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Chapter 1

Importing and Writing
Data into Variables

This chapter provides an introduction to accessing, reading and writing data using the dialogs, and

routines found in IDL.
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8 Chapter 1: Importing and Writing Data into Variables

Overview of Data Access in IDL

There are several ways to open files and access the data that they containin IDL.You
can open afile using interface elements, or using routines. In order of increasing
complexity and flexibility, your options are:

e Accessingdatain iTools— use File —» Open from aniTool, and browse to
select afile. This option automatically displays data (that is a supported type)
intheiTool. See Chapter 2, “Importing and Exporting Data” (iTool User’s
Guide) for details.

e Accessing filesusing dialogs— launch an IDL dialog and browse to select or
save afile. After accessing thefile, use an IDL routine to access the data
within thefile. You can then preform additional data processing task or create
adisplay. See “Accessing Files Using Dialogs’ on page 9 for details.

» Accessing files programmatically — you can access data without requiring
user interaction by using IDL statements in a program or at the command line.
This give you the greatest control over the state of data at all times, but
requires slightly more programming than the previous option. See “Accessing
Files Programmatically” on page 14 for details.

There are advantages and disadvantages for each option. When you open afile using
File -~ Open intheiTools, there is no opportunity to do pre-processing on the data.
However, the display is created for you, and there are numerous interactive
operations available.

You can combine the flexibility of accessing data using routines with the power of an
iTool display by launching the iTool from the command line as described in
“Parameter Data and the Command Line” (Chapter 2, iTool User’s Guide). See
“Accessing Image Data Programmatically” on page 16 and “Accessing Non-Image
Data Programmatically” on page 20 for examples.

When you access data from the command line or in an IDL program, you have the
greatest control over data modification. The iTools incorporate the functionality of
many of the common data processing and manipulation routines. However, if you
need greater control over data modification, want to create a custom display or object
class, or need to use functionality that is not exposed through and iTool, you can
import, export, and/or create your data programmatically.

Regardless of the method selected, it is important to note that only the options
involving iTools will automatically display datafor you. In other instances, you will
need to configure a display yourself.

Overview of Data Access in IDL Using IDL



Chapter 1: Importing and Writing Data into Variables 9

Accessing Files Using Dialogs

DIALOG_PICKFILE and DIALOG_READ_IMAGE are the two primary file access
diadlogsinIDL. Use DIALOG_PICKFILE to select any type of file. You can select
multiple files, define the directory or define file filters using keywords. Use
DIALOG_READ_IMAGE to access supported image formats (listed in “Image File
Formats® (Chapter 2, IDL Interface)). This dialog offers preview capabilities and
basic image information. The corollary DIALOG_WRITE_IMAGE alows you to
write datato a select image file type.

See the following topics for more information:
e “Accessing Any File Type Using a Dialog” below
e “Importing an Image File Using aDialog” on page 10
* “Saving an Image File Using a Dialog” on page 10
You can use other dialogs to access ASCII, binary and HDF data as described in:
e “Reading ASCII Data’ on page 11
e “Reading Binary Data’ on page 12

Also, several pre-defined IDL macros are provided to help you import datainto the
IDLDE. Each returns a structure, which you access programmeatically in order to
retrieve data. See “Using IDL Macros’ on page 22 for details.

Note
Also see“CW_FILESEL” (IDL Reference Guide) for an example that configures a
compound widget to open image files.

Accessing Any File Type Using a Dialog

Using IDL

The DIALOG_PICKFILE function lets you interactively pick afile using the
platform’s own native graphical file selection dialog. This function returns a string or
an array of stringsthat contain the full path name of the selected file or files. The user
can also enter the name of the file. The following statement opens the selection dialog
and shows any .pr o filesin the current working directory. If you select afile and
click Open, thef i | e variable contains the full file path.

file = DI ALOG Pl CKFI LE(/ READ, FILTER = '*.pro')

Other keywords allow you to specify the initia directory, the dialog title, the filter
list, and whether multiple file selection is permitted. See “DIALOG_PICKFILE”
(IDL Reference Guide) for details.

Accessing Files Using Dialogs
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After you select afile using DIALOG_PICKFILE, you can then use one of the file
I/0O routines to access the data within the file. See “Accessing Image Data
Programmatically” on page 16 or “Accessing Non-Image Data Programmatically” on
page 20 for more information.

Importing an Image File Using a Dialog

The DIALOG_READ_IMAGE function opens a graphical user interface which lets
you read image files. Thisinterface simplifies the use of IDL imagefile I/O. You can
preview images with a quick and simple browsing mechanism which aso reports
important information about the image file. You can also control the preview mode.

The following statement opens the dialog so that you can select among . gi f, ti ff,
.dcm . png and .j pg files.

result = DI ALOG _READ | MAGE( FI LE=sel ectedFi | e, | MAGE=i mage)

See “Using the Select Image File Dialog Interface” under
“DIALOG_READ_IMAGE” (IDL Reference Guide) for additional information if
desired. When you select afile and click Open, thefile pathis stored in

sel ect edFi | e variable and theimage datais stored in the i mage variable. Enter
the following line to display image datain an ilmage display.

IF result EQ1 THEN il nage, inmage
Saving an Image File Using a Dialog

The DIALOG_WRITE_IMAGE function displays a graphical user interface that lets
you write and save image files. This interface simplifies the use of IDL image file
I/0. The following statements create and writeasimpleimagetoa.ti f file name
nyi mage. tif:

nyi mage = DI ST(100)

result = DIALOG WRI TE_| MAGE( nyi mage, FI LENAMVE=' nyimage.tif')
When you select Save, it createsa. ti f filein your current working directory or the
directory of your choice. See“DIALOG_WRITE_IMAGE” (IDL Reference Guide)
for acomplete list of keywords and a description of the dialog interface.

Accessing Files Using Dialogs Using IDL
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Reading ASCII Data

IDL recognizestwo types of ASCII datafiles: free format files, and explicit format
files. A free format file uses commas or tabs and spaces to distinguish each element
in thefile. An explicit format file distinguishes elements according to the commands
specified in aformat statement. Most ASCII files are free format files.

Note
If you prefer not to use an interactive dialog (described below), you can also use the

READ/READF, or READS proceduresto access ASCI I data. The READ procedure
reads free format data from standard input, READF reads free format datafrom a
file, and READS reads free format datafrom a string variable.

Launching the ASCII Template Dialog

The ASCII_TEMPLATE function launches adialog that you can use to configure the
structure of datain an ASCII file. Accessthis feature in one of the following ways:

FromaniTool — select File — Open (or click the Import File button in the
Data Manager or Insert Visualization dialog) and select atext file

e Fromthe|DLDE — select Macros - Import ASCII and select atext file

¢ Fromthe IDL command line — use the following syntax to call
ASCIl_TEMPLATE and select atext file:

sTenpl ate = ASCI | _TEMPLATE()

Note
If you specify a Filename argument to ASCII_TEMPLATE, the dialog

allowing you to browse to select afile will not appear. See
“ASCII_TEMPLATE" (IDL Reference Guide) if you want specify afile and
other parameters programmatically.

See “Using the ASCII Template Dialog” under “ASCII_TEMPLATE” (IDL
Reference Guide) for instructions on how to use the dial og to define the structure of

your ASCII data.

Using IDL Reading ASCII Data



12 Chapter 1: Importing and Writing Data into Variables

Reading Binary Data

Datais sometimes stored in files as arrays of bytesinstead of a known format like
JPEG or TIFF. Thesefiles arereferred to as binary files. Binary data or binary data
files are more compact than ASCI| data files and are frequently used for large data
files. Binary datafiles are stored as one long stream of bytesin afile. You will need
to define the structure of the fields in the file in order to correctly read in the binary
data.

The BINARY_TEMPLATE and READ_BINARY functions are designed to define
and access binary data. The READ_BINARY function, which reads binary data, is
either invoked internally (when you open a binary file from the iTools or use the
Import Binary macro), or isexplicitly called from the command line. This function
isintended to read raw binary datathat requires no special processing (except
possibly byte-order swapping). This function is not designed to read commercial
spreadsheet or word processing files.

Note
If you prefer not to use an interactive Binary Template dialog (described below) to
define the structure of the datain the binary file, you can use the READU
procedure. To read binary datafiles, define the variables, open the file for reading,
and read the bytes into those variables. Each variable reads as many bytes out of the
file asrequired by the specified data type and organizational structure.

If you need to open asingle binary file, it may be easier to use READ_BINARY to
directly define data characteristics using keywords instead of creating atemplate
using the Binary Template dialog (described below). See “READ_BINARY” (IDL
Reference Guide) for an example.

Launching the Binary Template Dialog
The BINARY _TEMPLATE function launches a dial og that you can use to define the

structure of datain an binary file. Access this feature in one of the following ways:

FromaniTool — select File - Open (or click the Import File button in the
Data Manager or Insert Visualization dialog) and select abinary file

* Fromthe | DLDE — select Macros — Import Binary and select a binary file

e FromtheIDL command line — use the following syntax to call
BINARY_TEMPLATE and select atext file:

sTenpl ate = BI NARY_TEMPLATE()

Reading Binary Data Using IDL
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Note
If you specify a Filename argument to BINARY _TEMPLATE, the dialog
allowing you to browse to select afile will not appear. See
“BINARY_TEMPLATE" (IDL Reference Guide) if you want specify afile
and other parameters programmatically.

See“Using the BINARY_TEMPLATE Interface” under “BINARY_TEMPLATE”
(IDL Reference Guide) for instructions on how to use the dialog to define the
structure of your binary file.

Using IDL Reading Binary Data
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Accessing Files Programmatically

Regardless of the data type, there are several routines that are commonly used to
access files and data. To read datainto an IDL variable, you must identify the file
containing the data, and then extract the data from the file. This section discussesfile
access. Following sections (discuss data access.

File Access

One of the most common file access routinesis FILEPATH. Usethisto select a
named file in a specified directory. For example, to select afilein the
exanpl es/ dat a directory of the existing working directory, use the statement:

file = FILEPATH(' nr _brain.dcm, SUBD RECTORY=['exanples', 'data'])

To access afile outside the existing working directory, use the ROOT_DIR keyword.
The following statement opens afilenamedtest I ng. ti f intheC: \t enpl nages
directory.

file = FILEPATH('testlng.tif', ROOT_ DIR="C"', $
SUBDI RECTORY="t enpl nages')

Cross-platform File Access

If your application requires a cross-platform path, one that is not specific to UNIX or
Windows, consider using the DIALOG_PICKFILE routine with the GET_PATH
keyword. Thislets you choose afile and store the operating system native path to the
filein avariable. In the following example, you choose an image file and the full
directory path to the selected imageis stored in pat h:

sFile = DI ALOG Pl CKFI LE(/ MUST_EXI ST, $

TITLE = "Select an Image File', $

FILTER = ['"*.bnp', '*.jpg', '*.png', '*.ppm, '*.tif'], $

GET_PATH=pat h)
When you need to access afilein the directory stored in pat h, you can use the
PATH_SEP function to return the correct path separation character for the operating
system. Suppose you have afile called ny Test Fi | e. j pg that you want to delete
before aprogram ends. FILE_DELETE requires astring File argument that isin the
native syntax for the current operating system. To delete thisfile, you can use the
directory information stored in pat h, plusthe PATH_SEP function, plus the name of
the file to delete as follows (the + operator concatenates strings):

FI LE_DELETE, pat h+PATH_SEP() + nyTestFile.jpg' , /ALLON NONEXI STENT

Accessing Files Programmatically Using IDL
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IDL also provides an extensive number of other file manipulation routines. See

“General File Access’ under the functional category “Input/Output” (IDL Quick
Reference) for alist.

FILEPATH is often used in conjunction with routines that access the data from afile,
as shown in the following section.

Using IDL Accessing Files Programmatically
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Accessing Image Data Programmatically

You can access image data using routines designed for general image file access,
designed specifically for an image file format, or using unformatted data access
routines. Which option you choose depends on the file type and the level of control
you want over reading and writing the file. See the following topics for details:

e “Importing Formatted |mage Data Programmatically” below

* “Importing Unformatted Image Files’ on page 17

e “Exporting Formatted Image Files Programmatically” on page 18
e “Exporting Unformatted Image Files’ on page 19

Note
These sections describe how to load data into a variable and includes examples of
passing variable datato an iTool programmatically. See “Importing Data from the
IDL Session” (Chapter 2, iTool User’'s Guide) if you want information on how you
can access variable data from the iTools Data Manager.

Importing Formatted Image Data Programmatically

The majority of IDL image data access routine require a file specification, indicating
the file from which to access the data. The FILEPATH routine is often used within a
data access routine as shown in the following example.

Note
To validate that an image file can be accessed using READ_* routines, you can
query the image first. See “Returning Image File Information” on page 33 for
details.

The following example opens a JPEG file from the exanpl es/ dat a directory,
performs feature extraction, and displays both images using IIMAGE.

; Open a file and access the data.

file = FILEPATH(' n_vasinfecta.jpg', $
SUBDI RECTORY = [' exanples', 'data'])

READ JPEG, file, inage, /GRAYSCALE

; Mask out pixel values greater than 120

; and create a distance map.

bi narylnmg = i mage LT 120

di stancel ng = MORPH_DI STANCE( bi naryl ng, NEI GHBOR_SAMPLI NG = 1)

Accessing Image Data Programmatically Using IDL
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Launch ilmage, creating a 2 colum, 1 row |ayout.
Di splay the original and distancelng in the two views.
Il MAGE, image, VIEWGRID=[2,1]
I I MAGE, distancelng, /VIEWNEXT, /OVERPLOT
In the previous example, you could use the READ_IMAGE function instead of the
READ_JPEG function by replacing the following statement:

READ JPEG, file, image, /GRAYSCALE
with
i mage = READ | MAGE(fil e)
In this instance, you do not have control over the color table associated with the

image. It is often more useful to use a specific READ_* routine or object designed
for theimage file format to precisely control characteristics of the imported image.

For alist of available image access, import and export routines and objects, see
“Image Data Formats’ under the functional category “Input/Output” (IDL Quick
Reference).

Note
IDL can also import images stored in scientific data formats, such as HDF and
netCDF. For more information on these formats, see the Scientific Data Formats
manual.

Importing Unformatted Image Files

Images in unformatted binary files can be imported with the READ_BINARY
function using the DATA_DIMS and DATA_TY PE keywords as follows:

¢ You must specify the size of the image within the file using the DATA_DIMS
keyword. Thisis required because the READ_BINARY function assumes the
data values are arranged in a single vector (a one-dimensional array). The
DATA_DIMS keyword is used to specify the size of the two- or three-
dimensional image array.

¢ You can set the DATA_TY PE keyword to the image’s data type using the
associated IDL type code (seeIDL Type Codes and Names’ under the SIZE
function in the IDL Reference Guide for acomplete list of type code). Most
imagesin binary files are of the byte data type, which is the default setting for
the DATA_TY PE keyword.

No standard exists by which image parameters are provided in an unformatted binary
file. Often, these parameters are not provided at al. In this case, you should already

Using IDL Accessing Image Data Programmatically
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be familiar with the size and type parameters of any images you need to access within
binary files.

For example, thewor | del v. dat fileisabinary file that contains an image. You can
only import thisimage by supplying the information that the data values of the image
are byte and that the image has dimensions of 360 pixels by 360 pixels. Before using
the READ_BINARY function to access thisimage, you must first determine the path
to thefile:

file = FILEPATH(' worl delv.dat', $
SUBDI RECTORY = [' exanples', 'data'])

Define the size parameters of the image with a vector:
i mgeSi ze = [ 360, 360]

An image type parameter is not required because we know that the data values of
image are byte, which is the default type for the READ_BINARY function.

The READ_BINARY function can now be used to import the image contained in the
wor | del v. dat file:

i mage = READ BI NARY(file, DATA DIMs = imageSize)
I I MAGE, inmage

Exporting Formatted Image Files Programmatically

Images can be exported to common image file formats using the WRITE_IMAGE
procedure. The WRITE_IMAGE procedure requires three inputs: the exported file's
name, the image file type, and the image itself. You can also provide the red, green,
and blue color components to an associated color table if these components exist.

For example, you can import the image from the wor | del v. dat binary file:

file = FILEPATH(' worl delv.dat', $
SUBDI RECTORY = [' exanples', 'data'])
i mageSi ze = [ 360, 360]
i mmge = READ BI NARY(file, DATA DIMs = imageSize)
You can export thisimage to an image file (a JPEG file) with the WRITE_IMAGE
procedure:

WRI TE_| MAGE, 'worldelv.dat', 'JPEG, inage

IDL also provides format-specific WRITE_* routines that are similar to the
WRITE_IMAGE procedure, but provide more flexibility when exporting a specific
image file type. See " Image Data Formats’ under the functional category
“Input/Output” (IDL Quick Reference) for alist of availableimage access, import and
export routines and objects.

Accessing Image Data Programmatically Using IDL
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Note

IDL can aso export images stored in scientific data formats, such as HDF and
netCDF. For more information on these formats, see the Scientific Data Formats
manual.

Exporting Unformatted Image Files

Using IDL

Images can be exported to an unformatted binary file with the WRITEU procedure.
Before using the WRITEU procedure, you must open afile to which the data will be
written using the OPENW procedure. Any file you open must be specifically closed
using either the FREE_LUN or CLOSE procedure when you are done exporting the
image.

For example, you can import the image from ther ose. j pg imagefile:

file = FILEPATH('rose.jpg', $
SUBDI RECTORY = ['exanples', 'data'])
i mge = READ_| MAGE(fil e)

You can export this image to a binary file by first opening a new file:
OPENW wunit, 'rose.dat', /GET_LUN

Then, use the WRITEU procedure to write the image to the open file:
WRI TEU, unit, inage

You must remember to close the file once the data has been written to it:

FREE_LUN, unit

Note

For complete detail s about reading, writing and formatting unformatted data, see
Chapter 18, “Files and Input/Output” (Application Programming).

Accessing Image Data Programmatically
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Accessing Non-Image Data Programmatically

There are a number of options available for reading non-image datainto IDL.
Depending upon the file type, consider using one of the following:

e Formatted data— use a data-type-specific routine (such as READ_ASCII or
READ_BINARY). See “Reading Binary Datain a Volume” below for more
information.

e Unformatted data — use a general data access routines (such as OPEN or
WRITE). For complete details about reading, writing and formatting
unformatted data, see Chapter 18, “Files and Input/Output” (Application
Programming).

» SAVE file data— use the RESTORE procedure to access variable datain a
SAVE file. See “Reading Contour Data from a SAVE File” on page 21 for an
example.

Note
These sections describe how to load data into a variable and includes examples of
passing variable datato an iTool programmatically. See “Importing Data from the
IDL Session” (Chapter 2, iTool User’s Guide) if you want information on how you
can access variable data from the iTools Data Manager.

Reading Binary Data in a Volume

The following example uses READ_BINARY to access binary data (head. dat )
consisting of a stack of 57 images dlices of the human head. After reading the data,
create adisplay using IVOLUME. Enter the following at the IDL command prompt:

file = FILEPATH(' head. dat', $
SUBDI RECTORY = [' exanples', 'data'])

dat aSi ze = [ 80, 100, 57]

vol une= READ BI NARY(fil e, DATA DI M5 = dataSi ze)

i Vol ume, vol une, /AUTO_RENDER

Note

You can also create atemplate for binary file access. See “ Reading Binary Data” on
page 12 for options.

Accessing Non-Image Data Programmatically Using IDL
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Reading Contour Data from a SAVE File

You can also access information from a SAVE file. This example restores a SAVE
file containing variable data (mar bel | s. dat ), configures the data, and displays it
using ICONTOUR.

PRO nmar oonBel | sCont our _doc

: Restore Maroon Bells data into the |IDL variable "el ev".
RESTORE, FILEPATH(' marbells.dat', SUBDI R=['exanples',6'data'])

Create x and y vectors giving the position of each
; colum and row.
X = 326.850 + .030 * FI NDGEN(72)
Y = 4318.500 + . 030 * FI NDGEN(92)

; Set missing data points to a | arge value. Reduce to a
72 x 92 matri Xx.

elev (WHERE (elev EQ 0)) = 1E6

new = REBI N(el ev, 360/5, 460/5)

i Contour, new, X, Y, CVALUE = 2750 + FINDGEN(6) * 250.,9%
XSTYLE = 1, YSTYLE = 1, YMARG@ N = 5, MAX VALUE = 5000, $
C LINESTYLE = [1, O], $
CTHCK =11, 1, 1, 1, 1, 3], $
XTI TLE = ' UTM Coordi nates (KM'

End

Note

See Chapter 4, “Creating SAVE Files of Programs and Data” (Application
Programming) for complete details on creating and restoring SAVE files.

Using IDL Accessing Non-Image Data Programmatically
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Using IDL Macros

When you are working in the IDLDE, you can use a pre-defined macro to help you
import image, ASCII, binary or HDF data. These macros call internal functions and
return structures containing data. From the IDL command line, you can access and
display data elements contained in the structures. These macros are avail able through
the M acr os menu and also through IDL toolbar buttons.

IR @B E e

Import Image / \ Import HDF
File File

Import ASCII File Import Binary File

Figure 1-1: Macro Toolbar Buttons

See the follow sections for more information:
e “Using Macrosto Import Image Files’ on page 23
e “Using Macrosto Import ASCII Files’ on page 25
* “Using Macrosto Import Binary Files’ on page 27
* “Using Macrosto Import HDF Files” on page 28

Using IDL Macros Using IDL
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Using Macros to Import Image Files

Using IDL

To import an image file into IDL using a macro, complete the following steps:

1. Select the Import Image toolbar button. The Select Image Filedialogis

displayed.

2. Select afileto import. For example, select the
| DL_DI R/ exanpl es/ dat a/ nuscl e. j pg filewherel DL_DI Risthe
installation directory for IDL. See“Using the Select Image File Dialog
Interface” under “DIALOG_READ_IMAGE” (IDL Reference Guide) for
additional information if desired.

3. Click Open.

Thenuscl e. j pg image data has been opened into a structure variable named
MUSCLE_IMAGE. The Import I mage macro opens and stores image datain a
structure variable named filename |IMAGE where filename is the name of thefile
you opened without the extension.

Note

IDL variables must begin with aletter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filenameisnot a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

The MUSCLE_IMAGE structure contains the following fields:

IMAGE — The actual image array.

R — Thered color table vectors.

G — The green color table vectors.

B — The blue color table vectors.

QUERY — Contains information about the image.

¢ CHANNELS— The number of channelsin theimage.

e HAS PALETTE — Specifiesif the palette is present. 1 if the paletteis
present, else 0. If your image is n-by-m the palette is usualy present and
theR, G, and B color table vectors mentioned above will contain values. If
your image is 3-by-n-by-m, the palette will not be present and the R,G, and
B color table vectors will not contain any values.

Using Macros to Import Image Files
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 IMAGE_INDEX — Theindex of the image of the file. The default is 0,
thefirst imagein the file. If there are multiple imagesin the file that you
read, this will be the number (or index) of the image.

e NUM_IMAGES — The number of imagesin the original file.

e PIXEL_TYPE — ThelIDL Type Code of the image pixel format. Valid
types are described in “IDL Type Codes and Names® under “SIZE” (IDL
Reference Guide).

¢ TYPE — Theimage format type.
The structure can be viewed in the Variable Watch Window.

Mame L} Type | Walue -
B | MUSCLE_IMAGE STRUCT { <Anonpmouss }
IMAGE EYTE Anap[E52, 444]
R EYTE Array[256]
G EYTE Array[256]
B EYTE Array[256]
B QUERY STRUCT { <Anonpmouss }
= | CH&NMELS LONG 1
DIMENSIONS LONG Aray[2]
= HaS_PALETTE INT a
IMAGE_INDEX LONG a
MUM_IMAGES LONG 1 e
PI<EL_TYPE INT 1
= TYPE STRING JPEG =
zl]\Locals {Paramsg Commong System | A4 | | _DI—I

Figure 1-2: Variable Watch Window Showing MUSCLE_IMAGE Structure
You can specify which part of the structure variable you want to access by using the
following syntax:

variable_name.element_name[.element_name]

For example, if you want to view the image, enter the following:

| | MAGE, MUSCLE_| MAGE. | MAGE

If you want to know the file type, enter the following:

PRI NT, MUSCLE_| MAGE. QUERY. TYPE
IDL prints:
JPEG

Using Macros to Import Image Files Using IDL
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Using Macros to Import ASCII Files

Using IDL

To import an ASCII fileinto IDL using amacro, complete the following steps:

1. Selectthemport ASCII toolbar button. The Select an ASCI| fileto read
dialog appears.

Select afile to import.

3. See“Using the ASCII Template Dialog” under “ASCII_TEMPLATE” (IDL
Reference Guide) for instructions on how to use the dialog to define the
structure of your ASCI| data.

ASCII files opened with the Import ASCI1 macro are stored in structure variables
which are named filename_ASCII where filename is the name of the file you opened
without the extension.

Note
IDL variables must begin with aletter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filenameisnot a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

For example, if you opened asci i . t xt , the datais now in the structure variable
named ASCII_ASCII. Each field (named in the ASCII Template dialog) isan
element of the structure.

The structure can be viewed in the Variable Watch Window.

Mame Type | Walue ;I

Bl | ASCI_asCl STRUCT { <Anonpmouss }

LOMGITUDE FLOAT Anray[15]

LATITUDE FLOAT Anray[15]

ELEWATION LOMG Anray[15]

TEMPERATURE LOMG Anray[15]

DEWPOINT LOMG Anray[15]

WINDSPEED LOMG Anray[15]

WINDIR LOMG Anray[15]

zl]\Locals {Paramsg Commong System | 4 | | 3

Figure 1-3: Variable Watch Window Showing ASCIl_ASCII Structure

Using Macros to Import ASCII Files
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You can specify which part of the structure variable you want to access by using the

following syntax:

variable_name.element_name

For example, if you want to view the Longitude field data, enter the following:

Print, ASCI1_ASCI|.LONG TUDE

If you want to plot the Temperature data, enter the following:

| PLOT, ASCl I _ASCl | . TEMPERATURE

The following figure results.
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Figure 1-4: Plot of ASCII_ASCII.TEMPERATURE

Using Macros to Import ASCII Files
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Using Macros to Import Binary Files

To import abinary fileinto IDL using a macro, complete the following steps:

1. Selectthe Import Binary toolbar button. The Select a binary file to read
dialog appears.

2. Select afiletoimport. For example, select thesur f ace. dat from the
exanpl es/ dat a directory in your IDL installation directory. Click Open.

3. SeeUsing the BINARY_TEMPLATE Interface under
“BINARY_TEMPLATE" (IDL Reference Guide) for instructions on how to
use the dialog to define the structure of your binary data.

Binary files opened with the Import Binary File macro are stored in structure
variables which are named filename_BINARY where filename is the name of thefile
you opened without the extension.

Note
IDL variables must begin with aletter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

So, the file we just opened (sur f ace. dat ) is now in the structure variable named
SURFACE_BINARY. The variableis a structure, and contains elements that are the
field names defined in the Binary Template dialog. In this casethe singlefield is
named mar bel | s. The structure can be viewed in the Variable Watch Window.

Mame Type | Walue
B SURFACE_BINARY STRUCT { <Ananymous>

[ : MARBELLS INT Arrap[350, 450]

zl]\Locals {Paramsg Commong System | 1 | | _’I

Figure 1-5: Variable Watch Window Showing MARBELLS_BINARY Structure

Access data from the structure variable using the following syntax:
variable name.element_name

For example, display the surface by entering:
| SURFACE, SURFACE_BI NARY. narbel | s

Using IDL Using Macros to Import Binary Files
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Using Macros to Import HDF Files

To import a Hierarchical Data Format (HDF), HDF-EOS, or NETCDF fileinto IDL,
complete the following steps:

1. Select the Import HDF File toolbar button. The Select a valid HDF,
NETCDF or HDF-EOSfile dialog is displayed.

Select afileto import. Click Open.

3. See“Using the HDF Browser Interface” under “HDF_BROWSER” for
instructions on how to use the dialog.

After selecting to import data and clicking OK, HDF, NETCDF, or HDF-EOS files
read with the Import HDF macro are stored in structure variables which are named
filename_DF where filename is the name of the file you opened without the
extension.

Note
IDL variables must begin with aletter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any illegal characters within filename are removed.

The variable is a structure with each data or metadata name being an element of the
structure. You can specify which part of the structure variable you want to access by
using the following syntax:

variable name.data_name

For example, if you imported two data elements out of afile named hydr ogen. hdf
and you named the elements | MAGEL and | MAGE2, you could access each individual
data element using the following:

HYDROGEN_DF. | MAGE1
HYDROGEN_DF. | MAGE2

If you wanted to view | MAGEL, you would enter:
| | MAGE, HYDTROGEN_DF. | MAGEL

For more information on IDL support of HDF and other scientific dataformats, see
the Scientific Data Formats manual .

For information on importing HDF5 files using the HDF5 Browser dialog, see
“H5 BROWSER” (IDL Reference Guide)

Using Macros to Import HDF Files Using IDL
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File Access Routines

Using IDL

See the following categories under “Input/Output” (IDL Quick Reference) for alist of
available file and data access routines:

“Image Data Formats’ — includes read and write routines for supported image
formats (such as JPEG, TIFF, DICOM, etc.), and routines that launch dialogs
for image file access.

“Scientific Data Formats’ — includes CDF, EOS, NCDF, HDF, and HDF5
routines.

“Other Data Formats’ — includes routines that access ASCII, BINARY,
XML, and other non-image data formats.

“General Input/Output” — includes READ, WRITE and other routines
commonly used when accessing unformatted data. Also see Chapter 18, “Files
and Input/Output” for information on using these routines and formatting your
data.

File Access Routines
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The following topics are covered in this chapter:

Investigating FilesandData ............ 32  Getting Information About SAVE Files ... 40
Returning Image File Information . . ... ... 33 Returning Object Type and Vaidity .. .. .. 45
Returning Type and Size Information .. ... 38 Returning Information About aFile. .. ... 47

Using IDL 31



32 Chapter 2: Getting Information About Files and Data

Investigating Files and Data

There are anumber of routines and functionsin IDL that allow you to quickly access
information about your data. While it is always a good ideato know your data before
processing, the routines in this chapter can help you uncover details of arrays,
expressions, SAVE files, objects, or specific images.

Accessing Information in iTools

When you are working in the iTools, there are a number of ways to get information
about variable data, an object’s properties, an image's statistical information, and the
data hierarchy. For more information about these options, see the following topics:

e “About the Data Manager” (Chapter 2, iTool User’s Guide) provides
information on data associated with a visualization

e “The Visualization Browser” (Chapter 6, iTool User’'s Guide) provides
information on the properties of avisualization

* “Additional Operations’ (Chapter 7, iTool User’'s Guide) describes the
Histogram and Statistics windows available in iTools

Investigating Files and Data Using IDL
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Returning Image File Information

When accessing formatted image data (not contained in abinary file), thereare a
number of waysto get information about the data characteristics. The most flexibleis
the QUERY _IMAGE routine, which returns a structure that includes the number of
image channels, pixel data type and palette information. If you need specific
information from a formatted image file, you can use the QUERY * routine
specifically designed for images of that format.

Note
You can also use the SIZE function to quickly return the size of an image array. See
“Using SIZE to Return Image Dimensions” on page 39 for details.

Using the QUERY _IMAGE Info Structure

Using IDL

Common image file formats contain standardized header information that can be
queried. IDL provides the QUERY _IMAGE function to return valuable information
about images stored in supported image file formats.

For example, using the QUERY _IMAGE function, you can return information about
them ner al . png fileinthe exanpl es/ dat a directory. First, access thefile. Then
use the QUERY _IMAGE function to return information about the file;

file = FILEPATH(' mi neral .png', $
SUBDI RECTORY = ['exanples', 'data'])
queryStatus = QUERY_I MAGE(fil e, info)
To determine the success of the QUERY _IMAGE function, print the value of the
query variable:

PRI NT, 'Status ="', queryStatus
IDL prints
queryStatus = 1

If queryStatusis zero, the file cannot be accessed with IDL. If queryStatusis one, the
file can be accessed. Because the query was successful, the info variable is now an
IDL structure containing image parameters. The tags associated with this structure
variable are standard across image files. You can view the tags of this structure by
setting the STRUCTURE keyword to the HEL P command with the info variable as
its argument:

HELP, info, /STRUCTURE

Returning Image File Information
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IDL displays the following text in the Output Log:
** Structure <1407e70>, 7 tags, |ength=36, refs=1:

CHANNELS LONG 1
DI MENSI ONS LONG Array[ 2]
HAS PALETTE | NT 1
| MAGE_| NDEX LONG 0
NUM | MAGES LONG 1
Pl XEL_TYPE | NT 1
TYPE STRI NG ' PNG

The structure tags provide the following information:

Tag Description

CHANNELS Provides the number of dimensions within the image array:
e 1-—two-dimensiona array
e 3 -—three-dimensional array

Print the number of dimensions using:

PRI NT, ' Nunmber of Channels: ', info.channels
For themi ner al . png file, IDL prints:
Number of Channel s: 1
DI MENSI ONS Contains image array information including the width and
height. Print the image dimensions using:
PRINT, 'Size: ', info.dinmensions
For themi ner al . png file, IDL prints:
Si ze: 288 216

HAS PALETTE Describes the presence or absence of a color palette:

* 1 (True) — the image has an associated pal ette

* 0 (False) —the image does not have an associated palette
Print whether a paletteis present or not using:

PRINT, 'Is Palette Available?: ', info.has_palette
For themi ner al . png file, IDL prints:

Is Palette Avail abl e?: 1

Table 2-1: Image Structure Tag Information

Returning Image File Information Using IDL
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Tag Description

| MAGE_| NDEX Gives the zero-based index number of the current image. Print
the index of the image using:

PRI NT, 'lmage Index: ', info.imge_i ndex
For themi ner al . png file, IDL prints:

| mage | ndex: 0

NUM | MAGES Provides the number of imagesin thefile. Print the number of
imagesin the file using:

PRI NT, ' Nunber of Images: ', info.num.imges
For themi ner al . png file, IDL prints:

Nurmber of | nages: 1

Table 2-1: Image Structure Tag Information (Continued)

Using IDL Returning Image File Information
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Tag

Description

Pl XEL_TYPE

Provides the IDL type code for the image pixel datatype:

* 0—Undefined

* 1-—Byte

e 2 —Integer

e 3-—Longword integer

» 4 —Floating point

* 5—Double-precision floating

* 6— Complex floating

* 9 —Double-precision complex

e 12 -Unsigned Integer

e 13-Unsigned Longword Integer

e 14— 64-bit Integer

» 15— Unsigned 64-bit Integer
See“IDL Type Codes and Names’ under the SIZE function in
the IDL Reference Guide for a complete list of type codes.
Print the data type of the pixelsin the image using:

PRI NT, 'Data Type: ', info.pixel_type
For themi ner al . png file, IDL displays the following text in
the Output Log:

Dat a Type: 1

TYPE

I dentifies the image file format. Print the format of thefile
containing the image using:

PRINT, 'File Type: ' + info.type
For themi ner al . png file, IDL prints:
File Type: PNG

Table 2-1: Image Structure Tag Information (Continued)

From the contents of the info variable, it can be determined that the single image

withintheni ner al .

png fileisan indexed image because it has only one channel (is

atwo-dimensional array) and it has a color palette. The image also has byte pixel

data.

Returning Image File Information
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Note
When working with RBG images (with a CHANNEL S value of 3) it isimportant to
determine the interleaving (the arrangement of the red, green, and blue channels of
data) in order to properly display these image. See “RGB Image Interleaving”
(Chapter 3, Using IDL) for an example that shows you how to determine the
arrangement of these channels.

Using Specific QUERY_* Routines

All of the QUERY _* routines return a status, which determinesif the file can be read
using the corresponding READ _ routine. All of these routines also return the | nf o
structure, (described in the previous section), which reports image dimensions,
number of samples per pixel, pixel type, paette info, and the number of imagesin the
file. However, some of the QUERY _* routines (such as QUERY_MRSID and
QUERY _TIFF) return more detailed information particular to that specific image
format. See “Query Routines’ (IDL Quick Reference) for a complete list of the
available QUERY _* routines.

Using IDL Returning Image File Information
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Returning Type and Size Information

The SIZE function returns size and type information for a given expression. The
returned vector is always of longword type.

e Thefirst element is equal to the number of dimensions of the parameter and is
zero if the parameter is a scalar.

* The next elements contain the size of each dimension.

« After the dimension sizes, the last two elements indicate the data type and the
total number of elements, respectively.

See"IDL Type Codes and Names’ under the SIZE function in the IDL Reference
Guide for acomplete list of type codes. See the following examples for more
information on the SIZE function:

» “Determining if a Variableisa Scalar or an Array” below
e “Using SIZE to Return Image Dimensions’ on page 39

In addition to the examples listed above, also see the following SIZE function
examplesin the IDL Reference Guide:

e “Example: Returning Array Dimension Information”

e “Example: Returning the IDL Type Code of an Expression”
Determining if a Variable is a Scalar or an Array

The SIZE function can be used to determine whether avariable holds a scalar value
or an array. Setting the DIMENSIONS keyword causes the SIZE function to return a
0if thevariableis ascalar, or the dimensions if the variableis an array:

1

[1]

[1,2, 3]
([1,2],[3, 4]]

o0Owm>»

PRI NT, SIZE(A, /DI MENSI ONS)
PRI NT, SIZE(B, /DI MENSI ONS)
PRI NT, SIZE(C, /DI MENSI ONS)
PRI NT, SIZE(D, /DI MENSI ONS)

IDL Prints:

0
1
3

Returning Type and Size Information Using IDL
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2

Using SIZE to Return Image Dimensions

Using IDL

The following example reads an image array and uses the SIZE function
DIMENSIONS keyword to access the number of rows and columnsin theimagefile.
In this smple example, the information is used to create a display window of the
correct size.

PRO ex_di spl ayl mage

; Select and read the imge file.
earth = READ PNG (FILEPATH (' avhrr.png', $
SUBDI RECTCRY = ['exanples', 'data']), R G B)

; Load the color table and designate white to occupy the
; final position in the red, green and bl ue bands.
TVLCT, R G B

maxCol or = ! D. TABLE_SIZE - 1

TVLCT, 255, 255, 255, naxCol or

; Prepare the display device.
DEVI CE, DECOWPOSED = 0, RETAIN = 2

Cet the size of the original image array.
earthSi ze = Sl ZE(earth, /DI MENSI ONS)

; Prepare a wi ndow and di splay the new i mage.
W NDOW 0, XSIZE = earthSize[0], YSIZE = earthSize[1]
TV, earth

END

Returning Type and Size Information
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Getting Information About SAVE Files

The IDL_Savefile object provides an object-oriented interface that allows you to
query a SAVE file for information and restore one or more individual items from the
file. Using IDL_Savefile, you can retrieve information about the user, machine, and
system that created the SAVE file, aswell asthe number and size of the variousitems
contained in the file (variables, common blocks, routines, etc). Individua items can
be selectively restored from the SAVE file.

Use IDL_Savefilein preference to the RESTORE procedure when you need to obtain
detailed information on the items contained within a SAVE file without first restoring
it, or when you wish to restore only selected items. Use RESTORE when you want to
restore everything from the SAVE file using a simple interface.

Note
The IDL_Savefile object does not provide methods that allow you to modify an
existing SAVE file. The only way to modify an existing SAVE fileisto restore its
contentsinto afresh IDL session, modify the contained routines or variables as
necessary, and use the SAVE procedure to create a new version of thefile.

To usethe IDL_Savefile abject to restore items from an existing SAVE file, do the
following:

¢ Create a Savefile Object

¢ Query the Savefile Object

e Restore Items from the Savefile Object
» Destroy the Savefile Object

The following sections describe each of these steps. For complete information on the
IDL_Savefile object and its methods, see“IDL_Savefile” (Chapter 11, IDL
Reference Guide).

Create a Savefile Object

When an IDL_Savefile object isinstantiated, it opens the actual SAVE file for
reading and creates an in-memory representation of its contents — without actually
restoring the file. The savefile abject persists until it is explicitly destroyed (or until
the IDL session ends); the SAVE fileitself is held open for reading as long as the
savefile object exists.

Getting Information About SAVE Files Using IDL



Chapter 2: Getting Information About Files and Data 41

To create a savefile object from the dr aw_ar r ow. sav file created in “Example: A
SAVE File of a Simple Routine” (Chapter 4, Application Programming), use the
following command:

nmyRoutines = OBJ_NEW' I DL_Savefile', 'draw arrow sav')

Similarly, to create a savefile object from the saved image data, use the following
command:

nmyl mage = OBJ_NEW' I DL_Savefile', 'inagefile.sav')

Query the Savefile Object

Using IDL

Once you have created a savefile object, three methods allow you to retrieve
information about its contents:

¢ The Contents method provides information about the SAVE file including the
number and type of items contained therein.

e The Names method allows you to retrieve the names of routines and variables
stored in thefile.

« The Size method allows you to retrieve size and type information about the
variables stored in thefile.

Contents Method

The Contents method returns a structure variable that describes the SAVE file and its
contents. The individual fieldsin the returned structure are described in detail in
“IDL_Savefile::Contents’ (Chapter 11, IDL Reference Guide).

In addition to providing information about the system that created the SAVE file, the
Contents method allows you to determine the number of each type of saved item
(variable, procedure, function, etc.) in thefile. Thisinformation can be used to
programmatically restore items from the SAVE file.

Assuming you have created the myRout i nes savefile object, the datareturned by the
Contents method looks like this:

savefil el nfo = nmyRouti nes->Contents()
HELP, savefil el nfo, /STRUCTURE

IDL Prints:;

** Structure | DL_SAVEFI LE_CONTENTS, 17 tags, |ength=176, data |eng
th=172:

FI LENAVE STRI NG "/itt/test/draw arrow. sav'
DESCRI PTI ON STRI NG
FI LETYPE STRI NG 'Portable (XDR)'
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USER STRI NG ' dqui xot €'

HOST STRI NG ' DULCI NEA'

DATE STRI NG "Thu May 08 12:04:46 2003
ARCH STRI NG ' x86'

cs STRI NG "W n32'

RELEASE STRI NG '6.4'

N_COMVON LONGG4 0
N_VAR LONGG4 0
N_SYSVAR LONGG4 0
N_PROCEDURE LONGG4 2
N_FUNCTI ON LONGG4 0
N_OBJECT_HEAPVAR LONG64 0
N_PO NTER_HEAPVAR  LONG64 0
N_STRUCTDEF LONGG4 0

From this you can determine the name of the SAVE file from which the information
was extracted, the names of the user and computer who created the file, the creation
date, and information about the IDL system that created thefile. You can also seethat
the SAVE file contains definitions for two procedures and nothing el se.

Names Method

The Names method returns a string array containing the names of the variables,
procedures, functions, or other items contained in the SAVE file. By default, the
method returns the names of variables; keywords allow you to specify that names of
other items should be retrieved. The available keyword options are described in
“IDL_Savefile::Names’ (Chapter 11, IDL Reference Guide).

The names of items retrieved using the Names method can be supplied to the Size
method to retrieve size and type information about the specific items, or to the
Restore method to restore individual items.

For example, calling the Names method with the PROCEDURE keyword on the
myRout i nes savefile object yields the names of the two procedures saved in the file:

PRI NT, nyRouti nes->Nanmes(/ PROCEDURE)
IDL Prints:
ARROW DRAW ARROW

Similarly, to retrieve the name of the variable saved ini magefi | e. sav, whichis
referred to by the myl mage savefile object:

PRI NT, nyl mage- >Nanes()
IDL Prints:
I MAGE
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Size Method

The Size method returns the same information about a variable stored in a SAVE file
asthe SIZE function does about aregular IDL variable. It accepts the same keywords
as the SIZE function, and returns the same information using the same formats. The
Size method differs only in that the argument is a string or integer identifier string
(returned by the Names method) that specifies an item within a SAVE file, rather
than an in-memory expression. See“|DL_Savefile::Size” (Chapter 11, IDL Reference
Guide) for additional details.

For example, to determine the dimensions of the image stored in the
i magefil e. sav file, do thefollowing:

i magesi ze = nyl mage- >Si ze(' i mage', /DI MENSI ONS)
PRI NT, 'lnmage X size:', inmagesize[0]
PRINT, 'Image Y size:', imagesize[l]

IDL Prints:

| mge X size: 256
I mge Y size: 256

Restore Items from the Savefile Object

Using IDL

The Restore method allows you to selectively restore one or more items from the
SAVE file associated with a savefile object. Items to be restored are specified using
the item name strings returned by the Names method. In addition to functions,
procedures, and variables, you can also restore COMMON block definitions,
structure definitions, and heap variables. See “IDL_Savefile::Restore” (Chapter 11,
IDL Reference Guide) for additional details.

For example, to restore the DRAW_ARROW procedure without restoring the
ARROW procedure, do the following:

myRout i nes->Restore, 'draw_ arrow

Note on Restoring Objects and Pointers

Object references and pointers rely on special IDL variables called heap variables.
When you restore aregular IDL variable that contains an object reference or a
pointer, the associated heap variable is restored automatically; there is no need to
restore the heap variables separately. It is, however, possible to restore the heap
variables independently of any regular IDL variables; see* Restoring Heap Variables
Directly” (Chapter 11, IDL Reference Guide) for complete details.
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Destroy the Savefile Object

To destroy a savefile object, use the OBJ DESTROY procedure:

OBJ_DESTROY, nyRouti nes
OBJ_DESTROY, nyl mage

Destroying the savefile object will close the SAVE file with which the object is
associated.
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Returning Object Type and Validity

Three IDL routines allow you to obtain information about an existing object:
OBJ CLASS, OBJ ISA, and OBJ VALID.

OBJ_CLASS

Use the OBJ_CLASS function to obtain the class name of a specified object, or to
obtain the names of a specified abject’s direct superclasses. For example, if we create
the following class structures:

struct = {classl, datal:0.0 }
struct = {class2, data2a:0, data2b:O0OL, INHERI TS cl assl }

We can now create an object and use OBJ_CLASS to determineits class and
superclass membership.

; Create an object.
A = OBJ_NEW' cl ass2')
Print A's class menbership.
PRI NT, OBJ_CLASS(A)
IDL prints:
CLASS2
Or you can print as superclasses:

Print A s supercl asses.
PRI NT, OBJ_CLASS(A, /SUPERCLASS)

IDL prints:
CLASS1
See"0OBJ CLASS’ (IDL Reference Guide) for further details.

OBJ_ISA
Use the OBJ_I SA function to determine whether a specified object is an instance or
subclass of a specified object. For example, if we have defined the object A as above:

IF OBJ_ISA(A, 'class2') THEN $
PRINT, "Ais an instance of class2.'

IDL prints:
A is an instance of class2.

See“OBJ ISA” (IDL Reference Guide) for further details.
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OBJ_VALID

Use the OBJ VALID function to verify that one or more object references refer to
valid and currently existing object heap variables. If supplied with a single object
reference as its argument, OBJ _VALID returns TRUE (1) if the referencerefersto a
valid object heap variable, or FALSE (0) otherwise. If supplied with an array of
object references, OBJ VALID returns an array of TRUE and FAL SE values
corresponding to the input array. For example:

Create a class structure.
struct = {cnane, data:0.0}

Create a new obj ect.
A = OBJ_NEW' CNAME' )

IF OBJ_VALID(A) PRINT, "Arefers to a valid object." $
ELSE PRI NT, "A does not refer to a valid object.”

IDL prints:
A refers to a valid object.
If we destroy the object:

Destroy the object.
OBJ_DESTROY, A

IF OBJ_VALID(A) PRINT, "Arefers to a valid object." $
ELSE PRI NT, "A does not refer to a valid object."

IDL prints:
A does not refer to a valid object.

See“OBJ VALID” (IDL Reference Guide) for further details.
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Returning Information About a File

Using IDL

You can use the FILE_INFO function to retrieve information about afile that is not
currently open. To get information about an open file (for which thereisan IDL
Logical Unit Number), use the HELP procedure or the FSTAT function. See
“Returning Information About a File Unit” (Chapter 18, Application Programming).

The FILE_INFO function returns a structure expression of type FILE_INFO
containing information about the file. For example, get information on di st . pr o:

HELP, / STRUCTURE, FILE_| NFO(FI LEPATH(' di st.pro',

SUBDI RECTORY="| i b))

The above command will produce output similar to:

** Structure FILE_I NFO, 21 tags,

NANE
EXI STS

READ

WRI TE

EXECUTE
REGULAR

DI RECTORY
BLOCK_SPECI AL

STRI NG
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

CHARACTER_SPECI AL

NAMED Pl PE
SETG D
SETU D
SOCKET
STICKY_BI T
SYM.I NK

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

DANGLI NG_SYM.I NK

MODE
ATl ME
CTI ME
MTT VE
SI ZE

BYTE
LONG
LONG64
LONG64
LONG64
LONGG4

| engt h=72

"fusr/local/itt/idl/lib/dist.pro
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
420

970241431

970241595

969980845

1717

Thefields of the FILE_INFO structure provide various information about the file,
such as the size of the file, and the dates of |ast access, creation, and last
modification. For more information on the fields of the FILE_INFO structure, see
“FILE_INFO” (IDL Reference Guide). See “FILE_LINES’ (IDL Reference Guide)
for information on how to retrieve the number of lines of text in afile.
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IDL Visual Display Systems

When creating visualizationsin IDL, you can choose to create avisualization in an
IDL Intelligent Tool (iToal), in an Object Graphics display, or in a Direct Graphics

display:

e iTools—introducedin IDL 6.0, the IDL Intelligent Tools (iTools) provide the
power and flexibility of Object Graphics with a pre-built visualization system
that offersagreat deal of interactivity. This set of interactive utilities combine
data analysis and visualization with the task of producing presentation quality
graphics. See “iTools Visualizations’ below for more information.

e Object Graphics— introduced in IDL 5.0, Object Graphics use an object-
oriented programmers’ interface to create graphic objects, which must then be
drawn, explicitly, to a destination of the programmer’s choosing. See “IDL
Object Graphics’ on page 51 for more information.

« Direct Graphics— the oldest visualization system of the three, Direct
Graphics rely on the concept of a current graphics device to quickly create
simple static visualizations using IDL commands like PLOT or SURFACE.
See “IDL Direct Graphics’ on page 52 for information.

This chapter introduces the IDL display systems and provides information on
common topics shared by the systems. Topics include a discussion on coordinates,
coordinate conversion, interpolation, color systems and color schemes, and fonts.

ITools Visualizations

The new IDL Intelligent Tools (iTools) are a set of interactive utilities that combine
data analysis and visualization with the task of producing presentation quality
graphics. Based on the IDL Object Graphics system, the iTools are designed to help
you get the most out of your data with minimal effort. They allow you to continue to
benefit from the control of a programming language, while enjoying the convenience
of apoint-and-click environment.

The main enhancements the new i Tools provide are more mouse interactivity,

WY SIWY G (What-You-See-1s-What- You-Get) printing, built-in analysis, undo-redo
capabilities, layout control, and better-looking plots. These robust, pre-built tools
reduce the amount of programming IDL users must do to create interactive
visualizations. At the same time, the i Tools integrate in a seamless manner with the
IDL Command Line, user interface controls, and custom algorithms. In this way, the
iTools maintain and enhance the control and flexibility IDL usersrely on for data

IDL Visual Display Systems Using IDL
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exploration, algorithm design, and rapid application development. The following
manual s provide more information:

iTool User’s Guide — describes how to create visualization using iTools

iTool Programming — describes how to create and customize an iTool

IDL Object Graphics

The salient features of Object Graphics are:

Using IDL

Object graphics are device independent. There is no concept of a current
graphics device when using object-mode graphics; any graphics object can be
displayed on any physical device for which a destination object can be created.

Object graphics are object-oriented. Graphic objects are meant to be created
and re-used; you may create a set of graphic objects, modify their attributes,
draw them to awindow on your computer screen, modify their attributes again,
then draw them to a printer device without reissuing al of the IDL commands
used to create the objects. Graphics objects also encapsulate functionality; this
means that individual objects include method routines that provide
functionality specific to the individual object.

Object graphics are rendered in three dimensions. Rendering implies many
operations not needed when drawing Direct Graphics, including cal culation of
normal vectors for lines and surfaces, lighting considerations, and general
object overhead. As aresult, the time needed to render a given object—a
surface, say—will often be longer than the time taken to draw the analogous
image in Direct Graphics.

Object Graphics use a programmer’s interface. Unlike Direct Graphics, which
are well suited for both programming and interactive, ad hoc use, Object
Graphics are designed to be used in programsthat are compiled and run. While
itisgtill possible to create and use graphics objects directly from the IDL
command line, the syntax and naming conventions make it more convenient to
build a program offline than to create graphics objects on the fly.

Because Object Graphics persist in memory, there is a greater need for the
programmer to be cognizant of memory issues and memory leakage. Efficient
design—remembering to destroy unused object references and cleaning up—
will avert most problems, but even the best designs can be memory-intensive if
large numbers of graphic objects (or large datasets) are involved.
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For more information on creating Object Graphic visualizations see:

e Object Programming — this manual introduces using IDL objects and also
describes how to create custom objectsin IDL.

e “Object Class and Method Reference” (IDL Reference Guide) — this section
in the IDL Reference Guide provides complete reference material describing
IDL’s object classes

e iTool User’s Guide and iTool Programming — these manuals provide
complete details about using and creating object-based iTool displays

IDL Direct Graphics

IDL Direct Graphicsisthe original graphics rendering system introduced in IDL.
Graphic displays creating using Direct Graphics are static — once created, no
changes can be made without recreating the visualization being displayed. If you
have used routines such as PLOT or SURFACE, you are already familiar with this
graphics system. The salient features of Direct Graphics are:

« Direct Graphics use a graphics device (X for X-windows systems displays,
WIN for Microsoft Windows displays, PS for PostScript files, etc.). You
switch between graphics devices using the SET_PLOT command, and control
the features of the current graphics device using the DEVICE command.

e IDL commandsthat existed in IDL 4.0 use Direct Graphics. Commands like
PLOT, SURFACE, XYOUTS, MAP_SET, etc. al draw their output directly
on the current graphics device.

¢ Once adirect-mode graphic is drawn to the graphics device, it cannot be
atered or re-used. This means that if you wish to re-create the graphic on a
different device, you must re-issue the IDL commands to create the graphic.

*  When you add a new item to an existing direct-mode graphic (using aroutine
like OPLOT or XYOUTYS), the new item is drawn in front of the existing
items.

See “Direct Graphics’ (IDL Quick Reference) for alist of available routines.
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IDL Coordinate Systems

You can specify coordinates to IDL in one of the following coordinate systems:

DATA Coordinates

This coordinate system is established by the most recent PLOT, CONTOUR, or
SURFACE procedure. This system usually spans the plot window, the area bounded
by the plot axes, with arange identical to the range of the plotted data. The system
can have two or three dimensions and can be linear, logarithmic, or semi-logarithmic.

The mechanisms of converting from one coordinate system to another are described
below.

DEVICE Coordinates

This coordinate system is the physical coordinate system of the selected plotting
device. Device coordinates are integers, ranging from (0, 0) at the bottom-left corner
to (Vi —1, V), —1) at the upper-right corner. V, and V, are the number of columns and
rows addressed by the device. These numbers are stored in the system variable D as

ID.X_SIZE and !D.Y_SIZE. In awidget base, device coordinates are measures from
the upper-left corner

NORMAL Coordinates

The normalized coordinate system ranges from zero (0) to one (1) over each of the
three axes.

Almost all of the IDL graphics procedures accept parametersin any of these
coordinate systems. Most procedures use the data coordinate system by default.
Routines beginning with the letters TV are notable exceptions. They use device
coordinates by default. You can explicitly specify the coordinate system to be used

by including one of the keyword parameters /DATA, /IDEVICE, or NORMAL in the
call.

Understanding Windows and Related Device
Coordinates

Images are displayed within awindow (Direct Graphics) or within an instance of a
window object (Object Graphics). In Direct Graphics, the WINDOW procedureis
used to initialize the coordinates system for the image display. In Object Graphics,

Using IDL IDL Coordinate Systems
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the IDLgrWindow, IDLgrView, and IDLgrModel objects are used to initialize the
coordinate system for the image display.

A coordinate system determines how and where the image appears within the
window. You can specify coordinates to IDL using one of the following coordinate

systems:

Data Coordinates — This system usually spans the window with arange
identical to the range of the data. The system can have two or three dimensions
and can be linear, logarithmic, or semi-logarithmic.

Device Coordinates — This coordinate system is the physical coordinate
system of the selected device. Device coordinates are integers, ranging from
(0, 0) at the bottom-left corner to (Vy -1, Vy, —1) at the upper-right corner of the
display. Vy and V, are the number of columns and rows of the device (adisplay
window for example).

Note
For images, the data coordinates are the same as the device coordinates. The

device coordinates of an image are directly related to the pixel locations
within an image. Unless otherwise specified, IDL draws each image pixel per
each device pixel.

Normal Coordinates— The normalized coordinate system ranges from zero to
one over columns and rows of the device.

IDL Coordinate Systems Using IDL
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Coordinates of 3-D Graphics

Points in xyz space are expressed by vectors of homogeneous coordinates. These
vectors are translated, rotated, scaled, and projected onto the two-dimensional
drawing surface by multiplying them by transformation matrices. The geometrical
transformations used by IDL, and many other graphics packages, are taken from
Chapters 7 and 8 of Foley and Van Dam (Foley, J.D., and A. Van Dam (1982),
Fundamental s of Interactive Computer Graphics, Addison-Wesley Publishing Co.).
The reader is urged to consult this book for a detailed description of homogeneous
coordinates and transformation matrices since this section presents only an overview.

Three-dimensional graphics, coordinate systems, and transformations also are
included in this chapter.

Homogeneous Coordinates

A point in homogeneous coordinates is represented as a four-element column vector
of three coordinates and a scale factor w ¥4/ 0. For example:

P(wx, wy, wz, w) = P(xiw, y/w, z/w, 1) = (X, Y, 2)

One advantage of this approach is that tranglation, which normally must be expressed
as an addition, can be represented as a matrix multiplication. Another advantage is
that homogeneous coordinate representations simplify perspective transformations.
The naotion of rows and columns used by IDL is opposite that of Foley and Van Dam
(1982). In IDL, the column subscript isfirst, while in Foley and Van Dam (1982) the

row subscript isfirst. This changes all row vectors to column vectors and transposes
matrices.

Right-Handed Coordinate System

The coordinate system is right-handed so that when looking from a positive axis to
the origin, apositive rotation is counterclockwise. Asusual, the x-axis runs across the
display, the y-axisis vertical, and the positive z-axis extends out from the display to

the viewer. For example, a 90-degree positive rotation about the z-axis transforms the
x-axisto the y-axis.

Transformation Matrices
Transformation matrices, which post-multiply a point vector to produce a new point

vector, must be (4, 4). A series of transformation matrices can be concatenated into a
single matrix by multiplication. If A1, A2, and A3 are transformation matricesto be
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applied in order, and the matrix A isthe product of the three matrices, the following
applies.

((P' A1)° Az)‘ A3EP' ((A]_‘ Az)‘ A3) =Pes A
In Object Graphics, IDL the model object that contains the displayed object storesthe

transformation matrix. In Direct Graphics, IDL stores the concatenated
transformation matrix in the system variable field | PT.

Note
When displaying objects in a three-dimensional view, you can precisely configure
the object position using transformation matrices. See “ Trand ating, Rotating and
Scaling Objects’ (Chapter 3, Object Programming) for details.

Note
For most Direct Graphic applications, it is not necessary to create, manipulate, or to
even understand transformation matrices. See the T3D procedure, which
implements most of the common transformations.

Each of the operations of trandlation, scaling, rotation, and shearing can be
represented by a transformation matrix.

Translation

The transformation matrix to translate a point by (D, Dy, D) is shown below.

10 0 D]
0 1 0 D,
0 0 1 D,
00 0 1|

Scaling

Scaling by factors of S, §, and S, about the x-, y-, and z-axes respectively, is
represented by the matrix below.
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S, 0 0 0
0 Sjr 0 0
0 05,0
|0 0 0 1]
Rotation
Rotation about the x-, y-, and z-axes is represented respectively by the following three
matrices:
1 0 0 0
R 0 00381 —sin[-}K 0
* 10 sinB, cosB, 0
0 0 0 1
cos(-ly 0 sin(—lBr 0
Rsf _ .0 1 0 0
—smBy 0 ccmsﬁy 0
0 0 0 1
cosB_, -sin@, 0O 0
R, = sinB, cosB, 0 O
0 0 1 0
0 0 01
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Coordinate Conversions

Depending upon the data and type of visualization, you may want to convert between
normalized, data or device coordinates (described in “IDL Coordinate Systems’ on
page 53). This section details two-dimensional and three-dimensional coordinate
system characteristics provides resources for various coordinate conversions. See the
following for details:

* “Two-Dimensiona Coordinate Conversion” on page 58
e “Three-Dimensional Coordinate Conversion” on page 59

e “Using Coordinate Conversions’ on page 59

Two-Dimensional Coordinate Conversion

This section describes the formulae for conversions to and from each coordinate
system. In the following discussion, D, is adata coordinate, N, is anormalized
coordinate, and R, is araw device coordinate. Let V, and V), represent the size of the
visible area of the currently selected display or drawing surface.

Thefield Sisatwo-element array of scaling factors used to convert X coordinates
from data units to normalized units. S contains the parameters of the linear equation,
converting data coordinates to normalized coordinates. §[0] is the intercept, and 1]
isthe slope. Also, let D, be the data coordinate, N, the normalized coordinate, R, the
device coordinate, V, the device X size (in device coordinates).

With the above variables defined, the linear two-dimensiona coordinate conversions
for the x coordinate can be written as follows:

ggg\;girg?;ﬁ Linear Logarithmic
Data to normal N, = Sy+S;D, N, = S,+ S;logD,
Datato device R, = V,(S+S,D,) Ry, = V,(Sy+ S;logD,)
Normal to device R, = NV, R, = N,V
Normal to data D, = (N,—S,)/S; D, = 10(N«=S0)/S,
Device to data D, = (R/V,—S,)/S; | D, = 10(R/Vx=5)/Ss
Device to normal N, = R/V, N, = R/V,

Table 3-1: Equations for X-axis Coordinate Conversion

Coordinate Conversions Using IDL
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They- and z-axis coordinates are converted in exactly the same manner, with the
exception that there is no z device coordinate and that |ogarithmic z-axes are not
permitted.

This coordinate conversion functionality is built into object graphics through the
XCOORD_CONVERT and YCOORD_CONVERT properties or each type of
visualization object. If you are working with a Direct Graphics display, you can use
the CONVERT_COORD function.

Three-Dimensional Coordinate Conversion

To convert from a three-dimensional coordinate to atwo-dimensional coordinate,
IDL follows these steps:

» Datacoordinates are converted to three-dimensional normalized coordinates.
To convert the x coordinate from data to normalized coordinates, use the
formula N, = X + X;D,. The same processis used to convert they and z
coordinatesusing!'Y.Sand !Z.S.

* Thethree-dimensional normalized coordinate, P = (N,, Ny, N,), whose
homogeneous representation is (Ny, Ny, N, 1), is multiplied by the
concatenated transformation matrix 'PT:

P=P«IP.T

* Thevector P isscaled by dividing by w, and the normalized two-dimensional
coordinates are extracted:

N’y = P'y/P'y, and N'y = P' /P,
» Thenormalized xy coordinate is converted to device coordinates as described
in “ Two-Dimensional Coordinate Conversion” on page 58.

Using Coordinate Conversions

Using IDL

How coordinate conversions are defined depend upon the display type as follows:

e iTools—inaniTool display, the interactive nature of the tool makes
coordinate conversions transparent. There is no need to programmatically
configure the transformation matrices of the objects. See Chapter 4,
“Manipulating the Display” (iTool User’s Guide) for information on zooming,
scaling and tranglation.

e Object Graphics— converting an object’s data coordinates into normalized
coordinates for display is acommon task. See “Positioning Visualizationsin a
View” (Chapter 3, Object Programming) for details on the elements involved

Coordinate Conversions
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in defining an object’s position. Chapter 3, “Positioning Objectsin a View”
(Object Programming) also includes information on how to use coordinate
conversions (see “ Converting Datato Normal Coordinates’) and information
on programmeatically defining the object’s placement in aview (see
“Trangdlating, Rotating and Scaling Objects”).

e Direct Graphics— the IDL Direct Graphics system automatically positions
and sizes static visualizations so there is no need to set up atransformation
matrix. However, you can convert between the supported coordinate systems.
See " CONVERT_COORD” (IDL Reference Guide) for information on this
conversion in Direct Graphics.
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Interpolation Methods

When a visualization undergoes a geometric transformation, the location of each
transformed pixel may not map directly to a center of a pixel location in the output
visualization as shown in the following figure.
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Figure 3-1: Original Pixel Center Locations (Left) and Rotated Pixel Center
Locations (Right)

When the transformed pixel center does not directly coincide with apixel in the
output visualization, the pixel value must be determined using some form of
interpolation. The appearance and quality of the output image is determined by the
amount of error created by the chosen interpolation method. Note the differencesin
the line edges between the following two interpolated images.

Original Image Nearest Neighbor Bilinear Interpolation

Figure 3-2: Simple Examples of Image Interpolation

Using IDL Interpolation Methods
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There are avariety of possible interpolation methods available when using geometric
transformsin IDL. Interpolation methods include:

Nearest-neighbor inter polation — Assigns the value of the nearest pixel to
the pixel in the output visualization. Thisisthe fastest interpol ation method but
the resulting image may contain jagged edges.

Linear interpolation — Surveysthe 2 closest pixels, drawing aline between
them and designating a value along that line as the output pixel value.

Bilinear interpolation — Surveysthe 4 closest pixels, creates a weighted
average based on the nearness and brightness of the surveyed pixels and
assigns that value to the pixel in the output image.

Use cubic convolution if a higher degree of accuracy is heeded. However, with
till images, the difference between images interpolated with bilinear and
cubic convolution methods is usually undetectable.

Trilinear interpolation — Surveys the 8 nearest pixels occurring along the
X, Y, and z dimensions, creates a weighted average based on the nearness and
brightness of the surveyed pixels and assigns that value to the pixel in the
output image.

Cubic Convolution inter polation — Approximates a sinc interpolation by
using cubic polynomial waveformsinstead of linear waveforms when
resampling a pixel. With a one-dimension source, this method surveys 4
neighboring pixels. With a two-dimension source, the method surveys 16
pixels. Interpolation of three-dimension sourcesis not supported. This
interpolation method results in the least amount of error, thus preserving the
highest amount of fine detail in the output image. However, cubic interpolation
reguires more processing time.

Note
The IDL Reference Guide details the interpolation options available for each
geometric transformation function.

Interpolation Methods Using IDL
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Polygon Shading Method

Using IDL

The shading applied to each polygon, defined by its four surrounding elevations, can
be either constant over the entire cell or interpolated. Constant shading takeslesstime
because only one shading value needs to be computed for the entire polygon.
Interpolated shading gives smoother results. The Gouraud method of interpolation is
used: the shade values are computed at each elevation point, coinciding with each
polygon vertex. The shading is then interpolated along each edge, finally, between
edges along each vertical scan line.

Light-source shading is computed using a combination of depth cueing, ambient
light, and diffuse reflection, adapted from Foley and Van Dam, Chapter 19 (Foley,
J.D., and A. Van Dam (1982), Fundamentals of Interactive Computer Graphics,
Addison-Wesley Publishing Co.):

| =lq+dip(L e N)

where

Term dueto ambient light. All visible objects have at |east this
intensity, which is approximately 20 percent of the maximum
intensity.

Io(L ¢ N) Term dueto diffuse reflection. The reflected light is
proportional to the cosine of the angle between the surface
normal vector N and the vector pointing to the light source, L.
o is approximately 0.9.

la

d Term for depth cueing, causing surfaces further away fromthe
observer to appear dimmer. The normalized depth is
d=(z+2)/3, ranging from zero for the most distant point to one
for the closest.

In Direct Graphics, the SET_SHADING method modifies the light source shading
parameters. In Object Graphics similar OpenGL functionality is available through the
SHADING property of objects such as IDLgrPolygon, IDLgrPolyline, IDL Surface
and IDLgrContour.

Polygon Shading Method
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Color Systems

Color can play acritical rolein the display and perception of digital imagery. This
section provides a basic overview of color systems, display devices, image types, and
the interaction of these elements within IDL. The remainder of the chapter builds
upon these fundamental concepts by describing how to load and modify color tables,
convert between image types, utilize color tables to highlight features, and apply
color annotations to images.

Color Schemes

Color can be encoded using a number of different schemes. Many of these schemes
utilize acolor triple to represent alocation within a three-dimensional color space.
Examples of these systemsinclude RGB (red, green, and blue), HSV (hue, saturation,
and value), HLS (hue, lightness, and saturation), and CMY (cyan, magenta, and
yellow). Algorithms exist to convert colors from one system to another.

Computer display devicestypically rely on the RGB color system. In IDL, the RGB
color spaceis represented as a three-dimensional Cartesian coordinate system, with
the axes corresponding to the red, green, and blue contributions, respectively. Each
axisranges in value from 0 (no contribution) to 255 (full contribution). By design,
this range from 0 to 255 maps nicely to the full range of a byte data type.

Anindividual color is encoded as a coordinate within this RGB space. Thus, a color
consists of three elements: ared value, agreen value, and a blue value.

The following figure shows that each displayable color corresponds to alocation
within athree-dimensional color cube. The origin, (O, 0, 0), where each color
coordinateis O, is black. The point at (255, 255, 255) is white, representing an
additive mixture of the full intensity of each of the three colors. Points along the main
diagonal - where intensities of each of the three primary colors are equal - are shades

Color Systems Using IDL
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of gray. The color yellow is represented by the coordinate (255, 255, 0), or a mixture
of 100% red, plus 100% green, and no blue.

Blue (0,0,255) Cyan (0,255,255)
~u 4

White (255,255,255)
s

N :
Magenita (255,0,2.55)

Black (0,0,0) 7

.
Red (253,0,0) Fellow (255,255,0)

Figure 3-3: RGB Color Cube (Note: grays are on the main diagonal.)

Typicaly, digital display devices represent each component of an RGB color
coordinate as an n-bit integer in the range of 0 to 2" —1. Each displayable color is an
RGB coordinate triple of n-bit numbers yielding a palette containing 23" total colors.
Therefore, for 8-bit colors, each color coordinate can range from 0 to 255, and the
total palette contains 22* or 16,777,216 colors.

A display with an m-bit pixel can represent 2™ colors simultaneously, given enough
pixels. In the case of 8-bit colors, 24-hit pixels are required to represent all colors.
The more common case is adisplay with 8 bits per pixel which allows the display of
28 = 256 colors selected from the much larger palette.

If there are not enough bitsin a pixel to represent all colors, m< 23", acolor
trandlation tableis used to associate the value of apixel with acolor triple. Thistable
isan array of color triples with an element for each possible pixel value. Given 8-bit
pixels, acolor table containing 28 = 256 elementsis required. The color table element
with an index of i specifiesthe color for pixels with avalue of i.

To summarize, given a display with an n-bit color representation and an m-bit pixel,
the color trandation table, C, isa2™ long array of RGB triples:

Ci={ri,g,b}, 0<i<2M
OSri,gi,bi <2n

Objects containing a value, or color index, of i are displayed with acolor of C;.

Color Systems
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See “Color Table Manipulation” (IDL Quick Reference) for alist of color-related
routines including those that covert RGB color triples to other color schemes.

Converting to Other Color Systems

IDL defaultsto the RGB color system, but if you are more accustomed to other color
systems, IDL is not restricted to working with only the RGB color system. You can
also use either the HSV (hue, saturation, and value) system or the HL'S (hue,
lightness, and saturation) system. The HSV or HL'S system can be specified by
setting the appropriate keyword (for example /HSV or /HLS) when using IDL color
routines.

IDL also contains routines to create color tables based on these color systems. The
HSV routine creates a color table based on the Hue, Saturation, and Value (HSV)
color system. The HL S routine creates a color table based on the Hue, Lightness,
Saturation (HLS) color system. You can aso convert values of acolor from any of
these systems to another with the COLOR_CONVERT routine. See COLOR_QUAN in
the IDL Reference Guide for more information.

Color Systems Using IDL
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Display Device Color Schemes

Most modern computer monitors use one of two basic schemesfor displaying color at
each pixel:

¢ Indexed - A color is specified using an index into a hardware color lookup
table (or palette). Each entry of the color lookup table correspondsto an
individual color, and consists of ared value, a green value, and a blue value.
The size of the lookup table depends upon the hardware.

* RGB - A color is specified using an RGB triple: [red, green, blue]. The
number of bits used to represent each of the red, green, and blue components
depends upon the hardware.

The description of how color isto be interpreted on a given display deviceisreferred
to asavisual. Each visual typically has a name that indicates how color isto be
represented. Two very common visual names are PseudoColor (which uses an
indexed color scheme) and TrueColor (which uses an RGB color scheme).

A visual aso has a depth associated with it that describes how many bits are used to
represent a given color. Common bit depths include 8-bit (for PseudoColor visuals)
and 16- or 24-bit (for TrueColor visuals). An n-bit visual is capable of displaying 2"
total colors. Thus, an 8-bit PseudoColor visual can display 28 or 256 colors. A 24-bit
TrueColor visual can display 224 or 16,777,216 colors.

PseudoColor visuals rely heavily upon the display device's hardware color table for
image display. If the color table is modified, al images being displayed using that
color table will automatically update to reflect the change.

TrueColor visuals do not typically use acolor table. The red, green, and blue
components are provided directly.

Note
You can display TrueColor images on pseudo-color displays by using the
COLOR_QUAN function. This function creates a pseudo-color palette for
displaying the TrueColor image and then maps the TrueColor image to the new
palette. See COLOR_QUAN in the IDL Reference Guide for more information.

Setting a Visual on UNIX Platforms

Using IDL

On UNIX platforms, an application (such as IDL) may choose from among the set of
X visuals that are supported for the current display. Each visual is either grayscale or
color. Its corresponding color table may be either fixed (read-only), or it may be
changeable from within IDL (read-write). The color interpretation schemeis either

Display Device Color Schemes



68

Chapter 3: Graphic Display Essentials

indexed or RGB. The following table shows the supported visuals for agiven display,
which may include any combination:

Visual

Description

StaticGray

grayscale, read-only, indexed

GrayScale

grayscale, read-write, indexed

StaticColor

color, read-only, indexed

PseudoColor

color, read-write, indexed

TrueColor

color, read-only, RGB

DirectColor

color, read-write, RGB

Table 3-2: Visuals Supported in IDL on UNIX Platforms

The most common of these is PseudoColor and TrueColor. Refer to the section
“Colorsand IDL Graphic Systems’ on page 69 to learn more about how IDL selectsa

visual for image display.

To get thelist of supported X visual classes on a given system, type the following
command at the UNIX command line:

xdpyi nf o

Setting a Visual on Windows Platforms

On Windows platforms, the visual is selected via the system Control Panel. To open
the Control Panel, select the Settings — Control Panel item from the Start menu.
Click on the Display and then select the Settings tab. Alter the Color quality setting
to modify the visual before starting an IDL session. The following table shows three
visuals are supported (for the particular display configuration used in this example):

Visual

Equivalence to UNIX Visuals

256 Colors

8-hit PseudoColor

High Color (16 bit)

16-bit TrueColor

True Color (32 bit)

32-bit TrueColor

Table 3-3: Visuals Supported in IDL on Windows Platforms

Display Device Color Schemes
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Colors and IDL Graphic Systems

IDL supports two graphics systems: Object Graphics and Direct Graphics. This
section provides detailed descriptions of how color is represented and interpreted in
the Direct Graphics system.

Using Color in Object Graphics

For complete details regarding color and Object Graphics, see “Color in Object
Graphics’ (Chapter 2, Object Programming).

Using Color in Direct Graphics

More information on the following topicsis available in “ X Windows Visuals’
(Appendix A, IDL Reference Guide).

Visuals on UNIX Platforms

When IDL createsits first Direct Graphics window, it must select avisual to be
associated with that window. By default, IDL selectsan X Visual Class by requesting
(in order) from the following table until a supported visual isfound, but a specific
visual can be explicitly requested at the beginning of an IDL session by setting the
appropriate keyword to the DEVICE procedure:

Order Visual Depth Related Keyword
First TrueColor 24-bit (then 16-bit, then | TRUE_COLOR
15-hit)

Second | PseudoColor | 8-bit, then 4-bit PSEUDO_COLOR
Third DirectColor 24-bit DIRECT_COLOR
Fourth | StaticColor 8-hit, then 4-bit STATIC_COLOR
Fifth GrayScale any depth GRAY_SCALE
Sixth StaticGray any depth STATIC_GRAY

Table 3-4: Order of Visuals and their Related DEVICE Keywords

To request an 8-bit PseudoColor visual, the syntax would be:
DEVI CE, PSEUDO_COLOR=8

Using IDL Colors and IDL Graphic Systems
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Another approach to setting the visua information istoincludethei dl . gr _vi sual
andi dl . gr _dept h resourcesinyour . Xdef aul t sfile.

A visual is selected once per IDL session (when the first graphic window is created).
Once selected, the same visual will be used for al Direct Graphics windows in that
IDL session.

Private versus Shared Colormaps

On UNIX platforms, when awindow manager is started, it creates a default colormap
that can be shared among applications using the display. Thisis called the shared
colormap.

A given application may request to use its own colormap that is not shared with other
applications. Thisis called a private colormap.

IDL attempts, whenever possible, to get color table entries in the shared colormap. If
enough colors are not available in the shared colormap, a private colormap is used. If
an X Visual class and depth are specified and they do not match the default visual of
the screen (see xdpyi nf o), aprivate colormap is used.

If aprivate colormap is used, then colormap flashing may occur when an IDL
window is made current (in which case, the colors of other applications on the
desktop may no longer appear as you would expect), or when an application using the
shared colormap is made current (in which case, the colors within the IDL graphics
window may no longer appear as you would expect). This flashing behavior isto be
expected. By design, the IDL graphics window has been assigned a dedicated color
table so that the full range of requested colors can be utilized for image display.

Visuals on Windows Platforms

On Windows platforms, the visual that IDL uses is dependent upon the system
setting. For more information, “ Setting a Visual on Windows Platforms’ on page 68.

IDL Color Table

IDL maintains asingle current color table for Direct Graphics. Refer to the sections
“Loading a Default Color Table” on page 78 and “Madifying and Converting Color
Tables’ on page 79. IDL provides 41 pre-defined color tables.

Foreground Color

In IDL Direct Graphics, colors used for drawing graphic primitives (such aslines,
text annotations, etc.) are represented in one of two ways.

* |ndexed - each color is an index into the current IDL color table

Colors and IDL Graphic Systems Using IDL
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* RGB - each color isalong integer that contains the red value in the first eight
bits, the green value in the next eight bits, and the blue value in the next eight
bits. In other words, a color can be represented using the following equation:

color = red + 256*green + (256”72)*bl ue
The RGB form is only supported on TrueColor display devices.

The DECOMPOSED keyword to the DEVICE procedure is used to notify IDL
whether color isto be interpreted as an index or as a composite RGB value. IDL then
maps any requested color to an encoding that is appropriate for the current display
device.

The foreground color (used for drawing) can be set by assigning a color value to the
IPCOLOR system variable field (or by setting the COLOR keyword on the
individual graphic routine).

If acolor valueisto beinterpreted as an index, then inform IDL by setting the
DECOMPOSED keyword of the DEVICE routine to O:
DEVI CE, DECOVPOSED = 0

The foreground color can then be specified by setting 'PCOLOR to an index into the
IDL color table. For example, if the foreground color isto be set to the RGB value
stored at entry 25 in the IDL color table, then use the following IDL command:

IP.COLCR = 25

If acolor valueisto be interpreted as a composite RGB value, then inform IDL by
setting the DECOMPOSED keyword of the DEVICE routine to 1:

DEVI CE, DECOWPCSED = 1

The foreground color can then be specified by setting 'P.COLOR to a composite
RGB vaue. For example, if the foreground color is to be set to the color yellow,
[255,255,0], then use the following IDL command:

I'P. COLOR = 255 + (256*255)

Image Colors

Color for image datais handled in a fashion similar to other graphic primitives,
except that some special cases apply based upon the organization of the image data
and the visua of the current display device.

If theimage is organized as a
e two-dimensiona array -

« If thedisplay deviceis PseudoColor, then each pixel isinterpreted asan
index into the IDL color table

Colors and IDL Graphic Systems
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« If thedisplay deviceis TrueColor and if the DECOMPOSED keyword for
the DEVICE procedure is set to 0, then each pixel valueisinterpreted as
an index into the IDL color table (thereby emulating a PseudoColor
display device).

» If thedisplay deviceis TrueColor and if the DECOMPOSED keyword for
the DEVICE procedure is set to 1, then each pixel value isinterpreted as
the value to be copied to each of the red, green, and blue components of
the RGB color.

* RGB array - (Supported only for TrueColor display devices)

* Each pixe isinterpreted as an RGB color composed of the three elements
in the extra color dimension of the array.

To display an RGB image on a PseudoColor device, use the COLOR_QUAN routine
to convert it to an indexed form. Refer to the section “ Converting Between Image
Types’ on page 77.

The TV command can be used to display theimagein IDL. For RGB images, the
TRUE keyword can be used to indicate which form of interleaving is used.

Colors and IDL Graphic Systems Using IDL
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Indexed and RGB Image Organization

IDL can display four types of images: binary, grayscale, indexed, and RGB. How an
image is displayed depends upon its type. Binary images have only two values, zero
and one. Grayscale images represent intensities and use a normal grayscale color
table. Indexed images use an associated color table. RGB images contain their own
color information in layers known as bands or channels. Any of these images can be
displayed with ilmage, Object Graphics, or Direct Graphics.

Animage consists of atwo-dimensional array of pixels. The value of each pixel
represents the intensity and/or color of that position in the scene. Images of thisform
are known as sampled or raster images, because they consist of a discrete grid of
samples. Such images come from many different sources and are a common form of
representing scientific and medical data.

Numerous standards have been developed over the years to describe how an image
can be stored within afile. However, once the image is loaded into memory, it
typically takes one of two forms: indexed or RGB. An indexed image is atwo-
dimensional array, and is usually stored as byte data. A two-dimensional array of a
different data type can be made into an indexed image by scaling it to the range from
0 to 255 using the BY TSCL function. See the BY TSCL description in the IDL
Reference Guide for more information.

Image Orientation

Using IDL

The screen coordinate system for image displays puts the origin, (O, 0), at the lower-
left corner of the device. The upper-right corner has the coordinate (xsize-1, ysize-1),
where xsize and ysize are the dimensions of the visible area of the display. The
descriptions of the image display routines that follow assume a display size of

512 x 512, although other sizes may be used.

The system variable |ORDER controls the order in which the image is written to the
screen. Images are normally output with the first row at the bottom, i.e., in bottom-to-
top order, unless|ORDER is 1, in which case images are written on the screen from
top to bottom. The ORDER keyword also can be specified with TV and TVSCL. It
worksin the same manner as! ORDER except that its effect only lasts for the duration
of the single call—the default reverts to that specified by 'ORDER.

An image can be displayed with any of the eight possible combinations of axis
reversal and transposition by combining the display procedures with the ROTATE
function.

Indexed and RGB Image Organization
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Indexed Images

An indexed image does not explicitly contain any color information. Its pixel values
represent indices into a color Look-Up Table (LUT). Colors are applied by using
these indices to look up the corresponding RGB triplet in the LUT. In some cases, the
pixel values of an indexed image reflect the relative intensity of each pixel. In other
cases, each pixel valueis simply an index, in which case the image is usualy
intended to be associated with a specific LUT. In this case, the LUT istypically
stored with the image when it is saved to afile. For information on the LUTSs
provided with IDL, see“Loading a Default Color Table” on page 78.

RGB Image Interleaving

An RGB (red, green, blue) image is athree-dimensional byte array that explicitly
stores a color value for each pixel. RGB image arrays are made up of width, height,
and three channels of color information. Scanned photographs are commonly stored
as RGB images. The color information is stored in three sections of athird dimension
of the image. These sections are known as color channels, color bands, or color
layers. One channdl represents the amount of red in the image (the red channel), one
channel represents the amount of green in the image (the green channel), and one
channel represents the amount of blue in the image (the blue channel).

Color interleaving is aterm used to describe which of the dimensions of an RGB
image contain the three color channel values. Three types of color interleaving are
supported by IDL. In Object Graphics, an RGB image is contained within an image
object where the INTERLEAVE property dictates the arrangement of the channels
within the imagefile.

« Pixd interleaving (3, w, h) — the color information is contained in the first
dimension, INTERLEAVE isset to O.

e Lineinterleaving (w, 3, h) — the color information is contained in the second
dimension, INTERLEAVE issetto 1.

e Planar interleaving (w, h, 3) — the color information is contained in the third
dimension, INTERLEAVE is set to 2. Thisisaso known as, image
interleaving.

Note
In Direct Graphics, set the TRUE keyword of TV or TV SCL to match the
interleaving of the image.

Indexed and RGB Image Organization Using IDL
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Determining RGB Image Interleaving

Y ou can determine if an image file contains an RGB image by querying thefile. The
CHANNEL S tag of the resulting query structure will equal 3 if thefile'simageis
RGB. The query does not determine which interleaving is used in the image, but the
array returned in DIMENSIONS tag of the query structure can be used to determine
the type of interleaving.

The following example queries and imports a pixel-interleaved RGB image from the
rose. j pg imagefile. This RGB image is a close-up photograph of ared rose. It is
pixel interleaved. Complete the following steps for a detailed description of the
process.

Example Code
Seedi spl ayr gbi mage_obj ect . pro intheexanpl es/ doc/ i nage
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determinethe pathtother ose. j pg file:

file = FILEPATH('rose.jpg', $
SUBDI RECTORY = [' exanples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:
queryStatus = QUERY_I MACE(fil e, inmagel nfo)
3. Output the results of the file query:

PRI NT, 'Query Status ="', queryStatus
HELP, i magel nfo, /STRUCTURE

The following text appears in the Output Log:

Query Status = 1
** Structure <14055f0>, 7 tags, |ength=36, refs=1:
CHANNELS LONG 3
DI MENSI ONS LONG Arrayl[ 2]
HAS_PALETTE I NT 0
| MAGE_| NDEX LONG 0
NUM_I MAGES LONG 1
Pl XEL_TYPE I NT 1
TYPE STRING 'JPEG

The CHANNEL Stag has avalue of 3. Thus, theimage is an RGB image.
4. Set the image size parameter from the query information:

i mageSi ze = i magel nf o. di mensi ons

Using IDL Indexed and RGB Image Organization
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Thetype of interleaving can be determined from the image size parameter and
actual size of each dimension of the image. To determine the size of each
dimension, you must first import the image.

5. Use READ_IMAGE to import the image from thefile:
i mmge = READ | MAGE(fil e)

6. Determine the size of each dimension within the image:
i mageDi ns = S| ZE(i nage, /DI MENSI ONS)

7. Determine the type of interleaving by comparing the dimension sizesto the
image size parameter from the file query:

interleaving = WHERE( (i mageDi ns NE i nageSi ze[0]) AND $
(i mageDi s NE i mageSi ze[ 1]))

8. Output the results of the interleaving computation:
PRI NT, 'Type of Interleaving ="', interleaving
The following text appears in the Output Log:
Type of Interleaving = 0

Theimageis pixel interleaved. If the resulting value was 1, the image would
have been line interleaved. If the resulting value was 2, the image would have
been planar interleaved.

9. Initialize the display objects:

oW ndow = OBJ_NEW' | DLgrWndow , RETAIN = 2, $

DI MENSI ONS = i nageSi ze, TITLE = ' An RGB | nage')
oView = OBJ_NEW'IDLgrView, $

VI EWPLANE_RECT = [0., 0., inmageSize])
oMbdel = OBJ_NEW'' | DLgr Model ')

10. Initialize the image object:

ol mage = OBJ_NEW' I DLgrlnage', inmage, $
I NTERLEAVE = interleaving[0])

11. Add theimage object to the model, which is added to the view, then display
the view in the window:

oMbdel -> Add, ol mage
oView -> Add, oMbdel
oW ndow -> Draw, oView

Indexed and RGB Image Organization Using IDL
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The following figure shows the resulting RGB image display.

Figure 3-4: RGB Image in Object Graphics

12. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROQY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTRQOY on the view object.

OBJ_DESTROY, oView
Converting Between Image Types

Sometimes an image type must be converted from indexed to RGB, RGB to
grayscale, or RGB to indexed. For example, an image may be imported into IDL as
an indexed image (from a PNG file for example) but it may need to be exported as an
RGB image (to a JPEG file for example). The opposite may also need to be done. See
“Foreground Color” on page 70 for more information on grayscale, indexed, and
RGB images.

See the following routines sin the IDL Reference Guide for examples:

* RGB to grayscale— REFORM extracts the individual channels of data from
an RGB image so that it can be displayed as a grayscale image

e RGBtoindexed — COLOR_QUAN decomposes the millions of possible
colorsin an RGB image into the 256 used by an indexed image

¢ Indexed to RGB — TVLCT extracts the indexed image color table
information, which is then assigned to an RGB image

Using IDL Indexed and RGB Image Organization
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Loading a Default Color Table

Although you can define your own color tables, IDL provides 41 pre-defined color
lookup tables (LUTS). Each color table contained within this routine is specified
through an index value ranging from 0 to 40, shown in the following table.

Tip
If you are running IDL on a TrueColor display, set DEVI CE, DECOVPOSED = 0
before your first color table related routine is used within an IDL session or
program. See “Foreground Color” on page 70 for more information.

Number Name Number Name
0 Black & White Linear 21 Hue Sat Value 1
1 Blue/White Linear 22 Hue Sat Value 2
2 Green-Red-Blue-White 23 Purple-Red +
Stripes
3 Red Temperature 24 Beach
4 Blue-Green-Red-Yellow 25 Mac Style
5 Standard Gammea-|1 26 EosA
6 Prism 27 Eos B
7 Red-Purple 28 Hardcandy
8 Green/White Linear 29 Nature
9 Green/White Exponential 30 Ocean
10 Green-Pink 31 Peppermint
11 Blue-Red 32 Plasma
12 16 Level 33 Blue-Red 2
13 Rainbow 34 Rainbow 2
14 Steps 35 Blue Waves

Table 3-5: Pre-defined Color Tables

Loading a Default Color Table Using IDL
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Number Name Number Name
15 Stern Special 36 Volcano
16 Haze 37 Waves
17 Blue-Pastel-Red 38 Rainbow18
18 Pastels 39 Rainbow + white
19 Hue Sat Lightness 1 40 Rainbow + black
20 Hue Sat Lightness 2

Table 3-5: Pre-defined Color Tables (Continued)

You can load a default color tablein an ilmage display, an Object Graphics Display
or a Direct Graphics display as follows:

Note

ilmage — select the Edit Palette button on the image panel. See “Using the
Image Panel” (Chapter 10, iTool User’s Guide) for details.

Object Graphics — use the LoactCT method of an IDLgrPalette object to
define the color table (see “IDLgrPalette::LoadCT” (IDL Reference Guide) for
details). Associate the palette object with another object using the Palette
property (for example, see the PALETTE property of the IDLgrImage object).
Also see “Color in Object Graphics’ (Chapter 2, Object Programming) for
information on using color with indexed and RGB color models in Object
Graphics.

Direct Graphics — use the LOADCT routine or another color table related
routine to set the color table. Also see“Using Color in Direct Graphics’ on

page 69.

See " Color Table Manipulation” (IDL Quick Reference) for alist of related
routines.

Modifying and Converting Color Tables

IDL contains two graphical user interface (GUI) utilities for modifying a color table,
XLOADCT and XPALETTE (. The MODIFY CT routine lets you create or modify

Using IDL

Loading a Default Color Table
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and store anew color table. See the following topicsin the IDL Reference Guide for
examples.

e XLOADCT — alowsyou to preview and select among pre-defined color
tables

e XPALETTE — alowsyou to preview and adjust pre-defined color tables

e MODIFYCT — shows how to add modified color tablesto IDL’slist of pre-
defined color tables.

These examples are based on the default RGB (red, green, and blue) color system.
IDL aso contains routines that allow you to use other color systemsincluding hue,
saturation, and value (HSV) and hue, lightness, and saturation (HLS). These routines
and color systems are explained in “ Converting to Other Color Systems” on page 66.

Highlighting Features with a Color Table

For indexed images, custom color tables can be derived to highlight specific features.
Color tables are usually designed to vary within certain ranges to show dramatic
changes within an image. Some color tables are designed to highlight features with
drastic color changein adjacent ranges (for example setting 0 through 20 to black and
setting 21 through 40 to white).

Note
Color tables are associated with indexed images. RGB images already contain their
own color information. If you want to derive a color table for an RGB image, you
should convert it to an indexed image with the COLOR_QUAN routine. You
should also set COLOR_QUAN's CUBE keyword to 6 to insure the resulting
indexed image is an intensity representation of the original RGB image. See
COLOR_QUAN In the IDL Reference Guide for more information

See the following topicsin the IDL Reference Guide for examples:

« |IDLgrPaette provides an example that creates, defines and applies a palette
object to an image

e TVLCT creates, defines and applies a color table in a Direct Graphics display

« H_EQ CT applies histogram equalization to a color table to revea previously
indistinguishable feature

Loading a Default Color Table Using IDL
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Multi-Monitor Configurations

IDL allows you to position windows on multiple monitors attached to the same
computer. Such multi-monitor configurations may appear to the user (and to you as
an IDL programmer) as a single extended desktop consisting of multiple physical
monitors, or as aseries of individual desktops appearing on multiple physical
monitors.

IDL’s support for multi-monitor configurations includes the following:

e ThelDLsysMonitorlnfo object, which allows you to query the system for the
current monitor configuration and to determine the screen geometry of the
various monitors.

»  Keyword support for extended (or multiple) desktops within routines that draw
awindow on the monitor screen. For example, the XOFFSET, YOFFSET, and
DISPLAY_ NAME keywords to the WIDGET_BASE function and
WIDGET_CONTROL procedure allow you to position widget applications
anywhere on any available monitor. Similarly, the LOCATION and
DISPLAY_NAME properties of the IDLgrWindow object afford you the same
control for object graphics windows.

It isimportant to note that support for multi-monitor configurationsis quite different
on Windows and UNIX systems, and that as aresult IDL’s support varies by
platform. By understanding how multi-monitor configurations are supported on each
platform, you can create cross-platform IDL applications that will take advantage of
multiple monitors when they are present. See the following sections for platform-
specific details.

e “Windows Multi-Monitor Configurations” on page 83
e “UNIX Multi-Monitor Configurations’ on page 87

See “Example: Multi-Monitor Window Positioning” on page 89 for example code
that uses the IDL’s multi-monitor support.

Multi-Monitor Terminology

Using IDL

In this discussion of IDL’s multi-monitor support, the following terms are used with
the meanings listed below.

Desktop — An onscreen user work area. Multiple desktops are generally managed
either by the operating system itself or by a desktop management system and are
dependant on the physical monitor configuration — that is, you can have multiple
desktops on a single monitor.

Multi-Monitor Configurations
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Display — On UNIX systems, the word Display describes the connection between an
X client and an X server. Do not confuse this with monitor.

Extended Desktop — A term for an onscreen user work areathat may span multiple
monitors. It is often used to describe the minimum bounding box that encloses the
user work area defined by each monitor in the system. There may be “holes’ in an
extended desktop if two monitors with different display resolutions are used.
Extended desktops are characterized by their ability to drag windows between
monitors on the desktop.

Monitor — A physical display device such asa CRT or LCD.

Primary Monitor — In an extended desktop system, the primary monitor isthe
monitor that containsthe origin (0,0). If the desktop is not extended, then the primary
monitor isthe one that is considered “ default” by the graphics system.

Screen — On UNIX systems, the word Screen describes one of adisplay’s drawing
surfaces. A single X server can control more than one Screen, but is generally
operated or controlled by a single user with a single keyboard and pointing device.

Secondary Monitor — In an extended desktop system, a secondary monitor is any
monitor that is not the primary monitor. If the desktop is not extended, then a
secondary monitor is the one that is not considered “default” by the graphics system.

Virtual Desktop — A desktop configured so that it is larger than the monitor used to
display it. The user can “pan” the desktop around to cause the desired parts of it to be
visible on the monitor.

X Server — A program that runs on the machine to which the graphics adapter is
attached. It owns the graphics adapter and is responsible for drawing on it.

X Client — A program that connectsto an X server, sending commands to the X
server to draw on the display device. The X client istypically the application and may
or may not be executing on the same machine asthe X server.

X Multi-Screen — The “core” method for an X server to handle more than one
monitor. Each monitor is assigned a Screen; the user can move the pointing device
from one monitor to another, but cannot drag windows between monitors. Each
Screen is addressed by the final digit in the X Display name (e.g., the1in

aj ax: 0. 1).

XINERAMA — An X11 extension that allows asingle X 11 screen to be displayed
across multiple monitors. This allows an application to open windows on any monitor
using the same Display/Screen connection. Thisis an example of an extended
desktop implementation for UNIX systems and is essentially away to emulate the
extended desktop that Windows presents to the user.

Multi-Monitor Configurations Using IDL
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Windows Multi-Monitor Configurations

A multi-monitor configuration on a Windows system is always presented as an
extended desktop, with the work area spanning the configured monitors. You can
drag windows from one monitor to the other, or they can span monitors.

The extended desktop configuration works best when using a single graphics adapter
with two video outputs. If you use multiple graphics adaptors, features such as 3D
hardware video acceleration may only be available on one monitor.

To configure a multi-monitor configuration using the Windows Display applet;
either:

* Right-click on the desktop and select Properties
* Select Start — Settings —» Control Panel - Display

Figure 3-5 shows the Display Properties control panel for acommon dual-monitor
configuration. The left-hand image shows the primary display selected and identified
as monitor 1. The right-hand image shows the secondary display selected and
identified as monitor 2. The coordinates of the upper-left corner of the secondary
display are shown in the tool-tip (“ Secondary Display (1600, 0)"). Also, the

Extend my Windows desktop onto this monitor checkbox is selected to extend the
desktop onto the secondary monitor.

Display Properties Flgl lisplay Properties Flgl

Themes | Deskioo | | Settings | Themes | Deskiop | | Settings |

Drag the roeitor iconz bo match the physical arzngement of pour monitors. Drag the roeitor iconz bo match the physical arzngement of pour monitors.

L
Display. Display:
1. Phag and Flay Morker on NYIDIA Guadro X4 1000 v| |2, Dell D1028L on MVIDIA Quadro FX 1000 v
Sereen resakution Cotar cually Sezeen iesolulion Caler quality
L= J— M= [Highet (260 ~| Loz g b Highest (32 bif -

1600 by 1200 pinels U T T 1260 by 1024 gieels ¥

[ Lses this device 55 the piimary manitor,
Extend my Windows deskiop onto thiz monitar.

[ tgenity | [ Troubleshoot.. | [ Advanced | [ tgenity | [ Troubleshoot.. | [ Advanced |

Figure 3-5: Multi-monitor Configuration in Windows Display Properties
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The extended desktop configured in Figure 3-5 appears asin Figure 3-6, with adotted
line showing where the two monitors meet in one desktop.

[2

kA
LN
[
=

‘l in -lﬂ ] :"’i‘. [

Figure 3-6: The Extended Desktop

In this example, there are no windows on the secondary monitor. The crosshatched
areain the lower right exists because the monitor on the right has fewer pixel rows
than the monitor on the left.

The Display Properties dialog allows you to change the location of the secondary
monitor relative to the primary monitor. Note that pixel (0,0) is defined as being the
upper left corner of the primary monitor. Figure 3-7 shows a configuration in which
the secondary monitor is positioned “above’ the primary monitor; the tooltip shows
that the upper left corner of the secondary monitor is positioned 1480 pixels to the

Windows Multi-Monitor Configurations Using IDL
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right of and -1024 pixels below pixel (0,0). Figure 3-8 shows the shape of the

resulting extended desktop area.

Display Properties ['?lrg]

Themes | Deskiop | dppearance | Seltings |

Drag the moentor icons lo malch the physical atnangement of yous maonitoes.

(2]

Secondary Display (1480, -1024)
L 1]

[7] Use this device as the primany moritor.
[¥] Extend my wirdows desktop onto this monitor,

[ tderitity ][ Troubleshoor . | [ Advanced

Dieplay :
2 Dell D1028L on NVIDIA Quadio FX 1000 v
‘Screen resclution Color cualty
Less J Mare Highest [32 ) ¥
12905,.1024}:3»;\: 0 .

Figure 3-7: Moving the Location of the Second Monitor

Figure 3-8: The Rearranged Desktop Configuration
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There is now more “empty” space (represented by the crosshatched area). The
handling of empty space depends on the graphics adapter vendor. For example, many
desktop managers let you control whether or not an application can create a window
in this empty space. (Remember that if you do create awindow in empty space, there
would be no way to drag the window back onto a visible portion of the desktop.)
Many desktop managers also contain controls for opening windows and repositioning

dialog boxes.

Warning
Third-party desktop managers may enforce their own positioning rules, overriding
reguests from other applications such as IDL. If you have trouble positioning
windows on the screen using IDL, investigate whether your desktop manager's
control over other applications can be changed or relaxed.

Windows Multi-Monitor Configurations Using IDL
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UNIX Multi-Monitor Configurations

Using IDL

Because the UNIX platform encompasses multiple vendors, multi-monitor support
can be more complex to configure. There are two primary multi-monitor solutionsfor
UNIX platforms:

* Usethe X Multi-Screen mechanism, wherein adistinct X11 Screenis
displayed on each monitor to create multiple desktops. IDL supports this
mechanism on all UNIX systems.

* Usethe XINERAMA extension to create a single extended desktop. IDL 6.3
provides client support for the XINERAMA extension Macintosh OS X and
several Linux distributions.

Note
Configure your UNIX multi-monitor systems using XINERAMA wherever
possible. This gives you the most functionality and increases commonality with
Windows.

Using X Multi-Screen

An X server running on acomputer using multiple monitors can be configured so that
adifferent Screen is assigned to each monitor. Thisis the traditional way for a UNIX
system to support multiple monitors, and it is the only option available on IDL
platforms for which thereis no XINERAMA support.

In a multi-screen configuration, windows and dialogs cannot be dragged between
windows interactively, and cannot span multiple monitors. Each monitor has a
different display name and coordinate system with its own origin.

Using XINERAMA

The XINERAMA extension creates an extended desktop similar to that presented on
Windows systems. Windows and dialogs can be dragged between windows
interactively, and can span multiple monitors. All configured monitors share the
same display name and have a common origin.

Stable XINERAMA support is only available on selected X Windows System
releases. Asof the IDL 6.3 release, IDL provides client support on Macintosh OS X
and severa Linux distributions. In addition, If the X server is running Macintosh OS
X, Linux, or Solaris 10, IDL can treat multiple monitors as an extended desktop even
though no information about individual monitor geometriesis available.

UNIX Multi-Monitor Configurations
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UNIX systems that provide XINERAMA support are rarely configured to do so by
default; consult your operating system documentation for configuration information.
Some vendors supply configuration tools and desktop management controls to help
use their systems. In addition, some X window managers are “XINERAMA-aware”
and let you configure some multi-monitor-related behaviors.

Warning

Third-party desktop managers may enforce their own pasitioning rules, overriding
requests from other applications such as IDL. If you have trouble positioning
windows on the screen using IDL, investigate whether your desktop manager’'s
control over other applications can be changed or relaxed.

XINERAMA Client/Server Interactions

When using networked UNIX systems, you are generally seated at an X workstation
that is running an X server and some local programs such as command shells. You
then log in remotely to another machine and execute X client programs (like IDL)
with their DISPLAY environment variable pointing back to the X server you are
using. The client program may be running on a machine that is of completely
different architecture and capability than the machine running the X server. Table 3-6
showsthe IDL X client’s interactions with X servers on systems that do or do not

support XINERAMA.

Client supports Server supports XINERAMA?
XINERAMA? Yes No
Yes— IDL detectsextended | IDL detects
IDL runningon desktop with monitor | independent desktops
Linux, OS X information for each | with monitor
physical monitor. information for each
physical monitor.
No — IDL detectsextended | IDL detects
IDL runningon desktop with monitor | independent desktops
other UNIX information for single | with monitor
platforms desktop spanning all | information for each
monitors. Individual | physical monitor
monitor information
isnot available.

Table 3-6: Possible XINERAMA Client/Server Combinations

UNIX Multi-Monitor Configurations

Using IDL



Chapter 3: Graphic Display Essentials 89

Example: Multi-Monitor Window Positioning

Using IDL

The IDL distribution contains example . pr o code that illustrates how to use the
IDLsysMonitorInfo object to position application windows on multiple monitors.
With alittle care, you can design the code to work on Windows, XINERAMA, and X
Multi-Screen platforms and handle all monitor configurations.

The example code displays a simple splash screen in the middle of the primary
monitor and opens a simple application GUI on the nth monitor in a system with n
monitors.

Example Code
The application window positioning for multi-monitor exampleisincluded in the

filemul ti mon_ex1. pro inthe exanpl es/ doc/utilities subdirectory of
the IDL distribution.

Example: Multi-Monitor Window Positioning
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Using Fonts in Graphic Displays

IDL usesthree font systems for writing characters on the graphics device, whether
that device be a display monitor or a printer: Hershey (vector) fonts, TrueType
(outline) fonts, and device (hardware) fonts. Fonts are discussed in detail in
Appendix H, “Fonts’ (IDL Reference Guide).

Both TrueType and Vector fonts are displayed identically on all of the platforms that
support IDL. Thismeans that if your cross-platform application uses either the
TrueType fonts supplied with IDL or the Vector fonts, thereis no need for platform-
dependent code.

In awidget application, specify afont using the FONT keyword. If you choose a
device font, you may need to write platform-dependent code. See “Fonts Used in
Widget Applications” (Chapter 9, Application Programming) for details.

To set the font in an Object Graphics display, create an IDLgrFont object and assign
this object to atext object using the IDLgrText object FONT property. See “ Font
Objects’ (Chapter 9, Object Programming) for more information.

Note
Within the IDLDE, you can specify what font is used in various areas (e.g., the
Editor window or the Output L og window). See“Font Preferences’ (Chapter 4, IDL
Interface) for details.

Using Fonts in Graphic Displays Using IDL
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Printing Graphics

Beginning with IDL version 5.0, IDL interacts with a system-level printer manager to
alow printing of both IDL Direct Graphics and IDL Object Graphics. On Windows
platforms, IDL uses the operating system’s built-in printing facilities; on UNIX
platforms, IDL uses the Xprinter print manager from Bristol Technology.

Usethe DIALOG_PRINTERSETUP and DIALOG_PRINTJOB functions to
configure your system printer and control individual print jobs from within IDL.

Printing IDL Direct Graphics

To print IDL Direct Graphics, you must first use the SET_PLOT procedure to make
PRINTER your current device. Issue IDL commands as normal to create the graphics
you wish to print, then use the CLOSE_DOCUMENT keyword to DEVICE to
actually initiate the print job and print something from your printer. You can also
create multiple pages before closing the document as well as being able to usetile
graphics with the 'PMULTI system command.

See “Printing Graphics Output Files” (Appendix A, IDL Reference Guide) for details
and examples.

Printing IDL Object Graphics

To print IDL Object Graphics, you must create a printer object to use as a destination
for your Draw operations. You can also print multiple documents with the
IDLgrPrinter object. See “Printer Objects’ (Chapter 12, Object Programming)for
information about printer objects and examples of their use. Also see “Bitmap and
Vector Graphic Output” (Chapter 12, Object Programming) for information of when
to output to bitmap or vector graphics based on picture content.

Using IDL Printing Graphics
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Animations

This chapter describes how to create and play Motion JPEG2000 animations using the
IDLffMJIPEG2000 object. See the following topics for details:

Overview of Motion JPEG2000 ......... 94 Playing aMotion JPEG2000 Animation . 103
Creating aMotion JPEG2000 Animation .. 96 Controlling the Playback Rate ......... 106
Adding Datato MJ2 Animations . . ....... 98 High Speed MJ2 Reading and Writing .. 108

Using IDL 93
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Overview of Motion JPEG2000

Motion JPEG2000 is an extension of the still image JPEG2000 image format that is
designed for storing animations. A Motion JPEG2000 file (MJ2) consists of a
collection of frames. Each frame is an independent JPEG2000 image, and like
JPEG2000 images, each frame may be made up of one or more components (bands or
channels of data). Theindividual frame components may also be composed of tiles or
contain regions.

The Motion JPEG2000 format offers several features that make it an excellent choice
for data storage in scientific, security, and research arenas:

e Lossless compression option — the original image data can be retrieved from
thefile.

»  Granular access— an animation can consist of individual components, tiles or
regions in addition to entire frames.

« Intra-frame encoding — each frame is an independent entity and atrue
representation of the data at a single point in time. The older MPEG standard
uses inter-frame encoding where interdependencies between the frames makes
it impossible to extract asingular frame of data.

You can create and play Motion JPEG2000 (MJ2) filesin IDL using the
IDLffMJPEG2000 object. This chapter describes how to create and play your own
MJ2 files. In brief, an IDLffM JPEG2000 object can open an MJ2 file (identified by a
Filename argument) for playback or creation based on the value of the WRITE
property. When you create (write) afile, you will use the IDLffMJPEG2000::SetData
method to add frames, components or tiles of datato the file. When the animation is
complete, call the IDLffMJIPEG2000::Commit method to close thefile. See
“Creating aMotion JPEG2000 Animation” on page 96 for details.

Note
The same IDLffMJPEG2000 object cannot be used to both write and read an MJ2
file. You can write a file with one abject (where WRITE=1), but you must create a
separate object (where WRITE=0, the default) in order to read or play the new MJ2
file.

The IDLffMJPEG2000 object supports sequential and random playback. To create a
sequential playback, you will use a group of methods to start the reading process,
retrieve the frame, release the frame and stop the reading process. These methods are
described in “Playing a Motion JPEG2000 Animation” on page 103. If you want to

Overview of Motion JPEG2000 Using IDL
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control the playback rate, you will need to include some sort of timer mechanism as
described in “ Controlling the Playback Rate” on page 106.

When creating and playing an MJ2 file, IDL uses an internal background processing
thread to compress or decompress framesinto a frame buffer. Depending upon the
size and complexity of the frame, creation or playback may be delayed if frame
compression or decompression takes longer than the associated method call. To avoid
such adelay, modify the FRAME_BUFFER_LENGTH property as described in
“High Speed MJ2 Reading and Writing” on page 108.

Sample Motion JPEG2000 Player and Writer

The IDL distribution includes a sample MJ2 player and an MJ2 writer as follows:

e Thesample IDL Motion JPEG2000 Player can display RGB and monochrome
MJ2 files. This example code, nj 2_pl ayer . pr o, and a sample image,
i dl _nj peg2000_exanpl e. nj 2, arelocated in the
I DL_DI R\ exanpl es\ nj peg2000 directory where | DL_DI Risthe directory
where you have installed IDL.

e Thesample IDL Motion JPEG2000 Writer, nj 2_wri t er _r gb. pr o, creates
an MJ2 animation. This example islocated in the
| DL_DI R\ exanpl es\ nj peg2000 directory where| DL_DI Risthe directory
where you have installed IDL. Running the example creates a new MJ2 file,

which iswritten to your application user directory, a subdirectory of your
home directory.

Supported Platforms

The IDLffMJPEG2000 object isnot supported on AlX or IRIX. See* Feature Support
by Operating System” (Chapter 1, Installation and Licensing Guide) for details.

Using IDL Overview of Motion JPEG2000
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Creating a Motion JPEG2000 Animation

To create a Motion JPEG2000 file, create a new | DLffMJPEG2000 object and set the
WRITE property equal to 1. During initialization, you must specify afilename, which
isthe path and location of the MJ2 file to be created.

Note
If you specify an existing MJ2 file as the Filename argument during initialization,
and also set the WRITE keyword, the existing file will be overwritten without
prompting and all existing datawill be replaced with the new data. It is not possible
to append datato an M2 file.

To create afile, you will need to use the IDLffMJPEG2000:: SetData and
IDLffMJPEG2000::Commit methods. The SetData method lets you add entire frames
of data, or individual frame components or frame tiles to the MJ2 file. However,
before the first call to SetData, there are several properties you may need to set.

Property Brief Description
BIT_DEPTH Specifies the bit depth of the data to be written
to thefile. If not set, the default value of 8 will
specify byte data.

Note - To write short or long integer data, you
must set the BIT_DEPTH and SIGNED
properties before calling SetData.

COMMENT Specifies a descriptive comment for thefile.

FRAME_BUFFER_LENGTH | Defaultsto 3, the number of frame slotsin the
frame buffer. See “High Speed MJ2 Reading
and Writing” on page 108 for information on
how modifying this value can enable high-speed
reading and writing of MJ2 files.

N_LAYERS Defines the number of quality levels used to
build the frame. If not set, the default value (1) is
used.

Table 4-1: Properties that Must be Set Before Calling the SetData Method

Creating a Motion JPEG2000 Animation Using IDL
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Property

Brief Description

N_LEVELS

Defines the number of wavelet decompression
levels. The default is5 unlessthe PALETTE
property is set, in which case the default is 0.

PALETTE

Set to a 3-by-n or an n-by-3 array of byte or
integer valueswhere n isthe number of intensity
values for the three (r, g, b) color channels.

REVERSIBLE

Set to 1 (lossless) to be able to retrieve the
original data. The default is O (lossy) unlessthe
PALETTE property has been set.

SIGNED

Set to 1 to write signed data. Otherwise, data
will be written as unsigned (0, the default).

Table 4-1: Properties that Must be Set Before Calling the SetData Method

The following properties will be automatically set based on the first frame of data
passed to SetData if not specified before thefirst call. If you are passing in asingle
frame component or tile component in each call to SetData, you need to set the
related properties(N_COMPONENTS or TILE_DIMENSIONS) prior to thefirst call
to SetData in order for the data to be written to the file correctly.

Property Description
COLOR_SPACE Definesthe color space of thefile. If theinput datahas 1
component, the default is monochrome; if it has 3
components, the default is RGB (unlessthe YCC
property is set).
DIMENSIONS Defaultsto the width, height of the first frame of input

data. The dimensions of each data array must match.

N_COMPONENTS

Defaults to the number of componentsin the first frame.

TILE_DIMENSIONS

Defaults to the DIMENSIONS of the frame if not set.

Table 4-2: Properties Set Based on SetData Input if Not Specified

Note

See " IDLfMJIPEG2000 Properties’ (IDL Reference Guide) for details.

Creating a Motion JPEG2000 Animation
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Adding Data to MJ2 Animations

The source of the data for the MJ2 file can be existing data or incremental captures
from data processing or data display. Regardless of the source of the data to be added
to the MJ2 file, you will need to call the IDLffMJPEG2000:: SetData method multiple
times (minimally, once for each frame of the animation). Each SetData call adds the
data to the frame buffer where it is compressed by a background processing thread.
This processing thread is automatically started with the first SetData call. After all of
the data has been added to thefile, you must call the IDLffMJPEG2000::Commit
method to stop the processing thread and close the file.

Thefirst call to the IDLffMJPEG2000::SetData property is key. If you have not
previously defined anumber of object properties (noted in “Creating a Motion
JPEG2000 Animation” on page 96), then the values are taken from the dimensions of
the datathat is passed in during the first SetData call. For example, if you passin
three arrays (datal, data2 and data3) in the first SetData call, the COLOR_SPACE
property will automatically be set to SRGB. If you are passing in three monochrome
data arrays, this property would need to be set to SLUM prior to thefirst call to
SetDatato avoid unexpected results.

Note
It is possibleto call SetData faster than the background processing thread can
compress the data and write it to afile. If thisis an issue, see “High Speed MJ2
Reading and Writing” on page 108 for additional file creation options.

When creating a new MJ2 file you can choose from the following options:

e “Animating Existing Data’ on page 99 — add frames, components or tiles of
datato the MJ2file

* “Animating Screen Captures’ on page 102 — add the contents of an object
graphics animation to the MJ2 file

e “Animating Data Captures’ on page 102—add newly created data to the MJ2
file

Note
The following examples use asimple WAIT statement mechanism for controlling
the playback rate. In redlity, you will likely use a more robust mechanism. See
“Controlling the Playback Rate” on page 106 for options and information about a
related example.

Adding Data to MJ2 Animations Using IDL
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These examples, which are comparatively short and simple, use the GetData method
instead of the group of methods described in “ Sequential M otion JPEG2000
Playback” on page 103. Examples showing the use of the sequential playback
methods are located in “ Controlling the Playback Rate” on page 106 and the
Examples section of “IDLffMJPEG2000::GetSequential Data” (IDL Reference
Guide).

Animating Existing Data

Using IDL

The IDLffMJPEG2000 object stores entire frames of data as well as bands or
channels of frame data (components) or frame tiles. The new MJ2 file can contain a
series of images, components, or tiles as long as the dimensions and numbers of
components are the same for each element. Examples of animating existing data
include:

e “MJ2 Monochrome Frame Animation”
e “MJ2 Animation of an Image with a Palette” on page 100
e “MJ2RGB Tile Animation” on page 101

The following examples write MJ2 files to your temporary directory. Use PRI NT,
FI LEPATH(' ', /TMmP) todisplay thislocation.

MJ2 Monochrome Frame Animation

The following simple example creates a short animation from a series of MRI frames
of data contained in a binary file. An animation consisting of all available quality
layers for adozen frames is then displayed.

PRO nj 2_franes_doc

; Read image data, which contains 57 franes.

nFranmes = 57

head = READ BI NARY( FILEPATH(' head.dat', $
SUBDI RECTORY=[' exanpl es','data']), $
DATA DI M5=[ 80, 100, 57])

; Create new MJ2 file in the tenporary directory.
file = FILEPATH("nj 2_frames_ex. nj 2",/ TVP)

; Create an | DLf f MIPE&R00O obj ect .
oMJ2write=CBJ_NEW' | DLf f MIPEG2000', file, /WRITE, /REVERSIBLE, $
N_LAYERS=10)

; Wite the data of each frame into the MI2 file.
FOR i =0, nFrames-1 DO BEG N
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data = head[*,*,i]
result = oMI2wr it e->Set Dat a( dat a)
ENDFOR

; Commit and cl ose the |DLff MIPEG000 obj ect.
return = oMI2wr it e->Conmit (10000)
OBJ_DESTROY, oMl2write

; Create a new | DLf f MIPE&R000 object to access MI2 file.
oMJ2r ead=0OBJ_NEW " | DLf f MJPEG2000", file)
oMJ2r ead- >Get Property, N FRAMES=nFr anes, DI MENSI ONS=di ns

; Create a window and di splay sinple animation.
W NDOW 0, XSIZE=2*di ns[0], YSIZE=2*dins[1], TITLE="MJ2 Layers"

Display all quality layers (j) of a dozen franes (i).
FG? i =25, 36 DO BEG N
Return data and di splay nmagnified version. Pause
bet ween each frame for visibility. Unless a tiner

; 1s used in conjunction with the FRAVE PERI OD and

; TI MESCALE properties, playback will occur as fast

as the frames can be deconpressed.
F(Pj— , 10 DO BEG N
data = oMJ2read->GetData(i, MAX LAYERSS|)
TVSCL, CONGRI D(data, 2*dinms[O0], 2*dins[1])
WAIT, 0.1

ENDFOR

ENDFOR

)

; O eanup.
OBJ_DESTROY, oMl2read

End
This example is also available in the IDL distribution.

Example Code
Thisexample, nj 2_f ranes_doc. pr o, islocated in the
exanpl es/ doc/ obj ect s subdirectory of the IDL distribution. Run the example
procedure by entering nj 2_f rames_doc at the IDL command prompt or view the
fileinan IDL Editor window by entering. EDI T nj 2_f rames_doc. pro.

MJ2 Animation of an Image with a Palette

The following example accesses the pal ette associated with a PNG file and assigns
the values to the IDLffMJPEG2000 object PALETTE property. The image datais
then modified in such away that the resulting animation appears to be a shrinking
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view of the image. However, the shrunken image is padded to maintain the original
image dimensions, which is arequirement of SetData. Each frame must have the
same dimensions.

The following lines, abstracted from the entire example, show accessing the palette
from the PNG file and assigning it to the new MJ2 file.

; Access image data and associ ated pal ette.
worl d = READ PNG (FI LEPATH (' avhrr.png', $
SUBDI RECTORY = ['exanples', 'data']), R G B)

; Create an MJ2 file in the tenporary directory. Assign the
pal ette arrays to the PALETTE property.

file =FILEPATH("nj 2_pal ette_ex.nj 2", [/ TMP)

oMI2write = OBJ_NEW' | DLff MUPEG2000', file, /WRITE, $
PALETTES[[R, [G., [B]])

See the following for the complete program.

Example Code
Thisexamplenj 2_pal ette_doc. pro, islocated in the
exanpl es/ doc/ obj ect s subdirectory of the IDL distribution. Run the example
procedure by entering nj 2_pal ett e_doc at the IDL command prompt or view
thefilein an IDL Editor window by entering. EDI T nj 2_pal ette_doc. pro.

MJ2 RGB Tile Animation

The following example creates atiled, RGB JPEG2000 image from a 5,000 by
5,0000 pixel JPEG image. The JPEG2000 image tile data is then written to a Motion
JPEG2000 image file. As shown in the following code, a smaller version of each tile
is extracted from the MJ2 file and displayed sequentially in awindow.

Create object to read new MJ2 file. Set PERSI STENT to access
; tiled data. Set DI SCARD _LEVELS to display smaller versions of
; the tiles.
oMJ2read = OBJ_NEW' I DLf f MIPEG2000', file, /PERSI STENT)
oMJ2r ead- >Get Property, N_TILES=nTiles, TILE DI MENSIONS=til eDi ns
W NDOW 0, XSI ZE=625, YSIZE=625
For j=0, nTiles-1 DO BEG N

data = oMJ2read- >CGet Dat a(0, DI SCARD LEVELS=3, $

TI LE_I NDEX=j, /RGB)

TVSCL, data, j, TRUE=1
WAIT, 0.3
ENDFOR

See the following for the complete program. A noticeable amount of time will be
required the first time you run the example as several large files must be created.
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Example Code
Thisexamplenj 2_ti | e_doc. pr o, islocated in the exanpl es/ doc/ obj ect s

subdirectory of the IDL distribution. Run the example procedure by entering
nmj2_tile_doc atthelDL command prompt or view thefilein an IDL Editor
window by entering. EDI T nj 2_til e_doc. pro.

Animating Screen Captures

You can capture the visible contents of an IDLgrWindow using the IDLgrWindow
IMAGE_DATA property. The captured data can then be passed to the MJ2 file viathe
IDLffMJIPEG2000:: SetData method. This method of MJ2 creation is useful for
recording an existing animation. For information on creating animations in an object
graphics window see Chapter 10, “Animating Objects’ (Object Programming). For
an example that creates an MJ2 file using this method, see “ Sample Mation
JPEG2000 Player and Writer” on page 95, which describes the example,
mj2_writer_rgb. pro,locatedinthel DL_DI R\ exanpl es\ nj peg2000
directory.

A timer mechanism can be used to control the rate of the animation and the rate at
which datais captured and written to an MJ2 file. See “ Timer Mechanisms’ on
page 107 for more information.

Animating Data Captures

In addition to adding existing datato an MJ2 file, you can also add incremental data
captures - snapshots of data at specified intervals. Data captured at any point during
program execution can be added as long as each element passed to SetData has the
same dimensions. The following example captures the incremental application of a
thinning operator to an image, creating an animation that shows the changes to the
original data.

Example Code
Thisexamplenj 2_nor pht hi n_doc. pr o, islocated in the
exanpl es/ doc/ obj ect's subdirectory of the IDL distribution. Run the example
procedure by entering n2_nor pht hi n_doc at the IDL command prompt or view
thefilein an IDL Editor window by entering . EDI T n2_nor pht hi n_doc. pro.
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Playing a Motion JPEG2000 Animation

You can use the IDLffMJPEG2000 object to access frames sequentially or randomly
from aMotion JPEG2000 file (MJ2). Sequential access plays an animation, which
can consist of entire frames, or can consist of frame components, tiles or regions, and
uses a background processing thread. Random access plays selected frames, which
can also consist of entire frames, or frame components, tiles or regions, without the
use of a background processing thread. See the following sections for details:

e “Sequentia Motion JPEG2000 Playback” on page 103
¢ “Random Mation JPEG2000 Playback” on page 104

Regardless of the type of playback, it isimportant to understand that unless you
implement a timer mechanism to control playback, the default rate will be asfast as
the frames can be decompressed. Options for timer mechanismsinclude widget timer
and the more robust IDLitWindow timer mechanism.

Warning
Avoid using the WAIT procedure to control the sequential playback rate. On UNIX
platformsthereis an internal conflict between the background processing thread
and the WAIT procedure. To avoid cross-platform compatibility issues, always use
awidget timer or IDLitWindow timer mechanism to control the sequential playback
rate.

The timer mechanism will typically use the FRAME_PERIOD and TIMESCALE
propertiesto control the rate. See “ Controlling the Playback Rate” on page 106 for
more information.

Note
If you find the rate at which the frames can be decompressed is slower than the
desired playback speed, see “High Speed Sequential Playback” on page 108 for an
optional playback method.

Sequential Motion JPEG2000 Playback

To playback alarge series of MJ2 frames, components, tiles or regions sequentialy,
your program will need to include the following methods and elements:

e IDLffMJIPEG2000:: StartSequential Reading—start the background
decompression thread. You can indicate what datato display (the entire frame,
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or acomponent, tile, or region of the frame) as well asthe resolution (level) of
data. You can also specify the start and stop framesfor the sequential playback.

e Timer—start awidget timer or IDLitWindow timer mechanism to play back
frames at the desired rate. Within the timer event, call the following methods:

« IDLffMJIPEG2000::GetSequential Data—points at the data being retrieved
from the frame buffer. Thisis not a copy of the data.

« |IDLffMJPEG2000::Rel easeSequentia Data—rel eases the data from the
frame buffer.

Note
You should aways include a timer mechanism to control the playback rate.
Without atimer, the playback rate will be equal to the rate at which the
frames can be decompressed. See “ Controlling the Playback Rate” on
page 106 for details and an example.

e IDLffMJIPEG2000:: StopSequential Reading— rel eases the decompressed
frames from the frame buffer memory and stops the background processing
thread, (if it isstill running). Call this method when the sequentia playback is
complete.

When playback ends, turn off the timer mechanism to stop the animation.

Examples showing the use of the sequential playback methods are located in
“Controlling the Playback Rate” on page 106 and the Examples section of
“IDLffMJIPEG2000::GetSequential Data” (IDL Reference Guide).

Random Motion JPEG2000 Playback

To access a specified frame, use the IDLffMJPEG2000::GetData method. When
using GetData, you can return an entire frame, or a component, tile, or region of a
frame. You can also specify the resolution (level) of datato return.

The GetData method returns data when it has been decompressed. Unlike
GetSequential Data, GetData does not use a background processing thread and there
is no frame buffer involved. This means that the data returned by GetData can be
accessed. (The data returned by GetSequential Data cannot be accessed as it returns
only apointer to the data on the frame buffer.) Since no background processing thread
isinvolved, asimple WAIT statement can be used to control the playback rate when
there is no need to implement a more robust timer mechanism.

Use GetData when you need to access a small number of distinct frames. Use
GetSeguential Data and the background processing thread when you want to playback
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alarge number of frames at a specified rate as described in “ Sequential Motion
JPEG2000 Playback” on page 103.

Simple examples that use the GetData method are described in “Adding Datato MJ2
Animations’ on page 98.
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Controlling the Playback Rate

Sequentia playback relies on the interaction of four IDLffMJPEG2000 methods,

described in “ Sequential Motion JPEG2000 Playback” on page 103. When you call

StartSequential Reading, a background processing thread is started, and the selected

datais decompressed and added to the frame buffer. Within atimer event, you must

call the GetSequentialData and Rel easeSequential Data methods as a pair. These
methods work cooperatively to access and then to release the frame data so that there
isroom for the decompression of the next frame.

Tip
If playback is delayed because there are not frame buffer slots available, you can
modify the size of the frame buffer using the FRAME_BUFFER_LENGTH
property. See “High Speed MJ2 Reading and Writing” on page 108 for details.

The timer mechanism can access the decompressed data from the frame buffer at
intervals specified by a combination of the FRAME_PERIOD and TIMESCALE
properties. The number of seconds allotted each frame is equal to the
FRAME_PERIOD divided by the TIME_SCALE property (see the discussion under
“FRAME_PERIOD” (IDL Reference Guide) for details). Access the required
properties from an | DLffMJPEG2000 object (oMJ2) as follows:

oMJ2- >Get Property, N FRAMES=nFr anes, DI MENSI ONS=di ns, $
FRAME_PERI OD=vFr anmePeri od, TI MESCALE=vTi neScal e

; Conpute seconds per frane.
vFraneRat e = FLOAT(vFranePeri od)/vTi neScal e

In the previous line, the FLOAT function ensures the return of afloating point frame
rate value and avoids errors caused by attempting to divide by zero. This frame rate
value can then be passed to the timer mechanism to control playback rate. For an MJ2
file that has frames with varied FRAME_PERIOD property values, computing the
frame rate for each frame and passing it to the timer mechanism will alter the
playback speed. The following example creates an M J2 file with varied frame period
values and then uses these values to compute a value to be passed to a widget timer
event, which alters the playback rate to reflect the frame period of each frame.

Example Code
Thisexamplenj 2_t i mer _doc. pr o, islocated in the exanpl es/ doc/ obj ect s
subdirectory of the IDL distribution. Run the example procedure by entering
nj 2_ti mer _doc at the IDL command prompt or view the filein an IDL Editor
window by entering. EDI T nj 2_ti mer _doc. pro.
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Timer Mechanisms

There are two primary options for timer mechanisms that can be used to control the
playback rate of an MJ2 animation in an IDL application:

Option Description

IDLitWindow | A number of IDLitWindow methods work in concert to control
what happens during a timer event:

¢ |IDLitWindow::SetEventM ask — use this method to turn
timer events on and off

« |IDLitWindow::SetTimerInterval — set this equal to the
desired frame rate (seconds/frame)

 IDLitWindow::OnTimer — write code in this procedure to
get and release frame data at the rate specified in
SetTimerinterval

The sample MJ2 player, nj 2_pl ayer . pr o, located in the

I DL_DI R exanpl es\ nj peg2000 directory uses an
IDLitWindow timer mechanism. See “ Sample Motion JPEG2000
Player and Writer” on page 95 for more information.

Widget Timer | A timer event can be associated with a number of widgets
although it istypically associated with one that has no events of its
own such asabase or label. The WIDGET_CONTROL procedure
associates atimer with awidget and sets the rate.

Thenj 2_ti mer _doc. pr o example, located in the

exanpl es/ doc/ obj ect s subdirectory of the IDL distribution,
shows how to control playback rate with awidget timer. See
“Timer Events’ (Chapter 4, Widget Application Programming)
for more information on these events.

Table 4-3: Timer Mechanisms Options for MJ2 Playback

Of the two options listed above, the IDLitWindow timer will more accurately reflect
true frame rates. The widget timer will show rate changes, but may not have the same
degree of accuracy as the IDLitWindow timer mechanism.
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High Speed MJ2 Reading and Writing

Animation playback or creation can be delayed due to the time required to
decompress or compress frame data. The following sections describe waysto avoid
such delays during file reading or writing.

High Speed Sequential Playback

If the desired playback speed exceeds the rate at which frames can be decompressed
(as described in " Sequential Motion JPEG2000 Playback” on page 103), you can
decompress all of the frames before starting the playback. To do so, you need to set
the FRAME_BUFFER_LENGTH property to the total number of framesto be
played back before calling IDLffMJPEG2000:: StartSequential Reading.

When you call StartSequential Reading, the background processing thread will begin
decompressing the frames and storing them in the frame buffer. Before calling the
GetSequential Data/Rel easeSequential Data pair of methods, make sure that al frames
have been read into the frame buffer. You can check this using one of the following:

e Check the STATE property—if frames are till being decompressed by the
processing thread, the property returns 1 (running). When all frames have been
decompressed, the background processing thread shuts down and the STATE
property returnsto O (idle).

e Check the FRAMES IN_BUFFER property—if the number of framesin the
buffer equalsthe FRAME_BUFFER_LENGTH property you set prior to
starting the decompression, then all of the desired frames have been
decompressed.

Note
Thistechnique, decompressing all the desired frames prior to playback, can
consume large amounts of memory depending on the number and size of the
frames. Also, remember that the decompressed frames will remain in the frame
buffer until you call the StopSequential Reading method.

High Speed MJ2 File Writing

In some situations, the desired write speed may exceed the rate at which frames can
be compressed. When you call SetData, the datais added to the frame buffer where it
is compressed by a background processing thread. If compression cannot keep up
with the SetDatacalls, the frame buffer fills up and SetData must wait for an available
frame buffer slot before it can return.
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To avoid such adelay, you can make sure thereis always a slot available for the
SetData call by increasing the FRAME_BUFFER_LENGTH property value. This
technique ensures there is no delay caused by file compression, but can consume
large amounts of memory depending on the number and size of the frames.
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Overview of Mapping

This section introduces graphic map display considerations as well asinformation
about common map projections. This section does not describe how to create a map
display. See the following topic for these resources.

Creating a Map Display

IDL provides interactive and static map display functionality. You can usetheiMap
iTool to interactively configure amap display. If you prefer a static display, you can
use map routines. See the following for details:

e Interactive iMap display — see Chapter 15, “Working with Maps” (i Tool
User’'s Guide)

e Map-related routines — see “Mapping” (IDL Quick Reference)
Examples of Creating Map Displays

See the following resourcesin the IDL Reference Guide for examples:

* IMAP — provides examples of displaying images and contours over a map
projection.

« MAP_PROJ FORWARD — creates alatitude and longitude grid with labels
for a Goodes Homol osine map projection in an Object Graphics display.
Typicaly MAP_PROJ_INIT is used with MAP_PROJ FORWARD and
MAP_PROJ INVERSE.

«  MAP_SET — establishes the coordinate conversion mechanism for mapping
points on a globe's surface to points on a plane, according to the selected
projections type. You can then use MAP_GRID and MAP_CONTINENTSto
add grid lines and continents to the map display. See MAP_IMAGE for an
example of warping an image to a projection.

Overview of Mapping Using IDL
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Graphics Techniques for Mapping

Standard graphics techniques are insufficient when projecting areas on a sphere to a
two-dimensional surface for two reasons. First, two points on a sphere are connected
by two different lines. Second, areas may wrap around the edges of cylindrical and
pseudo-cylindrical projections.

Graphical entities on the surface of a sphere can be properly represented on any map
by using a combination of the following four stages: splitting, 3D clipping,
projection, and rectangular clipping. The IMAP and MAP_SET procedures
automatically sets up the proper mapping technigue to best fit the projection selected
by the user.

Warning
For proper rendering, splitting, and clipping, polygons must be traversed in counter-
clockwise order when observed from outside the sphere. If this requirement is not
met, the exterior, instead of theinterior, of the polygons may befilled. Also, vectors
connecting the points spanning the singular line for cylindrical projections will be
drawn in the wrong direction if polygons are not traversed in the correct order.

Splitting

The splitting stage is used for cylindrical and pseudo-cylindrical projections. The
singular line, one half of agreat circleline, islocated opposite the center of the
projection; points on thisline appear on both edges of the map. The singular lineis
the intersection of the surface of the sphere with a plane passing through the center of
projection, one of the poles of projections, and the center of the sphere.

3D Clipping
Map graphics are clipped to one side of an arbitrary clipping plane in one or more
clipping stages. For example, to draw a hemisphere centered on a given point, the

clipping plane passes through the center of the sphere and has a normal vector that
coincides with the given point.

Projection

In the projection stage, a point expressed in latitude and longitude is transformed to a
point on the mapping plane.
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Rectangular Clipping

After the map graphics have been projected onto the mapping plane, a conventional
rectangular clipping stage ensures that the graphics are properly bounded and closed
in the rectangular display area.
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Map Projection Types

In the following sections, the available IDL projections are discussed in detail. The
projections are grouped within three categories:

e “Azimuthal Projections’ on page 116
e “Cylindrical Projections’ on page 125
e “Pseudocylindrical Projections’ on page 130

Note
The General Cartographic Transformation Package (GCTP) map projections are not
described here. Documentation for the GCTP package is available from the US
Geologic Survey at ht t p: / / mappi ng. usgs. gov.

Note
In thistext, the plane of the projection is referred to as the UV plane with horizontal
axis u and vertical axisv.
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With azimuthal projections, the UV plane is tangent to the globe. The point of
tangency is projected onto the center of the plane and its latitude and longitude are
the points at the center of the map projection, respectively. Rotation is the angle
between North and the v-axis.

Important characteristics of azimuthal maps include the fact that directions or
azimuths are correct from the center of the projection to any other point, and grest
circles through the center are projected to straight lines on the plane.

The IDL mapping package includes the following azimuthal projections:

“Orthographic Projection” on page 117

“ Stereographic Projection” on page 117
“Gnomonic Projection” on page 118
“Azimuthal Equidistant Projection” on page 119
“Aitoff Projection” on page 120

“Lambert’s Equal Area Projection” on page 121
“Hammer-Aitoff Projection” on page 122
“Satellite Projection” on page 123

Azimuthal Projections
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Orthographic Projection

The orthographic projection was known by the Egyptians and Greeks 2000 years ago.
This projection looks like a globe because it is a perspective projection from infinite
distance. As such, it maps one hemisphere of the globe into the UV plane. Distortions
are greatest along the rim of the hemisphere where distances and land masses are
compressed.

The following figure shows an orthographic projection centered over Eastern Spain
at ascale of 70 millionto 1.

Oblique Orthographic

T YRD

Figure 5-1: Orthographic Projection
Stereographic Projection

The stereographic projection is atrue perspective projection with the globe being
projected onto the UV plane from the point P on the globe diametrically opposite to
the point of tangency. The whole globe except P is mapped onto the UV plane. There
is great distortion for regions close to P, since P maps to infinity.

The stereographic projection is the only known perspective projection that is also
conformal. It is frequently used for polar maps. For example, a stereographic view of
the north pole has the south pole asits point of perspective.
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The following figure shows an equatorial stereographic projection with the
hemisphere centered on the equator at longitude —105 degrees.

Equatcrial Stereagrophic

Figure 5-2: An Azimuthal Projection

Gnomonic Projection

The gnomonic projection (also called Central or Ghomic) projects all great circlesto
straight lines. The gnomonic projection is the perspective, azimuthal projection with
point of perspective at the center of the globe. Hence, with the gnomonic projection,
the interior of a hemispherical region of the globe is projected to the UV plane with
the rim of the hemisphere going to infinity. Except at the center, there is great
distortion of shape, area, and scale. The default clipping region for the gnomonic
projection is acircle with aradius of 60 degrees at the center of projection.

The projection in the following figure is centered around the point at latitude 40
degrees and longitude —105 degrees. The region on the globe that is mapped lies
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between 20 degrees and 70 degrees of latitude and —130 degrees and —70 degrees of
longitude.

Ohlique Gnomanic

Figure 5-3: A Gnomonic Projection

Azimuthal Equidistant Projection

The azimuthal equidistant projection is also not atrue perspective projection, because
it preserves correctly the distances between the tangent point and all other points on
the globe. Any line drawn through the tangent point reports distance correctly.
Therefore, this projection type is useful for determining flight distances. The point P
opposite the tangent point is mapped to a circle on the UV plane, and hence, the
whole globe is mapped to the plane. There isinfinite distortion close to the outer rim
of the map, which isthe circular image of P.
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The following Azimuthal projection is centered at the South Pole and shows the
entire globe.

Palar Azimuthal

Figure 5-4: An Azimuthal Equidistant Projection

Aitoff Projection

The Aitoff projection modifies the equatorial aspect of one hemisphere of the
azimuthal equidistant projection, described above. Lines paralel to the equator are
stretched horizontally and meridian values are doubled, thereby displaying the world
asan elipse with axesin a 2:1 ratio. Both the equator and the central meridian are
represented at true scale; however, distances measured between the point of tangency
and any other point on the map are no longer true to scale.
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An Aitoff projection centered on the international dateline is shown in the following
figure.

AiteTf Projection

Figure 5-5: An Aitoff Projection

Lambert’'s Equal Area Projection

Lambert’s equal area projection adjusts projected distancesin order to preserve area.
Hence, it is not a true perspective projection. Like the stereographic projection, it
maps to infinity the point P diametrically opposite the point of tangency. Note also
that to preserve area, distances between points become more contracted as the points
become closer to P. Lambert’s equal area projection has less overall scale variation
than the other azimuthal projections.
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The following figure shows the Northern Hemisphere rotated counterclockwise 105
degrees, and filled continents.

Polar Lambert

Figure 5-6: A Lambert’'s Equal Area Projection

Hammer-Aitoff Projection

Although the Hammer-Aitoff projection is not truly azimuthal, it isincluded in this
section because it is derived from the equatorial aspect of Lambert’s equal area
projection limited to a hemisphere (in the same way Aitoff’s projection is derived
from the equatorial aspect of the azimuthal equidistant projection). In this derivation,
the hemisphere is represented inside an ellipse with the rest of the world in the lunes
of the ellipse.

Because the Hammer-Aitoff projection produces an equal area map of the entire
globe, it isuseful for visual representations of geographically related statistical data
and distributions. Astronomers use this projection to show the entire celestial sphere
on one map in away that accurately depicts the relative distribution of the starsin
different regions of the sky.
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A Hammer-Aitoff projection centered on the international dateline is shown in the
following figure:

Hammer—Aitafl Prajection

Figure 5-7: The Hammer-Aitoff Projection

Satellite Projection

The satellite projection, also called the General Perspective projection, simulates a
view of the globe as seen from a camerain space. If the camerafaces the center of the
globe, the projection is called a Vertical Perspective projection (note that the
orthographic, stereographic, and gnomonic projections are specia cases of this
projection), otherwise the projection is called a Tilted Perspective projection.

The globe is viewed from a point in space, with the viewing plane touching the
surface of the globe at the point directly beneath the satellite (the sub-satellite point).
If the projection planeis perpendicular to the line connecting the point of projection
and the center of the globe, a Vertical Perspective projection results. Otherwise, the
projection planeis horizontally turned I' degrees clockwise from the north, then tilted
w degrees downward from horizontal.
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The map in the accompanying figure shows the eastern seaboard of the United States
from an dtitude of about 160km, above Newburgh, NY.

Satellite / Tilted Perspective

Figure 5-8: Satellite Projection
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Cylindrical Projections

A cylindrical projection maps the globe to a cylinder which is formed by wrapping
the UV plane around the globe with the u-axis coinciding with agreat circle. The
parameters P4, Pgjon, @nd Rot determine the great circle that passes through the
point C=(Pgat: Poion)- 1N the discussions below, this great circle is sometimes
referred to as EQ. Rot is the angle between North at the map’s center and the v-axis
(which is perpendicular to the great circle). The cylinder is cut along the line parallel
to the v-axis and passing through the point diametrically oppositeto C. It isthen
rolled out to form a plane.

The cylindrical projectionsin IDL include: Mercator, Transverse Mercator,
cylindrical equidistant, Miller, Lambert’s conformal conic, and Alber’s equal-area
conic.

Mercator Projection

Mercator’s projection is partially devel oped by projecting the globe onto the cylinder
from the center of the globe. Thisisapartia explanation of the projection because
vertical distances are subjected to additional transformations to achieve conformity—
that is, local preservation of shape. Therefore, uses include navigation maps and
equatorial maps. To properly use the projection, the user should be aware that the two
points on the globe 90 degrees from the central great circle (e.g., the North and South
Polesin the case that the selected great circle is the equator) are mapped to infinite
distances. Limits are typically specified because of the great distortions around the
poles when the equator is selected.

Using IDL Cylindrical Projections
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A simple mercator projection with latitude ranges from —80 degrees to 80 degreesis
shown in the following figure.

Simple Mercator

Figure 5-9: Simple Mercator Projection

Transverse Mercator Projection

The Transverse Mercator (also called the UTM, and Gauss-Krueger in Europe)
projection rotates the equator of the Mercator projection 90 degrees so that it follows
a specified central meridian. In other words, the Transverse Mercator involves
projecting the Earth onto a cylinder which is aways in contact with ameridian
instead of with the Equator.

The central meridian intersects two meridians and the Equator at right angles; these
four linesare straight. All other meridians and parallels are complex curveswhich are
concave toward the central meridian. Shape is true only within small areas and the
areasincrease in size as they move away from the central meridian. Most other IDL
projections are scaled in the range of +/— 1 to +/— 2 Pi; the UV plane of the
Transverse Mercator projection is scaled in meters. The conformal nature of this

Cylindrical Projections Using IDL
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projection and its use of the meridian makesit useful for north-south regions. The
Clarke 1866 dlipsoid is used for the defaullt.

The following Transverse Mercator map shows North and South America, with a
central meridian of —90 degrees West and centered on the Equator.

Transverse Mercator

Figure 5-10: Transverse Mercator Projection

Cylindrical Equidistant Projection

The cylindrical equidistant projection is one of the simplest projections to construct.
If EQ isthe equator, this projection simply lays out horizontal and vertical distances
on the cylinder to coincide numerically with their measurementsin latitudes and
longitudes on the sphere. Hence, the equidistant cylindrical projection maps the
entire globe to a rectangular region bounded by

-180<u<180
and
—90<v<90

Using IDL Cylindrical Projections
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If EQ isthe equator, meridians and parallels will be equally spaced parallél lines.

Thefollowing figure shows asimple cylindrical equidistant projection and an oblique
cylindrical equidistant projection rotated by 45°.

Simple Cylindrical Equidistant  Oblique Cylindricol Equidistant

Figure 5-11: Cylindrical Projections

Miller Cylindrical Projection

The Miller projection is asimple mathematical modification of the Mercator
projection, incorporating some aspects of cylindrical projections. It is not equal-area,
conformal or equidistant along the meridians. Meridians are equidistant from each
other, but latitude parallels are spaced farther apart as they move away from the
Equator, thereby keeping shape and area distortion to a minimum. The meridians and
parallelsintersect each other at right angles, with the poles shown as straight lines.
The Equator is the only line shown true to scale and free of distortion.

Conic Projection

The Lambert’s conformal conic with two standard parallelsis constructed by
projecting the globe onto a cone passing through two parallels. Additional scaling
achieves conformity. The pole under the cone's apex is transformed to a point, and
the other pole is mapped to infinity. The scale is correct along the two standard
paralels. Parallels can be specified and are projected onto circles and meridians onto
equally spaced straight lines. The following figure shows the map shown in the
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accompanying figure, which features North America with standard parallels at 20
degrees and 60 degrees.

Lombert's Canic

Figure 5-12: Lambert's Conformal Conic with Standard Parallels at 20° and 60°

Albers Equal-Area Conic Projection

The Albers Equal-Area Conic is like most other conics in that meridians are equally
spaced radii, paralels are concentric arcs of circles and scale is constant along any
parallel. To maintain equal area, the scale factor along meridians is the reciprocal of
the scale factor along parallels, with the scale aong the parallels between the two
standard parallels too small, and the scale beyond the standard parallels too large.
Standard parallels are correct in scale along the parallel, aswell asin every direction.

The Albers projectionis particularly useful for predominantly east-west regions. Any
keywords for the Lambert conformal conic also apply to the Albers conic.

Using IDL Cylindrical Projections
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Pseudocylindrical Projections

Pseudocylindrical projections are distinguished by the fact that in their ssimplest form,
lines of latitude are parallel straight lines and meridians are curved lines.

Robinson Cylindrical

This pseudocylindrical projection was designed by Arthur Robinson in 1963 for
Rand McNally. It is suitable for World maps and is a compromise to best fulfill a
number of conflicting requirements, including an uninterrupted format, minimal
shearing, minimal apparent area-scale distortion for major continents, and simplicity.
It was designed to make the world look right. Since itsintroduction, it has been
adopted by the National Geographic Saciety for many of their world maps.

Each individual parallel isequally divided by the meridians. The poles are
represented by lines rather than points to avoid compressing the northern land
masses. The central meridian should aways be 0 degrees longitude to retain the
correct balance of shapes, sizes, and relative positions.

The following figure shows a Robinson projection.

Figure 5-13: Robinson Projection

Pseudocylindrical Projections Using IDL



Chapter 5: Map Projections 131

Sinusoidal Projection

With the sinusoidal projection, the central meridian isastraight line and all other
meridians are equally spaced sinusoidal curves. The scaling is true along the central
meridian aswell asaong all parallels.

The sinusoidal projection is one of the easiest projections to construct. The formulas
below from Snyder (1987) give the relationship between the latitude ¢ and longitude
A of apoint on the globe and its image on the UV plane.

u = Acosp

V=0

The following shows the sinusoidal map of the whole globe centered at longitude 0
degrees and latitude O degrees.

Figure 5-14: Sinusoidal Projection

Mollweide Projection

Using IDL

With the Mollweide projection, the central meridian is a straight line, the meridians
90 degrees from the central meridian are circular arcs and all other meridians are
dliptical arcs. The Mollweide projection maps the entire globe onto an ellipse in the
UV plane. The circular arcs encompass a hemisphere and the rest of the globeis
contained in the lunes on either side.

Pseudocylindrical Projections
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The following figure shows a Mollweide projection in oblique form.

Figure 5-15: Mollweide Projection

Since the center of the projection is not on the equator, parallels of latitude are not
straight lines, just as they are not straight lines with an oblique Mercator or
cylindrical equidistant projection.

Goode’s Homolosine Projection

The Goode interrupted Homol osine projection, developed by J. Paul Goode, in 1923,
is designed for World maps to show the continents with minimal scale and shape
distortion. Thisis accomplished by interrupting the projection and choosing several
central meridiansto coincide with large land masses. This projection isafusion of the
Sinusoidal projection between the latitudes of 44.7 degrees North and South, and the
Mollweide projection between these parallels and the poles.

Pseudocylindrical Projections Using IDL
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The following figure shows an example of Goode’'s Homol osine projection.

Figure 5-16: Goode's Homolosine Projection
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High-Resolution Continent Outlines

IDL supports two different datasets that contain continent outlines and other
geographical and political boundaries. The default data set is alow-resolution
continental outline database that is automatically installed when you install IDL. The
high-resol ution database was adapted from the 1993 CIA World Map database by
Thomas Oetli of the Swiss Meteorological Institute. The high-resolution outlines are
found in an optional data set that may not have been installed when your copy of IDL
was first installed.

To access the high-resolution data set, simply set the HIRES keyword when calling
MAP_CONTINENTS with the COASTS, COUNTRIES, FILL_CONTINENTS, or
RIVERS keywords. You can also get high-resolution continent boundaries by calling
MAP_SET with the HIRES and CONTINENTS keywords set. See
MAP_CONTINENTS n the IDL Reference Guide for an example of using the high-
resolution outlines.

Resolution of Map Databases

Data pointsin the CIA World Map database are approximately one kilometer apart.
Note, however, that in the case of the coast and river databases, actual distances
between the data points may be much smaller because of convolutionsin the
coastline or riverbed.

Data points in the low-resolution map database are either a subset of the high-
resolution database (rivers and country boundaries) or are based on the continental
map database used in previous versions of IDL (the filesupmap. dat inthe
resour ce/ maps subdirectory of the IDL distribution). Data points in the low-
resolution database are approximately 10 kilometers apart.

Neither of the map databasesis intended for high-precision work.

High-Resolution Continent Outlines Using IDL
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The following table compares the low-resol ution and high-resolution map databases:

Feature Low-Resolution High-Resolution
Coastlines, islands, and | Datain file supmap. dat . Entire CIA World Map
lakes (including
continental outlines)

Continental polygons Data extracted from Every 20th point of CIA
supmap. dat . World Map.

Rivers Every 250th point of the CIA | Entire CIA World Map.
World Map.

National boundaries Every 100th point of CIA Entire CIA World Map.
World Map.

Table 5-1: Comparison of Low- and High-resolution Map Databases

Using IDL High-Resolution Continent Outlines
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Overview of Signal Processing

A signal, by definition, contains information. Any signal obtained from a physical
process aso contains noise. It is often difficult or impossible to make sense of the
information contained in adigital signal by looking at it initsraw form—that is, asa
sequence of real values at discrete pointsin time. Signal analysis transforms offer
natural, meaningful, alternate representations of the information contained in a
signal.

This chapter describes IDL’s digital signal processing tools. Most of the procedures
and functions mentioned here work in two or more dimensions. For simplicity, only
one dimensional signals are used in the examples.

Routines for Signal Processing

For alist of IDL signal processing routines, see the functional category of “Signal
Processing” (IDL Quick Reference). There you will find a brief introduction to the
routines. More detailed information is available in the IDL Reference Guide.

Running the Example Code

The examples in this chapter are written to take advantage of iTools. The example
codeis part of the IDL distribution. All of the files mentioned are located in the
exanpl es/ doc/ si gnal subdirectory of the IDL distribution. By default, this
directory is part of IDL’s path; if you have not changed your path, you will be able to
run the examples as described here. See“!PATH” (Appendix D, IDL Reference
Guide) for information on IDL’s path.

Overview of Signal Processing Using IDL
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Digital Signals

A one-dimensional digital signal is a sequence of data, represented as a vector in an
array-oriented language like IDL. The term digital actually describes two different
properties:

1. Thesigna isdefined only at discrete pointsin time as aresult of sampling, or
because the instrument which measured the signal is inherently discrete-time
in nature. Usually, the timeinterval between measurements is constant.

2. Thesignal can take on only discrete values.

In this discussion, we assume that the signal is sampled at atimeinterval. The
concepts and techniques presented here apply equally well to any type of signal—the
independent variable may represent time, space, or any abstract quantity.

The following IDL commands create a simulated digital signal u(k), sampled at an
interval del t . Thissimulated signal will be used in examples throughout this
chapter. The simulated signal contains 1024 time samples, with a sampling interval
of 0.02 seconds. The signal contains a DC component and components at 2.8, 6.5,
and 11.0 cycles per second.

Enter the following commands at the IDL prompt to create the simulated signal:

N = 1024 ; nunber of samples
delt = 0.02 ; sanpling interval

; Simulated signal.

u=-0.3%
+1.0* SIN(2* IPl * 2.8 * delt * FINDGEN(N)) $
+1.0* SIN(2 * IPl * 6.25 * delt * FINDGEN(N)) $
+ 1.0 * SIN(2 * 'Pl * 11.0 * delt * FINDGEN(N))

Example Code
Alternately, type @i gpr c01 at the IDL prompt to run thesi gpr cO1batch file that
creates the signal. See “Running the Example Code” on page 138 if IDL does not
find the batch file.

Using IDL Digital Signals
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Because the signd is digital, the conventiona way to display it iswith a histogram (or
step) plot. To create ahistogram plot, set the PSY M keyword to the PLOT routine equal
to 10. A section of the example signal u(k) is plotted in the figure below.

amplitude

1 | 1 1 1 | 1 1 1 | 1 1
12 14 1.6 1.8

time in seconds
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Figure 6-1: Histogram Plot of Sample Signal u(k)

Note
When the number of sampled data pointsislarge, the stepsin the histogram plot are
too small to see. In such cases you should not plot in histogram mode.

Example Code
Type @i gpr c02 at the IDL prompt to run the batch file that creates this display.
The source code islocated in si gpr c02, intheexanpl es/ doc/ si gnal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Digital Signals Using IDL
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Signal Analysis Transforms

Most signals can be decomposed into a sum of discrete (usually sinusoidal) signal
components. The result of such decomposition is afrequency spectrum that can
uniguely identify the signal. IDL provides three transforms to decompose a signal
and prepare it for analysis: the Fourier transform, the Hilbert transform, and the

wavel et transform.

Using IDL Signal Analysis Transforms
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The Fourier Transform

The Discrete Fourier Transform (DFT) is the most widely used method for
determining the frequency spectra of digital signals. Thisis due to the development
of an efficient algorithm for computing DFTs known as the Fast Fourier Transform
(FFT).

The discrete Fourier transform, v(m), of an N-element, one-dimensional function,
u(k), is defined as:
N-1
_ 1 :
v(m) = N Z u(k)exp[—j 2rimk/ N]

k=0

Theinverse transform is defined as:
N-1
ukk) = z v(m)exp[j2mmk/ N]
m=0
IDL implements the Fast Fourier Transform in the FFT function. You can find details

onusing IDL’s FFT function in the following sectionsand in “FFT” (IDL Reference
Guide).

The Fourier Transform Using IDL
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Interpreting FFT Results

Using IDL

Just as the sampled time data represents the value of asignal at discrete pointsin
time, the result of a (forward) Fast Fourier Transform represents the spectrum of the
signal at discrete frequencies. These discrete frequencies are afunction of the
frequency index (m), the number of samples collected (N), and the sampling interval

(3):

f(m) = N—”})

The frequencies for which the FFT of a sampled signal are defined are sometimes
called frequency bins, which refersto the histogram-like nature of a discrete
spectrum. The width of each frequency binis /(N * d).

Due to the complex exponentia in the definition of the DFT, the spectrum has a
cyclic dependence on the frequency index m. That is:

v(m+pN) = v(m)

for p = any integer.

The frequency spectrum computed by IDL’s FFT function for a one-dimensional
time sequence is stored in a vector with indices running from 0 to N-1, which isalso
avalid range for the frequency index m. However, the frequencies associated with
frequency indices greater than N/2 are above the Nyquist frequency and are not
physically meaningful for sampled signals. Many textbooks choose to define the
range of the frequency index mto be from — (N/2 — 1) to N/2 so that it is (nearly)
centered around zero. From the cyclic relation above with p = —1:

V(= (N/2-1)) =v(N/2+1—-N) =v(N/2 + 1)

V(= (NI2—2)) = v(N/2 + 2= N) = v(N/2 + 2)

V(-2) =V(N—-2—-N) =v(N-2)
V(1) =v(N-1-N)=v(N-1)

Thisindex shift is easily accomplished in IDL with the SHIFT function. See “Real
and Imaginary Components’ on page 144 for an example.

Interpreting FFT Results
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Displaying FFT Results

Depending on the application, there are many waysto display spectral data, the result
of the (forward) FFT function.

Real and Imaginary Components

The most direct way isto plot the real and imaginary parts of the spectrum asa
function of frequency index or as a function of the corresponding frequencies. The
following figure displays the real and imaginary parts of the spectrum v(m) of the
sampled signal u(k) for frequencies from —(N/2 —1)/(N * ) to (N/2)/(N * &) cycles
per second.
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Figure 6-2: Real and Imaginary Parts of the Sample Signal
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Example Code
Type @i gpr c03 at the IDL prompt to run the batch file that creates this display.
The source codeislocated in si gpr c03, inthe exanpl es/ doc/ si gnal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

IDL’s FFT function always returns a single- or double-precision complex array with
the same dimensions as the input argument. In the case of aforward FFT performed
on aone-dimensional vector of N real values, the result is an N-element vector of
complex quantities, which takes 2N real valuesto represent. It would seem that there
istwice as much information in the spectral dataasthereisin the time sequence data.
Thisis not the case. For areal valued time sequence, half of the information in the
frequency sequence is redundant. Specifically:

;1 redundant val ue:

I MAG NARY(v(0)) = 0.0
;1 redundant val ue:

I MAG NARY(V(N2)) = 0.0

and

;o for nFl to NN2-1, N2 redundant val ues:

V(Nm = CONJ(v(m)
so that exactly N of the single- or double-precision values used to represent the
frequency spectrum are redundant. This redundancy is evident in the previous figure.
Notice that the real part of the spectrum is an even function (symmetric about zero),
and the imaginary part of the spectrum is an odd function (anti-symmetric about
zero). Thisis aways the case for the spectra of real-valued time sequences.

Because of the redundancy in such spectra, it is common to display only half of the
spectrum of areal time sequence. That is, only the spectral values with frequency
indices from 0 to N/2, which correspond to frequencies from 0 to 1/(2 * 9), the
Nyquist frequency. This vector of positive frequencies is generated in IDL with the
following command:

© f =[0.0, 1.0/(Ndelt), ... , 1.0/(2.0*delt)]
F = FINDGEN(N 2+1)/ (N*del t)

Magnitude and Phase

It isalso common to display the magnitude and phase of the spectrum, which have
physical significance, as opposed to the real and imaginary parts of the spectrum,
which do not have physical significance. Since there is a one-to-one correspondence
between a complex number and its magnitude and phase, no information islost in the
transformation from a complex spectrum to its magnitude and phase. In IDL, the
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magnitudeiseasily determined with the absolute value (ABS) function, and the phase
with the arc-tangent (ATAN) function. By one widely used convention, the
magnitude of the spectrum is plotted in decibels (dB) and the phase is plotted in
degrees, against frequency on alogarithmic scale. The magnitude and phase of our
sample signal are plotted in the same data space, shown in the figure below.

180

120

i
o

)
o

-120

Magnitude in dB / Phase in degrees

- IIIIIIIII|IIIIIIIII|I IIIIIlI|IIIIIIIII|IIIIIIIII|IIIIIIIII
!

-180

10
Frequency in cycles / second

Figure 6-3: Magnitude (Solid LIne) and Phase (Dashed Line)
of the Sample Signal

Example Code
Type @i gpr c04 at the IDL prompt to run the batch file that creates this display.
The source code islocated in si gpr c04, inthe exanpl es/ doc/ si gnal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Using alogarithmic scale for the frequency axis has the advantage of spreading out
the lower frequencies, while higher frequencies are crowded together. Note that the
spectrum at zero frequency (DC) islost completely on a semi-logarithmic plot.

The previous figure shows the strong frequency components at 2.8, 6.25, and 11.0
cycles/'second as peaks in the magnitude plot, and as discontinuities in the phase plot.
The magnitude peak at 6.25 cycles/second is a narrow spike, as would be expected
from the pure sine wave component at that frequency in the time data sequence. The
peaks at 2.8 and 11.0 cycles/second are more spread out, due to an effect known as
smearing or leakage. This effect is adirect result of the definition of the DFT and is
not due to any inaccuracy in the FFT. Smearing is reduced by increasing the length of

Displaying FFT Results Using IDL
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the time sequence, or by choosing a sample size which includes an integral number of
cycles of the frequency component of interest. There are an integral number of cycles
of the 6.25 cycles/second component in the time sequence used for this example,
which iswhy the peak at that frequency is sharper.

The apparent discontinuity in the phase plot at around 7.45 cycles/second is an
anomaly known as phase wrapping. It isaresult of resolving the phase from the real
and imaginary parts of the spectrum with the arctangent function (ATAN), which
returns principal values between —180 and +180 degrees.

Power Spectrum

Using IDL

Finally, for many applications, the phase information is not useful. For these, it is
often customary to plot the power spectrum, which is the square of the magnitude of
the complex spectrum. The resulting plot is shown in the figure below.

Power Spectrum of u(k)

1 10
Frequency in cycles / second

Figure 6-4: Power Spectrum of the Sample Signal

Example Code
Type @i gpr c05 at the IDL prompt to run the batch file that creates this display.
The source codeislocated in si gpr c05, inthe exanpl es/ doc/ si gnal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Displaying FFT Results
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Using Windows

The smearing or leakage effect mentioned previously is a direct consequence of the
definition of the Discrete Fourier Transform and of the fact that afinite time sample
of asignal often does not include an integral number of some of the frequency
components in the signal. The effect of this truncation can be reduced by increasing
the length of the time sequence or by employing awindowing algorithm. IDL’s
HANNING function computes two windows which are widely used in signa
processing: the Hanning window and the Hamming window.

Hanning Window

The Hanning window is defined as:

w(k) = %(1—005(277\?-())

The resulting vector is multiplied element-by-element with the sampled signal vector
before applying the FFT. For example, the following IDL command computes the
Hanning window and then applies the FFT function:

v_n = FFT(HANNI NG( N) * U)

The power spectrum of the Hanning windowed signal shows the mitigation of the
truncation effect (see the figure below).
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Figure 6-5: Time Series Multiplied by Hanning Window (Left)
and Power Spectrum (Right) with Hanning Window (Solid) and without (Dashed)
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Example Code
Type @i gpr c06 at the IDL prompt to run the batch file that creates this display.

The source codeislocated in si gpr c06, inthe exanpl es/ doc/ si gnal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Hamming Window

The Hamming window is defined as:

w(k) = 0.54- O.46cos(2—|<|ﬂ-<)
The resulting vector is multiplied el ement-by-element with the sampled signal vector
before applying the FFT. For example, the following IDL command computes the
Hamming window and then applies the FFT function:

v_m = FFT(HANNI NG( N, ALPHA=0. 56) *U)

The power spectrum of the Hamming windowed signal shows the mitigation of the
truncation effect (see the figure below).
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Figure 6-6: Power Spectrum with Hamming Window (Solid)
and without (Dashed)
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Example Code
Type @i gpr c07 at the IDL prompt to run the batch file that creates this display.
The source codeislocated in si gpr c07, inthe exanpl es/ doc/ si gnal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.
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Aliasing

Using IDL

Aliasingisawell known phenomenon in sampled data analysis. It occurs when the
signal being sampled has components at frequencies higher than the Nyquist
frequency, which is equal to half the sasmpling frequency. Aliasing is a consequence
of the fact that after sampling, every periodic signal at afrequency greater than the
Nyquist frequency looks exactly like some other periodic signal at afrequency less
than the Nyquist frequency. For example, suppose we add a 30 cycle per second
periodic component to our sampled data sequence u(t). The power spectrum of the
augmented signal appears below.

Power Spectrum

1 1 1 1 1 1 11 | 1
1 10
Frequency in cycles / second

Figure 6-7: Power Spectrum of the Sample Signal
After Adding a 30 Cycles per Second Component

Because the frequency of the new component is above the Nyquist frequency of 25
cycles per second (25 = 1/(2* delt)), the power spectrum shows the contribution of the
new component as an alias at 20 cycles per second. To prevent aliasing, frequency
components of asignal above the Nyquist frequency must be removed before

sampling.

Example Code
Type @i gpr c08 at the IDL prompt to run the batch file that creates this display.

The source code islocated in si gpr c08, intheexanpl es/ doc/ si gnal
directory. See “Running the Example Code” on page 138 if IDL does not find the

batch file.

Aliasing
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FFT Algorithm Details

IDL’s implementation of the fast Fourier transform is based on the Cooley-Tukey
algorithm. The algorithm takes advantage of the fact that the discrete Fourier
transform (DFT) of adiscrete time series with an even number of pointsis equal to
the sum of two DFTSs, each half the length of the original. For data lengths that are a
power of 2, this algorithm is used recursively, each iteration subdividing the datainto
smaller setsto be transformed. In the IDL FFT, this method is also extended to
powers of 3 and 5. If the number of pointsin the original time series does not contain
powersof 2, 3, or 5, the original data are till subdivided into data sets with lengths
equal to the prime factors of N. The resulting subdivisions with lengths equal to
prime numbers other than 2, 3, or 5 must be transformed using aslow DFT. The slow
DFT is mathematically equivalent to the FFT, but requires N operations instead of
NIog2(N).

This implementation means that the FFT function is fastest when the number of
pointsisrich in powersof 2, 3, or 5. The slowest case is when the number of samples
isalarge prime number. In this case, a significant improvement in efficiency can be
gained by padding the data set with zeros to increase the number of data pointsto a
power of 2, 3, or 5.

For real input data of even lengths, the FFT algorithm also takes advantage of the fact
that the real array can be packed into a complex array of half the length, and
unpacked at the end, thus cutting the running time in half.

FFT Algorithm Details Using IDL
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The Hilbert Transform

Using IDL

The Hilbert transform is a time-domain to time-domain transformation which shifts
the phase of asignal by 90 degrees. Positive frequency components are shifted by
+90 degrees, and negative frequency components are shifted by — 90 degrees.
Applying aHilbert transform to asignal twice in succession shifts the phases of all of
the components by 180 degrees, and so produces the negative of the original signal.
IDL’s HILBERT function accepts both real and complex valued signals asinputs; the
imaginary part of the result is zero for real inputs.

In optics and signal analysis, the Hilbert transform of the time signal r(t) is known as
the quadrature function of r(t), which is used to form a complex function known as
the analytic signal. The analytic signal is defined as:

r(t) = r(t)—jH(r (1)

where j isthe square root of —1 and H is the Hilbert function.

The projection of the analytic signal onto the plane defined by the real axis and the
time axisisthe original signal. The projection onto the plane defined by the
imaginary axis and the time axis is the Hilbert transform of the original signal.

The Hilbert Transform
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The following example plots the complex analytic signal of a periodic time signal
with aslowly varying amplitude.

0\\\\\\\\\\\\1’ \\\\'\I

Figure 6-8: Analytic Signal for r(t)

Example Code
Type @i gpr c09 at the IDL prompt to run the batch file that creates this display.
The source codeislocated in si gpr c09, inthe exanpl es/ doc/ si gnal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

The Hilbert Transform Using IDL
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The Wavelet Transform

Using IDL

Like the discrete Fourier transform, the discrete wavel et transform (DWT) isalinear
operation that defines a forward and inverse relationship between the time-domain
and the frequency-domain, also called the wavelet domain. Thisrelationship is
expressed through the use of basis functions. In the case of the DFT, trigonometric
sines and cosines of varying angles are used. In the case of the DWT, the basis
functions are more complicated and usually called mother functions or wavelets.
Also likethe DFT, the DWT is orthogonal, making many operations computationally
efficient. For example, the inverse wavel et transform, when viewed as a matrix
operator, is simply the transpose of the forward transform.

Most of the usefulness of wavelets relies on the fact that wavel et transforms can
usefully be severely truncated—that is, they can be effectively turned into sparse
expressions. This property isaresult of the simultaneous compact representation of
the wavelet basis functions in the time and frequency domains. See “WTN” (IDL
Reference Guide) for an example using the wavel et transform. Also see “ Wavelet
Toolkit” (IDL Quick Reference) for abrief description of the available wavel et
routines.

The Wavelet Transform



156 Chapter 6: Signal Processing

Convolution

Discrete convolution in digital signal processing is used (among other things) to
smooth sampled signals using a weighted moving average. It also has many
applications outside of signal processing.

IDL hastwo functions for doing discrete convolution: BLK_CON and CONVOL.
BLK_CON takes advantage of the fact that the convolution of two signalsisthe
Inverse Fourier transform of the product of the Fourier transforms of the two signals.
BLK_CON isfaster than CONVOL, but not as flexible. Among the many
applications for discrete convolution is the implementation of digital filters. See the
examplein the “Finite Impul se Response (FIR) Filters’ on page 159.

Convolution Using IDL
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Correlation and Covariance

Correlation and covariance (which is correlation with any non-zero mean values of
the signals removed beforehand) are closely related to convolution. They are useful in
analyzing signals with random components. Autocorrelation and autocovariance of
signals are computed with the A_ CORREL ATE function, and crosscorrelation and
crosscovariance are computed with the C_CORRELATE function. See “ Time-Series
Analysis’ on page 204 for details.

Using IDL Correlation and Covariance
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Digital Filtering

Digital filters can be implemented on a computer to remove unwanted frequency
components (noise) from a sampled signal. Two broad classes of filters are Finite
Impulse Response (FIR) or Moving Average (MA) filters, and Infinite Impulse
Response (11R) or AutoRegressive Moving Average (ARMA) filters. Both of these
classes of filters are described in the following sections:

* “Finite Impulse Response (FIR) Filters’ on page 159
e “Infinite Impulse Response (1IR) Filters’ on page 163

Note
IDL’sIR_FILTER function filters data with an infinite impul se response (IIR) or

finite impulse response (FIR) filter. See “IR_FILTER” (IDL Reference Guide) for
more information.

Digital Filtering Using IDL
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Finite Impulse Response (FIR) Filters

Digital filtersthat have an impul se response which reaches zero in a finite number of
steps are (appropriately enough) called Finite Impulse Response (FIR) filters. An FIR
filter can be implemented non-recursively by convolving itsimpul se response (which
is often used to define an FIR filter) with the time data sequence it isfiltering. FIR
filters are somewhat simpler than Infinite Impulse Response (I1R) filters, which
contain one or more feedback terms and must be implemented with difference
equations or some other recursive technique.

IDL's DIGITAL_FILTER function computes the impul se response of an FIR filter
based on Kaiser’'s window, which in turn is based on the modified Bessel function.
The Kaiser filter is “nearly optimum in the sense of having the largest energy in the
mainlobe for a given peak sidelobe level” [Jackson, Leland B., Digital Filtersand
Sgnal Processing]. The DIGITAL_FILTER function constructs lowpass, highpass,
bandpass, or bandstop filters. The figure below plots a bandstop filter which
suppresses frequencies between 7 cycles per second and 15 cycles per second for data
sampled every 0.02 seconds.
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Figure 6-9: Bandstop FIR Filter

Example Code
Type @i gpr c10 at the IDL prompt to run the batch file that creates this display.
The source codeislocated in si gpr ¢10, inthe exanpl es/ doc/ si gnal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Using IDL Finite Impulse Response (FIR) Filters
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Other FIR filters can be designed based on the Hanning and Hamming windows (see
“Using Windows’ on page 148), or any other user-defined window function. The
design procedure is simple:

1. Compute the impulse response of an ideal filter using the inverse FFT.

2. Apply awindow to the impulse response. The modified impul se response
defines the FIR filter.

The figure below shows the plot using the same sampling period and frequency
cutoffs as above, and the corresponding ideal filter is constructed in the frequency
domain using the Hanning window.
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Figure 6-10: Bandstop Filter Using Hanning Window

Example Code
Type @i gpr c11 at the IDL prompt to run the batch file that creates this display.
The source codeislocated insi gprc11, intheexanpl es/ doc/ si gnal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Finite Impulse Response (FIR) Filters Using IDL
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FIR Filter Implementation

The simplest FIR (Finite Impulse Response) filter to apply to asignal isthe
rectangular or boxcar filter, which isimplemented with IDL’s SMOOTH function, or

the closely related MEDIAN function.

Applying other FIR filtersto signalsis straightforward since the filter is non-
recursive. The filtered signal is ssmply the convolution of the impul se response of the
filter with the original signal. The impulse response of the filter is computed with the
DIGITAL_FILTER function or by the procedure in the previous section.

IDL’s BLK_CON function provides a simple and efficient way to convolve afilter
with asignal. Using u(k) from the previous example and the bandstop filter created
above creates the plot shown in the figure below.

Power Spectrum

1 10
Freguency in cycles / second

Figure 6-11: Digital Signal Before and After Filtering

Example Code
Type @i gpr c12 at the IDL prompt to run the batch file that creates this display.

The source codeislocated insi gpr c12, intheexanpl es/ doc/ si gnal
directory. See “Running the Example Code” on page 138 if IDL does not find the

batch file.

Using IDL FIR Filter Implementation
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The frequency response of the filtered signal shows that the frequency component at
11.0 cycles/ second has been filtered out, while the frequency components at 2.8 and
6.25 cycles/ second, as well asthe DC component, have been passed by the filter.

FIR Filter Implementation Using IDL
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Infinite Impulse Response (lIR) Filters

Using IDL

Digital filters which must be implemented recursively are called Infinite Impulse
Response (11R) filters because, theoretically, the response of these filtersto an
impulse never settlesto zero. In practice, the impulse response of many IIR filters
approaches zero asymptatically, and may actually reach zero in afinite number of
samples due to the finite word length of digital computers.

One method of designing digital filters starts with the Laplace transform
representation of an analog filter with the required frequency response. For example,
the Laplace transform representation (or continuous transfer function) of a second
order notch filter with the notch at f, cycles per second is:

y(s) — (;_?Tﬂz)

u(s) (1 + ZSG—;D + 52)

where sisthe Laplace transform variable. Then the continuous transfer function is
converted to the equivalent discrete transfer function using one of several techniques.
One of these isthe bilinear (Tustin) transform, where

(2/8)*(z-1)/(z+1)
is substituted for the Laplace transform variable s. In this expression, zis the unit
delay operator.
For the notch filter above, the bilinear transformation yields the following discrete
transfer function:

2
1+cC

y(2) :( 2

u(z) (c®—2cz +7%)

—2cz +

2
1+c 22)

wherec = (1 —1*fp*d) / (1 + 1 fp* d).

Enter the following IDL statements to compute the coefficients of the discrete
transfer function:

delt = 0.02

; Notch frequency in cycles per second:
fO =6.5

c = (1.0-!'PI*FO*delt) / (1.0+!PI*FO*delt)

Infinite Impulse Response (lIR) Filters
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[(1+cn2)/12, -2*c, (1+c"2)/2]
[ cr2, -2*c, 1]

o))
I n

Example Code
Alternately, type @i gpr c13 at the IDL prompt to run the si gpr c13 batch file
and create the plot variables. See “Running the Example Code” on page 138 if IDL
does not find the batch file.

[IR Filter Implementation

Since an Infinite Impulse Response filter contains feedback loops, its output at every
time step depends on previous outputs, and the filter must be implemented
recursively with difference equations. The discrete transfer function

by+b,z+...+b_2Z"
y(2) = ( E— = n:ju(z)
aytaz+...+a,z

isimplemented with the difference egquation

_ (bou(k—nb) + blu(k—nb +1)+ ...+ bnbu(k) —aoy(k—na) —aly(k—na+ 1)—... —ana_ly(k—l))
%a

y(K)

An IR filter is stable if the absolute values of the roots of the denominator of the
discrete transfer function a(z) are all less than one. The impulse response of a stable
IR filter approaches zero as the time index k approaches infinity. The frequency
response function of astable IR filter isthe Discrete Fourier Transform of thefilter's
impul se response.

Infinite Impulse Response (IIR) Filters Using IDL
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The figure below plots the impulse and frequency response functions of the notch
filter defined above using recursive difference equations.
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Figure 6-12: Impulse and Frequency Response of a Notch Filter

Example Code
Type @i gpr c14 at the IDL prompt to run the batch file that creates this display.
The source code islocated in si gpr c14, intheexanpl es/ doc/ si gnal
directory. See “Running the Example Code” on page 138 if IDL does not find the
batch file.

Note
Because the impul se response approaches zero, IDL may warn of floating-point
underflow errors. Thisis an expected consequence of the digital implementation of
an Infinite Impul se Response filter.

The same code could be used to filter any input sequence u(k).

Using IDL Infinite Impulse Response (lIR) Filters
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Overview of Mathematics in IDL

This chapter documentsl DL’s mathematics and statistics procedures and functions.
Theseinclude Numerical Recipes™ algorithms published in Numerical Recipesin C:
The Art of Scientific Computing (Second Edition). For alist of IDL mathematical
routines, see the functional category of “Mathematics’ (IDL Quick Reference). There
you will find abrief introduction to the routines. Detailed information is available in
the IDL Reference Guide. This chapter also includes introductory discussions of the
following topics and an overview of the way IDL handles the particular problems
involved:

e “Correlation Analysis’ on page 170

e “Curve and Surface Fitting” on page 174
« “Eigenvalues and Eigenvectors’ on page 176
e “Gridding and Interpolation” on page 182
e “Hypothesis Testing” on page 183

* “Integration” on page 185

e “Linear Systems’ on page 190

e “Nonlinear Equations’ on page 197

* “Optimization” on page 199

e “Sparse Arrays’ on page 201

e “Time-Series Analysis’ on page 204

e “Multivariate Analysis’ on page 207

References are provided at the end of each section for amore detailed description and
understanding of the topic.

ITT Visua Information Solutionsis extremely interested in the accuracy of its
algorithms. Bug reports, documentation errors and suggestions for mathematics and
statistics enhancements can be sent to ITT Visual Information Solutions via:

Internet: support @ttvis.com
Fax: (303) 786-9909

Note
Floating-point numbers are inherently inaccurate. See “Accuracy and Floating
Point Operations’ on page 274 for details on roundoff and truncation errors.

Overview of Mathematics in IDL Using IDL
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IDL’s Numerical Recipes Functions

Using IDL

IDL includes a number of routines based on algorithms published in Numerical
Recipesin C: The Art of Sientific Computing (Second Edition). Routines derived
from Numerical Recipes are noted as such in the IDL Reference Guide and inthe IDL
Online Help.

InIDL versions up to and including IDL version 3.6, mathematics functions based on
Numerical Recipes algorithms required that input be in column-major format. Thisis
no longer the case. Routines based on Numerical Recipes algorithms have been
reworked and renamed, so that all IDL functions now expect input arraysto bein
row-major format (composed of row vectors).

Note
To maintain compatibility with IDL programs based on earlier versions, the old
routines (using the older input convention) are still available. No alterations need be
made to existing code as aresult of this changein IDL. We recommend that all new
IDL programs take advantage of the new names and input convention.

IDL's Numerical Recipes Functions
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Correlation Analysis

Given two n-element sample populations, X and Y, it is possible to quantify the
degree of fit to alinear model using the correlation coefficient. The correlation
coefficient, r, isascalar quantity in theinterval [-1.0, 1.0], and is defined as the ratio
of the covariance of the sample populations to the product of their standard
deviations.

_ covariance of X and Y
(standard deviation of X)(standard deviation of Y')

or

N-1 N-1 N-1
1 Xy Yk
N—1Z i~ ZN Yi© N
= = k=0
N-1 N-1 2
Xk Yk
Z ZN Z Vil 2N
= = = k:0

The correlation coefficient is adirect measure of how well two sample populations
vary jointly. A value of r = +1 or r = —1 indicates a perfect fit to a positive or negative
linear model, respectively. A value of r close to +1 or —1 indicates a high degree of
correlation and agood fit to alinear model. A value of r close to O indicates a poor fit
to alinear model.

Correlation Example

The following sample populations represent a perfect positive linear correlation.

X [-8.1, 1.0, -14.3, 4.2, -10.1, 4.3, 6.3, 5.0, 15.1, -2.2]
Y=1[-9.8, -0.7, -16.0, 2.5, -11.8, 2.6, 4.6, 3.3, 13.4, -3.9]
; Compute the correlation coefficient of X and V.

PRI NT, CORRELATE(X, V)

Correlation Analysis Using IDL
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IDL prints:
1. 00000
The following sample popul ations represent a high negative linear correlation.

X [ 2.8, -2.7, 0.7, -0.5, -1.3, -0.9, 0.6, -1.5, 2.5, 3.0]
Y [-4.7, 9.8, -3.7, 2.8, 5.1, 3.9, -3.6, 5.8, -7.3, -7.4]
; Compute the correlation coefficient of X and Y:

PRI NT, CORRELATE(X, V)

IDL prints:
-0. 979907
The following sample popul ations represent a poor linear correlation.

X [-12.8, 0.1, -0.1, 1.9, 0.5, 1.1, 1.9, 0.3, -0.2, -1.0]
Y=[ 1.5 -1.0, -0.6, 1.1, 0.7, -0.7, 1.1, -0.1, 0.6, -0.1]
; Compute the correlation coefficient of X and V:

PRI NT, CORRELATE(X, Y)

IDL prints:
0. 0322859

Notes on Interpreting the Correlation Coefficient

When interpreting the value of the correlation coefficient, it isimportant to remember
the following two caveats:

1. Although ahigh degree of correlation (avalue close to +1 or —1) indicates a
good mathematical fit to alinear modd, its applied interpretation may be
completely nonsensical. For example, there may be a high degree of
correlation between the number of scientists using IDL to study atmospheric
phenomena and the consumption of alcohol in Russia, but the two events are
clearly unrelated.

2. Although a correlation coefficient close to 0 indicates a poor fit to alinear
model, it does not mean that there is no correlation between the two sample
populations. It is possible that the relationship between X and Y is accurately
described by a nonlinear model. See “ Curve and Surface Fitting” on page 174
for further details on fitting data to linear and nonlinear models.

Multiple Linear Models
The fundamental principles of correlation that apply to the linear model of two

sample populations may be extended to the multiple-linear model. The degree of
relationship between three or more sample populations may be quantified using the

Using IDL Correlation Analysis
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multiple correlation coefficient. The degree of relationship between two sample
popul ations when the effects of all other sasmple populations are removed may be
quantified using the partial correlation coefficient. Both of these coefficients are
scalar quantitiesin theinterval [0.0, 1.0]. A value of +1 indicates a perfect linear
relationship between populations. A value close to +1 indicates a high degree of
linear relationship between populations; whereas a value close to 0 indicates a poor
linear relationship between populations. (Although ava ue of 0 indicates no linear

relationship between populations, remember that there may be a nonlinear

relationship.)

Partial Correlation Example

Define the independent (X) and dependent () data.
X = [[0.477121,

[0.477121
[ 0. 301030,
[ 0. 000000,
[ 0. 602060,
[ 0. 698970,
[ 0. 301030,
[0.477121
[ 0. 698970,
[ 0. 000000,
[ 0. 602060,
[ 0. 301030,
[ 0. 301030,
[ 0. 698970,
[ 0. 000000,
[ 0. 698970,
[ 0. 301030,
[ 0. 602060,
[0.477121
[ 0. 000000,
Y = [97.682, 98.

5.
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5],
0l
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17.0],
12.5],
13. 5],
12. 5],
13.0],

7.5],
7.5],

12.0],
14. 0],
11. 5],
15. 0],

8.5],

14. 5],

9.5]]

$

$
$
$
$

99. 481, 99.613, 96.901,
98. 750, 97.991,
98. 937, 100.617]

@ BH B PP

@ BH BB

©*»

$

100. 152, 98.797,

100.796, $

100. 007, 98.615, 100.225, 98.388, $

Compute the multiple correlation of Y on the first column of X. The result should be

0.798816.

PRI NT, M CORRELATE(X] 0, *],

IDL prints:
0. 798816

Correlation Analysis
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Compute the multiple correlation of Y on the first two columns of X. The result
should be 0.875872.

PRI NT, M CORRELATE(X[0:1,*], V)
IDL prints:
0. 875872

Compute the multiple correlation of Y on all columns of X. The result should be
0.877197.

PRI NT, M CORRELATE(X, Y)
IDL prints:

0. 877197
;Define the five sanpl e popul ations.
X0 = [30, 26, 28, 33, 35, 29]

X1 = [0.29, 0.33, 0.34, 0.30, 0.30, 0.35]
X2 = [65, 60, 65, 70, 70, 60]
X3 = [2700, 2850, 2800, 3100, 2750, 3050]
Y =[37, 33, 32, 37, 36, 33]

Compute the partial correlation of X1 and Y with the effects of X0, X2 and X3
removed.

PRI NT, P_CORRELATE(X1, Y, REFORM[ X0, X2, X3], 3, N_ELEMENTS(X1)))
IDL prints:
0. 996017

Routines for Computing Correlations
See “Correlation Analysis’ (in the functional category “Mathematics’ (IDL Quick

Reference)) for a brief description of IDL routines for computing correlations.
Detailed information is available in the IDL Reference Guide.

Using IDL Correlation Analysis
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Curve and Surface Fitting

The problem of curve fitting may be stated as follows:

Given atabulated set of data values{x;, y;} and the general form of a mathematical
model (afunction f(x) with unspecified parameters), determine the parameters of the
model that minimize an error criterion. The problem of surface fitting involves
tabulated data of the form {x;, y;, z} and afunction f(x, y) of two spatial dimensions.

For example, we can use the CURVEFIT routine to determine the parameters A and B
of auser-supplied function f(x), such that the sums of the squares of the residuals
between the tabulated data {x;, y;} and function are minimized. We will use the
following function and data:

f(x)=a(l—e
% = [0.25, 0.75, 1.25, 1.75, 2.25]
y; = [0.28, 0.57, 0.68, 0.74, 0.79]

First we must provide a procedure written in IDL to evaluate the function, f, and its
partial derivatives with respect to the parameters ag and a4 :

PRO funct, X, A F, PDER
F=A0 * (1.0 - EXP(-A[1] * X))
; If the function is called with four paraneters,
calculate the partial derivatives:
I F N_PARAMS() GE 4 THEN BEG N
PDER s col umm dinension is equal to the nunber of
elements in xi and its row dinmension is equal to
the nunmber of paranmeters in the function F:
pder = FLTARR(N_ELEMENTS(X), 2)
Conpute the partial derivatives with respect to
a0 and place in the first row of PDER
pder[*, 0] = 1.0 - EXP(-A[1] * X)
; Conpute the partial derivatives with respect to
al and place in the second row of PDER
pder[*, 1] = A[0] * x * EXP(-A[1] * X)
ENDI F
END

Note
The function will not calculate the partial derivatives unlessit is called with four
parameters. This allows the calling routine (in this case CURVEFIT) to avoid the
extra computation in cases when the partial derivatives are not needed.

Next, we can use the following IDL commands to find the function’s parameters:

Curve and Surface Fitting Using IDL
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:Define the vectors of tabul ated:

X =10.25, 0.75, 1.25, 1.75, 2.25]

;data val ues:

Y =[0.28, 0.57, 0.68, 0.74, 0.79]

; Define a vector of weights:

W=101/Y

;Provide an initial guess of the function's paraneters:
A=11.0, 1.0]

; Comput e the paraneters a0 and al:

yfit = CURVEFIT(X, Y, W A SIGVA A FUNCTION_NAME = 'funct')
;Print the paraneters, which are returned in A

PRI NT, A

IDL prints:

0.787386 1.71602
Thus the nonlinear function that best fits the data is:
f (X) = 0.787386 (1 -—'1:71602x)

Routines for Curve and Surface Fitting
See “Curve and Surface Fitting” (in the functional category “Mathematics’ (IDL

Quick Reference)) for abrief description of IDL routinesfor curve and surface fitting.
Detailed information is available in the IDL Reference Guide.
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Eigenvalues and Eigenvectors

Consider a system of equations that satisfies the array-vector relationship Ax = Ax,
where A is an n-by-n array, x is an n-element vector, and A isascalar. A scalar A and
nonzero vector X that simultaneously satisfy this relationship are referred to as an
eigenvalue and an eigenvector of the array A, respectively. The set of all eigenvectors
of the array A isthen referred to as the eigenspace of A. Ideally, the eigenspace will
consist of n linearly-independent eigenvectors, although thisis not always the case.

IDL computes the eigenvalues and eigenvectors of areal symmetric n-by-n array
using Householder transformations and the QL algorithm with implicit shifts. The
eigenvalues of areal, n-by-n nonsymmetric array are computed from the upper
Hessenberg form of the array using the QR algorithm. Eigenvectors are computed
using inverse subspace iteration.

Although it is not practical for numerical computation, the problem of computing
eigenval ues and eigenvectors can also be defined in terms of the determinant
function. The eigenvalues of an n-by-n array A are the roots of the polynomial
defined by det(A — Al), where | isthe identity matrix (an array with 1s on the main
diagonal and Os elsewhere) with the same dimensions as A. By expressing
eigenvalues as the roots of a polynomial, we see that they can be either real or
complex. If an eigenvalue is complex, its corresponding eigenvectors are also
complex.

The following examples demonstrate how to use IDL to compute the eigenvalues and
eigenvectors of real, symmetric and nonsymmetric n-by-n arrays. Notethat it is
possible to check the accuracy of the computed eigenval ues and eigenvectors by
algebraically manipulating the definition given above to read Ax —Ax = 0; in this case
0 denotes an n-element vector, al elements of which are zero.

Symmetric Array with n Distinct Real Eigenvalues

To compute eigenvalues and eigenvectors of areal, symmetric, n-by-n array, begin
with asymmetric array A.

Note
The eigenvalues and eigenvectors of areal, symmetric n-by-n array are real
numbers.
A=1[[ 3.0, 1.0, -4.0], $
[ 1.0, 3.0, -4.0], $
[-4.0, -4.0, 8.0]]

Eigenvalues and Eigenvectors Using IDL
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Conpute the tridiagonal formof A
TRIRED, A, D, E
Conput e the eigenvalues (returned in vector D) and
; the eigenvectors (returned in the rows of the array A):
TRIQ., D E A
Print eigenval ues:
PRI NT, D

IDL prints:
2.00000 4.76837e-07 12.0000
The exact values are: [2.0, 0.0, 12.0].

; Print the eigenvectors, which are returned as row vectors in A
PRI NT, A

IDL prints:

0.707107 -0.707107 0. 00000
-0.577350 -0.577350 -0.577350
-0.408248 -0.408248 0. 816497

The exact eigenvectors are:

12 -1//2 0
-1//3 -1/J3 -1//3
-1//6 -1/J6 2//6

Nonsymmetric Array with n Distinct Real and
Complex Eigenvalues

To compute the eigenvalues and eigenvectors of areal, nonsymmetric n-by-n array,
begin with an array A. In this example, there are n distinct eigenvalues and n linearly-
independent eigenvectors.

A=][[ 1.0, 0.0, 2.0], $
[ 0.O, 1.0, -1.0], $
[-1.0, 1.0, 1.0]]
Reduce to upper Hessenberg fornat:
hes = ELMHES( A)
; Conpute the eigenval ues:
eval s = HQR(hes)
Print the eigenval ues:
PRI NT, evals

IDL prints:

Using IDL Eigenvalues and Eigenvectors
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( 1.00000, -1.73205)( 1.00000, 1.73205)
( 1.00000, 0.00000)

Note
The three eigenvalues are distinct, and that two are complex. Note also that
complex eigenvalues of an n-by-n real, nonsymmetric array always occur in
complex conjugate pairs.

Initialize a variable to contain the residual
residual =1
; Conpute the eigenvectors and the residual for each
; ei genval ue/ ei genvector pair, using double-precision arithnetic:
evecs = EI GENVEC(A, evals, /DOUBLE, RESIDUAL=resi dual)
; Print the eigenvectors, which are returned as
row vectors in evecs:
PRI NT, evecs[*, 0]

IDL prints:

( 0.68168704, 0.18789033)( -0.34084352, -0.093945164)
( 0.16271780, -0.59035830)
PRI NT, evecs[*, 1]

IDL prints:

( 0.18789033, 0.68168704)( -0.093945164, -0.34084352)
( -0.59035830, 0.16271780)
PRI NT, evecs[*, 2]

IDL prints:

( 0.70710678, 0.0000000)( 0.70710678, 0.0000000)
( -2.3570226e-21, 0.0000000)

We can check the accuracy of these results using the relation Ax —Ax = 0. The array
contained in the variable specified by the RESIDUAL keyword contains the result of
this computation.

PRI NT, residual
IDL prints:

( -1.2021898e-07, 1.1893681e-07)( 6.0109490e-08, -5.9468404e-08)
( 1.0300230e-07, 1.0411269e-07)
( 1.1893681e-07, -1.2021898e-07)( -5.9468404e-08, 6.0109490e-08)
( 1.0411269e-07, 1.0300230e-07)
( 0. 0000000, 0. 0000000) ( 0. 0000000, 0. 0000000)

Theresults are all zero to within machine precision.
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Repeated Eigenvalues

To compute the eigenvalues and eigenvectors of areal, nonsymmetric n-by-n array,
begin with an array A. In this example, there are fewer than n distinct eigenvalues, but
n independent eigenvectors are available.

A=1[[8.0, 0.0, 3.0], $
[2.0, 2.0, 1.0], $
[2.0, 0.0, 3.0]]
; Reduce A to upper Hessenberg form and conpute the ei genval ues.
; Note that both operations can be conbined into a single conmand.
eval s = HQR(ELMHES( A))
; Print the eigenval ues:
PRI NT, evals

IDL prints:

( 9.00000, 0.00000) ( 2.00000, 0.00000)
( 2.00000, 0.00000)

Note
The three eigenvalues are real, but only two are distinct.

; Initialize a variable to contain the residual

residual =1

; Conpute the eigenvectors and residual, using

; doubl e-precision arithmetic:

evecs = EI GENVEC(A, evals, /DOUBLE, RESIDUAL=resi dual)
Print the eigenvectors:

PRI NT, evecs[*, 0]

IDL prints:

( 0.90453403, 0.0000000)( 0.30151134, 0.0000000)
( 0.30151134, 0.0000000)
PRI NT, evecs[*, 1]

IDL prints:

( -0.27907279, 0.0000000)( -0.78140380, 0.0000000)
( 0.55814557, 0.0000000)
PRI NT, evecs[*, 2]

IDL prints:

( -0.27907279, 0.0000000)( -0.78140380, 0.0000000)
(  0.55814557, 0.0000000)
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We can compute an independent eigenvector for the repeated eigenvalue (2.0) by
perturbing it dlightly, allowing the algorithm EI GENVEC to recognize the eigenvalue
as distinct and to compute a linearly-independent eigenvector.

new esidual =1

evecs[*, 2] = ElI GENVEC(A, eval s[2]+1.0e-6, /DOUBLE, $
RESI DUAL = new esi dual )

PRI NT, evecs[*, 2]

IDL prints:

( -0.33333333, 0.0000000)( 0.66666667, 0.0000000)
( 0.66666667, 0.0000000)

Once again, we can check the accuracy of these results by checking that each element
in the residuals —for both the original eigenvectors and the perturbed eigenvector—
is zero to within machine precision.

The So-called Defective Case

In the so-called defective case, there are fewer than n distinct eigenvalues and fewer
than n linearly-independent eigenvectors. Begin with an array A:

A=1[[2.0, -1.0], $

[1.0, 0.0]]
; Reduce A to upper Hessenberg form and conpute the eigenval ues.
Note that both operations can be conbined into a single comand.

eval s = HQR(ELVHES(A))

; Print the eigenval ues:

PRI NT, evals

IDL prints:
(  1.00000, 0.00000)( 1.00000, 0.00000)

Note
Thetwo eigenvalues are real, but not distinct.

; Conpute the eigenvectors, using double-precision arithnetic:
evecs = ElI GENVEC(A, evals, /DOUBLE)

; Print the eigenvectors:

PRI NT, evecs[*, 0]

IDL prints:

( 0.70710678, 0.0000000)( 0.70710678, 0.0000000)
PRI NT, evecs[*, 1]

IDL prints:
( 0.70710678, 0.0000000)( 0.70710678, 0.0000000)
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We attempt to compute an independent eigenvector using the method described in the
previous example:

evecs[*,1] = ElI GENVEC(A, eval s[1] +1.0e-6, /DOUBLE)
PRI NT, evecs[1, *]

IDL prints:
( 0.70710678, 0.0000000)( 0.70710678, 0.0000000)

In this example, n independent eigenvectors do not exist. This situation is termed the
defective case and cannot be resolved analytically or numerically.

Routines for Computing Eigenvalues and
Eigenvectors

Using IDL

See “Eigenvalues and Eigenvectors’ (in the functional category “Mathematics’ (IDL
Quick Reference)) for a brief description of IDL routines for computing eigenvalues
and eigenvectors. Detailed information is available in the IDL Reference Guide.

Eigenvalues and Eigenvectors
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Gridding and Interpolation

Given a set of tabulated datain n-dimensions with each dimension being described as
follows:

L {xy=f(x)},
2. {%, ¥,z =F(xy}, or
3. {% iz, W =1 (%, ¥, 2)}

it ispossible to calculate intermediate values of the function f using interpolation.
IDL includes avariety of routines to solve this type of problem.

The determination of intermediate values is based upon an interpolating function that
establishes a relationship between the tabul ated data points. Different algorithms
employ different types of interpolating functions suitable for different types of data
trends.

Unlike curve-fitting algorithms, interpolation requires that the interpolating function
be an exact fit at each of the tabulated data points. Interpolation does not use any type
of error analysis and its accuracy depends upon the behavior of the interpolating
function between successive data points. Polynomial, spline, and nearest-neighbor
are among the interpolation methods used in IDL. Kriging is another interpolation
method, one which does not require an exact fit at each tabulated data point. Kriging
applies aweighting to each of the tabulated data points based on spatial variance and
trends among the points. Weights are computed by combining calculations of spatial
continuity and anistropy within either an exponential or spherical semivariogram
model.

Gridding, atopic closely related to interpolation, is the problem of creating
uniformly-spaced planar data from irregularly-spaced data. IDL handles this type of
problem by constructing a Delaunay triangulation. This method is highly accurate
and has great utility since many of IDL’s graphics routines require uniformly-gridded
data. Extrapolation, the estimation of values outside the range of tabulated data, is
also possible using this method.

Routines for Gridding and Interpolation
See “Gridding and Interpolation” (in the functional category “Mathematics’ (IDL

Quick Reference)) for a brief description of IDL routines for gridding and
interpolation. Detailed information is available in the IDL Reference Guide.
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Hypothesis Testing

Hypothesi stesting tests one or more sample popul ations for a statistical characteristic
or interaction. The results of the testing process are generally used to formulate
conclusions about the probability distributions of the sample populations.

Hypothesis testing involves four steps:
e Theformulation of a hypothesis.
e Theselection and collection of sample population data.
e Theapplication of an appropriate test.
e Theinterpretation of the test results.

For example, suppose the FDA wishes to establish the effectiveness of anew drugin
the treatment of a certain ailment. Researchers test the assumption that the drug is
effective by administering it to a sample population and collecting data on the
patients’ health. Once the data are collected, an appropriate statistical test is selected
and the results analyzed. If the interpretation of the test results suggests a statistically
significant improvement in the patients' condition, the researchers conclude that the
drug will be effectivein general.

It isimportant to remember that avalid or successful test does not prove the proposed
hypothesis. Only by disproving competing or opposing hypotheses can agiven
assumption’s vaidity be statistically established.

One- and Two-sided Tests

In the above example, only the hypothesis that the drug would significantly improve
the condition of the patients receiving it was tested. This type of test is called one-
sided or one-tailed, because it is concerned with deviation in one direction from the
norm (in this case, improvement of the patients' condition). A hypothesis designed to
test the improvement or ill-effect of thetrial drug on the patient group would be
called two-sided or two-tailed.

Parametric and Nonparametric Tests

Using IDL

Tests of hypothesis are usually classified into parametric and nonparametric methods.
Parametric methods make assumptions about the underlying distribution from which
sample populations are selected. Nonparametric methods make no assumptions about
a sample population’s distribution and are often based upon magnitude-based

ranking, rather than actual measurement data. In many casesit ispossibleto replacea
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parametric test with a corresponding nonparametric test without significantly
affecting the conclusion.

The following example demonstrates this by replacing the parametric T-means test
with the nonparametric Wilcoxon Rank-Sum test to test the hypothesis that two
sample populations have significantly different means of distribution.

Define two sample populations.

X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $
305, 270, 260, 251, 275, 288, 242, 304, 267]
[201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $
271, 214, 216, 175, 192, 208, 150, 281, 196]

Y

Compute the T-statistic and its significance, using IDL’s TM_TEST function,
assuming that X and Y belong to Normal populations with the same variance.

PRINT, TM_TEST(X, V)
IDL prints:
5.52839 2.52455e- 06

The small value of the significance (2.52455e-06) indicates that X and Y have
significantly different means.

Compute the Wilcoxon Rank-Sum Test, using IDL's RS_TEST function, to test the
hypothesisthat X and Y have the same mean of distribution.

PRI NT, RS_TEST(X, Y)
IDL prints:
-4.26039 1.01924e-05

The small value of the computed probability (1.01924e-05) requires the rejection of
the proposed hypothesis and the conclusion that X and Y have significantly different
means of distribution.

Each of IDL’s 11 parametric and nonparametric hypothesis testing functionsis based
upon awell-known and widely-accepted statistical test. Each of these functions
returns a two-element vector containing the statistic on which the test is based and its
significance. Examples are provided and demonstrate how the result is interpreted.

Routines for Hypothesis Testing
See “Hypothesis Testing” (in the functional category “Mathematics’ (IDL Quick

Reference)) for abrief description of IDL routines for hypothesis testing. More
detailed information is available in the IDL Reference Guide.

Hypothesis Testing Using IDL
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Integration

Numerical methods of approximating integrals are important in many areas of pure
and applied science. For afunction of asingle variable, f (X), it is often the case that
the antiderivative F = [ f (X) dx is unavailable using standard techniques such as
trigonometric substitutions and integration-by-parts formulas. These standard
techniques become increasingly unusable when integrating multivariate functions,
f(x,y) and f (X, y, 2). Numerically approximating the integral operator providesthe
only method of solution when the antiderivative is not explicitly available. IDL offers
the following numerical methods for the integration of uni-, bi-, and trivariate
functions:

* Integration of a univariate function over an open or closed interval is possible
using one of several routines based on well known methods developed by
Romberg and Simpson.

| = jx bf(x)dx

X =

» Theproblem of integrating over atabulated set of data{ x;, y; = f (x;) } can be
solved using a highly accurate 5-point Newton-Cotes formula. This method is
more accurate and efficient than using interpolation or curve-fitting to find an
approximate function and then integrating.

* Integration of a bivariate function over aregular or irregular region in the x-y
planeis possible using an iterated Gaussian Quadrature routine.

x=b,y =q(x

=00

x=a"y=p(x)

)
f(x,y)dydx

* Integration of atrivariate function over aregular or irregular region in x-y-z
spaceis possible using an iterated Gaussian Quadrature routine.

| = j . bj . q(x)j e y)f(x, y, Z)dzdydx

x=a"y=p(x)"z=u(xy)

Using IDL Integration
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Note
IDL’s iterated Gaussian Quadrature routines, INT_2D and INT_3D, follow the dy-
dx and dz-dy-dx order of evaluation, respectively. Problems not conforming to this
standard must be changed as described in the following example.

A Bivariate Function

Suppose that we wish to evaluate
y=4_ x=

5
J'y ojx_ yy [tos(x”)dxdy

The order of integration isinitially described as a dx-dy region in the x-y plane. Using
the diagram below, you can easily change the integration order to dy-dx.

Yi ‘=

(2,4)

e

Figure 7-1: The Bivariate Function

Theintegral is now of the form

5
jx_ojy ) y [Tos(x")dydx

The new expression can be evaluated using the INT_2D function.

Touse INT_2D, we must specify the function to be integrated and expressions for the
upper and lower limits of integration. First, we write an IDL function for the
integrand, the function f (x, y):

FUNCTI ON fxy, X, Y
RETURN, Y * COS(X5)
END

Integration Using IDL
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Next, we write afunction for the limits of integration of the inner integral. Note that
the limits of the outer integral are specified numerically, in vector form, while the
limits of the inner integral must be specified as an IDL function even if they are
constants. In this case, the functioniis;

FUNCTION pg_limts, X
RETURN, [0.0, X*2]
END

Now we can use the following IDL commands to print the value of the integral
expressed above. First, we define avariable AB_LIMITS containing the vector of
lower and upper limits of the outer integral. Next, we call INT_2D. The first
argument is the name of the IDL function that represents the integrand (FXY, in this
case). The second argument is the name of the variable containing the vector of limits
for the outer integral (AB_LIMITS, in this case). The third argument is the name of
the IDL function defining the lower and upper limits of the inside integral
(PQ_LIMITS, inthis case). The fourth argument (48) refers to the number of
transformation points used in the computation. As a general rule, the number of
transformation points used with iterated Gaussian Quadrature should increase as the
integrand becomes more oscillatory or the region of integration becomes more
irregular.

ab_limts =[0.0, 2.0]

PRINT, INT_20('fxy', ab_linmts, '"pg_limts', 48)

IDL prints:
0. 055142668

Thisisthe exact solution to 9 decimal accuracy.

A Trivariate Function

Using IDL

Suppose that we wish to evaluate

J-Xzzjy=«/4—x2 2= Ja—xP_y?
X==2 y:_ 4_X2 z=0

Thisintegral can be evaluated using the INT_3D function. Aswith INT_2D, we must
specify the function to be integrated and expressions for the upper and lower limits of
integration. Note that in this case IDL functions must be provided for the upper and
lower integration limits of both inside integrals.

z(x2 + y2 + 22)3/2dzdydx

For the above integral, the required functions are the integrand f (X, Y, 2):

Integration
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FUNCTI ON fxyz, X, Y, Z
RETURN, Z * (X*2 + Y"2 + Z"2)"1.5
END

The limits of integration of the first inside integral:

FUNCTION pg_limts, X
RETURN, [-SQRT(4.0 - X*2), SQRT(4.0 -X"2)]
END

The limits of integration of the second inside integral:

FUNCTION uv_limts, X Y
RETURN, [0.0, SQRT(4.0 - X*2 - Y*2)]
END

Chapter 7: Mathematics

We can use the following IDL commands to determine the value of the above integral

using 6, 10, 20 and 48 transformation points.
For 6 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
"po_limts', "uv_limts', 6)

IDL prints:
57. 417720
For 10 transformation points:

PRI NT, INT_3D('fxyz', [-2.0, 2.0], $
‘po_limts', ‘uv_limts', 10)

IDL prints:
57. 444248
20 transformation points:

PRI NT, INT_3D('fxyz', [-2.0, 2.0], $
‘po_limts', ‘uv_limts', 20)

IDL prints:
57. 446201
48 transformation points:

PRI NT, INT_3D('fxyz', [-2.0, 2.0], $
"p_limts', ‘uv_limts', 48)

IDL prints:
57. 446265
The exact solution to 6-decimal accuracy is 57.446267.
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Routines for Differentiation and Integration
See “Differentiation and Integration” (in the functional category “Mathematics” (IDL

Quick Reference)) for abrief description of IDL routines for differentiation and
integration. Detailed information is available in the IDL Reference Guide.

Using IDL Integration
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Linear Systems

IDL offers avariety of methods for the solution of simultaneous linear equations. In
order to use these routines successfully, the user should consider both existence and
unigueness criteria and the potential difficulties in finding the solution numerically.

The solution vector x of an n-by-n linear system Ax = b is guaranteed to exist and to
be unique if the coefficient array A isinvertible. Using asimple algebraic
manipulation, it is possible to formulate the solution vector x in terms of the inverse
of the coefficient array A and the right-side vector b: x = A™th. Although this
relationship provides a concise mathematical representation of the solution, itis
never used in practice. Array inversion is computationally expensive (requiring a
large number of floating-point operations) and prone to severe round-off errors.

An dternate way of describing the existence of a solution isto say that the system
Ax=bissolvableif and only if the vector b may be expressed as alinear
combination of the columns of A. This definition isimportant when considering the
solutions of non-square (over- and under-determined) linear systems.

While the invertabiltiy of the coefficient array A may ensure that a solution exists, it
does not help in determining the solution. Some systems can be solved accurately
using numerical methods whereas others cannot. In order to better understand the
accuracy of anumerical solution, we can classify the condition of the system it
solves.

The scalar quantity known as the condition number of alinear system isameasure of
a solution’s sensitivity to the effects of finite-precision arithmetic. The condition
number of an n-by-n linear system Ax = b is computed explicitly as |JA[JA™| (where| |
denotes a Euclidean norm). A linear system whose condition number issmall is
considered well-conditioned and well suited to numerical computation. A linear
system whose condition number islarge is considered ill-conditioned and prone to
computational errors. To some extent, the solution of an ill-conditioned system may
be improved using an extended-precision data type (such as double-precision float).
Other situations require an approximate solution to the system using its Singular
Value Decomposition.

The following two examples show how the singular value decomposition may be
used to find solutions when alinear system is over- or underdetermined.

Overdetermined Systems

In the case of the overdetermined system (when there are more linear equations than
unknowns), the vector b cannot be expressed as a linear combination of the columns
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of array A. (In other words, b lies outside of the subspace spanned by the columns of
A) Using IDL’s SVDC procedure, it is possible to determine a projected solution of
the overdetermined system (b is projected onto the subspace spanned by the columns
of A and then the system is solved). This type of solution has the property of
minimizing the residual error E = b — Ax in aleast-squares sense.

Suppose that we wish to solve the following linear system:

1.0 2.0/, 4.0
0=
1.0 3.0 - |50

X
0.000/ Y |60
The vector b does not liein the two-dimensional subspace spanned by the columns of

A (thereisno linear combination of the columns of A that yield b), and therefore an
exact solution is not possible.

b

/vcol umn2 .
>
Pb
column 1

Figure 7-2: Overdetermined System Diagram

It is possible, however, to find a solution to this system that minimizes the residual
error by orthogonally projecting the vector b onto the two-dimensional subspace
spanned by the columns of the array A. The projected vector is then used as the right-
hand side of the system. The orthogonal projection of b onto the column space of A
may be expressed with the array-vector product A(ATA)ATb, where A(ATA) AT is
known as the projection matrix, P.
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In this example, the array-vector product Pb yields:

4.0
5.0
0.0

and we wish to solve the linear system

1.0 2.0 4.0
1.0 3.0 *o|= 5.0/ Where Xo| = {20}

1.0
0.0 00U |00 X1

In many cases, the explicit calculation of the projected solution is numerically
unstable, resulting in large accumulated round-off errors. For thisreason it is best to
use singular value decomposition to effect the orthogonal projection of the vector b
onto the subspace spanned by the columns of the array A.

The following IDL commands use singular value decomposition to solve the system
in anumerically stable manner. Begin with the array A:

A=1[[1.0, 2.0], $
[1.0, 3.0], $
[0.0, 0.0]]

Define the right-hand side vector B:
B=1[4.0, 5.0, 6.0]
; Conpute the singular val ue deconposition of A:
SVDC, A, W U, V

Create adiagonal array WP of reciprocal singular values from the output vector W.
To avoid overflow errors when the reciprocal values are calculated, only elements
with absolute values greater than or equal to 1.0 x 10™ are reciprocated.

N = N_ELEMENTS(W
W = FLTARR(N, N)
FORK =0, N1DOS$
IF ABS(WK)) GE 1.0e-5 THEN WP(K, K) = 1.0/ WK)

We can now express the solution to the linear system as a array-vector product. (See
Section 2.6 of Numerical Recipes for aderivation of thisformula.)

X =V ## WP ## TRANSPCSE(U) ## B
Print the sol ution:
PRI NT, X

Linear Systems Using IDL
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IDL Prints:;

2.00000
1. 00000

Underdetermined Systems

Using IDL

In the case of the underdetermined system (when there are fewer linear equations
than unknowns), aunique solution is not possible. Using IDL’s SVDC procedureit is
possible to determine the minimal norm solution. Given a vector norm, this type of
solution has the property of having the minimal length of all possible solutions with
respect to that norm.

Suppose that we wish to solve the following linear system.

Xo
1.0 3.03.020 x| 1.0
20 6.09050 ol 5.0
-1.0 —3.0 3.0 0.0]| 2 5.0
X3

Using elementary row operationsit is possible to reduce the system to

Xo
1.0 3.0 3.0 2.0 x| 1.0
0.00.03010 o 3.0
0.0 0.0 0.0 0.0[ |2 0.0
X3

It is now possible to express the solution x in terms of x; and Xa:

_—2—3x1—x3_
X = X1
1-x5/3
X3

The values of x; and x5 are completely arbitrary. Setting x; = 0 and x3 = O resultsin
one possible solution of this system:

Another possible solution is obtained using singular value decomposition and results
in the minimal norm condition. The minimal norm solution for this system is:

Linear Systems
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-2.0
0.0
1.0
0.0

X =

—-0.211009
—-0.633027
0.963303
0.110092

Note that this vector also satisfies the solution x asit is expressed in terms of x;
and X3.

X =

The following IDL commands use singular value decomposition to find the minimal
norm solution. Begin with the array A:

A=][ 1.0, 3.0, 3.0, 2.0], $

.0, 6.0, 9.0, 5.0], $

.0, -3.0, 3.0, 0.0]]

the right-hand side vector B:
B=1[1.0, 5.0, 5.0]

; Conpute the deconposition of A:
SVDC, A, W U, V

Create adiagonal array WP of reciprocal singular values from the output vector W.
To avoid overflow errors when the reciprocal values are calculated, only elements
with absolute values greater than or equal to 1.0 x 10™ are reciprocated.

N = N_ELEMENTS(W
WP = FLTARR(N, N)
FORK =0, N1 DO$

IF ABS(WK)) GE 1.0e-5 THEN WP(K, K) = 1.0/ WK)

[ 2
[-1
e

We can now express the solution to the linear system as a array-vector product. (See
Section 2.6 of Numerical Recipes for aderivation of thisformula.) The solution is
expressed in terms of x; and X3 with minimal norm.

X =V ## WP ## TRANSPCSE(U) ## B
;Print the solution:
PRI NT, X

IDL Prints:

-0. 211009
-0. 633027
0. 963303

Linear Systems Using IDL
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0.110092
Complex Linear Systems

Wecanuse IDL’'sLU_COMPLEX function to compute the solution to alinear system
with real and complex coefficients. Suppose we wish to solve thefollowing linear system:

-1+0i 1-3i 2+0i 3+3i 15-2i
—-2+0i —-1+3i 0+1i 3+1i — -2-1i
3+0i O0+4i 0-1i 0-3i —20 + 11i
2+0i 1+1i 2+1i 2+1i — 10+ 10i

;First we define the real part of the conplex coefficient array:
re =1[[-1, 1, 2, 3], $
[-2, -1, 0, 3], $
[3, 0, O, O], $
[2, 1, 2, 2]]
; Next, we define the imaginary part of the coefficient array:
im=7[[0, -3, O, 3], $
[0, 3, 1, 1], $

[0, 4, -1, -3], $
[0, 1, 1, 1]]
Conbi ne the real and imaginary parts to form
a single conplex coefficient array:
A = COWLEX(re, im
Define the right-hand side vector B:
B = [ COWLEX( 15, -2), COWLEX(-2,-1), COWLEX(-20,11), $
COVPLEX( - 10, 10)
Conput e the sol ution using doubl e-precision conplex arithnetic:
Z = LU COWLEX(A, B, /DOUBLE)
PRI NT, TRANSPOSE(Z), FORMAT = '(f5.2, ",", f5.2, "i")'

IDL prints:

-4.00, 1.00i
2.00, 2.00i
0. 00, 3.00i

-0. 00, - 1. 00i

We can check the accuracy of the computed solution by computing the residual,
Azb:

PRI NT, A##Z-B

Using IDL Linear Systems
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IDL prints:

—~ e~~~

0. 00000,
0. 00000,
0. 00000,
0. 00000,

0. 00000)
0. 00000)
0. 00000)
0. 00000)

Chapter 7: Mathematics

Routines for Solving Simultaneous Linear Equations

See “Linear Systems” (in the functional category “Mathematics’ (IDL Quick
Reference)) for a brief description of IDL routines for solving simultaneous linear
equations. Detailed information is available in the IDL Reference Guide.

Linear Systems
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Nonlinear Equations

Using IDL

The problem of finding a solution to a system of n nonlinear equations, F(x) = 0, may
be stated as follows:

given F: R" - R", find x« (an element of R") such that F(x) =0

For example:

X« = [0, 3] or x« =[3, 0]

Note
A solution to a system of nonlinear equations is not necessarily unique.

The most powerful and successful numerical methods for solving systems of
nonlinear equations are loosely based upon a simple two-step iterative method
frequently referred to as Newton's method. This method begins with an initial guess
and constructs a solution by iteratively approximating the n-dimensional nonlinear
system of equations with an n-by-n linear system of equations.

The first step formulates an n-by-n linear system of equations (Js = — F) where the
coefficient array Jis the Jacobian (the array of first partial derivativesof F), sisa
solution vector, and — F is the negative of the nonlinear system of equations. Both J
and — F are evaluated at the current value of the n-element vector x.

I ¢ =—F(x)

The second step uses the solution s, of the linear system as adirectional update to the
current approximate solution x, of the nonlinear system of equations. The next
approximate solution X.;1 isalinear combination of the current approximate solution
X and the directional update s;.

X+l = Xt S
The success of Newton’s method relies primarily on providing an initial guess close

to a solution of the nonlinear system of equations. In practice this proves to be quite
difficult and severely limits the application of this simple two-step method.

IDL provides two algorithms that are designed to overcome the restriction that the
initial guess be close to a solution. These algorithms implement a line search which
checks, and if necessary modifies, the course of the algorithm at each step ensuring
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progress toward a solution of the nonlinear system of equations. IDL's NEWTON
and BROY DEN functions are among a class of algorithms known as quasi-Newton
methods.

The solution of an n-dimensiona system of nonlinear equations, F(x) = 0, is often
considered aroot of that system. As aone-dimensional counterpart to NEWTON and
BROYDEN, IDL providesthe FX_ROOT and FZ_ROOTS functions.

Routines for Solving Nonlinear Equations
See “Nonlinear Equations’ (in the functiona category “Mathematics’ (IDL Quick

Reference)) for a brief description of IDL routines for solving systems of nonlinear
equations. Detailed information is available in the IDL Reference Guide.

Nonlinear Equations Using IDL
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Optimization

Using IDL

The problem of finding an unconstrained minimizer of an n-dimensional function, f,
may be stated as follows:

givenf: R" - R, find x« (an element of R") such that f(x«) is a minimum of f.
For example:

f(0 = (xg—3)" + (¥, - 2

X =[3, 2]

In minimizing an n-dimensional function f, it is a necessary condition that the

gradient at the minimizer x., Of(x+), be the zero vector. Mathematically expressing
this condition defines the following system of nonlinear equations.

of(x)

0Xg

of(x)

0Xx

of(x)

_axn_l_

Thisrelation might suggest that finding aminimizer is equivalent to solving a system
of linear equations based on the gradient. In most cases, however, thisis not true. Itis
just aslikely that a solution, x«, of Of(xX)=0 be a maximizer or alocal minimizer of f.
Thus the gradient alone does not provide sufficient information in determining the
role of X«.

IDL provides two algorithms that do sufficiently determine the global minimizer of
an n-dimensional function. IDL’s DFPMIN routine is among a class of algorithms
known as variable metric methods and requires a user-supplied analytic gradient of
the function to be minimized. IDL's POWELL routine implements a direction-set
method that does not require a user-supplied analytic gradient. The utility of the
POWELL routineis evident as the function to be minimized becomes more
complicated and partial derivatives become more difficult to calculate.

Optimization
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Routines for Optimization
See “Optimization” (in the functional category “Mathematics” (IDL Quick

Reference)) for a brief description of IDL routines for optimization. Detailed
information is available in the IDL Reference Guide.
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Sparse Arrays

The occurrence of zero elementsin alarge array is both a computational and storage
inconvenience. An array in which alarge percentage of elements are zerosisreferred
to as being sparse.

Because standard linear algebra techniques are highly inefficient when dealing with
gparse arrays, IDL incorporates a collection of routines designed to handle them
effectively. These routines use the row-indexed sparse storage method, which stores
the array in structure form, as a vector of dataand a vector of indices. The length of
each vector is equal to 1 plus the number of diagonal elements of the array plus the
number of off-diagonal elements with an absolute magnitude greater than or equal to
a specified threshold value. Diagonal elements of the array are always retained even
if their absolute magnitude is less than the specified threshold. Sparse array routines
that handle array-vector and array-array multiplication, file input/output, and the
solution of systems of simultaneous linear equations are included.

Note
For more information on IDL’s sparse array storage method, see section 2.7,
“Sparse Linear Systems,” in Numerical Recipesin C: The Art of Scientific
Computing (Second Edition), published by Cambridge University Press.

When considering using IDL’s sparse array routines, remember that the
computational savings gained by working in sparse storage format is at least partialy
offset by the need to first convert the arrays to that format. Although an absolute
determination of when to use sparse format is not possible, the example below
demonstrates the time savings when solving a 500 by 500 linear system in which
approximately 50% of the coefficient array’s elements as zeros.

Diagonally-Dominant Array

Using IDL

Create a 500-by-500 element pseudo-random diagonally-dominant floating-point
array in which approximately 50% of the elements as zeros. (In a diagonally-
dominant array, the diagonal element in a given row is greater than the sum of the
absolute values of the non-diagonal elementsin that row.)

N = 500L

A = RANDOMN( SEED, N, N)*10

; Set elements with absol ute nagnitude greater than or
; equal to eight to zero:

| = WHERE( ABS(A) CE 8)

All] =0.0

; Set each diagonal elenent to the absol ute sum of

Sparse Arrays
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; its row elements plus 1.0:
diag = TOTAL(ABS(A), 1)
A(INDGEN(N) * (N+1)) = diag + 1.0
Create a right-hand side vector, b, in which 40% of
; the elenents are ones and 60% are twos.
B = [ REPLI CATE(1.0, 0.4*N), REPLICATE(2.0, 0.6*N)]

We now calculate a solution to this system using two different methods, measuring
the time elapsed. First, we compute the solution using the iterative biconjugate
gradient method and a sparse array storage format. Note that we include everything
between the start and stop timer commands as a single operation, so that only
computation time (as opposed to typing time) is recorded.

; Begin with an initial guess:

X = REPLI CATE( 1.0, N_ELEMENTS(B))
Start the tiner:

start = SYSTIME(1l) & $

; Solve the system

resultl = LINBCG SPRSIN(A), B, X) & $

; Stop the tinmer.

stop = SYSTI ME(1)
Print the time taken, in seconds:

PRINT, 'Time for lterative Biconjugate Gradient:', stop-start
IDL prints:
Time for lterative Biconjugate G adient 1.1259040

Remember that your result will depend on your hardware configuration.
Next, we compute the solution using LU decomposition.

Start the tinmer:
start = SYSTIME(1l) & $
; Conpute the LU deconposition of A
LUDC, A index & $
; Conpute the solution:
result2 = LUSOL(A, index, B) & $
Stop the tiner:
stop = SYSTI ME(1)
; Print the tinme taken, in seconds:
PRINT, 'Time for LU Deconposition:', stop-start

IDL prints:
Time for LU deconposition 14.871168

Finally, we can compare the absolute error between resultl and result2. The
following commands will print the indices of any elements of the two results that
differ by more than 1.0 x 10'5, or a—1if the two results are identical to within five
decimal places.
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error = ABS(resultl-result?2)

PRI NT, WHERE(error GT 1.0e-5)
IDL prints:

-1

See the documentation for the WTN function for an example using IDL’s sparse
array functions with image data.

Note
The times shown here were recorded on a DEC 3000 Alphaworkstation running

OSF/1; they are shown as examples only. Your times will depend on your specific
computing platform.

Routines for Handling Sparse Arrays
See “ Sparse Arrays’ (in the functional category “Mathematics’ (IDL Quick

Reference)) for abrief description of IDL routines for handling sparse arrays. More
detailed information is available in the IDL Reference Guide.
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Time-Series Analysis

A time-seriesis a sequential collection of data observations indexed over time. In
most cases, the observed datais continuous and is recorded at a discrete and finite set
of equally-spaced points. An n-element time-seriesis denoted as X = (X, X1, Xo, ...,
Xn_1), Where the time-indexed distance between any two successive observations is
referred to as the sampling interval.

A widely held theory assumes that a time-series is comprised of four components:
e A trend or long term movement.
e A cyclica fluctuation about the trend.
e A pronounced seasonal effect.
e Aresidud, irregular, or random effect.

Collectively, these components make the analysis of atime-series afar more
challenging task than just fitting alinear or nonlinear regression model. Adjacent
observations are unlikely to be independent of one another. Clusters of observations
are frequently correlated with increasing strength as the time intervals between them
become shorter. Often the analysisis a multi-step process involving graphical and
numerical methods.

Thefirst step in the analysis of atime-seriesisthe transformation to stationary series.
A stationary series exhibits statistical properties that are unchanged as the period of
observation is moved forward or backward in time. Specifically, the mean and
variance of a stationary time-series remain fixed in time. The sample autocorrelation
function is acommonly used tool in determining the stationarity of atime-series. The
autocorrelation of atime-series measures the dependence between observations as a
function of their time differences or lag. A plot of the sample autocorrelation
coefficients against corresponding lags can be very helpful in determining the
stationarity of atime-series.

For example, suppose the IDL variable X contains time-series data:

X = [5.44, 6.38, 5.43, 5.22, 5.28,
5.21, 5.23, 4.33, 5.58, 18,
6.16, 6.07, 6.56, 5.93, 70,
5.36, 5.17, 5.35, 5.61, 83,
5.29, 5.58, 4.77, 5.17, 5.33]

oo
@ P BH B
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The following IDL commands plot both the time-series data and the sample
autocorrelation versus the lags.

Set the plotting window to hold two plots and plot the data:
I PLOT, X, VIEWGRI D[ 1, 2]

Compute the sample autocorrelation function for time lagged values 0 — 20 and plot.

| ag = | NDGEN(21)

result = A CORRELATE(X, | ag)

| PLOT, |ag, result, /VIEWNEXT
; Add a reference line at zero:
| PLOT, [0,20], [0,0], /OVERPLOT

The following figure shows the resulting graphs.
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Figure 7-3: Time-series data (Top) and Autocorrelation of that Data
Versus the Lag (Bottom)

Thetop graph plots time-series data. The bottom graph plots the autocorrelation of
that data versus the lag. Because the time-series has a significant autocorrelation up
to alag of seven, it must be considered non-stationary.

Nonstationary components of atime-series may be eliminated in a variety of ways.
Two frequently used methods are known as moving averages and forward
differencing. The method of moving averages dampens fluctuations in a time-series
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by taking successive averages of groups of observations. Each successive
overlapping sequence of k observations in the seriesis replaced by the mean of that
sequence. The method of forward differencing replaces each time-series observation
with the difference of the current observation and its adjacent observation one step
forward in time. Differencing may be computed recursively to eliminate more
complex nonstationary components.

Once atime-series has been transformed to stationarity, it may be modeled using an

autoregressive process. An autoregressive process expresses the current observation,
X, as acombination of past time-series values and residual white noise. The simplest
caseis known as afirst order autoregressive model and is expressed as

Xt = @Xq t Oy
The coefficient @ is estimated using the time-series data. The general autoregressive
model of order p is expressed as

X = QX T@X ot QX p T 0
Modeling a stationary time-series as a p-th order autoregressive process alows the
extrapolation of datafor future values of time. This processis know as forecasting.

Routines for Time-Series Analysis

See " Time-Series Analysis’ (in the functional category “Mathematics’ (IDL Quick
Reference)) for a brief description of IDL routines for time-series analysis. Detailed
information is available in the IDL Reference Guide.
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Multivariate Analysis

IDL provides a number of tools for analyzing multivariate data. These tools are
broadly grouped into two categories: Cluster Analysis and Principal Components
Analysis.

Cluster Analysis

Using IDL

Cluster Analysis attempts to construct a sensible and informative classification of an
initially unclassified sample population using a set of common variables for each
individual. The clusters are constructed so as to group samples with the similar
features, based upon a set of variables. The samples (contained in the rows of an
input array) are each assigned a cluster number based upon the values of their
corresponding variables (contained in the columns of an input array).

In computing a cluster analysis, a predetermined number of cluster centers are
formed and then each sample is assigned to the unique cluster which minimizes a
distance criterion based upon the variables of the data. Given an m-column, n-row
array, IDL's CLUST_WTS and CLUSTER functions compute n cluster centersand n
clusters, respectively. Conceivably, some clusters will contain multiple samples
while other clusters will contain none. The choice of clustersis arbitrary; in general,
however, the user will want to specify a number less than the default (the number of
rowsin the input array). The cluster number (the number that identifies the cluster
group) assigned to a particular sample or group of samplesis not necessarily unique.

It is possible that not all variables play an equal role in the classification process. In
this situation, greater or lesser importance may be given to each variable using the
VARIABLE WTS keyword to the CLUST_WTS function. The default behavior isto
assume al variables contained in the data array are of equal importance.

Under certain circumstances, a classification of variables may be desired. The
CLUST_WTSand CLUSTER functions provide this functionality by first
transposing the m-column, n-row input array using the TRANSPOSE function and
then interchanging the roles of variables and samples.

Example of Cluster Analysis

Define an array with 5 variables (columns) and 9 samples (rows):

array = [[ 99, 79, 63, 87, 249 ],

[ 67, 41, 36, 51, 114 1],
67, 41, 36, 51, 114 ],
94, 191, 160, 173, 124 ],
42, 108, 37, 51, 41 ],

Hh B PP
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67, 41, 36, 51, 1141, $
94, 191, 160, 173, 1241, $
99, 79, 63, 87, 2491, $
67, 41, 36, 51, 114 1]
Conpute the cluster weights with four cluster centers:
wei ghts = CLUST_WIS(array, N_CLUSTERS = 4)
Conpute the cluster assignments, for each sanpl e,
into one of four clusters:
result = CLUSTER(array, weights, N CLUSTERS = 4)
Di splay the cluster assignnent and correspondi ng sanple (row):
FORk =0, 8 DO %
PRINT, result[Kk], array[*, K]

————

IDL prints:
1 99 79 63 87 249
3 67 41 36 51 114
3 67 41 36 51 114
0 94 191 160 173 124
2 42 108 37 51 41
3 67 41 36 51 114
0 94 191 160 173 124
1 99 79 63 87 249
3 67 41 36 51 114

Samples 0 and 7 contain identical dataand are assigned to cluster #1. Samples 1, 2, 5,
and 8 contain identical data and are assigned to cluster #3. Samples 3 and 6 contain
identical data and are assigned to cluster #0. Sample 4 is unique and is assigned to
cluster #2.

If this exampleisrun several times, each time computing new cluster weights, it is
possible that the cluster number assigned to each grouping of samples may change.

Principal Components Analysis

Principal components analysis is amathematical technique which describes a
multivariate set of data using derived variables. The derived variables are formulated
using specific linear combinations of the original variables. The derived variables are
uncorrelated and are computed in decreasing order of importance; the first variable
accounts for as much as possible of the variation in the original data, the second
variable accounts for the second largest portion of the variation in the original data,
and so on. Principal components analysis attempts to construct a small set of derived
variables which summarize the original data, thereby reducing the dimensionality of
the original data.

The principal components of a multivariate set of data are computed from the
eigenvalues and eigenvectors of either the sample correlation or sample covariance
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Using IDL

matrix. If the variables of the multivariate data are measured in widely differing units
(large variations in magnitude), it is usually best to use the sample correlation matrix
in computing the principal components; thisis the default method used in IDL’s
PCOMP function.

Another alternative is to standardize the variables of the multivariate data prior to
computing principal components. Standardizing the variables essentially makes them
al equally important by creating new variables that each have a mean of zero and a
variance of one. Proceeding in this way allows the principal components to be
computed from the sample covariance matrix. IDL’s PCOMP function includes
COVARIANCE and STANDARDIZE keywords to provide this functionality.

For example, suppose that we wish to restate the following data using its principal
components. There are three variables, each consisting of five samples.

Var 1 Var 2 Var 3
Sample 1 20 10 3.0
Sample 2 4.0 20 3.0
Sample 3 4.0 10 0.0
Sample 4 20 3.0 3.0
Sample 5 5.0 1.0 9.0

Table 7-1: Data for Principal Component Analysis

We compute the principal components (the coefficients of the derived variables) to 2
decimal accuracy and store them by row in the following array.

0.87 -0.70 0.69
0.01 -0.64 —0.66
049 0.32 -0.30

The derived variables { z;, z,, z3} are then computed as follows:

Multivariate Analysis
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2.0 1.0 3.0
4.0 2.0 3.0
z1 = (0.87) |40/ +(-0.70)| 1 0| +( 0.69)|0.0
2.0 3.0 3.0
5.0] 1.0] 9.0]
2.0 1.0 3.0
4.0 2.0 3.0
z2 = (0.01) | 40| +(-0.64)|1 0| +(-0.66) |00
2.0 3.0 3.0
5.0 1.0 9.0
20 1.0 3.0
4.0 2.0 3.0
z3 = (0.49) 40| +( 0.32)|1 0| +(-0.30)| 0,0
2.0 30 3.0
5.0 1.0 9.0

In this example, analysis shows that the derived variable z; accounts for 57.3% of the
total variance of the original data, the derived variable z, accounts for 28.2% of the
total variance of the original data, and the derived variable z3 accounts for 14.5% of
the total variance of the original data.

Example of Derived Variables from Principal Components

The following example constructs an appropriate set of derived variables, based upon
the principal components of the original data, which may be used to reduce the
dimensionality of the data. The data consist of four variables, each containing of
twenty samples.

; Define an array with 4 variables and 20 sanpl es:

data = [[19.5, 43.1, 29.1, 11.9], $
[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 37.0, 18.7], $
[29.8, 54.3, 31.1, 20.1], $
[19.1, 42.2, 30.9, 12.9], $

Multivariate Analysis Using IDL
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initialized as nonzero values prior to calling PCOMP,

coef

result
El GENVALUES = eval ,

PRI NT,

IDL prints:

81.
102.
109.
110.

81.
104.
121.
111.

97.
102.
118.
118.

81.

88.

74.
113.
109.
117.

91.
102.

I

OO NDWOUTOUTOTO WWOOO O~

[ 25.
[31.
[ 27.
[22.
[ 25.
[31.
[ 30.
[18.
[19.
[14.
[ 29.
[27.
[ 30.
[ 22.
[ 25.

The variables that will contain the values returned by the COEFFICIENTS,
EIGENVALUES, and VARIANCES keywords to the PCOMP routine must be

1 & eval
; Conpute the derived variabl es based upon
; the principal
= PCOWP(data, COEFFI Cl ENTS = coef,
VARI ANCES = var)

; Display the array of derived variabl es:

NNNUONNRAPRPOROMAD

N

result,

OO U~NOUPMOFRPRNOMAIIFRLNRELOWEREOOU

53.
58.
52.
49.
53.
56.
56.
46.
44,
42.
54.
55.
58.
48.
51.

NOWANNUONOOGTOR OO

o

23.
27.
30.
23.
24.
30.
28.
23.
28.
21.
30.
25.
24.
27.
27.

PONPFPWOOWOoWONMO® O N

o

1 & var

conponent s.

FORMAT = ' (4(f5.1, 2x))

-5.
-4.
- 6.
- 6.
-4.
- 5.
-5.
-4.
-4.
- 6.
- 5.
-4.
- 6.
-3.
-4.
-5.
- 5.
- 5.
- 6.
-4.

OPRP~NOPFRPOOW~NWEFEPPAPONPPOWNE O

COOOOOLOLOLOLOLOOO0O0O0O0O000O0

DO O 01O Ul

21.
27.
25.
21.
19.
25.
27.
11.
17.
12.
23.
22.
25.
14.
21.

1

7,
1],
4],
3],
3],
4],
2],
77,
8],
8],
9],
6],
4],
8],
1]

R R R R A R R ]

$
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Display the percentage of total variance for each derived variable:
PRI NT, var
IDL prints:

0.712422

0. 250319

0. 0370950
0. 000164269

Display the percentage of variance for the first two derived variables; the first two
columns of the resulting array above.

PRI NT, TOTAL(var[O0:1])
IDL prints:
0. 962741

Thisindicates that the first two derived variables (the first two columns of the
resulting array) account for 96.3% of the total variance of the original data, and thus
could be used to summarize the original data.

Routines for Multivariate Analysis

See “Multivariate Analysis’ (in the functional category “Mathematics’ (IDL Quick
Reference)) for abrief description of IDL routines for multivariate analysis. Detailed
information is available in the IDL Reference Guide.
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Symbols
IORDER system variable, 73

A

accuracy, numerical algorithms, 168
Aitoff map projection, 120
Albers equal area conic map projection, 129
diasing, 151
analytic signal, 153
animation
controlling rate, 107
Motion JPEG2000
about, 94
creating, 96
high-speed read/write, 108
playing, 103
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performance, 108
ARMA filter, 163
arrays

determining data type, 38

rotating, 57

sparse, 201

stored in structure form, 201
ASCII files

IDLDE import macro, 25

reading, 11
autoregressive moving average filters, 163
azimuthal equidistant map projection, 119
azimuthal map projections, 116

B

bandpass
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filters, 159
bandstop filters, 159
bilinear

interpolation, 62

transform, 163
binary files

IDLDE import macro, 27

reading, 12
boxcar filter, 161
Bristol Technology

printing graphics, 91

C

central map projection, 118
CIA World Map database, 134
cluster analysis
routines, 212
CMY color system, 64
color
channels, 74
Direct Graphics, 70
images
Direct Graphics, 71
systems
CMY, 64
converting, 66
HLS, 64
HSV, 64
RGB, 64
tables. See color tables
visuals
Unix, 67
Windows, 68
color tables
highlighting image features, 80
indexed image (LUT), 74
modifying, 79
colormaps, 70
conformal conic map projection, 128
converting

Index

color systems, 66

color tables, 79

image types, 77
Cooley-Tukey algorithm, 152
coordinate systems

device, 54

normalized, 54

window, 53
coordinates

converting

three-dimensional coordinates, 59
converting two-dimensional coordinates, 58

data, 53
device, 53
homogeneous, 55
normal, 53
copyrights, 2
correlation analysis
about, 170
correlation coefficient
about, 170
interpretation, 171
correlation routines, 173
cubic convolution interpolation, 62
curvefitting
discussion, 174
routines, 175
cyclical fluctuation, 204

cylindrical equidistant map projection, 127

cylindrical map projections, 125

D

data
access, 7
data coordinates
about, 53
datatypes
determining array size, 38
IDL indices, 36
type codes
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pixel datatypes, 36
Delaunay triangulation, 182
derived variables, 208
device

coordinates, 53
independent graphics, 51
DFT, 142
differentiation routines, 189
digital filters, 158
digital signal processing, 139
DIGITAL_FILTER function, 159
Direct Graphics
about, 52
color
indexed, 70
RGB, 71
printing, 91
visuals
Unix, 69
Windows, 70
window coordinates, 54
discrete Fourier transform, 142
discrete wavelet transform, 155
display, on multiple monitors
See multi-monitor.
displayrgbimage_object.pro, 75

DWT (discrete wavelet transform), 155

E

eigenvalues

complex, 177

real, 176

repeated, 179, 180

routines for computing, 181
eigenvectors

complex, 177

real, 176

repeated, 180

routines for computing, 181
equal-area map projection, 129
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examples
batch files
sigprc01, 139
sigprc02, 140
sigprc03, 145
sigprc04, 146
sigprc05, 147
sigprc06, 149
sigprc07, 150
sigprc08, 151
sigprc09, 154
sigprc10, 159
sigprcll, 160
sigprcl2, 161
sigprcl3, 164
sigprcl4, 165
image
displayrgbimage _object.pro, 75
multimon_ex1.pro, 89
objects
m;j2_frames_doc.pro, 100
m;j2_morphthin_doc.pro, 102
m;j2_palette _doc.pro, 101
m;j2_tile doc.pro, 102
m;j2_timer_doc.pro, 106
exporting
formatted image files, 18
unformatted image files, 19
expressions
determining data type
SIZE function, 38

F

Fast Fourier transform
Cooley-Tukey algorithm, 152
defined, 142
discrete, 142
implementation, 152
using windowing algorithms, 148

file
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See also files.
access, 7
file access
See also reading.
about, 8
routines, 29
file information
returning, 32
file selection
using dialogs, 9
FILE_INFO function
using, 47
files
Seealsofile.
accessing, 7
exporting
See also writing.
formatted, 18
unformatted, 19
importing
See also reading.
formatted, 16
unformatted, 17
guerying, 32
returning
file information, 32
filtering
autoregressive moving average, 163
bandpass, 159
bandstop, 159
boxcar, 161
digital, 158
FIR, 159
highpass, 159
lowpass, 159
rectangular, 161
filters
IIR filter, 163
Kaiser's window, 159
moving average, 159
notch, 163

Index

finite impul se response filters, 159
FIR filter, 159

frequency plot leakage, 146
frequency plot smearing, 146
frequency response function, 164

G

Gaussian

iterated quadrature, 185
Gauss-Krueger map projection, 126
general perspective map projection, 123
geometric transformations

interpolation methods, 61
gnomic map projection, 118
gnomonic map projection, 118
Gouraud shading, 63
graphics

coordinate systems, 55

device independent graphics, 51

devices

direct graphics, 52

modes, 50

object-oriented, 51
gridding

data extrapolation, 182

Delaunay triangulation, 182

routines, 182

uniformly-spaced planar data, 182

H

Hammer-Aitoff map projection, 122
Hamming window

defined, 149
Hanning window

defined, 148
HDF files

IDLDE import macros, 28
HDF-EOS
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IDLDE import macro, 28 saving to Motion JPEG2000, 98
highlighting images
image features, 80 dialog for reading, 9
highpassfilters, 159 dialog for saving, 10
high-resolution continent outlines, 134 exporting files, 18, 19
Hilbert transform, 153 file selection
histogram using adialog, 9
plot, 140 highlighting features, 80
HLS color system import macro, 23
color schemes, 64 importing files, 17
homogeneous coordinates, 55 info structure, 33
HSV color system orientation, 73
color schemes, 64 QUERY _IMAGE, 37
hypothesis testing querying, 33
routines, 184 raster, 73
statistics, 183 RGB interleaving, 75
import macro, IDLDE
ASCII files, 25
I binary files, 27
IDL imagefiles, 23
direct graphics, 52 _ scien_tific dataformats, 28
iTools, 50 ’ Importing
object graphics, 51 data, 7, 7 . .
IDLffMJIPEG2000 _ unformatted imagefiles, 17
animations indexed images
about, 94 _ colortables, 74 .
creati’ng % !nflnlte_lmpulseresponsefllters, 163
playi ng,’ 103 ! ntggrat_l on .
timer example, 106 b!varlat_efunctlons, 186
IR filter dlscu$|on, 185
digital filtering, 163 numerical, 185
using, 163 routines, 189
image display _ trlvarla_\tefunctlons, 187
interleaving, 74 inter| eaw_ng
RGB. 74 _determlnl ng, 75
image interleaving, 74 'Mage, 74’
image objects image objects, 74
displaying I|.ne, 74
RGB, 75 pixe" 7‘7‘ ,
. . planar,
interleaving, 74 interpolation

pixel interleaving, 74
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bilinear, 62

cubic convolution, 62
image quality, 61

linear, 62

methods, 62
nearest-neighbor, 62
routines, 182

tabulated data points, 182
trilinear, 62

K
Kaiser filter, 159

L

Lambert’ s conformal conic map projection,
128
Lambert’s equal area map projection, 121
leakage, 146
legdlities, 2
light source
shading, 63
lineinterleaving, 74
linear
algebra, 170
correlation, 170
systems
condition number, 190
overdetermined, 190
solving simultaneous equations, 190
underdetermined, 193
linear equations, simultaneous, 196
linear interpolation, 62
linear systems, routines, 196
Look-Up Table (LUT), 74
lowpass filters, 159

Index

M

macros
IDLDE
pre-defined, 22
magnitude
signal spectra, 145
map projections
Aitoff, 120
Albers equal-area conic, 129
azimuthal, 116
azimuthal equidistant, 119
central gnomic, 118
cylindrical, 125
cylindrical equidistant, 127
general perspective, 123
ghomonic, 118
Hammer-Aitoff, 122
high-resolution outlines, 134
Lambert’ s conformal conic, 128
Lambert’s equal area, 121
Mercator, 125
Miller cylindrical, 128
Mollweide, 131
orthographic, 117
overview, 112
pseudocylindrical, 130
Robinson, 130
satellite, 123
sinusoidal, 131
stereographic, 117
Transverse Mercator, 126
mathematics
routines, 168
memory
object graphics system, 51
Mercator map projection, 125
Miller cylindrical map projection, 128
minimization
about, 199
See also optimization
MJ2 files. See Motion JPEG2000
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mj2_frames_doc.pro, 100
mj2_morphthin_doc.pro, 102
mj2_palette_doc.pro, 101
mj2_tile_doc.pro, 102
mj2_timer_doc.pro, 106
MJPEG2000 files. See Motion JPEG2000
modifying color tables, 79
Mollweide map projection, 131
monitors, multiple
See multi-monitor.
Motion JPEG2000
about animations, 94
creating animations, 96
data sources, 98
examples
data capture, 102
monochrome frames, 99
palette, 100
RBG tiles, 101
screen captures, 102
sequential playback, 106
timed playback, 106
high-speed read/write, 108
playback rate, 106
playback, random, 104
playback, sequential, 103
sample reader, writer, 95
movies
Motion JPEG2000, 94
moving average filter, 159
multimon_ex1.pro, 89
multi-monitor
about, 81
configurations
UNIX, 87
Windows, 83
example, 89
terminology, 81
multiple correlation coefficient, 172
multiple monitors
See multi-monitor.
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multivariate analysis
routines, 212

N

nearest-neighbor interpolation, 62
netCDF files

IDLDE import macro, 28
Newton's method, 197
nonlinear equations

discussion, 197

routines, 198
nonparametric hypothesis tests, 183
normal

coordinates, 53
notch filter, 163
numerical integration, 185
Numerical Recipesin C, 169
Nyquist frequency, 151

O

OBJ CLASSfunction
using, 45
OBJ _ISA function
using, 45
OBJ VALID function
using, 46
Object Graphics
images
RGB image, 75
object graphics
about, 51
printing, 91
objects
information about, 45
object-oriented
graphics, 51
Oetli, Thomas, 134
one-tailed hypothesistests, 183
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optimization
discussion, 199
routines, 200
origin
image data, 73
orthographic map projection, 117

P

parametric hypothesis tests, 183
partia correlation coefficient, 172
phase
signal spectra, 145
pixels
data
information (QUERY _IMAGE), 36
interleaving, 74
two-dimensional image arrays, 73
planar interleaving, 74
plotting
frequency smearing, 146
step plots, 140
power spectrum, 147
principal components analysis, 208
print manager, 91
printing
direct graphics
overview, 91
graphics, 91
private colormaps, 70
projections
Aitoff, 120
Albers equal-area conic, 129
azimuthal, 116
azimuthal equidistant, 119
central gnomic, 118
cylindrical, 125
cylindrical equidistant, 127
general perspective, 123
gnomonic, 118
Hammer-Aitoff, 122

Index

high-resolution continent outlines, 134

Lambert’ s conformal conic, 128

Lambert’s equal area, 121

Mercator, 125

Miller cylindrical, 128

Mollweide, 131

orthographic, 117

projection matrix, 191

pseudocylindrical, 130

Robinson, 130

satellite, 123

sinusoidal, 131

stereographic, 117

Transverse Mercator, 126
PseudoColor visuals, 67
pseudocylindrical map projections, 130

Q

quadrature function, 153
guerying

images, 33

structure tags, 33

R

raster images, 73
reading
ASCII data, 11, 25
binary data, 12, 27
HDFfiles, 28
HDF-EOSfiles, 28
imagefiles, 9, 23
netCDF files, 28
scientific format data, 28
rectangular filter, 161
resampling
images
see also interpolation
resolution of map databases, 134
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RGB color system
about color schemes, 64
RGB images
displaying
Object Graphics, 75
interleaving, 75
right-handed coordinate system, 55
Robinson map projection, 130
rotating
arrays, 57
images
matrices, 57
routines
cluster analysis, 212
correlation, 173
curve and surface fitting, 175
differentiation/integration, 189
eigenvalueseigenvectors, 181
gridding/interpolation, 182
hypothesis testing, 184
linear systems, 196
mathematical, 168
multivariate analysis, 212
nonlinear equations, 198
optimization, 200
signal processing, 138
sparse arrays, 203
time-series analysis, 206
row-indexed sparse storage method, 201

S

sampled

data analysis, 151

images, 73
sampling, aliasing data, 151
satellite map projection, 123
saving

image files, 10
scaling

matrices, 56
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scientific data format

IDLDE import macro, 28
seasonal effect, 204
shading

Gouraud interpolation, 63

light source, 63
shared colormaps

about, 70
reading. Seefile access.
signal

analysis transforms, 141

processing, 139
signal processing

routines, 138
sigprcOl batch file, 139
sigprc02 batch file, 140
sigprcO3 batch file, 145
sigprc04 batch file, 146
sigprc05 batch file, 147
sigprc06 batch file, 149
sigprc07 batch file, 150
sigprc08 batch file, 151
sigprc09 batch file, 154
sigprc10 batch file, 159
sigprcll batch file, 160
sigprcl2 batch file, 161
sigprcl3 batch file, 164
sigprcl4 batch file, 165
simultaneous linear equations, 190
singular value decomposition, 190
sinusoidal map projection, 131
smearing frequency plots, 146
SMOOTH function, 161
sparse arrays, 201

routines, 203
standardized variables, 209
stationary series, 204
statistics

hypothesis testing, 183

routines, 168
step plot, 140
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stereographic map projection, 117
structure tags

image query, 33
structures

arrays stored in structure form, 201
surface fitting

discussion, 174

routines, 175
system variables

IORDER, 73

T

three-dimensional
coordinate conversion, 59
graphics, 55
transformations
matrices, 55
three-dimensional transformations
matrices, 55
timers
timer mechanisms, 107
time-series analysis
about, 204
routines, 206
trademarks, 2
transformation matrices, 55
transforms
Fourier, 142
Hilbert, 153
Tustin bilinear, 163
wavelet, 155
trandation, 56
Transverse Mercator map projection, 126
trend analysis, 204
trilinear interpolation, 62

Index

TrueColor visuals, 67, 71
Tustin transform, 163
two-tailed hypothesis tests, 183

U

unconstrained minimizer, 199
UTM (Transverse Mercator) map projection,
126

Vv

variables
datatype, determining
SIZE function, 38
derived, 208
standardized, 208

wW

wavelet transform
about, 155
windowing
Hamming windowed signal, 149
HANNING function, 148
writing
imagefiles, 10

X

X Multi-Screen, 87
XINERAMA, 87
Xprinter

printing graphics, 91
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