of the 
various monitors.

• Keyword support for extended (or multiple) desktops within routines that draw 
a window on the monitor screen. For example, the XOFFSET, YOFFSET, and 
DISPLAY_NAME keywords to the WIDGET_BASE function and 
WIDGET_CONTROL procedure allow you to position widget applications 
anywhere on any available monitor. Similarly, the LOCATION and 
DISPLAY_NAME properties of the IDLgrWindow object afford you the same 
control for object graphics windows.

It is important to note that support for multi-monitor configurations is quite different 
on Windows and UNIX systems, and that as a result IDL’s support varies by 
platform. By understanding how multi-monitor configurations are supported on each 
platform, you can create cross-platform IDL applications that will take advantage of 
multiple monitors when they are present. See the following sections for platform-
specific details.

• “Windows Multi-Monitor Configurations” on page 83

• “UNIX Multi-Monitor Configurations” on page 87

See “Example: Multi-Monitor Window Positioning” on page 89 for example code 
that uses the IDL’s multi-monitor support.

Multi-Monitor Terminology

In this discussion of IDL’s multi-monitor support, the following terms are used with 
the meanings listed below.

Desktop — An onscreen user work area. Multiple desktops are generally managed 
either by the operating system itself or by a desktop management system and are 
dependant on the physical monitor configuration — that is, you can have multiple 
desktops on a single monitor.
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Display — On UNIX systems, the word Display describes the connection between an 
X client and an X server. Do not confuse this with monitor. 

Extended Desktop — A term for an onscreen user work area that may span multiple 
monitors. It is often used to describe the minimum bounding box that encloses the 
user work area defined by each monitor in the system. There may be “holes” in an 
extended desktop if two monitors with different display resolutions are used. 
Extended desktops are characterized by their ability to drag windows between 
monitors on the desktop.

Monitor — A physical display device such as a CRT or LCD. 

Primary Monitor — In an extended desktop system, the primary monitor is the 
monitor that contains the origin (0,0). If the desktop is not extended, then the primary 
monitor is the one that is considered “default” by the graphics system.

Screen — On UNIX systems, the word Screen describes one of a display’s drawing 
surfaces. A single X server can control more than one Screen, but is generally 
operated or controlled by a single user with a single keyboard and pointing device.

Secondary Monitor — In an extended desktop system, a secondary monitor is any 
monitor that is not the primary monitor. If the desktop is not extended, then a 
secondary monitor is the one that is not considered “default” by the graphics system.

Virtual Desktop — A desktop configured so that it is larger than the monitor used to 
display it. The user can “pan” the desktop around to cause the desired parts of it to be 
visible on the monitor. 

X Server — A program that runs on the machine to which the graphics adapter is 
attached. It owns the graphics adapter and is responsible for drawing on it.

X Client — A program that connects to an X server, sending commands to the X 
server to draw on the display device. The X client is typically the application and may 
or may not be executing on the same machine as the X server.

X Multi-Screen — The “core” method for an X server to handle more than one 
monitor. Each monitor is assigned a Screen; the user can move the pointing device 
from one monitor to another, but cannot drag windows between monitors. Each 
Screen is addressed by the final digit in the X Display name (e.g., the 1 in 
ajax:0.1). 

XINERAMA — An X11 extension that allows a single X11 screen to be displayed 
across multiple monitors. This allows an application to open windows on any monitor 
using the same Display/Screen connection. This is an example of an extended 
desktop implementation for UNIX systems and is essentially a way to emulate the 
extended desktop that Windows presents to the user.
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Windows Multi-Monitor Configurations

A multi-monitor configuration on a Windows system is always presented as an 
extended desktop, with the work area spanning the configured monitors. You can 
drag windows from one monitor to the other, or they can span monitors.

The extended desktop configuration works best when using a single graphics adapter 
with two video outputs. If you use multiple graphics adaptors, features such as 3D 
hardware video acceleration may only be available on one monitor.

To configure a multi-monitor configuration using the Windows Display applet; 
either:

• Right-click on the desktop and select Properties

• Select Start → Settings → Control Panel →  Display

Figure 3-5 shows the Display Properties control panel for a common dual-monitor 
configuration. The left-hand image shows the primary display selected and identified 
as monitor 1. The right-hand image shows the secondary display selected and 
identified as monitor 2. The coordinates of the upper-left corner of the secondary 
display are shown in the tool-tip (“Secondary Display (1600, 0)”). Also, the 
Extend my Windows desktop onto this monitor checkbox is selected to extend the 
desktop onto the secondary monitor. 

Figure 3-5: Multi-monitor Configuration in Windows Display Properties
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The extended desktop configured in Figure 3-5 appears as in Figure 3-6, with a dotted 
line showing where the two monitors meet in one desktop.

In this example, there are no windows on the secondary monitor. The crosshatched 
area in the lower right exists because the monitor on the right has fewer pixel rows 
than the monitor on the left.

The Display Properties dialog allows you to change the location of the secondary 
monitor relative to the primary monitor. Note that pixel (0,0) is defined as being the 
upper left corner of the primary monitor. Figure 3-7 shows a configuration in which 
the secondary monitor is positioned “above” the primary monitor; the tooltip shows 
that the upper left corner of the secondary monitor is positioned 1480 pixels to the 

Figure 3-6: The Extended Desktop
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right of and -1024 pixels below pixel (0,0). Figure 3-8 shows the shape of the 
resulting extended desktop area. 

Figure 3-7: Moving the Location of the Second Monitor

Figure 3-8: The Rearranged Desktop Configuration
Using IDL Windows Multi-Monitor Configurations
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There is now more “empty” space (represented by the crosshatched area). The 
handling of empty space depends on the graphics adapter vendor. For example, many 
desktop managers let you control whether or not an application can create a window 
in this empty space. (Remember that if you do create a window in empty space, there 
would be no way to drag the window back onto a visible portion of the desktop.) 
Many desktop managers also contain controls for opening windows and repositioning 
dialog boxes.

Warning
Third-party desktop managers may enforce their own positioning rules, overriding 
requests from other applications such as IDL. If you have trouble positioning 
windows on the screen using IDL, investigate whether your desktop manager’s 
control over other applications can be changed or relaxed.
Windows Multi-Monitor Configurations Using IDL
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UNIX Multi-Monitor Configurations

Because the UNIX platform encompasses multiple vendors, multi-monitor support 
can be more complex to configure. There are two primary multi-monitor solutions for 
UNIX platforms:

• Use the X Multi-Screen mechanism, wherein a distinct X11 Screen is 
displayed on each monitor to create multiple desktops. IDL supports this 
mechanism on all UNIX systems.

• Use the XINERAMA extension to create a single extended desktop. IDL 6.3 
provides client support for the XINERAMA extension Macintosh OS X and 
several Linux distributions.

Note
Configure your UNIX multi-monitor systems using XINERAMA wherever 
possible. This gives you the most functionality and increases commonality with 
Windows.

Using X Multi-Screen

An X server running on a computer using multiple monitors can be configured so that 
a different Screen is assigned to each monitor. This is the traditional way for a UNIX 
system to support multiple monitors, and it is the only option available on IDL 
platforms for which there is no XINERAMA support.

In a multi-screen configuration, windows and dialogs cannot be dragged between 
windows interactively, and cannot span multiple monitors. Each monitor has a 
different display name and coordinate system with its own origin.

Using XINERAMA

The XINERAMA extension creates an extended desktop similar to that presented on 
Windows systems. Windows and dialogs can be dragged between windows 
interactively, and can span multiple monitors. All configured monitors share the 
same display name and have a common origin.

Stable XINERAMA support is only available on selected X Windows System 
releases. As of the IDL 6.3 release, IDL provides client support on Macintosh OS X 
and several Linux distributions. In addition, If the X server is running Macintosh OS 
X, Linux, or Solaris 10, IDL can treat multiple monitors as an extended desktop even 
though no information about individual monitor geometries is available.
Using IDL UNIX Multi-Monitor Configurations
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UNIX systems that provide XINERAMA support are rarely configured to do so by 
default; consult your operating system documentation for configuration information. 
Some vendors supply configuration tools and desktop management controls to help 
use their systems. In addition, some X window managers are “XINERAMA-aware” 
and let you configure some multi-monitor-related behaviors.

Warning
Third-party desktop managers may enforce their own positioning rules, overriding 
requests from other applications such as IDL. If you have trouble positioning 
windows on the screen using IDL, investigate whether your desktop manager’s 
control over other applications can be changed or relaxed.

XINERAMA Client/Server Interactions

When using networked UNIX systems, you are generally seated at an X workstation 
that is running an X server and some local programs such as command shells. You 
then log in remotely to another machine and execute X client programs (like IDL) 
with their DISPLAY environment variable pointing back to the X server you are 
using. The client program may be running on a machine that is of completely 
different architecture and capability than the machine running the X server. Table 3-6 
shows the IDL X client’s interactions with X servers on systems that do or do not 
support XINERAMA.

Client supports
XINERAMA?

Server supports XINERAMA?

Yes No

Yes — 
IDL running on 
Linux, OS X

IDL detects extended 
desktop with monitor 
information for each 
physical monitor.

IDL detects 
independent desktops 
with monitor 
information for each 
physical monitor.

No —
IDL running on 
other UNIX 
platforms

IDL detects extended 
desktop with monitor 
information for single 
desktop spanning all 
monitors. Individual 
monitor information 
is not available.

IDL detects 
independent desktops 
with monitor 
information for each 
physical monitor

Table 3-6: Possible XINERAMA Client/Server Combinations
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Example: Multi-Monitor Window Positioning

The IDL distribution contains example .pro code that illustrates how to use the 
IDLsysMonitorInfo object to position application windows on multiple monitors. 
With a little care, you can design the code to work on Windows, XINERAMA, and X 
Multi-Screen platforms and handle all monitor configurations.

The example code displays a simple splash screen in the middle of the primary 
monitor and opens a simple application GUI on the nth monitor in a system with n 
monitors.

Example Code
The application window positioning for multi-monitor example is included in the 
file multimon_ex1.pro in the examples/doc/utilities subdirectory of 
the IDL distribution.
Using IDL Example: Multi-Monitor Window Positioning
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Using Fonts in Graphic Displays

IDL uses three font systems for writing characters on the graphics device, whether 
that device be a display monitor or a printer: Hershey (vector) fonts, TrueType 
(outline) fonts, and device (hardware) fonts. Fonts are discussed in detail in 
Appendix H, “Fonts” (IDL Reference Guide).

Both TrueType and Vector fonts are displayed identically on all of the platforms that 
support IDL. This means that if your cross-platform application uses either the 
TrueType fonts supplied with IDL or the Vector fonts, there is no need for platform-
dependent code.

In a widget application, specify a font using the FONT keyword. If you choose a 
device font, you may need to write platform-dependent code. See “Fonts Used in 
Widget Applications” (Chapter 9, Application Programming) for details. 

To set the font in an Object Graphics display, create an IDLgrFont object and assign 
this object to a text object using the IDLgrText object FONT property. See “Font 
Objects” (Chapter 9, Object Programming) for more information.

Note
Within the IDLDE, you can specify what font is used in various areas (e.g., the 
Editor window or the Output Log window). See “Font Preferences” (Chapter 4, IDL 
Interface) for details.
Using Fonts in Graphic Displays Using IDL
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Printing Graphics

Beginning with IDL version 5.0, IDL interacts with a system-level printer manager to 
allow printing of both IDL Direct Graphics and IDL Object Graphics. On Windows 
platforms, IDL uses the operating system’s built-in printing facilities; on UNIX 
platforms, IDL uses the Xprinter print manager from Bristol Technology.

Use the DIALOG_PRINTERSETUP and DIALOG_PRINTJOB functions to 
configure your system printer and control individual print jobs from within IDL.

Printing IDL Direct Graphics

To print IDL Direct Graphics, you must first use the SET_PLOT procedure to make 
PRINTER your current device. Issue IDL commands as normal to create the graphics 
you wish to print, then use the CLOSE_DOCUMENT keyword to DEVICE to 
actually initiate the print job and print something from your printer. You can also 
create multiple pages before closing the document as well as being able to use tile 
graphics with the !P.MULTI system command. 

See “Printing Graphics Output Files” (Appendix A, IDL Reference Guide) for details 
and examples.

Printing IDL Object Graphics

To print IDL Object Graphics, you must create a printer object to use as a destination 
for your Draw operations. You can also print multiple documents with the 
IDLgrPrinter object. See “Printer Objects” (Chapter 12, Object Programming)for 
information about printer objects and examples of their use. Also see “Bitmap and 
Vector Graphic Output” (Chapter 12, Object Programming) for information of when 
to output to bitmap or vector graphics based on picture content.
Using IDL Printing Graphics
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Printing Graphics Using IDL



Chapter 4

Animations
This chapter describes how to create and play Motion JPEG2000 animations using the 
IDLffMJPEG2000 object. See the following topics for details:
Overview of Motion JPEG2000  . . . . . . . . .  94
Creating a Motion JPEG2000 Animation  . .  96
Adding Data to MJ2 Animations . . . . . . . . .  98

Playing a Motion JPEG2000 Animation  .  103
Controlling the Playback Rate  . . . . . . . . .  106
High Speed MJ2 Reading and Writing  . .  108
Using IDL 93
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Overview of Motion JPEG2000

Motion JPEG2000 is an extension of the still image JPEG2000 image format that is 
designed for storing animations. A Motion JPEG2000 file (MJ2) consists of a 
collection of frames. Each frame is an independent JPEG2000 image, and like 
JPEG2000 images, each frame may be made up of one or more components (bands or 
channels of data). The individual frame components may also be composed of tiles or 
contain regions. 

The Motion JPEG2000 format offers several features that make it an excellent choice 
for data storage in scientific, security, and research arenas:

• Lossless compression option — the original image data can be retrieved from 
the file. 

• Granular access — an animation can consist of individual components, tiles or 
regions in addition to entire frames. 

• Intra-frame encoding — each frame is an independent entity and a true 
representation of the data at a single point in time. The older MPEG standard 
uses inter-frame encoding where interdependencies between the frames makes 
it impossible to extract a singular frame of data. 

You can create and play Motion JPEG2000 (MJ2) files in IDL using the 
IDLffMJPEG2000 object. This chapter describes how to create and play your own 
MJ2 files. In brief, an IDLffMJPEG2000 object can open an MJ2 file (identified by a 
Filename argument) for playback or creation based on the value of the WRITE 
property. When you create (write) a file, you will use the IDLffMJPEG2000::SetData 
method to add frames, components or tiles of data to the file. When the animation is 
complete, call the IDLffMJPEG2000::Commit method to close the file. See 
“Creating a Motion JPEG2000 Animation” on page 96 for details. 

Note
The same IDLffMJPEG2000 object cannot be used to both write and read an MJ2 
file. You can write a file with one object (where WRITE=1), but you must create a 
separate object (where WRITE=0, the default) in order to read or play the new MJ2 
file. 

The IDLffMJPEG2000 object supports sequential and random playback. To create a 
sequential playback, you will use a group of methods to start the reading process, 
retrieve the frame, release the frame and stop the reading process. These methods are 
described in “Playing a Motion JPEG2000 Animation” on page 103. If you want to 
Overview of Motion JPEG2000 Using IDL
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control the playback rate, you will need to include some sort of timer mechanism as 
described in “Controlling the Playback Rate” on page 106. 

When creating and playing an MJ2 file, IDL uses an internal background processing 
thread to compress or decompress frames into a frame buffer. Depending upon the 
size and complexity of the frame, creation or playback may be delayed if frame 
compression or decompression takes longer than the associated method call. To avoid 
such a delay, modify the FRAME_BUFFER_LENGTH property as described in 
“High Speed MJ2 Reading and Writing” on page 108. 

Sample Motion JPEG2000 Player and Writer

The IDL distribution includes a sample MJ2 player and an MJ2 writer as follows: 

• The sample IDL Motion JPEG2000 Player can display RGB and monochrome 
MJ2 files. This example code, mj2_player.pro, and a sample image, 
idl_mjpeg2000_example.mj2, are located in the 
IDL_DIR\examples\mjpeg2000 directory where IDL_DIR is the directory 
where you have installed IDL.

• The sample IDL Motion JPEG2000 Writer, mj2_writer_rgb.pro, creates 
an MJ2 animation. This example is located in the 
IDL_DIR\examples\mjpeg2000 directory where IDL_DIR is the directory 
where you have installed IDL. Running the example creates a new MJ2 file, 
which is written to your application user directory, a subdirectory of your 
home directory.

Supported Platforms

The IDLffMJPEG2000 object is not supported on AIX or IRIX. See “Feature Support 
by Operating System” (Chapter 1, Installation and Licensing Guide) for details.
Using IDL Overview of Motion JPEG2000
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Creating a Motion JPEG2000 Animation

To create a Motion JPEG2000 file, create a new IDLffMJPEG2000 object and set the 
WRITE property equal to 1. During initialization, you must specify a filename, which 
is the path and location of the MJ2 file to be created. 

Note
If you specify an existing MJ2 file as the Filename argument during initialization, 
and also set the WRITE keyword, the existing file will be overwritten without 
prompting and all existing data will be replaced with the new data. It is not possible 
to append data to an MJ2 file.

To create a file, you will need to use the IDLffMJPEG2000::SetData and 
IDLffMJPEG2000::Commit methods. The SetData method lets you add entire frames 
of data, or individual frame components or frame tiles to the MJ2 file. However, 
before the first call to SetData, there are several properties you may need to set.

Property Brief Description

BIT_DEPTH Specifies the bit depth of the data to be written 
to the file. If not set, the default value of 8 will 
specify byte data.

Note - To write short or long integer data, you 
must set the BIT_DEPTH and SIGNED 
properties before calling SetData.

COMMENT Specifies a descriptive comment for the file.

FRAME_BUFFER_LENGTH Defaults to 3, the number of frame slots in the 
frame buffer. See “High Speed MJ2 Reading 
and Writing” on page 108 for information on 
how modifying this value can enable high-speed 
reading and writing of MJ2 files. 

N_LAYERS Defines the number of quality levels used to 
build the frame. If not set, the default value (1) is 
used.

Table 4-1: Properties that Must be Set Before Calling the SetData Method
Creating a Motion JPEG2000 Animation Using IDL
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The following properties will be automatically set based on the first frame of data 
passed to SetData if not specified before the first call. If you are passing in a single 
frame component or tile component in each call to SetData, you need to set the 
related properties (N_COMPONENTS or TILE_DIMENSIONS) prior to the first call 
to SetData in order for the data to be written to the file correctly. 

Note
See “IDLffMJPEG2000 Properties” (IDL Reference Guide) for details. 

N_LEVELS Defines the number of wavelet decompression 
levels. The default is 5 unless the PALETTE 
property is set, in which case the default is 0.

PALETTE Set to a 3-by-n or an n-by-3 array of byte or 
integer values where n is the number of intensity 
values for the three (r, g, b) color channels. 

REVERSIBLE Set to 1 (lossless) to be able to retrieve the 
original data. The default is 0 (lossy) unless the 
PALETTE property has been set.

SIGNED Set to 1 to write signed data. Otherwise, data 
will be written as unsigned (0, the default). 

Property Description

COLOR_SPACE Defines the color space of the file. If the input data has 1 
component, the default is monochrome; if it has 3 
components, the default is RGB (unless the YCC 
property is set).

DIMENSIONS Defaults to the width, height of the first frame of input 
data. The dimensions of each data array must match.

N_COMPONENTS Defaults to the number of components in the first frame.

TILE_DIMENSIONS Defaults to the DIMENSIONS of the frame if not set. 

Table 4-2: Properties Set Based on SetData Input if Not Specified

Property Brief Description

Table 4-1: Properties that Must be Set Before Calling the SetData Method
Using IDL Creating a Motion JPEG2000 Animation
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Adding Data to MJ2 Animations

The source of the data for the MJ2 file can be existing data or incremental captures 
from data processing or data display. Regardless of the source of the data to be added 
to the MJ2 file, you will need to call the IDLffMJPEG2000::SetData method multiple 
times (minimally, once for each frame of the animation). Each SetData call adds the 
data to the frame buffer where it is compressed by a background processing thread. 
This processing thread is automatically started with the first SetData call. After all of 
the data has been added to the file, you must call the IDLffMJPEG2000::Commit 
method to stop the processing thread and close the file. 

The first call to the IDLffMJPEG2000::SetData property is key. If you have not 
previously defined a number of object properties (noted in “Creating a Motion 
JPEG2000 Animation” on page 96), then the values are taken from the dimensions of 
the data that is passed in during the first SetData call. For example, if you pass in 
three arrays (data1, data2 and data3) in the first SetData call, the COLOR_SPACE 
property will automatically be set to sRGB. If you are passing in three monochrome 
data arrays, this property would need to be set to sLUM prior to the first call to 
SetData to avoid unexpected results. 

Note
It is possible to call SetData faster than the background processing thread can 
compress the data and write it to a file. If this is an issue, see “High Speed MJ2 
Reading and Writing” on page 108 for additional file creation options. 

When creating a new MJ2 file you can choose from the following options:

• “Animating Existing Data” on page 99 — add frames, components or tiles of 
data to the MJ2 file

• “Animating Screen Captures” on page 102 — add the contents of an object 
graphics animation to the MJ2 file

• “Animating Data Captures” on page 102—add newly created data to the MJ2 
file

Note
The following examples use a simple WAIT statement mechanism for controlling 
the playback rate. In reality, you will likely use a more robust mechanism. See 
“Controlling the Playback Rate” on page 106 for options and information about a 
related example.
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These examples, which are comparatively short and simple, use the GetData method 
instead of the group of methods described in “Sequential Motion JPEG2000 
Playback” on page 103. Examples showing the use of the sequential playback 
methods are located in “Controlling the Playback Rate” on page 106 and the 
Examples section of “IDLffMJPEG2000::GetSequentialData” (IDL Reference 
Guide).

Animating Existing Data

The IDLffMJPEG2000 object stores entire frames of data as well as bands or 
channels of frame data (components) or frame tiles. The new MJ2 file can contain a 
series of images, components, or tiles as long as the dimensions and numbers of 
components are the same for each element. Examples of animating existing data 
include:

• “MJ2 Monochrome Frame Animation”

• “MJ2 Animation of an Image with a Palette” on page 100

• “MJ2 RGB Tile Animation” on page 101

The following examples write MJ2 files to your temporary directory. Use PRINT, 
FILEPATH(' ', /TMP) to display this location. 

MJ2 Monochrome Frame Animation

The following simple example creates a short animation from a series of MRI frames 
of data contained in a binary file. An animation consisting of all available quality 
layers for a dozen frames is then displayed.

PRO mj2_frames_doc

; Read image data, which contains 57 frames.
nFrames = 57
head = READ_BINARY( FILEPATH('head.dat', $
  SUBDIRECTORY=['examples','data']), $
  DATA_DIMS=[80,100, 57])

; Create new MJ2 file in the temporary directory.
file = FILEPATH("mj2_frames_ex.mj2",/TMP)

; Create an IDLffMJPEG2000 object.
oMJ2write=OBJ_NEW('IDLffMJPEG2000', file, /WRITE, /REVERSIBLE, $
   N_LAYERS=10)

; Write the data of each frame into the MJ2 file.
FOR i=0, nFrames-1 DO BEGIN
Using IDL Adding Data to MJ2 Animations
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   data = head[*,*,i]
   result = oMJ2write->SetData(data)
ENDFOR

; Commit and close the IDLffMJPEG2000 object.
return = oMJ2write->Commit(10000)
OBJ_DESTROY, oMJ2write

; Create a new IDLffMJPEG2000 object to access MJ2 file.
oMJ2read=OBJ_NEW("IDLffMJPEG2000", file)
oMJ2read->GetProperty,N_FRAMES=nFrames, DIMENSIONS=dims

; Create a window and display simple animation.
WINDOW, 0, XSIZE=2*dims[0], YSIZE=2*dims[1], TITLE="MJ2 Layers"

; Display all quality layers (j) of a dozen frames (i).
FOR i=25, 36 DO BEGIN
   ; Return data and display magnified version. Pause
   ; between each frame for visibility. Unless a timer
   ; is used in conjunction with the FRAME_PERIOD and
   ; TIMESCALE properties, playback will occur as fast
   ; as the frames can be decompressed. 
   FOR j=0, 10 DO BEGIN
      data = oMJ2read->GetData(i, MAX_LAYERS=j)
      TVSCL, CONGRID(data, 2*dims[0], 2*dims[1])
      WAIT, 0.1
   ENDFOR
ENDFOR

; Cleanup.
OBJ_DESTROY, oMJ2read

End

This example is also available in the IDL distribution.

Example Code
This example, mj2_frames_doc.pro, is located in the 
examples/doc/objects subdirectory of the IDL distribution. Run the example 
procedure by entering mj2_frames_doc at the IDL command prompt or view the 
file in an IDL Editor window by entering .EDIT mj2_frames_doc.pro. 

MJ2 Animation of an Image with a Palette

The following example accesses the palette associated with a PNG file and assigns 
the values to the IDLffMJPEG2000 object PALETTE property. The image data is 
then modified in such a way that the resulting animation appears to be a shrinking 
Adding Data to MJ2 Animations Using IDL

RSI_PROCODE/examples/doc/objects/mj2_frames_doc.pro


Chapter 4: Animations 101
view of the image. However, the shrunken image is padded to maintain the original 
image dimensions, which is a requirement of SetData. Each frame must have the 
same dimensions. 

The following lines, abstracted from the entire example, show accessing the palette 
from the PNG file and assigning it to the new MJ2 file.

; Access image data and associated palette.
world = READ_PNG (FILEPATH ('avhrr.png', $
   SUBDIRECTORY = ['examples', 'data']), R, G, B)
;...
; Create an MJ2 file in the temporary directory. Assign the 
; palette arrays to the PALETTE property.
file =FILEPATH("mj2_palette_ex.mj2", /TMP)
oMJ2write = OBJ_NEW('IDLffMJPEG2000', file, /WRITE, $
   PALETTE=[[R], [G], [B]])

See the following for the complete program.

Example Code
This example mj2_palette_doc.pro, is located in the 
examples/doc/objects subdirectory of the IDL distribution. Run the example 
procedure by entering mj2_palette_doc at the IDL command prompt or view 
the file in an IDL Editor window by entering .EDIT mj2_palette_doc.pro. 

MJ2 RGB Tile Animation 

The following example creates a tiled, RGB JPEG2000 image from a 5,000 by 
5,0000 pixel JPEG image. The JPEG2000 image tile data is then written to a Motion 
JPEG2000 image file. As shown in the following code, a smaller version of each tile 
is extracted from the MJ2 file and displayed sequentially in a window.

; Create object to read new MJ2 file. Set PERSISTENT to access
; tiled data. Set DISCARD_LEVELS to display smaller versions of
; the tiles.
oMJ2read = OBJ_NEW('IDLffMJPEG2000', file, /PERSISTENT)
oMJ2read->GetProperty, N_TILES=nTiles, TILE_DIMENSIONS=tileDims
WINDOW, 0, XSIZE=625, YSIZE=625
For j=0, nTiles-1 DO BEGIN
   data = oMJ2read->GetData(0, DISCARD_LEVELS=3, $

TILE_INDEX=j, /RGB)
   TVSCL, data, j, TRUE=1
   WAIT, 0.3
ENDFOR

See the following for the complete program. A noticeable amount of time will be 
required the first time you run the example as several large files must be created.
Using IDL Adding Data to MJ2 Animations
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Example Code
This example mj2_tile_doc.pro, is located in the examples/doc/objects 
subdirectory of the IDL distribution. Run the example procedure by entering 
mj2_tile_doc at the IDL command prompt or view the file in an IDL Editor 
window by entering .EDIT mj2_tile_doc.pro. 

Animating Screen Captures

You can capture the visible contents of an IDLgrWindow using the IDLgrWindow 
IMAGE_DATA property. The captured data can then be passed to the MJ2 file via the 
IDLffMJPEG2000::SetData method. This method of MJ2 creation is useful for 
recording an existing animation. For information on creating animations in an object 
graphics window see Chapter 10, “Animating Objects” (Object Programming). For 
an example that creates an MJ2 file using this method, see “Sample Motion 
JPEG2000 Player and Writer” on page 95, which describes the example, 
mj2_writer_rgb.pro, located in the IDL_DIR\examples\mjpeg2000 
directory. 

A timer mechanism can be used to control the rate of the animation and the rate at 
which data is captured and written to an MJ2 file. See “Timer Mechanisms” on 
page 107 for more information.

Animating Data Captures

In addition to adding existing data to an MJ2 file, you can also add incremental data 
captures - snapshots of data at specified intervals. Data captured at any point during 
program execution can be added as long as each element passed to SetData has the 
same dimensions. The following example captures the incremental application of a 
thinning operator to an image, creating an animation that shows the changes to the 
original data.

Example Code
This example mj2_morphthin_doc.pro, is located in the 
examples/doc/objects subdirectory of the IDL distribution. Run the example 
procedure by entering m2_morphthin_doc at the IDL command prompt or view 
the file in an IDL Editor window by entering .EDIT m2_morphthin_doc.pro. 
Adding Data to MJ2 Animations Using IDL
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Playing a Motion JPEG2000 Animation

You can use the IDLffMJPEG2000 object to access frames sequentially or randomly 
from a Motion JPEG2000 file (MJ2). Sequential access plays an animation, which 
can consist of entire frames, or can consist of frame components, tiles or regions, and 
uses a background processing thread. Random access plays selected frames, which 
can also consist of entire frames, or frame components, tiles or regions, without the 
use of a background processing thread. See the following sections for details:

• “Sequential Motion JPEG2000 Playback” on page 103

• “Random Motion JPEG2000 Playback” on page 104

Regardless of the type of playback, it is important to understand that unless you 
implement a timer mechanism to control playback, the default rate will be as fast as 
the frames can be decompressed. Options for timer mechanisms include widget timer 
and the more robust IDLitWindow timer mechanism. 

Warning
Avoid using the WAIT procedure to control the sequential playback rate. On UNIX 
platforms there is an internal conflict between the background processing thread 
and the WAIT procedure. To avoid cross-platform compatibility issues, always use 
a widget timer or IDLitWindow timer mechanism to control the sequential playback 
rate. 

The timer mechanism will typically use the FRAME_PERIOD and TIMESCALE 
properties to control the rate. See “Controlling the Playback Rate” on page 106 for 
more information.

Note
If you find the rate at which the frames can be decompressed is slower than the 
desired playback speed, see “High Speed Sequential Playback” on page 108 for an 
optional playback method.

Sequential Motion JPEG2000 Playback

To playback a large series of MJ2 frames, components, tiles or regions sequentially, 
your program will need to include the following methods and elements: 

• IDLffMJPEG2000::StartSequentialReading—start the background 
decompression thread. You can indicate what data to display (the entire frame, 
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or a component, tile, or region of the frame) as well as the resolution (level) of 
data. You can also specify the start and stop frames for the sequential playback. 

• Timer—start a widget timer or IDLitWindow timer mechanism to play back 
frames at the desired rate. Within the timer event, call the following methods: 

• IDLffMJPEG2000::GetSequentialData—points at the data being retrieved 
from the frame buffer. This is not a copy of the data.

• IDLffMJPEG2000::ReleaseSequentialData—releases the data from the 
frame buffer.

Note
You should always include a timer mechanism to control the playback rate. 
Without a timer, the playback rate will be equal to the rate at which the 
frames can be decompressed. See “Controlling the Playback Rate” on 
page 106 for details and an example.

• IDLffMJPEG2000::StopSequentialReading— releases the decompressed 
frames from the frame buffer memory and stops the background processing 
thread, (if it is still running). Call this method when the sequential playback is 
complete. 

When playback ends, turn off the timer mechanism to stop the animation. 

Examples showing the use of the sequential playback methods are located in 
“Controlling the Playback Rate” on page 106 and the Examples section of 
“IDLffMJPEG2000::GetSequentialData” (IDL Reference Guide).

Random Motion JPEG2000 Playback

To access a specified frame, use the IDLffMJPEG2000::GetData method. When 
using GetData, you can return an entire frame, or a component, tile, or region of a 
frame. You can also specify the resolution (level) of data to return.

The GetData method returns data when it has been decompressed. Unlike 
GetSequentialData, GetData does not use a background processing thread and there 
is no frame buffer involved. This means that the data returned by GetData can be 
accessed. (The data returned by GetSequentialData cannot be accessed as it returns 
only a pointer to the data on the frame buffer.) Since no background processing thread 
is involved, a simple WAIT statement can be used to control the playback rate when 
there is no need to implement a more robust timer mechanism.

Use GetData when you need to access a small number of distinct frames. Use 
GetSequentialData and the background processing thread when you want to playback 
Playing a Motion JPEG2000 Animation Using IDL
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a large number of frames at a specified rate as described in “Sequential Motion 
JPEG2000 Playback” on page 103. 

Simple examples that use the GetData method are described in “Adding Data to MJ2 
Animations” on page 98. 
Using IDL Playing a Motion JPEG2000 Animation
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Controlling the Playback Rate

Sequential playback relies on the interaction of four IDLffMJPEG2000 methods, 
described in “Sequential Motion JPEG2000 Playback” on page 103. When you call 
StartSequentialReading, a background processing thread is started, and the selected 
data is decompressed and added to the frame buffer. Within a timer event, you must 
call the GetSequentialData and ReleaseSequentialData methods as a pair. These 
methods work cooperatively to access and then to release the frame data so that there 
is room for the decompression of the next frame. 

Tip
If playback is delayed because there are not frame buffer slots available, you can 
modify the size of the frame buffer using the FRAME_BUFFER_LENGTH 
property. See “High Speed MJ2 Reading and Writing” on page 108 for details.

The timer mechanism can access the decompressed data from the frame buffer at 
intervals specified by a combination of the FRAME_PERIOD and TIMESCALE 
properties. The number of seconds allotted each frame is equal to the 
FRAME_PERIOD divided by the TIME_SCALE property (see the discussion under 
“FRAME_PERIOD” (IDL Reference Guide) for details). Access the required 
properties from an IDLffMJPEG2000 object (oMJ2) as follows: 

oMJ2->GetProperty,N_FRAMES=nFrames, DIMENSIONS=dims, $
FRAME_PERIOD=vFramePeriod, TIMESCALE=vTimeScale

      
; Compute seconds per frame.
vFrameRate = FLOAT(vFramePeriod)/vTimeScale

In the previous line, the FLOAT function ensures the return of a floating point frame 
rate value and avoids errors caused by attempting to divide by zero. This frame rate 
value can then be passed to the timer mechanism to control playback rate. For an MJ2 
file that has frames with varied FRAME_PERIOD property values, computing the 
frame rate for each frame and passing it to the timer mechanism will alter the 
playback speed. The following example creates an MJ2 file with varied frame period 
values and then uses these values to compute a value to be passed to a widget timer 
event, which alters the playback rate to reflect the frame period of each frame.

Example Code
This example mj2_timer_doc.pro, is located in the examples/doc/objects 
subdirectory of the IDL distribution. Run the example procedure by entering 
mj2_timer_doc at the IDL command prompt or view the file in an IDL Editor 
window by entering .EDIT mj2_timer_doc.pro. 
Controlling the Playback Rate Using IDL
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Timer Mechanisms

There are two primary options for timer mechanisms that can be used to control the 
playback rate of an MJ2 animation in an IDL application: 

Of the two options listed above, the IDLitWindow timer will more accurately reflect 
true frame rates. The widget timer will show rate changes, but may not have the same 
degree of accuracy as the IDLitWindow timer mechanism. 

Option Description

IDLitWindow A number of IDLitWindow methods work in concert to control 
what happens during a timer event:

• IDLitWindow::SetEventMask — use this method to turn 
timer events on and off

• IDLitWindow::SetTimerInterval — set this equal to the 
desired frame rate (seconds/frame)

• IDLitWindow::OnTimer — write code in this procedure to 
get and release frame data at the rate specified in 
SetTimerInterval

The sample MJ2 player, mj2_player.pro, located in the 
IDL_DIR\examples\mjpeg2000 directory uses an 
IDLitWindow timer mechanism. See “Sample Motion JPEG2000 
Player and Writer” on page 95 for more information. 

Widget Timer A timer event can be associated with a number of widgets 
although it is typically associated with one that has no events of its 
own such as a base or label. The WIDGET_CONTROL procedure 
associates a timer with a widget and sets the rate. 

The mj2_timer_doc.pro example, located in the 
examples/doc/objects subdirectory of the IDL distribution, 
shows how to control playback rate with a widget timer. See 
“Timer Events” (Chapter 4, Widget Application Programming) 
for more information on these events. 

Table 4-3: Timer Mechanisms Options for MJ2 Playback
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High Speed MJ2 Reading and Writing

Animation playback or creation can be delayed due to the time required to 
decompress or compress frame data. The following sections describe ways to avoid 
such delays during file reading or writing.

High Speed Sequential Playback

If the desired playback speed exceeds the rate at which frames can be decompressed 
(as described in “Sequential Motion JPEG2000 Playback” on page 103), you can 
decompress all of the frames before starting the playback. To do so, you need to set 
the FRAME_BUFFER_LENGTH property to the total number of frames to be 
played back before calling IDLffMJPEG2000::StartSequentialReading. 

When you call StartSequentialReading, the background processing thread will begin 
decompressing the frames and storing them in the frame buffer. Before calling the 
GetSequentialData/ReleaseSequentialData pair of methods, make sure that all frames 
have been read into the frame buffer. You can check this using one of the following: 

• Check the STATE property—if frames are still being decompressed by the 
processing thread, the property returns 1 (running). When all frames have been 
decompressed, the background processing thread shuts down and the STATE 
property returns to 0 (idle). 

• Check the FRAMES_IN_BUFFER property—if the number of frames in the 
buffer equals the FRAME_BUFFER_LENGTH property you set prior to 
starting the decompression, then all of the desired frames have been 
decompressed. 

Note
This technique, decompressing all the desired frames prior to playback, can 
consume large amounts of memory depending on the number and size of the 
frames. Also, remember that the decompressed frames will remain in the frame 
buffer until you call the StopSequentialReading method.

High Speed MJ2 File Writing

In some situations, the desired write speed may exceed the rate at which frames can 
be compressed. When you call SetData, the data is added to the frame buffer where it 
is compressed by a background processing thread. If compression cannot keep up 
with the SetData calls, the frame buffer fills up and SetData must wait for an available 
frame buffer slot before it can return. 
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To avoid such a delay, you can make sure there is always a slot available for the 
SetData call by increasing the FRAME_BUFFER_LENGTH property value. This 
technique ensures there is no delay caused by file compression, but can consume 
large amounts of memory depending on the number and size of the frames. 
Using IDL High Speed MJ2 Reading and Writing
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Overview of Mapping

This section introduces graphic map display considerations as well as information 
about common map projections. This section does not describe how to create a map 
display. See the following topic for these resources.

Creating a Map Display

IDL provides interactive and static map display functionality. You can use the iMap 
iTool to interactively configure a map display. If you prefer a static display, you can 
use map routines. See the following for details:

• Interactive iMap display — see Chapter 15, “Working with Maps” (iTool 
User’s Guide)

• Map-related routines — see “Mapping” (IDL Quick Reference) 

Examples of Creating Map Displays

See the following resources in the IDL Reference Guide for examples:

• IMAP — provides examples of displaying images and contours over a map 
projection. 

• MAP_PROJ_FORWARD — creates a latitude and longitude grid with labels 
for a Goodes Homolosine map projection in an Object Graphics display. 
Typically MAP_PROJ_INIT is used with MAP_PROJ_FORWARD and 
MAP_PROJ_INVERSE. 

• MAP_SET — establishes the coordinate conversion mechanism for mapping 
points on a globe’s surface to points on a plane, according to the selected 
projections type. You can then use MAP_GRID and MAP_CONTINENTS to 
add grid lines and continents to the map display. See MAP_IMAGE for an 
example of warping an image to a projection.
Overview of Mapping Using IDL
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Graphics Techniques for Mapping

Standard graphics techniques are insufficient when projecting areas on a sphere to a 
two-dimensional surface for two reasons. First, two points on a sphere are connected 
by two different lines. Second, areas may wrap around the edges of cylindrical and 
pseudo-cylindrical projections.

Graphical entities on the surface of a sphere can be properly represented on any map 
by using a combination of the following four stages: splitting, 3D clipping, 
projection, and rectangular clipping. The IMAP and MAP_SET procedures 
automatically sets up the proper mapping technique to best fit the projection selected 
by the user.

Warning
For proper rendering, splitting, and clipping, polygons must be traversed in counter-
clockwise order when observed from outside the sphere. If this requirement is not 
met, the exterior, instead of the interior, of the polygons may be filled. Also, vectors 
connecting the points spanning the singular line for cylindrical projections will be 
drawn in the wrong direction if polygons are not traversed in the correct order.

Splitting

The splitting stage is used for cylindrical and pseudo-cylindrical projections. The 
singular line, one half of a great circle line, is located opposite the center of the 
projection; points on this line appear on both edges of the map. The singular line is 
the intersection of the surface of the sphere with a plane passing through the center of 
projection, one of the poles of projections, and the center of the sphere.

3D Clipping

Map graphics are clipped to one side of an arbitrary clipping plane in one or more 
clipping stages. For example, to draw a hemisphere centered on a given point, the 
clipping plane passes through the center of the sphere and has a normal vector that 
coincides with the given point.

Projection

In the projection stage, a point expressed in latitude and longitude is transformed to a 
point on the mapping plane.
Using IDL Graphics Techniques for Mapping
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Rectangular Clipping

After the map graphics have been projected onto the mapping plane, a conventional 
rectangular clipping stage ensures that the graphics are properly bounded and closed 
in the rectangular display area.
Graphics Techniques for Mapping Using IDL
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Map Projection Types

In the following sections, the available IDL projections are discussed in detail. The 
projections are grouped within three categories: 

• “Azimuthal Projections” on page 116

• “Cylindrical Projections” on page 125

• “Pseudocylindrical Projections” on page 130

Note
The General Cartographic Transformation Package (GCTP) map projections are not 
described here. Documentation for the GCTP package is available from the US 
Geologic Survey at http://mapping.usgs.gov.

Note
In this text, the plane of the projection is referred to as the UV plane with horizontal 
axis u and vertical axis v.
Using IDL Map Projection Types
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Azimuthal Projections

With azimuthal projections, the UV plane is tangent to the globe. The point of 
tangency is projected onto the center of the plane and its latitude and longitude are 
the points at the center of the map projection, respectively. Rotation is the angle 
between North and the v-axis. 

Important characteristics of azimuthal maps include the fact that directions or 
azimuths are correct from the center of the projection to any other point, and great 
circles through the center are projected to straight lines on the plane.

The IDL mapping package includes the following azimuthal projections:

• “Orthographic Projection” on page 117

• “Stereographic Projection” on page 117

• “Gnomonic Projection” on page 118

• “Azimuthal Equidistant Projection” on page 119

• “Aitoff Projection” on page 120

• “Lambert’s Equal Area Projection” on page 121

• “Hammer-Aitoff Projection” on page 122

• “Satellite Projection” on page 123
Azimuthal Projections Using IDL
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Orthographic Projection

The orthographic projection was known by the Egyptians and Greeks 2000 years ago. 
This projection looks like a globe because it is a perspective projection from infinite 
distance. As such, it maps one hemisphere of the globe into the UV plane. Distortions 
are greatest along the rim of the hemisphere where distances and land masses are 
compressed. 

The following figure shows an orthographic projection centered over Eastern Spain 
at a scale of 70 million to 1.

Stereographic Projection

The stereographic projection is a true perspective projection with the globe being 
projected onto the UV plane from the point P on the globe diametrically opposite to 
the point of tangency. The whole globe except P is mapped onto the UV plane. There 
is great distortion for regions close to P, since P maps to infinity.

The stereographic projection is the only known perspective projection that is also 
conformal. It is frequently used for polar maps. For example, a stereographic view of 
the north pole has the south pole as its point of perspective.

Figure 5-1: Orthographic Projection
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The following figure shows an equatorial stereographic projection with the 
hemisphere centered on the equator at longitude –105 degrees. 

Gnomonic Projection

The gnomonic projection (also called Central or Gnomic) projects all great circles to 
straight lines. The gnomonic projection is the perspective, azimuthal projection with 
point of perspective at the center of the globe. Hence, with the gnomonic projection, 
the interior of a hemispherical region of the globe is projected to the UV plane with 
the rim of the hemisphere going to infinity. Except at the center, there is great 
distortion of shape, area, and scale. The default clipping region for the gnomonic 
projection is a circle with a radius of 60 degrees at the center of projection.

The projection in the following figure is centered around the point at latitude 40 
degrees and longitude –105 degrees. The region on the globe that is mapped lies 

Figure 5-2:  An Azimuthal Projection
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between 20 degrees and 70 degrees of latitude and –130 degrees and –70 degrees of 
longitude.

Azimuthal Equidistant Projection

The azimuthal equidistant projection is also not a true perspective projection, because 
it preserves correctly the distances between the tangent point and all other points on 
the globe. Any line drawn through the tangent point reports distance correctly. 
Therefore, this projection type is useful for determining flight distances. The point P 
opposite the tangent point is mapped to a circle on the UV plane, and hence, the 
whole globe is mapped to the plane. There is infinite distortion close to the outer rim 
of the map, which is the circular image of P. 

Figure 5-3: A Gnomonic Projection
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The following Azimuthal projection is centered at the South Pole and shows the 
entire globe.

Aitoff Projection

The Aitoff projection modifies the equatorial aspect of one hemisphere of the 
azimuthal equidistant projection, described above. Lines parallel to the equator are 
stretched horizontally and meridian values are doubled, thereby displaying the world 
as an ellipse with axes in a 2:1 ratio. Both the equator and the central meridian are 
represented at true scale; however, distances measured between the point of tangency 
and any other point on the map are no longer true to scale.

Figure 5-4: An Azimuthal Equidistant Projection
Azimuthal Projections Using IDL



Chapter 5: Map Projections 121
An Aitoff projection centered on the international dateline is shown in the following 
figure.

Lambert’s Equal Area Projection

Lambert’s equal area projection adjusts projected distances in order to preserve area. 
Hence, it is not a true perspective projection. Like the stereographic projection, it 
maps to infinity the point P diametrically opposite the point of tangency. Note also 
that to preserve area, distances between points become more contracted as the points 
become closer to P. Lambert’s equal area projection has less overall scale variation 
than the other azimuthal projections.

Figure 5-5: An Aitoff Projection
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The following figure shows the Northern Hemisphere rotated counterclockwise 105 
degrees, and filled continents.

Hammer-Aitoff Projection

Although the Hammer-Aitoff projection is not truly azimuthal, it is included in this 
section because it is derived from the equatorial aspect of Lambert’s equal area 
projection limited to a hemisphere (in the same way Aitoff’s projection is derived 
from the equatorial aspect of the azimuthal equidistant projection). In this derivation, 
the hemisphere is represented inside an ellipse with the rest of the world in the lunes 
of the ellipse.

Because the Hammer-Aitoff projection produces an equal area map of the entire 
globe, it is useful for visual representations of geographically related statistical data 
and distributions. Astronomers use this projection to show the entire celestial sphere 
on one map in a way that accurately depicts the relative distribution of the stars in 
different regions of the sky.

Figure 5-6: A Lambert’s Equal Area Projection
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A Hammer-Aitoff projection centered on the international dateline is shown in the 
following figure:

Satellite Projection

The satellite projection, also called the General Perspective projection, simulates a 
view of the globe as seen from a camera in space. If the camera faces the center of the 
globe, the projection is called a Vertical Perspective projection (note that the 
orthographic, stereographic, and gnomonic projections are special cases of this 
projection), otherwise the projection is called a Tilted Perspective projection.

The globe is viewed from a point in space, with the viewing plane touching the 
surface of the globe at the point directly beneath the satellite (the sub-satellite point). 
If the projection plane is perpendicular to the line connecting the point of projection 
and the center of the globe, a Vertical Perspective projection results. Otherwise, the 
projection plane is horizontally turned Γ degrees clockwise from the north, then tilted 
ω degrees downward from horizontal.

Figure 5-7: The Hammer-Aitoff Projection
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The map in the accompanying figure shows the eastern seaboard of the United States 
from an altitude of about 160km, above Newburgh, NY. 

Figure 5-8: Satellite Projection
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Cylindrical Projections

A cylindrical projection maps the globe to a cylinder which is formed by wrapping 
the UV plane around the globe with the u-axis coinciding with a great circle. The 
parameters P0lat, P0lon, and Rot determine the great circle that passes through the 
point C=(P0lat, P0lon). In the discussions below, this great circle is sometimes 
referred to as EQ. Rot is the angle between North at the map’s center and the v-axis 
(which is perpendicular to the great circle). The cylinder is cut along the line parallel 
to the v-axis and passing through the point diametrically opposite to C. It is then 
rolled out to form a plane.

The cylindrical projections in IDL include: Mercator, Transverse Mercator, 
cylindrical equidistant, Miller, Lambert’s conformal conic, and Alber’s equal-area 
conic.

Mercator Projection

Mercator’s projection is partially developed by projecting the globe onto the cylinder 
from the center of the globe. This is a partial explanation of the projection because 
vertical distances are subjected to additional transformations to achieve conformity—
that is, local preservation of shape. Therefore, uses include navigation maps and 
equatorial maps. To properly use the projection, the user should be aware that the two 
points on the globe 90 degrees from the central great circle (e.g., the North and South 
Poles in the case that the selected great circle is the equator) are mapped to infinite 
distances. Limits are typically specified because of the great distortions around the 
poles when the equator is selected. 
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A simple mercator projection with latitude ranges from –80 degrees to 80 degrees is 
shown in the following figure. 

Transverse Mercator Projection

The Transverse Mercator (also called the UTM, and Gauss-Krueger in Europe) 
projection rotates the equator of the Mercator projection 90 degrees so that it follows 
a specified central meridian. In other words, the Transverse Mercator involves 
projecting the Earth onto a cylinder which is always in contact with a meridian 
instead of with the Equator.

The central meridian intersects two meridians and the Equator at right angles; these 
four lines are straight. All other meridians and parallels are complex curves which are 
concave toward the central meridian. Shape is true only within small areas and the 
areas increase in size as they move away from the central meridian. Most other IDL 
projections are scaled in the range of +/– 1 to +/– 2 Pi; the UV plane of the 
Transverse Mercator projection is scaled in meters. The conformal nature of this 

Figure 5-9: Simple Mercator Projection
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projection and its use of the meridian makes it useful for north-south regions. The 
Clarke 1866 ellipsoid is used for the default.

The following Transverse Mercator map shows North and South America, with a 
central meridian of –90 degrees West and centered on the Equator.

Cylindrical Equidistant Projection

The cylindrical equidistant projection is one of the simplest projections to construct. 
If EQ is the equator, this projection simply lays out horizontal and vertical distances 
on the cylinder to coincide numerically with their measurements in latitudes and 
longitudes on the sphere. Hence, the equidistant cylindrical projection maps the 
entire globe to a rectangular region bounded by

Figure 5-10: Transverse Mercator Projection

–180 ≤ u ≤ 180

and

–90 ≤ v ≤ 90
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If EQ is the equator, meridians and parallels will be equally spaced parallel lines.

The following figure shows a simple cylindrical equidistant projection and an oblique 
cylindrical equidistant projection rotated by 45°.

Miller Cylindrical Projection

The Miller projection is a simple mathematical modification of the Mercator 
projection, incorporating some aspects of cylindrical projections. It is not equal-area, 
conformal or equidistant along the meridians. Meridians are equidistant from each 
other, but latitude parallels are spaced farther apart as they move away from the 
Equator, thereby keeping shape and area distortion to a minimum. The meridians and 
parallels intersect each other at right angles, with the poles shown as straight lines. 
The Equator is the only line shown true to scale and free of distortion.

Conic Projection

The Lambert’s conformal conic with two standard parallels is constructed by 
projecting the globe onto a cone passing through two parallels. Additional scaling 
achieves conformity. The pole under the cone’s apex is transformed to a point, and 
the other pole is mapped to infinity. The scale is correct along the two standard 
parallels. Parallels can be specified and are projected onto circles and meridians onto 
equally spaced straight lines. The following figure shows the map shown in the 

Figure 5-11: Cylindrical Projections
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accompanying figure, which features North America with standard parallels at 20 
degrees and 60 degrees. 

Albers Equal-Area Conic Projection

The Albers Equal-Area Conic is like most other conics in that meridians are equally 
spaced radii, parallels are concentric arcs of circles and scale is constant along any 
parallel. To maintain equal area, the scale factor along meridians is the reciprocal of 
the scale factor along parallels, with the scale along the parallels between the two 
standard parallels too small, and the scale beyond the standard parallels too large. 
Standard parallels are correct in scale along the parallel, as well as in every direction. 

The Albers projection is particularly useful for predominantly east-west regions. Any 
keywords for the Lambert conformal conic also apply to the Albers conic.

Figure 5-12: Lambert’s Conformal Conic with Standard Parallels at 20° and 60°
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Pseudocylindrical Projections

Pseudocylindrical projections are distinguished by the fact that in their simplest form, 
lines of latitude are parallel straight lines and meridians are curved lines. 

Robinson Cylindrical

This pseudocylindrical projection was designed by Arthur Robinson in 1963 for 
Rand McNally. It is suitable for World maps and is a compromise to best fulfill a 
number of conflicting requirements, including an uninterrupted format, minimal 
shearing, minimal apparent area-scale distortion for major continents, and simplicity. 
It was designed to make the world look right. Since its introduction, it has been 
adopted by the National Geographic Society for many of their world maps.

Each individual parallel is equally divided by the meridians. The poles are 
represented by lines rather than points to avoid compressing the northern land 
masses. The central meridian should always be 0 degrees longitude to retain the 
correct balance of shapes, sizes, and relative positions.

The following figure shows a Robinson projection.

Figure 5-13: Robinson Projection
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Sinusoidal Projection

With the sinusoidal projection, the central meridian is a straight line and all other 
meridians are equally spaced sinusoidal curves. The scaling is true along the central 
meridian as well as along all parallels.

The sinusoidal projection is one of the easiest projections to construct. The formulas 
below from Snyder (1987) give the relationship between the latitude φ and longitude 
λ of a point on the globe and its image on the UV plane.

The following shows the sinusoidal map of the whole globe centered at longitude 0 
degrees and latitude 0 degrees. 

Mollweide Projection

With the Mollweide projection, the central meridian is a straight line, the meridians 
90 degrees from the central meridian are circular arcs and all other meridians are 
elliptical arcs. The Mollweide projection maps the entire globe onto an ellipse in the 
UV plane. The circular arcs encompass a hemisphere and the rest of the globe is 
contained in the lunes on either side. 

u = λcosφ

v = φ

Figure 5-14: Sinusoidal Projection
Using IDL Pseudocylindrical Projections
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The following figure shows a Mollweide projection in oblique form. 

Since the center of the projection is not on the equator, parallels of latitude are not 
straight lines, just as they are not straight lines with an oblique Mercator or 
cylindrical equidistant projection.

Goode’s Homolosine Projection

The Goode interrupted Homolosine projection, developed by J. Paul Goode, in 1923, 
is designed for World maps to show the continents with minimal scale and shape 
distortion. This is accomplished by interrupting the projection and choosing several 
central meridians to coincide with large land masses. This projection is a fusion of the 
Sinusoidal projection between the latitudes of 44.7 degrees North and South, and the 
Mollweide projection between these parallels and the poles.

Figure 5-15: Mollweide Projection
Pseudocylindrical Projections Using IDL



Chapter 5: Map Projections 133
The following figure shows an example of Goode’s Homolosine projection.

Figure 5-16: Goode’s Homolosine Projection
Using IDL Pseudocylindrical Projections
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High-Resolution Continent Outlines

IDL supports two different datasets that contain continent outlines and other 
geographical and political boundaries. The default data set is a low-resolution 
continental outline database that is automatically installed when you install IDL. The 
high-resolution database was adapted from the 1993 CIA World Map database by 
Thomas Oetli of the Swiss Meteorological Institute. The high-resolution outlines are 
found in an optional data set that may not have been installed when your copy of IDL 
was first installed. 

To access the high-resolution data set, simply set the HIRES keyword when calling 
MAP_CONTINENTS with the COASTS, COUNTRIES, FILL_CONTINENTS, or 
RIVERS keywords. You can also get high-resolution continent boundaries by calling 
MAP_SET with the HIRES and CONTINENTS keywords set. See 
MAP_CONTINENTS in the IDL Reference Guide for an example of using the high-
resolution outlines.

Resolution of Map Databases

Data points in the CIA World Map database are approximately one kilometer apart. 
Note, however, that in the case of the coast and river databases, actual distances 
between the data points may be much smaller because of convolutions in the 
coastline or riverbed.

Data points in the low-resolution map database are either a subset of the high-
resolution database (rivers and country boundaries) or are based on the continental 
map database used in previous versions of IDL (the file supmap.dat in the 
resource/maps subdirectory of the IDL distribution). Data points in the low-
resolution database are approximately 10 kilometers apart.

Neither of the map databases is intended for high-precision work.
High-Resolution Continent Outlines Using IDL
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The following table compares the low-resolution and high-resolution map databases:

Feature Low-Resolution High-Resolution

Coastlines, islands, and 
lakes (including 
continental outlines)

Data in file supmap.dat. Entire CIA World Map

Continental polygons Data extracted from 
supmap.dat.

Every 20th point of CIA 
World Map.

Rivers Every 250th point of the CIA 
World Map.

Entire CIA World Map.

National boundaries Every 100th point of CIA 
World Map.

Entire CIA World Map.

Table 5-1: Comparison of Low- and High-resolution Map Databases
Using IDL High-Resolution Continent Outlines
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Overview of Signal Processing

A signal, by definition, contains information. Any signal obtained from a physical 
process also contains noise. It is often difficult or impossible to make sense of the 
information contained in a digital signal by looking at it in its raw form—that is, as a 
sequence of real values at discrete points in time. Signal analysis transforms offer 
natural, meaningful, alternate representations of the information contained in a 
signal. 

This chapter describes IDL’s digital signal processing tools. Most of the procedures 
and functions mentioned here work in two or more dimensions. For simplicity, only 
one dimensional signals are used in the examples. 

Routines for Signal Processing

For a list of IDL signal processing routines, see the functional category of “Signal 
Processing” (IDL Quick Reference). There you will find a brief introduction to the 
routines. More detailed information is available in the IDL Reference Guide. 

Running the Example Code

The examples in this chapter are written to take advantage of iTools. The example 
code is part of the IDL distribution. All of the files mentioned are located in the 
examples/doc/signal subdirectory of the IDL distribution. By default, this 
directory is part of IDL’s path; if you have not changed your path, you will be able to 
run the examples as described here. See “!PATH” (Appendix D, IDL Reference 
Guide) for information on IDL’s path.
Overview of Signal Processing Using IDL
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Digital Signals

A one-dimensional digital signal is a sequence of data, represented as a vector in an 
array-oriented language like IDL. The term digital actually describes two different 
properties:

1. The signal is defined only at discrete points in time as a result of sampling, or 
because the instrument which measured the signal is inherently discrete-time 
in nature. Usually, the time interval between measurements is constant.

2. The signal can take on only discrete values.

In this discussion, we assume that the signal is sampled at a time interval. The 
concepts and techniques presented here apply equally well to any type of signal—the 
independent variable may represent time, space, or any abstract quantity.

The following IDL commands create a simulated digital signal u(k), sampled at an 
interval delt. This simulated signal will be used in examples throughout this 
chapter. The simulated signal contains 1024 time samples, with a sampling interval 
of 0.02 seconds. The signal contains a DC component and components at 2.8, 6.5, 
and 11.0 cycles per second.

Enter the following commands at the IDL prompt to create the simulated signal:

N = 1024 ; number of samples
delt = 0.02 ; sampling interval

; Simulated signal.
u = -0.3 $

+ 1.0 * SIN(2 * !PI * 2.8 * delt * FINDGEN(N)) $
+ 1.0 * SIN(2 * !PI * 6.25 * delt * FINDGEN(N)) $
+ 1.0 * SIN(2 * !PI * 11.0 * delt * FINDGEN(N))

Example Code
Alternately, type @sigprc01 at the IDL prompt to run the sigprc01batch file that 
creates the signal. See “Running the Example Code” on page 138 if IDL does not 
find the batch file.
Using IDL Digital Signals
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Because the signal is digital, the conventional way to display it is with a histogram (or 
step) plot. To create a histogram plot, set the PSYM keyword to the PLOT routine equal 
to 10. A section of the example signal u(k) is plotted in the figure below. 

Note
When the number of sampled data points is large, the steps in the histogram plot are 
too small to see. In such cases you should not plot in histogram mode.

Example Code
Type @sigprc02 at the IDL prompt to run the batch file that creates this display. 
The source code is located in sigprc02, in the examples/doc/signal 
directory. See “Running the Example Code” on page 138 if IDL does not find the 
batch file.

Figure 6-1: Histogram Plot of Sample Signal u(k)
Digital Signals Using IDL
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Signal Analysis Transforms

Most signals can be decomposed into a sum of discrete (usually sinusoidal) signal 
components.The result of such decomposition is a frequency spectrum that can 
uniquely identify the signal. IDL provides three transforms to decompose a signal 
and prepare it for analysis: the Fourier transform, the Hilbert transform, and the 
wavelet transform.
Using IDL Signal Analysis Transforms
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The Fourier Transform

The Discrete Fourier Transform (DFT) is the most widely used method for 
determining the frequency spectra of digital signals. This is due to the development 
of an efficient algorithm for computing DFTs known as the Fast Fourier Transform 
(FFT).

The discrete Fourier transform, v(m), of an N-element, one-dimensional function, 
u(k), is defined as:

The inverse transform is defined as:

IDL implements the Fast Fourier Transform in the FFT function. You can find details 
on using IDL’s FFT function in the following sections and in “FFT” (IDL Reference 
Guide).

v m( ) 1
N
---- u k( )exp j2πmk N⁄–[ ]

k 0=

N 1–

∑=

u k( ) v m( )exp j2πmk N⁄[ ]
m 0=

N 1–

∑=
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Interpreting FFT Results

Just as the sampled time data represents the value of a signal at discrete points in 
time, the result of a (forward) Fast Fourier Transform represents the spectrum of the 
signal at discrete frequencies. These discrete frequencies are a function of the 
frequency index (m), the number of samples collected (N), and the sampling interval 
(δ):

The frequencies for which the FFT of a sampled signal are defined are sometimes 
called frequency bins, which refers to the histogram-like nature of a discrete 
spectrum. The width of each frequency bin is 1/(N * δ). 

Due to the complex exponential in the definition of the DFT, the spectrum has a 
cyclic dependence on the frequency index m. That is:

for p = any integer.

The frequency spectrum computed by IDL’s FFT function for a one-dimensional 
time sequence is stored in a vector with indices running from 0 to N–1, which is also 
a valid range for the frequency index m. However, the frequencies associated with 
frequency indices greater than N/2 are above the Nyquist frequency and are not 
physically meaningful for sampled signals. Many textbooks choose to define the 
range of the frequency index m to be from – (N/2 – 1) to N/2 so that it is (nearly) 
centered around zero. From the cyclic relation above with p = –1:

v(– (N/2 – 1)) = v(N/2 + 1 – N) = v(N/2 + 1)

v(– (N/2 – 2)) = v(N/2 + 2 – N) = v(N/2 + 2)

... 

v(–2) = v(N – 2 – N) = v(N – 2)

v(–1) = v(N – 1 – N) = v(N – 1)

This index shift is easily accomplished in IDL with the SHIFT function. See “Real 
and Imaginary Components” on page 144 for an example. 

f m( ) m
Nδ
-------=

v m pN+( ) v m( )=
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Displaying FFT Results

Depending on the application, there are many ways to display spectral data, the result 
of the (forward) FFT function.

Real and Imaginary Components

The most direct way is to plot the real and imaginary parts of the spectrum as a 
function of frequency index or as a function of the corresponding frequencies. The 
following figure displays the real and imaginary parts of the spectrum v(m) of the 
sampled signal u(k) for frequencies from –(N/2 – 1)/(N * δ) to (N/2)/(N * δ) cycles 
per second. 

Figure 6-2: Real and Imaginary Parts of the Sample Signal 
Displaying FFT Results Using IDL
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Example Code
Type @sigprc03 at the IDL prompt to run the batch file that creates this display. 
The source code is located in sigprc03, in the examples/doc/signal 
directory. See “Running the Example Code” on page 138 if IDL does not find the 
batch file.

IDL’s FFT function always returns a single- or double-precision complex array with 
the same dimensions as the input argument. In the case of a forward FFT performed 
on a one-dimensional vector of N real values, the result is an N-element vector of 
complex quantities, which takes 2N real values to represent. It would seem that there 
is twice as much information in the spectral data as there is in the time sequence data. 
This is not the case. For a real valued time sequence, half of the information in the 
frequency sequence is redundant. Specifically: 

; 1 redundant value:
IMAGINARY(v(0)) = 0.0
; 1 redundant value:
IMAGINARY(v(N/2)) = 0.0

and

; for m=1 to N/2-1, N-2 redundant values:
v(N-m) = CONJ(v(m))

so that exactly N of the single- or double-precision values used to represent the 
frequency spectrum are redundant. This redundancy is evident in the previous figure. 
Notice that the real part of the spectrum is an even function (symmetric about zero), 
and the imaginary part of the spectrum is an odd function (anti-symmetric about 
zero). This is always the case for the spectra of real-valued time sequences.

Because of the redundancy in such spectra, it is common to display only half of the 
spectrum of a real time sequence. That is, only the spectral values with frequency 
indices from 0 to N/2, which correspond to frequencies from 0 to 1/(2 * δ), the 
Nyquist frequency. This vector of positive frequencies is generated in IDL with the 
following command:

; f = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]
F = FINDGEN(N/2+1)/(N*delt)

Magnitude and Phase

It is also common to display the magnitude and phase of the spectrum, which have 
physical significance, as opposed to the real and imaginary parts of the spectrum, 
which do not have physical significance. Since there is a one-to-one correspondence 
between a complex number and its magnitude and phase, no information is lost in the 
transformation from a complex spectrum to its magnitude and phase. In IDL, the 
Using IDL Displaying FFT Results
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magnitude is easily determined with the absolute value (ABS) function, and the phase 
with the arc-tangent (ATAN) function. By one widely used convention, the 
magnitude of the spectrum is plotted in decibels (dB) and the phase is plotted in 
degrees, against frequency on a logarithmic scale. The magnitude and phase of our 
sample signal are plotted in the same data space, shown in the figure below. 

Example Code
Type @sigprc04 at the IDL prompt to run the batch file that creates this display. 
The source code is located in sigprc04, in the examples/doc/signal 
directory. See “Running the Example Code” on page 138 if IDL does not find the 
batch file.

Using a logarithmic scale for the frequency axis has the advantage of spreading out 
the lower frequencies, while higher frequencies are crowded together. Note that the 
spectrum at zero frequency (DC) is lost completely on a semi-logarithmic plot. 

The previous figure shows the strong frequency components at 2.8, 6.25, and 11.0 
cycles/second as peaks in the magnitude plot, and as discontinuities in the phase plot. 
The magnitude peak at 6.25 cycles/second is a narrow spike, as would be expected 
from the pure sine wave component at that frequency in the time data sequence. The 
peaks at 2.8 and 11.0 cycles/second are more spread out, due to an effect known as 
smearing or leakage. This effect is a direct result of the definition of the DFT and is 
not due to any inaccuracy in the FFT. Smearing is reduced by increasing the length of 

Figure 6-3: Magnitude (Solid LIne) and Phase (Dashed Line) 
of the Sample Signal
Displaying FFT Results Using IDL
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the time sequence, or by choosing a sample size which includes an integral number of 
cycles of the frequency component of interest. There are an integral number of cycles 
of the 6.25 cycles/second component in the time sequence used for this example, 
which is why the peak at that frequency is sharper. 

The apparent discontinuity in the phase plot at around 7.45 cycles/second is an 
anomaly known as phase wrapping. It is a result of resolving the phase from the real 
and imaginary parts of the spectrum with the arctangent function (ATAN), which 
returns principal values between –180 and +180 degrees. 

Power Spectrum

Finally, for many applications, the phase information is not useful. For these, it is 
often customary to plot the power spectrum, which is the square of the magnitude of 
the complex spectrum. The resulting plot is shown in the figure below. 

Example Code
Type @sigprc05 at the IDL prompt to run the batch file that creates this display. 
The source code is located in sigprc05, in the examples/doc/signal 
directory. See “Running the Example Code” on page 138 if IDL does not find the 
batch file.

Figure 6-4: Power Spectrum of the Sample Signal
Using IDL Displaying FFT Results
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Using Windows

The smearing or leakage effect mentioned previously is a direct consequence of the 
definition of the Discrete Fourier Transform and of the fact that a finite time sample 
of a signal often does not include an integral number of some of the frequency 
components in the signal. The effect of this truncation can be reduced by increasing 
the length of the time sequence or by employing a windowing algorithm. IDL’s 
HANNING function computes two windows which are widely used in signal 
processing: the Hanning window and the Hamming window.

Hanning Window

The Hanning window is defined as:

The resulting vector is multiplied element-by-element with the sampled signal vector 
before applying the FFT. For example, the following IDL command computes the 
Hanning window and then applies the FFT function:

v_n = FFT(HANNING(N)*U)

The power spectrum of the Hanning windowed signal shows the mitigation of the 
truncation effect (see the figure below). 

Figure 6-5: Time Series Multiplied by Hanning Window (Left)
and Power Spectrum (Right) with Hanning Window (Solid) and without (Dashed) 
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Example Code
Type @sigprc06 at the IDL prompt to run the batch file that creates this display. 
The source code is located in sigprc06, in the examples/doc/signal 
directory. See “Running the Example Code” on page 138 if IDL does not find the 
batch file.

Hamming Window

The Hamming window is defined as:

The resulting vector is multiplied element-by-element with the sampled signal vector 
before applying the FFT. For example, the following IDL command computes the 
Hamming window and then applies the FFT function:

v_m = FFT(HANNING(N, ALPHA=0.56)*U)

The power spectrum of the Hamming windowed signal shows the mitigation of the 
truncation effect (see the figure below). 

Figure 6-6: Power Spectrum with Hamming Window (Solid) 
and without (Dashed) 
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Example Code
Type @sigprc07 at the IDL prompt to run the batch file that creates this display. 
The source code is located in sigprc07, in the examples/doc/signal 
directory. See “Running the Example Code” on page 138 if IDL does not find the 
batch file.
Using Windows Using IDL
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Aliasing

Aliasing is a well known phenomenon in sampled data analysis. It occurs when the 
signal being sampled has components at frequencies higher than the Nyquist 
frequency, which is equal to half the sampling frequency. Aliasing is a consequence 
of the fact that after sampling, every periodic signal at a frequency greater than the 
Nyquist frequency looks exactly like some other periodic signal at a frequency less 
than the Nyquist frequency. For example, suppose we add a 30 cycle per second 
periodic component to our sampled data sequence u(t). The power spectrum of the 
augmented signal appears below. 

Because the frequency of the new component is above the Nyquist frequency of 25 
cycles per second (25 = 1/(2*delt)), the power spectrum shows the contribution of the 
new component as an alias at 20 cycles per second. To prevent aliasing, frequency 
components of a signal above the Nyquist frequency must be removed before 
sampling.

Example Code
Type @sigprc08 at the IDL prompt to run the batch file that creates this display. 
The source code is located in sigprc08, in the examples/doc/signal 
directory. See “Running the Example Code” on page 138 if IDL does not find the 
batch file.

Figure 6-7: Power Spectrum of the Sample Signal 
After Adding a 30 Cycles per Second Component
Using IDL Aliasing
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FFT Algorithm Details

IDL’s implementation of the fast Fourier transform is based on the Cooley-Tukey 
algorithm. The algorithm takes advantage of the fact that the discrete Fourier 
transform (DFT) of a discrete time series with an even number of points is equal to 
the sum of two DFTs, each half the length of the original. For data lengths that are a 
power of 2, this algorithm is used recursively, each iteration subdividing the data into 
smaller sets to be transformed. In the IDL FFT, this method is also extended to 
powers of 3 and 5. If the number of points in the original time series does not contain 
powers of 2, 3, or 5, the original data are still subdivided into data sets with lengths 
equal to the prime factors of N. The resulting subdivisions with lengths equal to 
prime numbers other than 2, 3, or 5 must be transformed using a slow DFT. The slow 
DFT is mathematically equivalent to the FFT, but requires N2 operations instead of 
Nlog2(N). 

This implementation means that the FFT function is fastest when the number of 
points is rich in powers of 2, 3, or 5. The slowest case is when the number of samples 
is a large prime number. In this case, a significant improvement in efficiency can be 
gained by padding the data set with zeros to increase the number of data points to a 
power of 2, 3, or 5.

For real input data of even lengths, the FFT algorithm also takes advantage of the fact 
that the real array can be packed into a complex array of half the length, and 
unpacked at the end, thus cutting the running time in half.
FFT Algorithm Details Using IDL
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The Hilbert Transform

The Hilbert transform is a time-domain to time-domain transformation which shifts 
the phase of a signal by 90 degrees. Positive frequency components are shifted by 
+90 degrees, and negative frequency components are shifted by – 90 degrees. 
Applying a Hilbert transform to a signal twice in succession shifts the phases of all of 
the components by 180 degrees, and so produces the negative of the original signal. 
IDL’s HILBERT function accepts both real and complex valued signals as inputs; the 
imaginary part of the result is zero for real inputs.

In optics and signal analysis, the Hilbert transform of the time signal r(t) is known as 
the quadrature function of r(t), which is used to form a complex function known as 
the analytic signal. The analytic signal is defined as: 

where j is the square root of –1 and H is the Hilbert function.

The projection of the analytic signal onto the plane defined by the real axis and the 
time axis is the original signal. The projection onto the plane defined by the 
imaginary axis and the time axis is the Hilbert transform of the original signal.

r̂ t( ) r t( ) jH r t( )( )–=
Using IDL The Hilbert Transform
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The following example plots the complex analytic signal of a periodic time signal 
with a slowly varying amplitude. 

Example Code
Type @sigprc09 at the IDL prompt to run the batch file that creates this display. 
The source code is located in sigprc09, in the examples/doc/signal 
directory. See “Running the Example Code” on page 138 if IDL does not find the 
batch file.

Figure 6-8: Analytic Signal for r(t)
The Hilbert Transform Using IDL
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The Wavelet Transform

Like the discrete Fourier transform, the discrete wavelet transform (DWT) is a linear 
operation that defines a forward and inverse relationship between the time-domain 
and the frequency-domain, also called the wavelet domain. This relationship is 
expressed through the use of basis functions. In the case of the DFT, trigonometric 
sines and cosines of varying angles are used. In the case of the DWT, the basis 
functions are more complicated and usually called mother functions or wavelets. 
Also like the DFT, the DWT is orthogonal, making many operations computationally 
efficient. For example, the inverse wavelet transform, when viewed as a matrix 
operator, is simply the transpose of the forward transform.

Most of the usefulness of wavelets relies on the fact that wavelet transforms can 
usefully be severely truncated—that is, they can be effectively turned into sparse 
expressions. This property is a result of the simultaneous compact representation of 
the wavelet basis functions in the time and frequency domains. See “WTN” (IDL 
Reference Guide) for an example using the wavelet transform. Also see “Wavelet 
Toolkit” (IDL Quick Reference) for a brief description of the available wavelet 
routines. 
Using IDL The Wavelet Transform
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Convolution

Discrete convolution in digital signal processing is used (among other things) to 
smooth sampled signals using a weighted moving average. It also has many 
applications outside of signal processing.

IDL has two functions for doing discrete convolution: BLK_CON and CONVOL. 
BLK_CON takes advantage of the fact that the convolution of two signals is the 
Inverse Fourier transform of the product of the Fourier transforms of the two signals. 
BLK_CON is faster than CONVOL, but not as flexible. Among the many 
applications for discrete convolution is the implementation of digital filters. See the 
example in the “Finite Impulse Response (FIR) Filters” on page 159. 
Convolution Using IDL
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Correlation and Covariance

Correlation and covariance (which is correlation with any non-zero mean values of 
the signals removed beforehand) are closely related to convolution. They are useful in 
analyzing signals with random components. Autocorrelation and autocovariance of 
signals are computed with the A_CORRELATE function, and crosscorrelation and 
crosscovariance are computed with the C_CORRELATE function. See “Time-Series 
Analysis” on page 204 for details.
Using IDL Correlation and Covariance
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Digital Filtering

Digital filters can be implemented on a computer to remove unwanted frequency 
components (noise) from a sampled signal. Two broad classes of filters are Finite 
Impulse Response (FIR) or Moving Average (MA) filters, and Infinite Impulse 
Response (IIR) or AutoRegressive Moving Average (ARMA) filters. Both of these 
classes of filters are described in the following sections:

• “Finite Impulse Response (FIR) Filters” on page 159

• “Infinite Impulse Response (IIR) Filters” on page 163

Note
IDL’s IR_FILTER function filters data with an infinite impulse response (IIR) or 
finite impulse response (FIR) filter. See “IR_FILTER” (IDL Reference Guide) for 
more information.
Digital Filtering Using IDL
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Finite Impulse Response (FIR) Filters

Digital filters that have an impulse response which reaches zero in a finite number of 
steps are (appropriately enough) called Finite Impulse Response (FIR) filters. An FIR 
filter can be implemented non-recursively by convolving its impulse response (which 
is often used to define an FIR filter) with the time data sequence it is filtering. FIR 
filters are somewhat simpler than Infinite Impulse Response (IIR) filters, which 
contain one or more feedback terms and must be implemented with difference 
equations or some other recursive technique. 

IDL’s DIGITAL_FILTER function computes the impulse response of an FIR filter 
based on Kaiser’s window, which in turn is based on the modified Bessel function. 
The Kaiser filter is “nearly optimum in the sense of having the largest energy in the 
mainlobe for a given peak sidelobe level” [Jackson, Leland B., Digital Filters and 
Signal Processing]. The DIGITAL_FILTER function constructs lowpass, highpass, 
bandpass, or bandstop filters. The figure below plots a bandstop filter which 
suppresses frequencies between 7 cycles per second and 15 cycles per second for data 
sampled every 0.02 seconds. 

Example Code
Type @sigprc10 at the IDL prompt to run the batch file that creates this display. 
The source code is located in sigprc10, in the examples/doc/signal 
directory. See “Running the Example Code” on page 138 if IDL does not find the 
batch file.

Figure 6-9: Bandstop FIR Filter
Using IDL Finite Impulse Response (FIR) Filters
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Other FIR filters can be designed based on the Hanning and Hamming windows (see 
“Using Windows” on page 148), or any other user-defined window function. The 
design procedure is simple: 

1. Compute the impulse response of an ideal filter using the inverse FFT.

2. Apply a window to the impulse response. The modified impulse response   
defines the FIR filter.

The figure below shows the plot using the same sampling period and frequency 
cutoffs as above, and the corresponding ideal filter is constructed in the frequency 
domain using the Hanning window. 

Example Code
Type @sigprc11 at the IDL prompt to run the batch file that creates this display. 
The source code is located in sigprc11, in the examples/doc/signal 
directory. See “Running the Example Code” on page 138 if IDL does not find the 
batch file.

Figure 6-10: Bandstop Filter Using Hanning Window
Finite Impulse Response (FIR) Filters Using IDL
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FIR Filter Implementation

The simplest FIR (Finite Impulse Response) filter to apply to a signal is the 
rectangular or boxcar filter, which is implemented with IDL’s SMOOTH function, or 
the closely related MEDIAN function. 

Applying other FIR filters to signals is straightforward since the filter is non-
recursive. The filtered signal is simply the convolution of the impulse response of the 
filter with the original signal. The impulse response of the filter is computed with the 
DIGITAL_FILTER function or by the procedure in the previous section. 

IDL’s BLK_CON function provides a simple and efficient way to convolve a filter 
with a signal. Using u(k) from the previous example and the bandstop filter created 
above creates the plot shown in the figure below. 

Example Code
Type @sigprc12 at the IDL prompt to run the batch file that creates this display. 
The source code is located in sigprc12, in the examples/doc/signal 
directory. See “Running the Example Code” on page 138 if IDL does not find the 
batch file.

Figure 6-11: Digital Signal Before and After Filtering
Using IDL FIR Filter Implementation
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The frequency response of the filtered signal shows that the frequency component at 
11.0 cycles / second has been filtered out, while the frequency components at 2.8 and 
6.25 cycles / second, as well as the DC component, have been passed by the filter.
FIR Filter Implementation Using IDL
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Infinite Impulse Response (IIR) Filters

Digital filters which must be implemented recursively are called Infinite Impulse 
Response (IIR) filters because, theoretically, the response of these filters to an 
impulse never settles to zero. In practice, the impulse response of many IIR filters 
approaches zero asymptotically, and may actually reach zero in a finite number of 
samples due to the finite word length of digital computers.

One method of designing digital filters starts with the Laplace transform 
representation of an analog filter with the required frequency response. For example, 
the Laplace transform representation (or continuous transfer function) of a second 
order notch filter with the notch at f0 cycles per second is: 

where s is the Laplace transform variable. Then the continuous transfer function is 
converted to the equivalent discrete transfer function using one of several techniques. 
One of these is the bilinear (Tustin) transform, where 

(2/δ)*(z-1)/(z+1)

is substituted for the Laplace transform variable s. In this expression, z is the unit 
delay operator.

For the notch filter above, the bilinear transformation yields the following discrete 
transfer function: 

where c = (1 – π*f0*δ) / (1 + π*f0*δ).

Enter the following IDL statements to compute the coefficients of the discrete 
transfer function:

delt = 0.02
; Notch frequency in cycles per second:
f0 = 6.5
c = (1.0-!PI*F0*delt) / (1.0+!PI*F0*delt)
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b = [(1+c^2)/2, -2*c, (1+c^2)/2]
a = [ c^2, -2*c, 1]

Example Code
Alternately, type @sigprc13 at the IDL prompt to run the sigprc13 batch file 
and create the plot variables. See “Running the Example Code” on page 138 if IDL 
does not find the batch file.

IIR Filter Implementation

Since an Infinite Impulse Response filter contains feedback loops, its output at every 
time step depends on previous outputs, and the filter must be implemented 
recursively with difference equations. The discrete transfer function

is implemented with the difference equation

An IIR filter is stable if the absolute values of the roots of the denominator of the 
discrete transfer function a(z) are all less than one. The impulse response of a stable 
IIR filter approaches zero as the time index k approaches infinity. The frequency 
response function of a stable IIR filter is the Discrete Fourier Transform of the filter’s 
impulse response. 

y z( )
b0 b1z … bnbz

nb
+ + +

a0 a1z … anaz
nb

+ + +
-------------------------------------------------------
 
 
 
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y k( )
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The figure below plots the impulse and frequency response functions of the notch 
filter defined above using recursive difference equations. 

Example Code
Type @sigprc14 at the IDL prompt to run the batch file that creates this display. 
The source code is located in sigprc14, in the examples/doc/signal 
directory. See “Running the Example Code” on page 138 if IDL does not find the 
batch file.

Note
Because the impulse response approaches zero, IDL may warn of floating-point 
underflow errors. This is an expected consequence of the digital implementation of 
an Infinite Impulse Response filter.

The same code could be used to filter any input sequence u(k).

Figure 6-12: Impulse and Frequency Response of a Notch Filter
Using IDL Infinite Impulse Response (IIR) Filters
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Overview of Mathematics in IDL

This chapter documentsIDL’s mathematics and statistics procedures and functions. 
These include Numerical Recipes™ algorithms published in Numerical Recipes in C: 
The Art of Scientific Computing (Second Edition). For a list of IDL mathematical 
routines, see the functional category of “Mathematics” (IDL Quick Reference). There 
you will find a brief introduction to the routines. Detailed information is available in 
the IDL Reference Guide. This chapter also includes introductory discussions of the 
following topics and an overview of the way IDL handles the particular problems 
involved:

• “Correlation Analysis” on page 170

• “Curve and Surface Fitting” on page 174

• “Eigenvalues and Eigenvectors” on page 176

• “Gridding and Interpolation” on page 182

• “Hypothesis Testing” on page 183

• “Integration” on page 185

• “Linear Systems” on page 190

• “Nonlinear Equations” on page 197

• “Optimization” on page 199

• “Sparse Arrays” on page 201

• “Time-Series Analysis” on page 204

• “Multivariate Analysis” on page 207

References are provided at the end of each section for a more detailed description and 
understanding of the topic.

ITT Visual Information Solutions is extremely interested in the accuracy of its 
algorithms. Bug reports, documentation errors and suggestions for mathematics and 
statistics enhancements can be sent to ITT Visual Information Solutions via:

Internet: support@ittvis.com

Fax: (303) 786-9909

Note
Floating-point numbers are inherently inaccurate. See “Accuracy and Floating 
Point Operations” on page 274 for details on roundoff and truncation errors. 
Overview of Mathematics in IDL Using IDL
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IDL’s Numerical Recipes Functions

IDL includes a number of routines based on algorithms published in Numerical 
Recipes in C: The Art of Scientific Computing (Second Edition). Routines derived 
from Numerical Recipes are noted as such in the IDL Reference Guide and in the IDL 
Online Help.

In IDL versions up to and including IDL version 3.6, mathematics functions based on 
Numerical Recipes algorithms required that input be in column-major format. This is 
no longer the case. Routines based on Numerical Recipes algorithms have been 
reworked and renamed, so that all IDL functions now expect input arrays to be in 
row-major format (composed of row vectors).

Note
To maintain compatibility with IDL programs based on earlier versions, the old 
routines (using the older input convention) are still available. No alterations need be 
made to existing code as a result of this change in IDL. We recommend that all new 
IDL programs take advantage of the new names and input convention.
Using IDL IDL’s Numerical Recipes Functions
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Correlation Analysis

Given two n-element sample populations, X and Y, it is possible to quantify the 
degree of fit to a linear model using the correlation coefficient. The correlation 
coefficient, r, is a scalar quantity in the interval [-1.0, 1.0], and is defined as the ratio 
of the covariance of the sample populations to the product of their standard 
deviations. 

or 

The correlation coefficient is a direct measure of how well two sample populations 
vary jointly. A value of r = +1 or r = –1 indicates a perfect fit to a positive or negative 
linear model, respectively. A value of r close to +1 or –1 indicates a high degree of 
correlation and a good fit to a linear model. A value of r close to 0 indicates a poor fit 
to a linear model.

Correlation Example

The following sample populations represent a perfect positive linear correlation.

X = [-8.1, 1.0, -14.3, 4.2, -10.1, 4.3, 6.3, 5.0, 15.1, -2.2]
Y = [-9.8, -0.7, -16.0, 2.5, -11.8, 2.6, 4.6, 3.3, 13.4, -3.9]
;Compute the correlation coefficient of X and Y.
PRINT, CORRELATE(X, Y)

r covariance of X and Y
standard deviation of X( ) standard deviation of Y( )
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IDL prints:

1.00000

The following sample populations represent a high negative linear correlation.

X = [ 1.8, -2.7, 0.7, -0.5, -1.3, -0.9, 0.6, -1.5, 2.5, 3.0]
Y = [-4.7, 9.8, -3.7, 2.8, 5.1, 3.9, -3.6, 5.8, -7.3, -7.4]
;Compute the correlation coefficient of X and Y:
PRINT, CORRELATE(X, Y)

IDL prints:

-0.979907

The following sample populations represent a poor linear correlation.

X = [-1.8, 0.1, -0.1, 1.9, 0.5, 1.1, 1.9, 0.3, -0.2, -1.0]
Y = [ 1.5, -1.0, -0.6, 1.1, 0.7, -0.7, 1.1, -0.1, 0.6, -0.1]
;Compute the correlation coefficient of X and Y:
PRINT, CORRELATE(X, Y)

IDL prints:

0.0322859

Notes on Interpreting the Correlation Coefficient

When interpreting the value of the correlation coefficient, it is important to remember 
the following two caveats:

1. Although a high degree of correlation (a value close to +1 or –1) indicates a 
good mathematical fit to a linear model, its applied interpretation may be 
completely nonsensical. For example, there may be a high degree of 
correlation between the number of scientists using IDL to study atmospheric 
phenomena and the consumption of alcohol in Russia, but the two events are 
clearly unrelated.

2. Although a correlation coefficient close to 0 indicates a poor fit to a linear 
model, it does not mean that there is no correlation between the two sample 
populations. It is possible that the relationship between X and Y is accurately 
described by a nonlinear model. See “Curve and Surface Fitting” on page 174 
for further details on fitting data to linear and nonlinear models.

Multiple Linear Models

The fundamental principles of correlation that apply to the linear model of two 
sample populations may be extended to the multiple-linear model. The degree of 
relationship between three or more sample populations may be quantified using the 
Using IDL Correlation Analysis



172 Chapter 7: Mathematics
multiple correlation coefficient. The degree of relationship between two sample 
populations when the effects of all other sample populations are removed may be 
quantified using the partial correlation coefficient. Both of these coefficients are 
scalar quantities in the interval [0.0, 1.0]. A value of +1 indicates a perfect linear 
relationship between populations. A value close to +1 indicates a high degree of 
linear relationship between populations; whereas a value close to 0 indicates a poor 
linear relationship between populations. (Although a value of 0 indicates no linear 
relationship between populations, remember that there may be a nonlinear 
relationship.)

Partial Correlation Example

Define the independent (X) and dependent (Y) data.

X = [[0.477121, 2.0, 13.0], $
[0.477121, 5.0, 6.0], $
[0.301030, 5.0, 9.0], $
[0.000000, 7.0, 5.5], $
[0.602060, 3.0, 7.0], $
[0.698970, 2.0, 9.5], $
[0.301030, 2.0, 17.0], $
[0.477121, 5.0, 12.5], $
[0.698970, 2.0, 13.5], $
[0.000000, 3.0, 12.5], $
[0.602060, 4.0, 13.0], $
[0.301030, 6.0, 7.5], $
[0.301030, 2.0, 7.5], $
[0.698970, 3.0, 12.0], $
[0.000000, 4.0, 14.0], $
[0.698970, 6.0, 11.5], $
[0.301030, 2.0, 15.0], $
[0.602060, 6.0, 8.5], $
[0.477121, 7.0, 14.5], $
[0.000000, 5.0, 9.5]]

Y = [97.682, 98.424, 101.435, 102.266, 97.067, 97.397, $
99.481, 99.613, 96.901, 100.152, 98.797, 100.796, $
98.750, 97.991, 100.007, 98.615, 100.225, 98.388, $
98.937, 100.617]

Compute the multiple correlation of Y on the first column of X. The result should be 
0.798816.

PRINT, M_CORRELATE(X[0,*], Y)

IDL prints:

0.798816
Correlation Analysis Using IDL
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Compute the multiple correlation of Y on the first two columns of X. The result 
should be 0.875872.

PRINT, M_CORRELATE(X[0:1,*], Y)

IDL prints:

0.875872

Compute the multiple correlation of Y on all columns of X. The result should be 
0.877197.

PRINT, M_CORRELATE(X, Y)

IDL prints:

0.877197
;Define the five sample populations.
X0 = [30, 26, 28, 33, 35, 29]
X1 = [0.29, 0.33, 0.34, 0.30, 0.30, 0.35]
X2 = [65, 60, 65, 70, 70, 60]
X3 = [2700, 2850, 2800, 3100, 2750, 3050]
Y = [37, 33, 32, 37, 36, 33]

Compute the partial correlation of X1 and Y with the effects of X0, X2 and X3 
removed.

PRINT, P_CORRELATE(X1, Y, REFORM([X0,X2,X3], 3, N_ELEMENTS(X1))) 

IDL prints:

0.996017

Routines for Computing Correlations

See “Correlation Analysis” (in the functional category “Mathematics” (IDL Quick 
Reference)) for a brief description of IDL routines for computing correlations. 
Detailed information is available in the IDL Reference Guide.
Using IDL Correlation Analysis
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Curve and Surface Fitting

The problem of curve fitting may be stated as follows: 

Given a tabulated set of data values {xi, yi} and the general form of a mathematical 
model (a function f(x) with unspecified parameters), determine the parameters of the 
model that minimize an error criterion. The problem of surface fitting involves 
tabulated data of the form {xi, yi, zi} and a function f(x, y) of two spatial dimensions.

For example, we can use the CURVEFIT routine to determine the parameters A and B 
of a user-supplied function f(x), such that the sums of the squares of the residuals 
between the tabulated data {xi, yi} and function are minimized. We will use the 
following function and data:

f (x) = a (1 –e-bx)

xi = [0.25, 0.75, 1.25, 1.75, 2.25]

yi = [0.28, 0.57, 0.68, 0.74, 0.79]

First we must provide a procedure written in IDL to evaluate the function, f, and its 
partial derivatives with respect to the parameters a0 and a1:

PRO funct, X, A, F, PDER
F = A[0] * (1.0 - EXP(-A[1] * X))
; If the function is called with four parameters,
; calculate the partial derivatives:
IF N_PARAMS() GE 4 THEN BEGIN

; PDER’s column dimension is equal to the number of
; elements in xi and its row dimension is equal to 
; the number of parameters in the function F:
pder = FLTARR(N_ELEMENTS(X), 2)
; Compute the partial derivatives with respect to
; a0 and place in the first row of PDER:
pder[*, 0] = 1.0 - EXP(-A[1] * X)
; Compute the partial derivatives with respect to
; a1 and place in the second row of PDER:
pder[*, 1] = A[0] * x * EXP(-A[1] * X)

ENDIF
END

Note
The function will not calculate the partial derivatives unless it is called with four 
parameters. This allows the calling routine (in this case CURVEFIT) to avoid the 
extra computation in cases when the partial derivatives are not needed.

Next, we can use the following IDL commands to find the function’s parameters:
Curve and Surface Fitting Using IDL
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;Define the vectors of tabulated:
X = [0.25, 0.75, 1.25, 1.75, 2.25]
;data values:
Y = [0.28, 0.57, 0.68, 0.74, 0.79]
;Define a vector of weights:
W = 1.0 / Y
;Provide an initial guess of the function’s parameters:
A = [1.0, 1.0]
;Compute the parameters a0 and a1:
yfit = CURVEFIT(X, Y, W, A, SIGMA_A, FUNCTION_NAME = 'funct')
;Print the parameters, which are returned in A:
PRINT, A

IDL prints:

0.787386 1.71602

Thus the nonlinear function that best fits the data is:

f (x) = 0.787386 ( 1 -–e-1.71602x )

Routines for Curve and Surface Fitting

See “Curve and Surface Fitting” (in the functional category “Mathematics” (IDL 
Quick Reference)) for a brief description of IDL routines for curve and surface fitting. 
Detailed information is available in the IDL Reference Guide.
Using IDL Curve and Surface Fitting
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Eigenvalues and Eigenvectors

Consider a system of equations that satisfies the array-vector relationship Ax = λx, 
where A is an n-by-n array, x is an n-element vector, and λ is a scalar. A scalar λ and 
nonzero vector x that simultaneously satisfy this relationship are referred to as an 
eigenvalue and an eigenvector of the array A, respectively. The set of all eigenvectors 
of the array A is then referred to as the eigenspace of A. Ideally, the eigenspace will 
consist of n linearly-independent eigenvectors, although this is not always the case.

IDL computes the eigenvalues and eigenvectors of a real symmetric n-by-n array 
using Householder transformations and the QL algorithm with implicit shifts. The 
eigenvalues of a real, n-by-n nonsymmetric array are computed from the upper 
Hessenberg form of the array using the QR algorithm. Eigenvectors are computed 
using inverse subspace iteration.

Although it is not practical for numerical computation, the problem of computing 
eigenvalues and eigenvectors can also be defined in terms of the determinant 
function. The eigenvalues of an n-by-n array A are the roots of the polynomial 
defined by det(A – λI), where I is the identity matrix (an array with 1s on the main 
diagonal and 0s elsewhere) with the same dimensions as A. By expressing 
eigenvalues as the roots of a polynomial, we see that they can be either real or 
complex. If an eigenvalue is complex, its corresponding eigenvectors are also 
complex.

The following examples demonstrate how to use IDL to compute the eigenvalues and 
eigenvectors of real, symmetric and nonsymmetric n-by-n arrays. Note that it is 
possible to check the accuracy of the computed eigenvalues and eigenvectors by 
algebraically manipulating the definition given above to read Ax – λx = 0; in this case 
0 denotes an n-element vector, all elements of which are zero.

Symmetric Array with n Distinct Real Eigenvalues

To compute eigenvalues and eigenvectors of a real, symmetric, n-by-n array, begin 
with a symmetric array A.

Note
The eigenvalues and eigenvectors of a real, symmetric n-by-n array are real 
numbers.

A = [[ 3.0, 1.0, -4.0], $
[ 1.0, 3.0, -4.0], $
[-4.0, -4.0, 8.0]]
Eigenvalues and Eigenvectors Using IDL
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; Compute the tridiagonal form of A:
TRIRED, A, D, E
; Compute the eigenvalues (returned in vector D) and
; the eigenvectors (returned in the rows of the array A):
TRIQL, D, E, A
; Print eigenvalues:
PRINT, D

IDL prints:

2.00000 4.76837e-07 12.0000

The exact values are: [2.0, 0.0, 12.0].

;Print the eigenvectors, which are returned as row vectors in A:
PRINT, A

IDL prints:

0.707107 -0.707107 0.00000
-0.577350 -0.577350 -0.577350
-0.408248 -0.408248 0.816497

The exact eigenvectors are: 

Nonsymmetric Array with n Distinct Real and 
Complex Eigenvalues

To compute the eigenvalues and eigenvectors of a real, nonsymmetric n-by-n array, 
begin with an array A. In this example, there are n distinct eigenvalues and n linearly-
independent eigenvectors.

A = [[ 1.0, 0.0,  2.0], $
[ 0.0, 1.0, -1.0], $
[-1.0, 1.0,  1.0]]

; Reduce to upper Hessenberg format:
hes = ELMHES(A)
; Compute the eigenvalues:
evals = HQR(hes)
; Print the eigenvalues:
PRINT, evals

IDL prints:

1 2⁄ 1– 2⁄ 0

1– 3⁄ 1– 3⁄ 1– 3⁄

1– 6⁄ 1– 6⁄ 2 6⁄
Using IDL Eigenvalues and Eigenvectors
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( 1.00000, -1.73205)( 1.00000, 1.73205)
( 1.00000, 0.00000)

Note
The three eigenvalues are distinct, and that two are complex. Note also that 
complex eigenvalues of an n-by-n real, nonsymmetric array always occur in 
complex conjugate pairs.

; Initialize a variable to contain the residual:
residual = 1
; Compute the eigenvectors and the residual for each
; eigenvalue/eigenvector pair, using double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE, RESIDUAL=residual)
; Print the eigenvectors, which are returned as
; row vectors in evecs:
PRINT, evecs[*,0]

IDL prints:

( 0.68168704, 0.18789033)( -0.34084352, -0.093945164)
( 0.16271780, -0.59035830)
PRINT, evecs[*,1] 

IDL prints:

( 0.18789033, 0.68168704)( -0.093945164, -0.34084352)
( -0.59035830, 0.16271780)
PRINT, evecs[*,2] 

IDL prints:

( 0.70710678, 0.0000000)( 0.70710678, 0.0000000)
( -2.3570226e-21, 0.0000000)

We can check the accuracy of these results using the relation Ax – λx = 0. The array 
contained in the variable specified by the RESIDUAL keyword contains the result of 
this computation.

PRINT, residual

IDL prints:

( -1.2021898e-07, 1.1893681e-07)( 6.0109490e-08, -5.9468404e-08)
( 1.0300230e-07, 1.0411269e-07)
( 1.1893681e-07, -1.2021898e-07)( -5.9468404e-08, 6.0109490e-08)
( 1.0411269e-07, 1.0300230e-07)
( 0.0000000, 0.0000000)( 0.0000000, 0.0000000)

The results are all zero to within machine precision.
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Repeated Eigenvalues

To compute the eigenvalues and eigenvectors of a real, nonsymmetric n-by-n array, 
begin with an array A. In this example, there are fewer than n distinct eigenvalues, but 
n independent eigenvectors are available.

A = [[8.0, 0.0, 3.0], $
[2.0, 2.0, 1.0], $
[2.0, 0.0, 3.0]] 

; Reduce A to upper Hessenberg form and compute the eigenvalues.
; Note that both operations can be combined into a single command.
evals = HQR(ELMHES(A))
; Print the eigenvalues:
PRINT, evals

IDL prints:

( 9.00000, 0.00000) ( 2.00000, 0.00000) 
( 2.00000, 0.00000) 

Note
The three eigenvalues are real, but only two are distinct.

; Initialize a variable to contain the residual:
residual = 1
; Compute the eigenvectors and residual, using
; double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE, RESIDUAL=residual)
; Print the eigenvectors:
PRINT, evecs[*,0] 

IDL prints:

( 0.90453403, 0.0000000)( 0.30151134, 0.0000000)
( 0.30151134, 0.0000000)
PRINT, evecs[*,1] 

IDL prints:

( -0.27907279, 0.0000000)( -0.78140380, 0.0000000)
( 0.55814557, 0.0000000)
PRINT, evecs[*,2] 

IDL prints:

( -0.27907279, 0.0000000)( -0.78140380, 0.0000000)
( 0.55814557, 0.0000000)
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We can compute an independent eigenvector for the repeated eigenvalue (2.0) by 
perturbing it slightly, allowing the algorithm EIGENVEC to recognize the eigenvalue 
as distinct and to compute a linearly-independent eigenvector. 

newresidual = 1
evecs[*,2] = EIGENVEC(A, evals[2]+1.0e-6, /DOUBLE, $

RESIDUAL = newresidual) 
PRINT, evecs[*,2]

IDL prints:

( -0.33333333, 0.0000000)( 0.66666667, 0.0000000)
( 0.66666667, 0.0000000)

Once again, we can check the accuracy of these results by checking that each element 
in the residuals —for both the original eigenvectors and the perturbed eigenvector— 
is zero to within machine precision.

The So-called Defective Case

In the so-called defective case, there are fewer than n distinct eigenvalues and fewer 
than n linearly-independent eigenvectors. Begin with an array A: 

A = [[2.0, -1.0], $
[1.0,  0.0]] 

; Reduce A to upper Hessenberg form and compute the eigenvalues.
; Note that both operations can be combined into a single command.
evals = HQR(ELMHES(A))
; Print the eigenvalues:
PRINT, evals

IDL prints:

( 1.00000, 0.00000)( 1.00000, 0.00000)

Note
The two eigenvalues are real, but not distinct.

; Compute the eigenvectors, using double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE)
; Print the eigenvectors:
PRINT, evecs[*,0] 

IDL prints:

( 0.70710678, 0.0000000)( 0.70710678, 0.0000000)
PRINT, evecs[*,1] 

IDL prints:

( 0.70710678, 0.0000000)( 0.70710678, 0.0000000)
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We attempt to compute an independent eigenvector using the method described in the 
previous example:

evecs[*,1] = EIGENVEC(A, evals[1]+1.0e-6, /DOUBLE) 
PRINT, evecs[1,*]

IDL prints:

( 0.70710678, 0.0000000)( 0.70710678, 0.0000000)

In this example, n independent eigenvectors do not exist. This situation is termed the 
defective case and cannot be resolved analytically or numerically. 

Routines for Computing Eigenvalues and 
Eigenvectors

See “Eigenvalues and Eigenvectors” (in the functional category “Mathematics” (IDL 
Quick Reference)) for a brief description of IDL routines for computing eigenvalues 
and eigenvectors. Detailed information is available in the IDL Reference Guide. 
Using IDL Eigenvalues and Eigenvectors



182 Chapter 7: Mathematics
Gridding and Interpolation

Given a set of tabulated data in n-dimensions with each dimension being described as 
follows: 

1. {xi, yi = f (xi)},

2. {xi, yi, zi = f (xi, yi)}, or

3. {xi, yi, zi, wi = f (xi, yi, zi)}

it is possible to calculate intermediate values of the function f using interpolation. 
IDL includes a variety of routines to solve this type of problem.

The determination of intermediate values is based upon an interpolating function that 
establishes a relationship between the tabulated data points. Different algorithms 
employ different types of interpolating functions suitable for different types of data 
trends.

Unlike curve-fitting algorithms, interpolation requires that the interpolating function 
be an exact fit at each of the tabulated data points. Interpolation does not use any type 
of error analysis and its accuracy depends upon the behavior of the interpolating 
function between successive data points. Polynomial, spline, and nearest-neighbor 
are among the interpolation methods used in IDL. Kriging is another interpolation 
method, one which does not require an exact fit at each tabulated data point. Kriging 
applies a weighting to each of the tabulated data points based on spatial variance and 
trends among the points. Weights are computed by combining calculations of spatial 
continuity and anistropy within either an exponential or spherical semivariogram 
model.

Gridding, a topic closely related to interpolation, is the problem of creating 
uniformly-spaced planar data from irregularly-spaced data. IDL handles this type of 
problem by constructing a Delaunay triangulation. This method is highly accurate 
and has great utility since many of IDL’s graphics routines require uniformly-gridded 
data. Extrapolation, the estimation of values outside the range of tabulated data, is 
also possible using this method.

Routines for Gridding and Interpolation

See “Gridding and Interpolation” (in the functional category “Mathematics” (IDL 
Quick Reference)) for a brief description of IDL routines for gridding and 
interpolation. Detailed information is available in the IDL Reference Guide.
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Hypothesis Testing

Hypothesis testing tests one or more sample populations for a statistical characteristic 
or interaction. The results of the testing process are generally used to formulate 
conclusions about the probability distributions of the sample populations.

Hypothesis testing involves four steps:

• The formulation of a hypothesis.

• The selection and collection of sample population data.

• The application of an appropriate test.

• The interpretation of the test results.

For example, suppose the FDA wishes to establish the effectiveness of a new drug in 
the treatment of a certain ailment. Researchers test the assumption that the drug is 
effective by administering it to a sample population and collecting data on the 
patients’ health. Once the data are collected, an appropriate statistical test is selected 
and the results analyzed. If the interpretation of the test results suggests a statistically 
significant improvement in the patients’ condition, the researchers conclude that the 
drug will be effective in general.

It is important to remember that a valid or successful test does not prove the proposed 
hypothesis. Only by disproving competing or opposing hypotheses can a given 
assumption’s validity be statistically established.

One- and Two-sided Tests

In the above example, only the hypothesis that the drug would significantly improve 
the condition of the patients receiving it was tested. This type of test is called one-
sided or one-tailed, because it is concerned with deviation in one direction from the 
norm (in this case, improvement of the patients’ condition). A hypothesis designed to 
test the improvement or ill-effect of the trial drug on the patient group would be 
called two-sided or two-tailed.

Parametric and Nonparametric Tests

Tests of hypothesis are usually classified into parametric and nonparametric methods. 
Parametric methods make assumptions about the underlying distribution from which 
sample populations are selected. Nonparametric methods make no assumptions about 
a sample population’s distribution and are often based upon magnitude-based 
ranking, rather than actual measurement data. In many cases it is possible to replace a 
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parametric test with a corresponding nonparametric test without significantly 
affecting the conclusion.

The following example demonstrates this by replacing the parametric T-means test 
with the nonparametric Wilcoxon Rank-Sum test to test the hypothesis that two 
sample populations have significantly different means of distribution.

Define two sample populations.

X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $
305, 270, 260, 251, 275, 288, 242, 304, 267]

Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $
271, 214, 216, 175, 192, 208, 150, 281, 196]

Compute the T-statistic and its significance, using IDL’s TM_TEST function, 
assuming that X and Y belong to Normal populations with the same variance.

PRINT, TM_TEST(X, Y)

IDL prints:

5.52839  2.52455e-06

The small value of the significance (2.52455e-06) indicates that X and Y have 
significantly different means.

Compute the Wilcoxon Rank-Sum Test, using IDL’s RS_TEST function, to test the 
hypothesis that X and Y have the same mean of distribution.

PRINT, RS_TEST(X, Y)

IDL prints:

-4.26039  1.01924e-05

The small value of the computed probability (1.01924e-05) requires the rejection of 
the proposed hypothesis and the conclusion that X and Y have significantly different 
means of distribution.

Each of IDL’s 11 parametric and nonparametric hypothesis testing functions is based 
upon a well-known and widely-accepted statistical test. Each of these functions 
returns a two-element vector containing the statistic on which the test is based and its 
significance. Examples are provided and demonstrate how the result is interpreted. 

Routines for Hypothesis Testing

See “Hypothesis Testing” (in the functional category “Mathematics” (IDL Quick 
Reference)) for a brief description of IDL routines for hypothesis testing. More 
detailed information is available in the IDL Reference Guide.
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Integration

Numerical methods of approximating integrals are important in many areas of pure 
and applied science. For a function of a single variable, f (x), it is often the case that 
the antiderivative F = ∫ f (x) dx  is unavailable using standard techniques such as 
trigonometric substitutions and integration-by-parts formulas. These standard 
techniques become increasingly unusable when integrating multivariate functions,
f (x, y) and f (x, y, z). Numerically approximating the integral operator provides the 
only method of solution when the antiderivative is not explicitly available. IDL offers 
the following numerical methods for the integration of uni-, bi-, and trivariate 
functions:

• Integration of a univariate function over an open or closed interval is possible 
using one of several routines based on well known methods developed by 
Romberg and Simpson. 

• The problem of integrating over a tabulated set of data { xi, yi = f (xi) } can be 
solved using a highly accurate 5-point Newton-Cotes formula. This method is 
more accurate and efficient than using interpolation or curve-fitting to find an 
approximate function and then integrating.

• Integration of a bivariate function over a regular or irregular region in the x-y 
plane is possible using an iterated Gaussian Quadrature routine. 

• Integration of a trivariate function over a regular or irregular region in x-y-z 
space is possible using an iterated Gaussian Quadrature routine. 

I f x( ) xd
x a=

x b=

∫=

I f x y,( ) yd xd
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y q x( )=

∫
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z v x y,( )=

∫
y p x( )=
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∫
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x b=
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Note
IDL’s iterated Gaussian Quadrature routines, INT_2D and INT_3D, follow the dy-
dx and dz-dy-dx order of evaluation, respectively. Problems not conforming to this 
standard must be changed as described in the following example.

A Bivariate Function

Suppose that we wish to evaluate

The order of integration is initially described as a dx-dy region in the x-y plane. Using 
the diagram below, you can easily change the integration order to dy-dx.

The integral is now of the form 

The new expression can be evaluated using the INT_2D function.

To use INT_2D, we must specify the function to be integrated and expressions for the 
upper and lower limits of integration. First, we write an IDL function for the 
integrand, the function f (x, y):

FUNCTION fxy, X, Y
RETURN, Y * COS(X^5)

END

Figure 7-1: The Bivariate Function
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Next, we write a function for the limits of integration of the inner integral. Note that 
the limits of the outer integral are specified numerically, in vector form, while the 
limits of the inner integral must be specified as an IDL function even if they are 
constants. In this case, the function is:

FUNCTION pq_limits, X
RETURN, [0.0, X^2]

END

Now we can use the following IDL commands to print the value of the integral 
expressed above. First, we define a variable AB_LIMITS containing the vector of 
lower and upper limits of the outer integral. Next, we call INT_2D. The first 
argument is the name of the IDL function that represents the integrand (FXY, in this 
case). The second argument is the name of the variable containing the vector of limits 
for the outer integral (AB_LIMITS, in this case). The third argument is the name of 
the IDL function defining the lower and upper limits of the inside integral 
(PQ_LIMITS, in this case). The fourth argument (48) refers to the number of 
transformation points used in the computation. As a general rule, the number of 
transformation points used with iterated Gaussian Quadrature should increase as the 
integrand becomes more oscillatory or the region of integration becomes more 
irregular.

ab_limits = [0.0, 2.0]
PRINT, INT_2D('fxy', ab_limits, 'pq_limits', 48)

IDL prints:

0.055142668

This is the exact solution to 9 decimal accuracy. 

A Trivariate Function

Suppose that we wish to evaluate 

This integral can be evaluated using the INT_3D function. As with INT_2D, we must 
specify the function to be integrated and expressions for the upper and lower limits of 
integration. Note that in this case IDL functions must be provided for the upper and 
lower integration limits of both inside integrals.

For the above integral, the required functions are the integrand f (x, y, z):
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FUNCTION fxyz, X, Y, Z
RETURN, Z * (X^2 + Y^2 + Z^2)^1.5

END

The limits of integration of the first inside integral:

FUNCTION pq_limits, X
RETURN, [-SQRT(4.0 - X^2), SQRT(4.0 -X^2)]

END

The limits of integration of the second inside integral:

FUNCTION uv_limits, X, Y
RETURN, [0.0, SQRT(4.0 - X^2 - Y^2)]

END

We can use the following IDL commands to determine the value of the above integral 
using 6, 10, 20 and 48 transformation points.

For 6 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 6)

IDL prints:

57.417720

For 10 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 10)

IDL prints:

57.444248

20 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 20)

IDL prints:

57.446201

48 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 48)

IDL prints:

57.446265

The exact solution to 6-decimal accuracy is 57.446267. 
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Routines for Differentiation and Integration

See “Differentiation and Integration” (in the functional category “Mathematics” (IDL 
Quick Reference)) for a brief description of IDL routines for differentiation and 
integration. Detailed information is available in the IDL Reference Guide. 
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Linear Systems

IDL offers a variety of methods for the solution of simultaneous linear equations. In 
order to use these routines successfully, the user should consider both existence and 
uniqueness criteria and the potential difficulties in finding the solution numerically.

The solution vector x of an n-by-n linear system Ax = b is guaranteed to exist and to 
be unique if the coefficient array A is invertible. Using a simple algebraic 
manipulation, it is possible to formulate the solution vector x in terms of the inverse 
of the coefficient array A and the right-side vector b: x = A-1b. Although this 
relationship provides a concise mathematical representation of the solution, it is 
never used in practice. Array inversion is computationally expensive (requiring a 
large number of floating-point operations) and prone to severe round-off errors.

An alternate way of describing the existence of a solution is to say that the system 
Ax = b is solvable if and only if the vector b may be expressed as a linear 
combination of the columns of A. This definition is important when considering the 
solutions of non-square (over- and under-determined) linear systems.

While the invertabiltiy of the coefficient array A may ensure that a solution exists, it 
does not help in determining the solution. Some systems can be solved accurately 
using numerical methods whereas others cannot. In order to better understand the 
accuracy of a numerical solution, we can classify the condition of the system it 
solves. 

The scalar quantity known as the condition number of a linear system is a measure of 
a solution’s sensitivity to the effects of finite-precision arithmetic. The condition 
number of an n-by-n linear system Ax = b is computed explicitly as |A||A-1| (where | | 
denotes a Euclidean norm). A linear system whose condition number is small is 
considered well-conditioned and well suited to numerical computation. A linear 
system whose condition number is large is considered ill-conditioned and prone to 
computational errors. To some extent, the solution of an ill-conditioned system may 
be improved using an extended-precision data type (such as double-precision float). 
Other situations require an approximate solution to the system using its Singular 
Value Decomposition. 

The following two examples show how the singular value decomposition may be 
used to find solutions when a linear system is over- or underdetermined.

Overdetermined Systems

In the case of the overdetermined system (when there are more linear equations than 
unknowns), the vector b cannot be expressed as a linear combination of the columns 
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of array A. (In other words, b lies outside of the subspace spanned by the columns of 
A.) Using IDL’s SVDC procedure, it is possible to determine a projected solution of 
the overdetermined system (b is projected onto the subspace spanned by the columns 
of A and then the system is solved). This type of solution has the property of 
minimizing the residual error E = b – Ax in a least-squares sense.

Suppose that we wish to solve the following linear system: 

The vector b does not lie in the two-dimensional subspace spanned by the columns of 
A (there is no linear combination of the columns of A that yield b), and therefore an 
exact solution is not possible.

It is possible, however, to find a solution to this system that minimizes the residual 
error by orthogonally projecting the vector b onto the two-dimensional subspace 
spanned by the columns of the array A. The projected vector is then used as the right-
hand side of the system. The orthogonal projection of b onto the column space of A 
may be expressed with the array-vector product A(ATA)-1ATb, where A(ATA)-1AT is 
known as the projection matrix, P.

Figure 7-2: Overdetermined System Diagram
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In this example, the array-vector product Pb yields:  

and we wish to solve the linear system  

In many cases, the explicit calculation of the projected solution is numerically 
unstable, resulting in large accumulated round-off errors. For this reason it is best to 
use singular value decomposition to effect the orthogonal projection of the vector b 
onto the subspace spanned by the columns of the array A.

The following IDL commands use singular value decomposition to solve the system 
in a numerically stable manner. Begin with the array A:

A = [[1.0, 2.0], $
[1.0, 3.0], $
[0.0, 0.0]]

; Define the right-hand side vector B:
B = [4.0, 5.0, 6.0]
; Compute the singular value decomposition of A:
SVDC, A, W, U, V

Create a diagonal array WP of reciprocal singular values from the output vector W. 
To avoid overflow errors when the reciprocal values are calculated, only elements 
with absolute values greater than or equal to 1.0 × 10-5 are reciprocated.

N = N_ELEMENTS(W)
WP = FLTARR(N, N)
FOR K = 0, N-1 DO $

IF ABS(W(K)) GE 1.0e-5 THEN WP(K, K) = 1.0/W(K)

We can now express the solution to the linear system as a array-vector product. (See 
Section 2.6 of Numerical Recipes for a derivation of this formula.)

X = V ## WP ## TRANSPOSE(U) ## B 
; Print the solution:
PRINT, X
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4.0
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x1

= 2.0

1.0
=
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IDL Prints:

2.00000
1.00000

Underdetermined Systems

In the case of the underdetermined system (when there are fewer linear equations 
than unknowns), a unique solution is not possible. Using IDL’s SVDC procedure it is 
possible to determine the minimal norm solution. Given a vector norm, this type of 
solution has the property of having the minimal length of all possible solutions with 
respect to that norm.

Suppose that we wish to solve the following linear system. 

Using elementary row operations it is possible to reduce the system to 

It is now possible to express the solution x in terms of x1 and x3: 

The values of x1 and x3 are completely arbitrary. Setting x1 = 0 and x3 = 0 results in 
one possible solution of this system: 

Another possible solution is obtained using singular value decomposition and results 
in the minimal norm condition. The minimal norm solution for this system is: 
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Note that this vector also satisfies the solution x as it is expressed in terms of x1 
and x3.

The following IDL commands use singular value decomposition to find the minimal 
norm solution. Begin with the array A:

A = [[ 1.0, 3.0, 3.0, 2.0], $
[ 2.0, 6.0, 9.0, 5.0], $
[-1.0, -3.0, 3.0, 0.0]]

; Define the right-hand side vector B:
B = [1.0, 5.0, 5.0]
; Compute the decomposition of A:
SVDC, A, W, U, V 

Create a diagonal array WP of reciprocal singular values from the output vector W. 
To avoid overflow errors when the reciprocal values are calculated, only elements 
with absolute values greater than or equal to 1.0 × 10-5 are reciprocated.

N = N_ELEMENTS(W)
WP = FLTARR(N, N)
FOR K = 0, N-1 DO $

IF ABS(W(K)) GE 1.0e-5 THEN WP(K, K) = 1.0/W(K)

We can now express the solution to the linear system as a array-vector product. (See 
Section 2.6 of Numerical Recipes for a derivation of this formula.) The solution is 
expressed in terms of x1 and x3 with minimal norm.

X = V ## WP ## TRANSPOSE(U) ## B 
;Print the solution:
PRINT, X

IDL Prints:

-0.211009
-0.633027
0.963303

x

2.0–

0.0
1.0

0.0

=

x

0.211009–

0.633027–

0.963303

0.110092

=
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0.110092

Complex Linear Systems

We can use IDL’s LU_COMPLEX function to compute the solution to a linear system 
with real and complex coefficients. Suppose we wish to solve the following linear system: 

;First we define the real part of the complex coefficient array:
re = [[-1, 1, 2, 3], $

[-2, -1, 0, 3], $
[3, 0, 0, 0], $
[2, 1, 2, 2]]

;Next, we define the imaginary part of the coefficient array:
im = [[0, -3, 0, 3], $

[0, 3, 1, 1], $

[0, 4, -1, -3], $
[0, 1, 1, 1]]

; Combine the real and imaginary parts to form
; a single complex coefficient array:
A = COMPLEX(re, im)
; Define the right-hand side vector B:
B = [COMPLEX(15,-2), COMPLEX(-2,-1), COMPLEX(-20,11), $

COMPLEX(-10,10)
; Compute the solution using double-precision complex arithmetic:
Z = LU_COMPLEX(A, B, /DOUBLE)
PRINT, TRANSPOSE(Z), FORMAT = '(f5.2, ",", f5.2, "i")'

IDL prints:

-4.00, 1.00i
 2.00, 2.00i
 0.00, 3.00i
-0.00,-1.00i

We can check the accuracy of the computed solution by computing the residual, 
Az–b:

PRINT, A##Z-B
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IDL prints:

(      0.00000,      0.00000)
(      0.00000,      0.00000)
(      0.00000,      0.00000)
(      0.00000,      0.00000)

Routines for Solving Simultaneous Linear Equations

See “Linear Systems” (in the functional category “Mathematics” (IDL Quick 
Reference)) for a brief description of IDL routines for solving simultaneous linear 
equations. Detailed information is available in the IDL Reference Guide. 
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Nonlinear Equations

The problem of finding a solution to a system of n nonlinear equations, F(x) = 0, may 
be stated as follows:

given F: Rn → Rn, find x* (an element of Rn) such that F(x*) = 0

For example: 

x* = [0, 3] or x* = [3, 0]

Note
A solution to a system of nonlinear equations is not necessarily unique. 

The most powerful and successful numerical methods for solving systems of 
nonlinear equations are loosely based upon a simple two-step iterative method 
frequently referred to as Newton’s method. This method begins with an initial guess 
and constructs a solution by iteratively approximating the n-dimensional nonlinear 
system of equations with an n-by-n linear system of equations.

The first step formulates an n-by-n linear system of equations (Js = – F) where the 
coefficient array J is the Jacobian (the array of first partial derivatives of F), s is a 
solution vector, and – F is the negative of the nonlinear system of equations. Both J 
and – F are evaluated at the current value of the n-element vector x.

J(xk) sk = – F(xk)

The second step uses the solution sk of the linear system as a directional update to the 
current approximate solution xk of the nonlinear system of equations. The next 
approximate solution xk+1 is a linear combination of the current approximate solution 
xk and the directional update sk.

xk+1 = xk + sk 

The success of Newton’s method relies primarily on providing an initial guess close 
to a solution of the nonlinear system of equations. In practice this proves to be quite 
difficult and severely limits the application of this simple two-step method.

IDL provides two algorithms that are designed to overcome the restriction that the 
initial guess be close to a solution. These algorithms implement a line search which 
checks, and if necessary modifies, the course of the algorithm at each step ensuring 

F x( )
x0 x1 3–+

x0
2

x1
2

9–+
=
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progress toward a solution of the nonlinear system of equations. IDL’s NEWTON 
and BROYDEN functions are among a class of algorithms known as quasi-Newton 
methods. 

The solution of an n-dimensional system of nonlinear equations, F(x) = 0, is often 
considered a root of that system. As a one-dimensional counterpart to NEWTON and 
BROYDEN, IDL provides the FX_ROOT and FZ_ROOTS functions.

Routines for Solving Nonlinear Equations

See “Nonlinear Equations” (in the functional category “Mathematics” (IDL Quick 
Reference)) for a brief description of IDL routines for solving systems of nonlinear 
equations. Detailed information is available in the IDL Reference Guide. 
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Optimization

The problem of finding an unconstrained minimizer of an n-dimensional function, f, 
may be stated as follows:

given f: Rn → R, find x* (an element of Rn) such that f(x*) is a minimum of f.

For example:

f (x) = (x0 – 3)4 + (x1 - 2)2

x* = [3, 2]

In minimizing an n-dimensional function f, it is a necessary condition that the 
gradient at the minimizer x*, ∇ f(x*), be the zero vector. Mathematically expressing 
this condition defines the following system of nonlinear equations. 

This relation might suggest that finding a minimizer is equivalent to solving a system 
of linear equations based on the gradient. In most cases, however, this is not true. It is 
just as likely that a solution, x*, of ∇ f(x)=0 be a maximizer or a local minimizer of f. 
Thus the gradient alone does not provide sufficient information in determining the 
role of x*.

IDL provides two algorithms that do sufficiently determine the global minimizer of 
an n-dimensional function. IDL’s DFPMIN routine is among a class of algorithms 
known as variable metric methods and requires a user-supplied analytic gradient of 
the function to be minimized. IDL’s POWELL routine implements a direction-set 
method that does not require a user-supplied analytic gradient. The utility of the 
POWELL routine is evident as the function to be minimized becomes more 
complicated and partial derivatives become more difficult to calculate.

f x( )∂
x0∂

-------------

f x( )∂
x1∂

-------------

…
f x( )∂
xn 1–∂

---------------

0
0

…
0

=
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Routines for Optimization

See “Optimization” (in the functional category “Mathematics” (IDL Quick 
Reference)) for a brief description of IDL routines for optimization. Detailed 
information is available in the IDL Reference Guide. 
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Sparse Arrays

The occurrence of zero elements in a large array is both a computational and storage 
inconvenience. An array in which a large percentage of elements are zeros is referred 
to as being sparse.

Because standard linear algebra techniques are highly inefficient when dealing with 
sparse arrays, IDL incorporates a collection of routines designed to handle them 
effectively. These routines use the row-indexed sparse storage method, which stores 
the array in structure form, as a vector of data and a vector of indices. The length of 
each vector is equal to 1 plus the number of diagonal elements of the array plus the 
number of off-diagonal elements with an absolute magnitude greater than or equal to 
a specified threshold value. Diagonal elements of the array are always retained even 
if their absolute magnitude is less than the specified threshold. Sparse array routines 
that handle array-vector and array-array multiplication, file input/output, and the 
solution of systems of simultaneous linear equations are included.

Note
For more information on IDL’s sparse array storage method, see section 2.7, 
“Sparse Linear Systems,” in Numerical Recipes in C: The Art of Scientific 
Computing (Second Edition), published by Cambridge University Press.

When considering using IDL’s sparse array routines, remember that the 
computational savings gained by working in sparse storage format is at least partially 
offset by the need to first convert the arrays to that format. Although an absolute 
determination of when to use sparse format is not possible, the example below 
demonstrates the time savings when solving a 500 by 500 linear system in which 
approximately 50% of the coefficient array’s elements as zeros.

Diagonally-Dominant Array

Create a 500-by-500 element pseudo-random diagonally-dominant floating-point 
array in which approximately 50% of the elements as zeros. (In a diagonally-
dominant array, the diagonal element in a given row is greater than the sum of the 
absolute values of the non-diagonal elements in that row.) 

N = 500L
A = RANDOMN(SEED, N, N)*10
; Set elements with absolute magnitude greater than or
; equal to eight to zero:
I = WHERE(ABS(A) GE 8)
A[I] = 0.0
; Set each diagonal element to the absolute sum of
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; its row elements plus 1.0:
diag = TOTAL(ABS(A), 1)
A(INDGEN(N) * (N+1)) = diag + 1.0
; Create a right-hand side vector, b, in which 40% of
; the elements are ones and 60% are twos.
B = [REPLICATE(1.0, 0.4*N), REPLICATE(2.0, 0.6*N)]

We now calculate a solution to this system using two different methods, measuring 
the time elapsed. First, we compute the solution using the iterative biconjugate 
gradient method and a sparse array storage format. Note that we include everything 
between the start and stop timer commands as a single operation, so that only 
computation time (as opposed to typing time) is recorded.

; Begin with an initial guess:
X = REPLICATE(1.0, N_ELEMENTS(B))
; Start the timer:
start = SYSTIME(1) & $
; Solve the system:
result1 = LINBCG(SPRSIN(A), B, X) & $
; Stop the timer.
stop = SYSTIME(1)
; Print the time taken, in seconds:
PRINT, 'Time for Iterative Biconjugate Gradient:', stop-start

IDL prints:

Time for Iterative Biconjugate Gradient       1.1259040

Remember that your result will depend on your hardware configuration.

Next, we compute the solution using LU decomposition.

; Start the timer:
start = SYSTIME(1) & $
; Compute the LU decomposition of A:
LUDC, A, index & $
; Compute the solution:
result2 = LUSOL(A, index, B) & $
; Stop the timer:
stop = SYSTIME(1)
; Print the time taken, in seconds:
PRINT, 'Time for LU Decomposition:', stop-start

IDL prints:

Time for LU decomposition       14.871168

Finally, we can compare the absolute error between result1 and result2. The 
following commands will print the indices of any elements of the two results that 
differ by more than 1.0 × 10-5, or a –1 if the two results are identical to within five 
decimal places.
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error = ABS(result1-result2)
PRINT, WHERE(error GT 1.0e-5)

IDL prints:

-1

See the documentation for the WTN function for an example using IDL’s sparse 
array functions with image data.

Note
The times shown here were recorded on a DEC 3000 Alpha workstation running 
OSF/1; they are shown as examples only. Your times will depend on your specific 
computing platform.

Routines for Handling Sparse Arrays

See “Sparse Arrays” (in the functional category “Mathematics” (IDL Quick 
Reference)) for a brief description of IDL routines for handling sparse arrays. More 
detailed information is available in the IDL Reference Guide. 
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Time-Series Analysis

A time-series is a sequential collection of data observations indexed over time. In 
most cases, the observed data is continuous and is recorded at a discrete and finite set 
of equally-spaced points. An n-element time-series is denoted as x = (x0, x1, x2, ... , 
xn–1), where the time-indexed distance between any two successive observations is 
referred to as the sampling interval.

A widely held theory assumes that a time-series is comprised of four components:

• A trend or long term movement.

• A cyclical fluctuation about the trend.

• A pronounced seasonal effect.

• A residual, irregular, or random effect.

Collectively, these components make the analysis of a time-series a far more 
challenging task than just fitting a linear or nonlinear regression model. Adjacent 
observations are unlikely to be independent of one another. Clusters of observations 
are frequently correlated with increasing strength as the time intervals between them 
become shorter. Often the analysis is a multi-step process involving graphical and 
numerical methods.

The first step in the analysis of a time-series is the transformation to stationary series. 
A stationary series exhibits statistical properties that are unchanged as the period of 
observation is moved forward or backward in time. Specifically, the mean and 
variance of a stationary time-series remain fixed in time. The sample autocorrelation 
function is a commonly used tool in determining the stationarity of a time-series. The 
autocorrelation of a time-series measures the dependence between observations as a 
function of their time differences or lag. A plot of the sample autocorrelation 
coefficients against corresponding lags can be very helpful in determining the 
stationarity of a time-series.

For example, suppose the IDL variable X contains time-series data:

X = [5.44, 6.38, 5.43, 5.22, 5.28, $
5.21, 5.23, 4.33, 5.58, 6.18, $
6.16, 6.07, 6.56, 5.93, 5.70, $
5.36, 5.17, 5.35, 5.61, 5.83, $
5.29, 5.58, 4.77, 5.17, 5.33]
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The following IDL commands plot both the time-series data and the sample 
autocorrelation versus the lags.

; Set the plotting window to hold two plots and plot the data:
IPLOT, X, VIEW_GRID=[1,2]

Compute the sample autocorrelation function for time lagged values 0 – 20 and plot.

lag = INDGEN(21)
result = A_CORRELATE(X, lag)
IPLOT, lag, result, /VIEW_NEXT
; Add a reference line at zero:
IPLOT, [0,20], [0,0], /OVERPLOT

The following figure shows the resulting graphs. 

The top graph plots time-series data. The bottom graph plots the autocorrelation of 
that data versus the lag. Because the time-series has a significant autocorrelation up 
to a lag of seven, it must be considered non-stationary.

Nonstationary components of a time-series may be eliminated in a variety of ways. 
Two frequently used methods are known as moving averages and forward 
differencing. The method of moving averages dampens fluctuations in a time-series 

Figure 7-3: Time-series data (Top) and Autocorrelation of that Data
Versus the Lag (Bottom)
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by taking successive averages of groups of observations. Each successive 
overlapping sequence of k observations in the series is replaced by the mean of that 
sequence. The method of forward differencing replaces each time-series observation 
with the difference of the current observation and its adjacent observation one step 
forward in time. Differencing may be computed recursively to eliminate more 
complex nonstationary components.

Once a time-series has been transformed to stationarity, it may be modeled using an 
autoregressive process. An autoregressive process expresses the current observation, 
xt, as a combination of past time-series values and residual white noise. The simplest 
case is known as a first order autoregressive model and is expressed as 

xt = φxt–1 + ωt

The coefficient φ is estimated using the time-series data. The general autoregressive 
model of order p is expressed as

xt = φ1xt–1 +φ2xt–2 + ... + φpxt–p + ωt

Modeling a stationary time-series as a p-th order autoregressive process allows the 
extrapolation of data for future values of time. This process is know as forecasting.

Routines for Time-Series Analysis

See “Time-Series Analysis” (in the functional category “Mathematics” (IDL Quick 
Reference)) for a brief description of IDL routines for time-series analysis. Detailed 
information is available in the IDL Reference Guide. 
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Multivariate Analysis

IDL provides a number of tools for analyzing multivariate data. These tools are 
broadly grouped into two categories: Cluster Analysis and Principal Components 
Analysis.

Cluster Analysis

Cluster Analysis attempts to construct a sensible and informative classification of an 
initially unclassified sample population using a set of common variables for each 
individual. The clusters are constructed so as to group samples with the similar 
features, based upon a set of variables. The samples (contained in the rows of an 
input array) are each assigned a cluster number based upon the values of their 
corresponding variables (contained in the columns of an input array).

In computing a cluster analysis, a predetermined number of cluster centers are 
formed and then each sample is assigned to the unique cluster which minimizes a 
distance criterion based upon the variables of the data. Given an m-column, n-row 
array, IDL’s CLUST_WTS and CLUSTER functions compute n cluster centers and n 
clusters, respectively. Conceivably, some clusters will contain multiple samples 
while other clusters will contain none. The choice of clusters is arbitrary; in general, 
however, the user will want to specify a number less than the default (the number of 
rows in the input array). The cluster number (the number that identifies the cluster 
group) assigned to a particular sample or group of samples is not necessarily unique.

It is possible that not all variables play an equal role in the classification process. In 
this situation, greater or lesser importance may be given to each variable using the 
VARIABLE_WTS keyword to the CLUST_WTS function. The default behavior is to 
assume all variables contained in the data array are of equal importance.

Under certain circumstances, a classification of variables may be desired. The 
CLUST_WTS and CLUSTER functions provide this functionality by first 
transposing the m-column, n-row input array using the TRANSPOSE function and 
then interchanging the roles of variables and samples.

Example of Cluster Analysis

Define an array with 5 variables (columns) and 9 samples (rows):

array = [[ 99,  79,  63,  87, 249 ], $
[ 67,  41,  36,  51, 114 ], $
[ 67,  41,  36,  51, 114 ], $
[ 94, 191, 160, 173, 124 ], $
[ 42, 108,  37,  51,  41 ], $
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[ 67,  41,  36,  51, 114 ], $
[ 94, 191, 160, 173, 124 ], $
[ 99,  79,  63,  87, 249 ], $
[ 67,  41,  36,  51, 114 ]]

; Compute the cluster weights with four cluster centers:
weights = CLUST_WTS(array, N_CLUSTERS = 4)
; Compute the cluster assignments, for each sample,
; into one of four clusters:
result  = CLUSTER(array, weights, N_CLUSTERS = 4)
; Display the cluster assignment and corresponding sample (row):
FOR k = 0, 8 DO $

PRINT, result[k], array[*, k]

IDL prints:

1      99      79      63      87     249
3      67      41      36      51     114
3      67      41      36      51     114
0      94     191     160     173     124
2      42     108      37      51      41
3      67      41      36      51     114
0      94     191     160     173     124
1      99      79      63      87     249
3      67      41      36      51     114

Samples 0 and 7 contain identical data and are assigned to cluster #1. Samples 1, 2, 5, 
and 8 contain identical data and are assigned to cluster #3. Samples 3 and 6 contain 
identical data and are assigned to cluster #0. Sample 4 is unique and is assigned to 
cluster #2.

If this example is run several times, each time computing new cluster weights, it is 
possible that the cluster number assigned to each grouping of samples may change.

Principal Components Analysis

Principal components analysis is a mathematical technique which describes a 
multivariate set of data using derived variables. The derived variables are formulated 
using specific linear combinations of the original variables. The derived variables are 
uncorrelated and are computed in decreasing order of importance; the first variable 
accounts for as much as possible of the variation in the original data, the second 
variable accounts for the second largest portion of the variation in the original data, 
and so on. Principal components analysis attempts to construct a small set of derived 
variables which summarize the original data, thereby reducing the dimensionality of 
the original data.

The principal components of a multivariate set of data are computed from the 
eigenvalues and eigenvectors of either the sample correlation or sample covariance 
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matrix. If the variables of the multivariate data are measured in widely differing units 
(large variations in magnitude), it is usually best to use the sample correlation matrix 
in computing the principal components; this is the default method used in IDL’s 
PCOMP function.

Another alternative is to standardize the variables of the multivariate data prior to 
computing principal components. Standardizing the variables essentially makes them 
all equally important by creating new variables that each have a mean of zero and a 
variance of one. Proceeding in this way allows the principal components to be 
computed from the sample covariance matrix. IDL’s PCOMP function includes 
COVARIANCE and STANDARDIZE keywords to provide this functionality.

For example, suppose that we wish to restate the following data using its principal 
components. There are three variables, each consisting of five samples.

We compute the principal components (the coefficients of the derived variables) to 2 
decimal accuracy and store them by row in the following array.

The derived variables {z1, z2, z3} are then computed as follows: 

Var 1 Var 2 Var 3

Sample 1 2.0 1.0 3.0

Sample 2 4.0 2.0 3.0

Sample 3 4.0 1.0 0.0

Sample 4 2.0 3.0 3.0

Sample 5 5.0 1.0 9.0

Table 7-1: Data for Principal Component Analysis

0.87 0.70– 0.69

0.01 0.64– 0.66–

0.49 0.32 0.30–
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In this example, analysis shows that the derived variable z1 accounts for 57.3% of the 
total variance of the original data, the derived variable z2 accounts for 28.2% of the 
total variance of the original data, and the derived variable z3 accounts for 14.5% of 
the total variance of the original data.

Example of Derived Variables from Principal Components

The following example constructs an appropriate set of derived variables, based upon 
the principal components of the original data, which may be used to reduce the 
dimensionality of the data. The data consist of four variables, each containing of 
twenty samples.

; Define an array with 4 variables and 20 samples:
data = [[19.5, 43.1, 29.1, 11.9], $

[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 37.0, 18.7], $
[29.8, 54.3, 31.1, 20.1], $
[19.1, 42.2, 30.9, 12.9], $

z1 0.87( )

2.0

4.0

4.0

2.0

5.0

0.70–( )

1.0

2.0

1.0

3.0

1.0

0.69( )

3.0

3.0

0.0

3.0

9.0

+ +=

z2 0.01( )

2.0

4.0

4.0

2.0

5.0

0.64–( )

1.0

2.0

1.0

3.0

1.0

0.66–( )

3.0

3.0

0.0

3.0

9.0

+ +=

z3 0.49( )

2.0

4.0

4.0

2.0

5.0

0.32( )

1.0

2.0

1.0

3.0

1.0

0.30–( )

3.0

3.0

0.0

3.0

9.0

+ +=
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[25.6, 53.9, 23.7, 21.7], $
[31.4, 58.5, 27.6, 27.1], $
[27.9, 52.1, 30.6, 25.4], $
[22.1, 49.9, 23.2, 21.3], $
[25.5, 53.5, 24.8, 19.3], $
[31.1, 56.6, 30.0, 25.4], $
[30.4, 56.7, 28.3, 27.2], $
[18.7, 46.5, 23.0, 11.7], $
[19.7, 44.2, 28.6, 17.8], $
[14.6, 42.7, 21.3, 12.8], $
[29.5, 54.4, 30.1, 23.9], $
[27.7, 55.3, 25.7, 22.6], $
[30.2, 58.6, 24.6, 25.4], $
[22.7, 48.2, 27.1, 14.8], $
[25.2, 51.0, 27.5, 21.1]]

The variables that will contain the values returned by the COEFFICIENTS, 
EIGENVALUES, and VARIANCES keywords to the PCOMP routine must be 
initialized as nonzero values prior to calling PCOMP.

coef = 1 & eval = 1 & var = 1
; Compute the derived variables based upon
; the principal components.
result = PCOMP(data, COEFFICIENTS = coef, $

EIGENVALUES = eval, VARIANCES = var)
; Display the array of derived variables:
PRINT, result, FORMAT = '(4(f5.1, 2x))'

IDL prints:

81.4   15.5   -5.5    0.5
102.7   11.1   -4.1    0.6
109.9   20.3   -6.2    0.5
110.5   13.8   -6.3    0.6
81.8   17.1   -4.9    0.6
104.8    6.2   -5.4    0.6
121.3    8.1   -5.2    0.6
111.3   12.6   -4.0    0.6
97.0    6.4   -4.4    0.6
102.5    7.8   -6.1    0.6
118.5   11.2   -5.3    0.6
118.9    9.1   -4.7    0.6
81.5    8.8   -6.3    0.6
88.0   13.4   -3.9    0.6
74.3    7.5   -4.8    0.6
113.4   12.0   -5.1    0.6
109.7    7.7   -5.6    0.6
117.5    5.5   -5.7    0.6
91.4   12.0   -6.1    0.6
102.5   10.6   -4.9    0.6
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Display the percentage of total variance for each derived variable:

PRINT, var

IDL prints:

0.712422
0.250319
0.0370950
0.000164269

Display the percentage of variance for the first two derived variables; the first two 
columns of the resulting array above.

PRINT, TOTAL(var[0:1])

IDL prints:

0.962741

This indicates that the first two derived variables (the first two columns of the 
resulting array) account for 96.3% of the total variance of the original data, and thus 
could be used to summarize the original data.

Routines for Multivariate Analysis

See “Multivariate Analysis” (in the functional category “Mathematics” (IDL Quick 
Reference)) for a brief description of IDL routines for multivariate analysis. Detailed 
information is available in the IDL Reference Guide. 
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Symbols
!ORDER system variable, 73

A
accuracy, numerical algorithms, 168
Aitoff map projection, 120
Albers equal area conic map projection, 129
aliasing, 151
analytic signal, 153
animation

controlling rate, 107
Motion JPEG2000

about, 94
creating, 96
high-speed read/write, 108
playing, 103

performance, 108
ARMA filter, 163
arrays

determining data type, 38
rotating, 57
sparse, 201
stored in structure form, 201

ASCII files
IDLDE import macro, 25
reading, 11

autoregressive moving average filters, 163
azimuthal equidistant map projection, 119
azimuthal map projections, 116

B
bandpass
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filters, 159
bandstop filters, 159
bilinear

interpolation, 62
transform, 163

binary files
IDLDE import macro, 27
reading, 12

boxcar filter, 161
Bristol Technology

printing graphics, 91

C
central map projection, 118
CIA World Map database, 134
cluster analysis

routines, 212
CMY color system, 64
color

channels, 74
Direct Graphics, 70
images

Direct Graphics, 71
systems

CMY, 64
converting, 66
HLS, 64
HSV, 64
RGB, 64

tables. See color tables
visuals

Unix, 67
Windows, 68

color tables
highlighting image features, 80
indexed image (LUT), 74
modifying, 79

colormaps, 70
conformal conic map projection, 128
converting

color systems, 66
color tables, 79
image types, 77

Cooley-Tukey algorithm, 152
coordinate systems

device, 54
normalized, 54
window, 53

coordinates
converting

three-dimensional coordinates, 59
converting two-dimensional coordinates, 58
data, 53
device, 53
homogeneous, 55
normal, 53

copyrights, 2
correlation analysis

about, 170
correlation coefficient

about, 170
interpretation, 171

correlation routines, 173
cubic convolution interpolation, 62
curve fitting

discussion, 174
routines, 175

cyclical fluctuation, 204
cylindrical equidistant map projection, 127
cylindrical map projections, 125

D
data

access, 7
data coordinates

about, 53
data types

determining array size, 38
IDL indices, 36
type codes
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pixel data types, 36
Delaunay triangulation, 182
derived variables, 208
device

coordinates, 53
independent graphics, 51

DFT, 142
differentiation routines, 189
digital filters, 158
digital signal processing, 139
DIGITAL_FILTER function, 159
Direct Graphics

about, 52
color

indexed, 70
RGB, 71

printing, 91
visuals

Unix, 69
Windows, 70

window coordinates, 54
discrete Fourier transform, 142
discrete wavelet transform, 155
display, on multiple monitors

See multi-monitor.
displayrgbimage_object.pro, 75
DWT (discrete wavelet transform), 155

E
eigenvalues

complex, 177
real, 176
repeated, 179, 180
routines for computing, 181

eigenvectors
complex, 177
real, 176
repeated, 180
routines for computing, 181

equal-area map projection, 129

examples
batch files

sigprc01, 139
sigprc02, 140
sigprc03, 145
sigprc04, 146
sigprc05, 147
sigprc06, 149
sigprc07, 150
sigprc08, 151
sigprc09, 154
sigprc10, 159
sigprc11, 160
sigprc12, 161
sigprc13, 164
sigprc14, 165

image
displayrgbimage_object.pro, 75

multimon_ex1.pro, 89
objects

mj2_frames_doc.pro, 100
mj2_morphthin_doc.pro, 102
mj2_palette_doc.pro, 101
mj2_tile_doc.pro, 102
mj2_timer_doc.pro, 106

exporting
formatted image files, 18
unformatted image files, 19

expressions
determining data type

SIZE function, 38

F
Fast Fourier transform

Cooley-Tukey algorithm, 152
defined, 142
discrete, 142
implementation, 152
using windowing algorithms, 148

file
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See also files.
access, 7

file access
See also reading.
about, 8
routines, 29

file information
returning, 32

file selection
using dialogs, 9

FILE_INFO function
using, 47

files
See also file.
accessing, 7
exporting

See also writing.
formatted, 18
unformatted, 19

importing
See also reading.
formatted, 16
unformatted, 17

querying, 32
returning

file information, 32
filtering

autoregressive moving average, 163
bandpass, 159
bandstop, 159
boxcar, 161
digital, 158
FIR, 159
highpass, 159
lowpass, 159
rectangular, 161

filters
IIR filter, 163
Kaiser’s window, 159
moving average, 159
notch, 163

finite impulse response filters, 159
FIR filter, 159
frequency plot leakage, 146
frequency plot smearing, 146
frequency response function, 164

G
Gaussian

iterated quadrature, 185
Gauss-Krueger map projection, 126
general perspective map projection, 123
geometric transformations

interpolation methods, 61
gnomic map projection, 118
gnomonic map projection, 118
Gouraud shading, 63
graphics

coordinate systems, 55
device independent graphics, 51
devices

direct graphics, 52
modes, 50
object-oriented, 51

gridding
data extrapolation, 182
Delaunay triangulation, 182
routines, 182
uniformly-spaced planar data, 182

H
Hammer-Aitoff map projection, 122
Hamming window

defined, 149
Hanning window

defined, 148
HDF files

IDLDE import macros, 28
HDF-EOS
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IDLDE import macro, 28
highlighting

image features, 80
highpass filters, 159
high-resolution continent outlines, 134
Hilbert transform, 153
histogram

plot, 140
HLS color system

color schemes, 64
homogeneous coordinates, 55
HSV color system

color schemes, 64
hypothesis testing

routines, 184
statistics, 183

I
IDL

direct graphics, 52
iTools, 50
object graphics, 51

IDLffMJPEG2000
animations

about, 94
creating, 96
playing, 103
timer example, 106

IIR filter
digital filtering, 163
using, 163

image display
interleaving, 74
RGB, 74

image interleaving, 74
image objects

displaying
RGB, 75

interleaving, 74
pixel interleaving, 74

saving to Motion JPEG2000, 98
images

dialog for reading, 9
dialog for saving, 10
exporting files, 18, 19
file selection

using a dialog, 9
highlighting features, 80
import macro, 23
importing files, 17
info structure, 33
orientation, 73
QUERY_IMAGE, 37
querying, 33
raster, 73
RGB interleaving, 75

import macro, IDLDE
ASCII files, 25
binary files, 27
image files, 23
scientific data formats, 28

importing
data, 7, 7
unformatted image files, 17

indexed images
color tables, 74

infinite impulse response filters, 163
integration

bivariate functions, 186
discussion, 185
numerical, 185
routines, 189
trivariate functions, 187

interleaving
determining, 75
image, 74
image objects, 74
line, 74
pixel, 74
planar, 74

interpolation
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bilinear, 62
cubic convolution, 62
image quality, 61
linear, 62
methods, 62
nearest-neighbor, 62
routines, 182
tabulated data points, 182
trilinear, 62

K
Kaiser filter, 159

L
Lambert’s conformal conic map projection, 

128
Lambert’s equal area map projection, 121
leakage, 146
legalities, 2
light source

shading, 63
line interleaving, 74
linear

algebra, 170
correlation, 170
systems

condition number, 190
overdetermined, 190
solving simultaneous equations, 190
underdetermined, 193

linear equations, simultaneous, 196
linear interpolation, 62
linear systems, routines, 196
Look-Up Table (LUT), 74
lowpass filters, 159

M
macros

IDLDE
pre-defined, 22

magnitude
signal spectra, 145

map projections
Aitoff, 120
Albers equal-area conic, 129
azimuthal, 116
azimuthal equidistant, 119
central gnomic, 118
cylindrical, 125
cylindrical equidistant, 127
general perspective, 123
gnomonic, 118
Hammer-Aitoff, 122
high-resolution outlines, 134
Lambert’s conformal conic, 128
Lambert’s equal area, 121
Mercator, 125
Miller cylindrical, 128
Mollweide, 131
orthographic, 117
overview, 112
pseudocylindrical, 130
Robinson, 130
satellite, 123
sinusoidal, 131
stereographic, 117
Transverse Mercator, 126

mathematics
routines, 168

memory
object graphics system, 51

Mercator map projection, 125
Miller cylindrical map projection, 128
minimization

about, 199
See also optimization

MJ2 files. See Motion JPEG2000
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mj2_frames_doc.pro, 100
mj2_morphthin_doc.pro, 102
mj2_palette_doc.pro, 101
mj2_tile_doc.pro, 102
mj2_timer_doc.pro, 106
MJPEG2000 files. See Motion JPEG2000
modifying color tables, 79
Mollweide map projection, 131
monitors, multiple

See multi-monitor.
Motion JPEG2000

about animations, 94
creating animations, 96
data sources, 98
examples

data capture, 102
monochrome frames, 99
palette, 100
RBG tiles, 101
screen captures, 102
sequential playback, 106
timed playback, 106

high-speed read/write, 108
playback rate, 106
playback, random, 104
playback, sequential, 103
sample reader, writer, 95

movies
Motion JPEG2000, 94

moving average filter, 159
multimon_ex1.pro, 89
multi-monitor

about, 81
configurations

UNIX, 87
Windows, 83

example, 89
terminology, 81

multiple correlation coefficient, 172
multiple monitors

See multi-monitor.

multivariate analysis
routines, 212

N
nearest-neighbor interpolation, 62
netCDF files

IDLDE import macro, 28
Newton’s method, 197
nonlinear equations

discussion, 197
routines, 198

nonparametric hypothesis tests, 183
normal

coordinates, 53
notch filter, 163
numerical integration, 185
Numerical Recipes in C, 169
Nyquist frequency, 151

O
OBJ_CLASS function

using, 45
OBJ_ISA function

using, 45
OBJ_VALID function

using, 46
Object Graphics

images
RGB image, 75

object graphics
about, 51
printing, 91

objects
information about, 45
object-oriented

graphics, 51
Oetli, Thomas, 134
one-tailed hypothesis tests, 183
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optimization
discussion, 199
routines, 200

origin
image data, 73

orthographic map projection, 117

P
parametric hypothesis tests, 183
partial correlation coefficient, 172
phase

signal spectra, 145
pixels

data
information (QUERY_IMAGE), 36

interleaving, 74
two-dimensional image arrays, 73

planar interleaving, 74
plotting

frequency smearing, 146
step plots, 140

power spectrum, 147
principal components analysis, 208
print manager, 91
printing

direct graphics
overview, 91

graphics, 91
private colormaps, 70
projections

Aitoff, 120
Albers equal-area conic, 129
azimuthal, 116
azimuthal equidistant, 119
central gnomic, 118
cylindrical, 125
cylindrical equidistant, 127
general perspective, 123
gnomonic, 118
Hammer-Aitoff, 122

high-resolution continent outlines, 134
Lambert’s conformal conic, 128
Lambert’s equal area, 121
Mercator, 125
Miller cylindrical, 128
Mollweide, 131
orthographic, 117
projection matrix, 191
pseudocylindrical, 130
Robinson, 130
satellite, 123
sinusoidal, 131
stereographic, 117
Transverse Mercator, 126

PseudoColor visuals, 67
pseudocylindrical map projections, 130

Q
quadrature function, 153
querying

images, 33
structure tags, 33

R
raster images, 73
reading

ASCII data, 11, 25
binary data, 12, 27
HDF files, 28
HDF-EOS files, 28
image files, 9, 23
netCDF files, 28
scientific format data, 28

rectangular filter, 161
resampling

images
see also interpolation

resolution of map databases, 134
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RGB color system
about color schemes, 64

RGB images
displaying

Object Graphics, 75
interleaving, 75

right-handed coordinate system, 55
Robinson map projection, 130
rotating

arrays, 57
images

matrices, 57
routines

cluster analysis, 212
correlation, 173
curve and surface fitting, 175
differentiation/integration, 189
eigenvalues/eigenvectors, 181
gridding/interpolation, 182
hypothesis testing, 184
linear systems, 196
mathematical, 168
multivariate analysis, 212
nonlinear equations, 198
optimization, 200
signal processing, 138
sparse arrays, 203
time-series analysis, 206

row-indexed sparse storage method, 201

S
sampled

data analysis, 151
images, 73

sampling, aliasing data, 151
satellite map projection, 123
saving

image files, 10
scaling

matrices, 56

scientific data format
IDLDE import macro, 28

seasonal effect, 204
shading

Gouraud interpolation, 63
light source, 63

shared colormaps
about, 70

reading. See file access.
signal

analysis transforms, 141
processing, 139

signal processing
routines, 138

sigprc01 batch file, 139
sigprc02 batch file, 140
sigprc03 batch file, 145
sigprc04 batch file, 146
sigprc05 batch file, 147
sigprc06 batch file, 149
sigprc07 batch file, 150
sigprc08 batch file, 151
sigprc09 batch file, 154
sigprc10 batch file, 159
sigprc11 batch file, 160
sigprc12 batch file, 161
sigprc13 batch file, 164
sigprc14 batch file, 165
simultaneous linear equations, 190
singular value decomposition, 190
sinusoidal map projection, 131
smearing frequency plots, 146
SMOOTH function, 161
sparse arrays, 201

routines, 203
standardized variables, 209
stationary series, 204
statistics

hypothesis testing, 183
routines, 168

step plot, 140
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stereographic map projection, 117
structure tags

image query, 33
structures

arrays stored in structure form, 201
surface fitting

discussion, 174
routines, 175

system variables
!ORDER, 73

T
three-dimensional

coordinate conversion, 59
graphics, 55
transformations

matrices, 55
three-dimensional transformations

matrices, 55
timers

timer mechanisms, 107
time-series analysis

about, 204
routines, 206

trademarks, 2
transformation matrices, 55
transforms

Fourier, 142
Hilbert, 153
Tustin bilinear, 163
wavelet, 155

translation, 56
Transverse Mercator map projection, 126
trend analysis, 204
trilinear interpolation, 62

TrueColor visuals, 67, 71
Tustin transform, 163
two-tailed hypothesis tests, 183

U
unconstrained minimizer, 199
UTM (Transverse Mercator) map projection, 

126

V
variables

data type, determining
SIZE function, 38

derived, 208
standardized, 208

W
wavelet transform

about, 155
windowing

Hamming windowed signal, 149
HANNING function, 148

writing
image files, 10

X
X Multi-Screen, 87
XINERAMA, 87
Xprinter

printing graphics, 91
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