Obsolete IDL
Features

IDL Version 7.0

November 2007 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

1107IDL700BS

Restricted Rights Notice

The IDL®, IDL Analyst™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures, functions, and
documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the
restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document at
any time and without notice.

Limitation of Warranty

ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information

This software and its associated documentation are subject to the controls of the Export Administration Regulations (EAR). It has
been determined that this software is classified as EAR99 under U.S. Export Control laws and regulations, and may not be re-
transferred to any destination expressy prohibited by U.S. laws and regulations. The recipient isresponsible for ensuring compliance
to all applicable U.S. Export Control laws and regulations.

Acknowledgments

ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, |ON Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.
NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.
This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has acommercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN islicensed from the United States of Americaunder U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.
FLAASH islicensed from Spectral Sciences, Inc. under a U.S. Patent Pending.

Portions of this software are copyrighted by Merge Technologies I ncorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.
IMSL isatrademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visua Numerics, Inc. All Rights Reserved.
Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents

Chapter 1
Obsolete FeatuUre OVEIVIEWccocevieeiiiieeeeee et 13
Backwards CompPatibDilityccccceeiieiieiie s e e st sae e e nreesreens 14
IDL INternal ROULINESc.veiiiiiiiiie ettt ettt e ere et e see e s b e eareeereens 14
ROULINES WIHTEEN TN IDL oottt et et n 14
Detecting Use of ODSOIEte FEAIUIEScccvveiiiiiie it 15
Documentation for Older Obsolete ROULINESc..cocveveiieeeciicee et 16
Chapter 2
ObSOlete ROULINES ..cciiiiiii i e e e e e e e eeraas 17
DDE ROULINESeeeoutiectiee ettt ettt ettt e et e e et e e see e e abeesateesnbeesateesnbeesnbesesaeeeneeenes 18
DELETE SYMBOL ...oiote ettt ettt ettt sttt st st s sbeesbeesaeesanenbeesreens 19
)] = I 20
DEMO MODE ...ttt ettt ettt sbe et e e be e be e sbesbeebeensesntesnesareenbens 21
DO _APPLE _SCRIPT .ottt eee et e e e ee e eee s e seeseesseseeseessenesessanenees e en 22
ERROREF ...ttt ettt ettt ettt e et eeaae st e et e saeesaaesbeesabesbeesbeesbeesaeesanenbensrenas 24

Obsolete IDL Features 3

=N) = T =SS SRRSO 25
GETHELP .ot eeee e eeeeseesssee s sesesseessess e se s e esesssessseess e sees s e esss s eses s 27
GET_SYMBOL eoeeeeeeeeeeeeeeeeeeeeeeeseeeeesseeseeesesesseeesesesseeessesssees e seeeseesseeeseeessseesesesseeseees 29
HANDLE _CREATE woooomevveoeeeeveesessseeeesessssessessssesssssssessssssssssssssssesessessssssssssssasssssseseons 30
R N oY = = == RO 33
HANDLE_INFO .oeovvooeeeeeeeeeeseeeesesseeeessessssessessssesssssssessssssssssesssssesessessssesssesssesesessesenns 34
HANDLE MOVE .ovooeeveeeeeeeeeeeeeeseeeeeeeeeeeesseeeeeesseesseesssesssseesseesseeessesssesssessseessessneons 36
HANDLE VALUE «ooooeeeveeeeeseeeeeessseeeesees e ssesssseessssssseesssssssesesssssesessessssssssessseessessnenns 38
HDF_DFSD_ADDDATA .oorieveeeeeeeeeeseeeseeeeeseeeeeesseeseeeesssesseesesessesesesesseeesesesseesssssseeson 40
HDF_DFSD._DIMGET evveoeeeeeeeesesseeeeesesseseessesssseossssssseessessssssssssssssessessssssssesssesesssssseons 42
HDF_DFSD._DIMSET oooveoeeeeeeeeeeeeeeeeeseeseeeesseeeeseesseeeseesssessseesssesssesessessssesssessseessessneons 43
HDF_DFSD_ENDSLICE ..oouivvveeeeeveeeeeeseeeesseeseeesssseseeesssssesesssssssesssssssessessssesssssesesnn 45
RInY =R 5 =S DY 1= 1 Y - 46
HDF_DFSD_GETINFO ovvooeeveeeeeeeseeeeseeseseessesssseessessssesssssssssessesssssessessssssssssssesessessseons 47
RInY =R oY =S DY 1= 5= I [=TSR 49
HDF_DFSD_PUTSLICE wovoooevveeoeeeseeeeeeeseseessessseeesssssssesssessssssssssssssessessssssssesssesessesssenns 51
HDF_DFSD_READREF ...ooooveeeeeeeeoeeeeeeeesseeeeeeesseeeseesssssssessssessesessesssssssesssessessssens 52
HDF_DFSD_SETINFO ..ovvoeoeveeeeseeseeeeeseeseseessesssseesssssssesssessssssssssssesessessssesssssssssessesssenns 53
HDF_DFSD_STARTSLICE ..oovveoeeeeeeeeeeeeeeeeeeeeeeseeeesesssesssseesssessesessessssesssesseessessseeons 57
HDF_VD_GETNEXT eovvveoreeeeeeeeesseeeessesssessesssseesssssssesssssssssssssssssessessssssssesssesssssssseons 59
INP, INPW, OUTP, OUTPW +..oecooeveeeoeeeeeeeeeseeeeeeesseeseeessseeseeesseesseeessesssseessessseeseessnenns 60
LIVE_TOOIS vvveeemeeeeeeeeeeeeeseeesssessessssesssssssesssessssesssssssssssssssssssssssssesssssssssesssssesessssssenns 61
LIVE_CONTOUR .coveooeeeeeeeeeeeeeseeeseeeeseeseeeesseeeseeesseesseesssessseeesseessesessessssssssssseesssssneons 62
LIVE_CONTROL wvveeeeeeeeeeeeseeeesessseeeesessssesssesssseessssssssesssssssssssssssssessessssesssesssesessssssenns 71
LIVE_DESTROY ovveeeeeeeeeeeeeeeeeeeseesseesessessseesseeesseesssesssesssssssesessssssesessesssssssessseessssssens 74
LIVE_EXPORT oootvveeeeeeeeeeseessseeesessssesssssssessesssssossssssseesssssssssssssssssessessssssssesssesesssssneons 76
LIVE_IMAGE .oooeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees e eseeeseeeseses s ssessseeessssssesessessseessessseesesseneons 79
LIVE_INFO ootvveoeeeeeeeeeeeeeeeeseesseeesessseessessssessesssseessssssssassssssssesssssssessssssssssssssseeasssenenns 86
LIVE_LINE ooteoeeeeeeeeeeeeeeeeeeeeeeeeeeseesseeeeeeesseeseeesseeseses s sssesseeeseesssesessesssessssssseesesssneons 98
LIVE_LOAD ovveoeeeeveeeeeeeeeereeeseeeesseesssseessssssesssssssassssssssessssssssssssssesessssssessessssseessssenenn 102
LIVE_OPLOT wooooeeeeoeeeeeeeoeeesseeeseesseseseesesssessssesssssseseesssssseseesssssesessesseessessseessessseenns 103
LIVE_PLOT ovvvteeeeeeeeeeeeeseeeseeeseesesssessssssssssssessssssssssssssssesessssssssssssssesssssessseesssssesssssnens 108
LIVE_PRINT ooooooeeeeeeeeeeeeeeeeeeesesseesesessesessesesesesseasssssssessssssesssssssesesessseesseessseeseseeseeens 116
LIVE_RECT ovvveeeeeeeeeeeeesseeesesesessessssssssssssssssssssssssassssssssssessssssssssssssesessssssssssssssessssenens 118
LIVE _STYLE ooteeeeeeeeeeeeeeeeeeeeesseeseseseesessessessssessseseessssssesesssssesessessesessessseesssseseenns 122
LIVE_SURFAGCE ovvveeevveeeeeeeeeeesseeseeesssesssesssssssassssssssssssssssssssssssassssssssesssssssssssss s 130

Contents Obsolete IDL Features

LIV E_TEXT oottt sttt sttt sttt bbbt 139
N S 143
MSG_CAT _CLOSE ..ottt sttt sttt b e e 144
MSG_ CAT COMPILE ..o eeeeee e eeee e e ee e s ees s s s s eesssenennesnenees 145
MSG_CAT_OPEN ...ttt sttt nee e 147
ONLINE_HELP _PDF INDEX ...oiiiiiiiiiiesieecee e ses e see e esiee e snseesnee s sne e snne s sneesnree 149
PICKFILE ettt sttt e bbb 153
O I 0 T IS 154
REWIND ..ottt bttt st sttt sttt nee b 156
RIEMANN e e e e et e e e s ae e s s b e e e e sabee e e s nreeeeenane 157
RSTRPOS ...ttt sttt se e bbb b bttt e b e 162
I IS) 1/ 1 = 164
SETLOG ..ottt bbb b et e e b ae e 165
I I 1 S 0 TSRS 167
SIZE EXECULIVE COMIMANGorviienieiiriisiesienesie sttt st ss e sne e 169
S S I SRS 171
SLICER ..ottt bbbttt bbb et b e a b e 172
STR SEP et ee et eee e ee et e ee e e eeeeee e eeeeee e s eee s e e eeeeeenennesnanees 178
TAPRD .o bbb et b e b b e 180
TAPWRT ettt sa e s e e e b e e e e s bb e e e et e e e e nnrae e e nnnres 181
TIFF_DUMP .ottt sttt neas 182
LI L = A O T USROS 183
TIFF_WRITE ..ottt ettt sttt b et b e b e 185
I S 188
VAX FLOAT ottt et b ettt bt e e bt 190
WWEDF ..ottt e et e et e e e b e et e e s a e e ae e e et e e aneeenree e e re e e reeeneeenreeeane 192
WIDED ...ttt bbb bbbttt ettt e et e e 193
WIDGET _IMESSAGEooo ettt stee et s e st eenaesnre e e 194
Chapter 3
ODbSolete ODJECES ..cooviieeeeee e e e e e 195
T I g To U = o T O SR 196
IDLffLanguageCat PrOPErti€Scccvieeieie ettt s 197
IDLFfLaNQUagECAL:: ISV aAlidoccveeee e 198
IDLFLaNQUAgECEL: IQUETYiiveeieree e ereeseeeeeestessee e sree e e e e sreesseesaeenreesrenseerens 199
IDLffLanguageCat::SEtCaAtalOfcceceeieriieieieeseesiee e seeseesee e e seesreesre e e sreerens 200

Obsolete IDL Features Contents

Chapter 4

Routines with Obsolete Arguments or Keywordsccccceeeeeeeeennn. 201
BYTEORDER ...ttt sttt sttt s sbe e s e nne e e 203
(O o I = G =] A R 204
DEVICE ..ottt e bbbt b e e b bbb e s re e nae e e ae e nreas 205
[I L O 1 I 206
DOC _LIBRARY ittt sttt sttt bbb s e nnae e sabe e sabe e nnee s 207
[G 7 AN O I 1 208
o | I RS RPRR 209
T 1Y s 1Y 210
T Io Yo 110 1= 1 T S 211
IDLITSYS CREATETOOLooiiiee ettt ettt e saee et s nnee e s snee s 212
IDLItTOOl::REQISLEIOPEIGLIONccveiverieeiesiecie ettt te e st e e a e s ere e sre e 213
I AVAES U= 1= 1] 0 W0 2o (o 214
IDLitVisualization::GetCenterROLAIONcccoveerirerinieeeese s 215
IDLitVisualization::GEtPIOPEITYcceeieeieiie et ree st e e 216
IVECTOR ettt b e st e s be e et e e s b e e e bee s sabe e sateenaee s 217
Y Y 218
LABEL_REGION ...ttt ittt sttt saae e b st sbae st nnae s sabe s saneesnee s 219
I 1 N PSRRI 220
LINKIMAGE ..ottt sttt nb e sre e st nba e e sa e e nnae e sabe e sane e nnee s 221
I e o I N N PSPPI 222
I I TR RRRR 223
YN S = I PRSPPI 224
MESSAGE ...ttt et b e bbb r e e nare e e s 225
L0\ I 1 N L | = 226
OPEN et e e b e be et e e be e bae e nre e e nreeenes 227
POLY _FIT oo eeeseeeeeeeeseeeseee e eeseeses s eessee s s seeeneseeeeeeeeenesneseeeseneeeeseeneseean 233
L A I N I PR 234
Ly B N 1 PR RRR 235
LY D N 3 S 236
READU .ot a e e e rae e s e res 237
REGRESS ... oottt s b e st nb e sa e b e nbe e nane e e s 238
SA NV E e ree et e e e e e anraeeareeenneeennes 240
SPAWVN et b et e e b s b ee s nre e nreeennes 241
)Y I i 243

Contents Obsolete IDL Features

WIDGET _BASE ...ttt st 244
WIDGET_CONTROL ...cetiiciie e ceeestee sttt s stee e siee e see e e se e e snte e snae e sneesnseeenaesnneeenns 245
WIDGET _TREE ...ttt 246
WRITE _TIFF et e e e e bee e e e 247
WRITEU .ottt sttt sttt b et b et be e s s 248
DAY N N € o S 249
Chapter 5
Obsoleted GraphiCs DEVICES ...ccooeviiiiiiiiiieeeeeecsie e ee e 251
THE LIDEVICE ...oviieirieierieeie ettt sttt sttt sbe e 252
LIDIIVEN SITENGLNSc.eieeeeeee ettt e e see e saeeneas 253
LIDIIVEr LIMITAHONScueeveiviieieirieseseeeeese sttt e 253
[0S0 1= 1 o OSSR 254
The MaCINtOSN DEVICEcceiuiieirierieieere ettt 255
Chapter 6
Obsolete Remote Procedure Callscooovvvviiiiiiiiiiiiiii e, 257
USING IDL @S @N RPC SEIVENccoeiiiiieciiee ettt sttt e st sne e 259
THE IDL RPC DITECLOIY ...ecuviiieecieeteesteeseesteeseesteeseesteestessteesteesteeneetesneesnsesnessnneens 259
RUNNING IDL N SEIVEr MOEocueeeeeieieste ettt s 259
Creating the IDL RPC LIDrarycccoceieiiee ettt ses e s snee e e 259
Linking your Client Programccceceevereieeeeee et 260
THEIDL RPC LIDIAIY .oocveeiiecee e seere e ste e e e st ettt ssa s st eeesnne e snassnnesnaesnnens 261
free idl_Variableoceeee e e 262
o 1= Lo [= o= TSP 263
o [S 8Y/= S 1010 £ o 1AV USSP 265
LIS = L=, S 266
=0T (= g o ok 1= | T 267
1S = o I Lo | o) 0110 97= o o S 268
1SS Ao LT 1101 o | RS 269
S Lo L7 A= TP 270
S S A 01OV 01015 1 S 272
(W11 o TS (= g o | 1= o | S 273
The varinfO_t SITUCIUIEc.ecii et nee 274
Variable Creation FUNCHIONSccoiiiiieeerese e 274
AV 0Tz ST o) (S 275
AV 0= ST o)1) = G 276

Obsolete IDL Features Contents

V_MAKE ACOMPIEX ...uviiiieeiieesie et sttt sttt s a e re e e s testesreeaetesreeneenaenresrens 277
(T 0= (ST (o0 o 278
AV 0= ST o = USSR 279
(V2 .= | 280
AV 7= ST L] o USSR 281
AV 0= ST 1 o PR 282
V_FHL_BITAY oottt ettt s re e e renre s 283
More Variable Manipulation MaCIOSccueeiieeiieeieeneesieeseseeseesessessreesnessneessesssesnns 284
Notes on Variable Creation and Memory Managementccccceeeveeveeveesieseeeeeneeseene. 286
FIeeiNg RESOUICEScc.eeiiicieeiie e seesee e e st e te e te e se e st e e tesae e saeeste e saeesreesreesaeeressreenes 286
Creating a Statically-AlloCated ATTAYc.ccveeieeeieeieieee e 286
Allocating SPace fOr SLHMNGSoecviiiereiie e e e e st e sre e e e ee e sre s 287
L O 1 o] =SS 288
Chapter 7
The IDLDrawWidget ActiveX Controlcccoeeevveeiiiiiiiiiiiiiiiiii, 289
L@ Y S 290
A Note about Versions of the IDL ActiveX CONtrolc.ccooeveeerenieneneienenesieenns 292
Creating an Interface and Handling EVENLScccceviiie e cien st 293
Drawing the INEEITACEccoceeiiie e e 294
Specifying the IDL Path and GraphiCSLEVElcccviiiee i 295
T o TR F= T4 o S 296
Creating the Draw WIAQELoceeieiieecee et re e see e e e sree e sne e 297
Directing IDL Output t0 @ TEXE BOX ...cvveeevieiieiiiesieie et 297
Responding to Events and Issuing IDL Commandscccecvvieevieeseeneeseeseeeseeenns 298
Cleaning Up and EXItiNG ...ccccvceeieiiiiie et st sre 298
Working With IDL PrOCEAUIEScccoiiieiiecie et see s ee sttt 299
Creating the INTEITACEcviiiecee e e s re s 300
T TR =4 Lo X 300
Compiling the IDL COUEccvecveeveee ettt st enaesre 300
Dispatching Button EVENESTO IDLecveeiiceeseesr e 300
Cleaning Up and EXItiNG ...ccccvceeieiiiisiecie ettt st sre 301
AdVaNCEd EXAMPIESooeeie ettt st na et ereene s 302
Copying and Printing IDL GraphiCscccccceiieriiirseeneeiieesieesessteesieseessessessesssesssnssneens 303
Opening the VBCOPYPYINt PrOJECEeieeeeieii ettt e st 303
Running the VBCopYPrint EXamMpPIe ..o 304

Contents Obsolete IDL Features

Copying IDL Graphic to the Clipboardcccccovveveeienesiceeeese e 304
Printing the IDL Graphic Using IDL Object Graphicscccooevovvieeceeieniineeenes 305
Executing IDL User Routines with Visual BaSiCcccccveeeeveseieeeeiese e 305
Printing the IDL Graphic Using Visual BaSICccccervierereerene e 306
XLoadCT Functionality Using Visual BaSICccevvierieeieiesie et e 307
XPaette Functionality Using Visual BaSiCccccceveevieveeniee e 309
Integrating Object GraphicS USING VBcocoiiiiiiee e 310
Sharing a Grid Control Array With IDLccoveiiiiiesee e 311
Handling Events within Visual BaSICccccviieveii ettt 313
Distributing Y our ActiveX APPlICALIONcceeiieeiecce s te e s neea 315
Chapter 8
IDLDrawWidget Control Referenceccccceevveeiiiiiiiiievieeeeceeeee 317
[IDLDIBWWITGEL ...ttt ettt nbe e e 318
=g LT 319
(00 0) Y\ = a0 T= 0 AN 1 - Y S 319
(@0 0) VATV T 0T [0S 320
CreateDIaWWILGELooveivieieee et s ene e 320
(D= i)Y/ B = TiTAT LA o o = S 320
D 0] PP STRP 320
EXECULESIT ...ttt et ettt sh e e s ae e sbe e sbe e sreebeebea 321
GEINAMEADELA ... eveeeveeiertireeee ettt ettt ne e ebe e b 321
T SR 322
INITIDLEX ouiitiitiieeese ettt e 323
10| TSRO SPRORPRN 324
REGISLENFOrEVENES ... st 325
S N = 0TS0 TN P 326
SENBMEADGLAvevieeiieierii ettt st b e e n e 327
S (@ 110110107 oo 328
VaTBDIEEXISES ...t e 328
Do Methods (RUNEIME ONIY) ...eieeiieciesee ettt s et re e sre e reeneas 329
DOBULIONPIESScoiiiieieiiieieesiee ettt sre e sne e sr e sreeneeneas 329
DOBULONREIBASEooviiiiiererierierie ettt 329
[T 0] 00 329
3 70]1Y o] o] o OSSPSR 330
(0] 1= = S 331

Obsolete IDL Features Contents

10

2o (7o [TSSO 331
BESENGITIE ... ettt b e bt nne e ae e aee e 331
BUFFEITA bbbt 331
[= YA o (o1 AN = = 332
ENBDIEA ...t 332
GraphicsLevel (RUNtime/DeSIgN tiME)eccceveeiiiree e see e stee s eeesreeee e e 332
TAIPEEN <. et 333
S 010 (< S 333
Retain (RUNtIME/DESIGN TIME) ...cueeviieiceiee e 333
Visible (RUNtIME/DESIGN TIME) ...ocueiiiiie ettt et 333
XSIZE (DESIGN TIME) .veeieeeiceeecie ettt e et teere e e sre e 334
NS T (D= | (1 0= P 334
(R LE o @ NV = o o= 4 (1= 335
Baseld (RUNLIME)ociiieecee ettt te e sttt e s e sre e sae e s reenre e neenes 335
Drawld (RUNIIME)ocieeieiecie ettt st b e s nesne s 335
o\ AV To B LW 111 =) I 335
LastldIErTor (RUNLIME)ccuieieeeiectiete ettt sttt s ne s 335
o o SRS PRSSS 335
D0 15 = OSSP 335
D Y=/ oo i S 335
Y OFFSEL it et 336
1=/ oo i S 336
AULO EVENE PrOPEITIES ...o.eeeieie ettt ettt e sttt sre e snaenresre s 337
ONBULEONPIESSeiitiiieiieiee ettt b e bt se e st be s ae e st e sae e sanesreesaeesaeans 337
ONBULLONREIBESEoviiiirieriirieeeee ettt e 337
(@01 o] [Yo GRS PRRRS 337
ONEXPOSE .oiiitieiitiie sttt sttt et b e st e e st s b s b e e ne e e 338
[] 1 o T SRS 338
(@011 o 1 o o OSSPSR 338
< 1 339
ONVIBWSCIOIEA ... 339
Chapter 9
Distributing ActiveX Applicationscccoveiiiiiiiii e 341
What [san ACtiVEX APPLICELHIONTccoeiiiieieeiececte et sre s 342
Licensing Options for IDL ActiveX AppliCatioNnSccccevvvereereneneeceeeseeen 342

Contents Obsolete IDL Features

Limitations of Runtime Mode ActiveX AppliCationsccccvveevieveneciesee e, 343
Stepsto Distribute an ActiveX APPlICAHIONccooeiiiieieerere e 344
Preferences for ActiveX AppPliCatioNScccvieeveie s 345
RUNEIME LICENSING ..veiviiiieeiieiieieesieeseesteesteeseesteesaeste e tesneesseessessaeesaeessessaeessesssesnsennsens 346
[Sipglolce (o Sto I Lot 01 T o T 347
Obtaining Your Licensing INfOrmMationccccevieeviieiieenie s e s 347
Modifying Your Application COUEccccoeieeeeiesise e 347
Creating an Application DIStHDULIONccceeiieiicieesee s 349
Starting Your ACtiveX APPIICELIONcecveieiicieeeeece et 350
Installing Your ACtiveX APPIICALIONcccueceeiieiiee e e e e et sre e e e e 351
Installing and Registering ACtVEX Fil€Scceveiiiiiieee e 351
Chapter 10
Obsolete IDE PreferEnCescooiooiiii i 353

Obsolete IDL Features Contents

Chapter 1

Obsolete Feature

Overview

This chapter discusses the following topics:

Backwards Compatibility
Detecting Use of Obsolete Features

Obsolete IDL Features

14 Documentation for Older Obsolete Routines . .
15 16

13

14 Chapter 1: Obsolete Feature Overview

Backwards Compatibility

Avoid using obsol ete routines when writing new IDL code. As DL continuesto
evolve, the likelihood that obsolete routines will no longer function as expected
increases. While we will continue to make every effort to ensure that obsolete
routines shipped with IDL function, in asmall number of cases this may not be
possible.

IDL Internal Routines

Routines that are built into the IDL executable—routines not written in the IDL
language—will either continue to be included in the executable until the scheduled
removal release or will be re-implemented in the IDL language. In the latter case,
obsol ete routines may run slower than the original version. Note that obsolete
routines that have been re-implemented in the IDL language may also be scheduled
for eventual removal.

Routines Written in IDL
Routines written in the IDL language (. pro files) are contained in the obsolete

subdirectory of the lib directory of the IDL distribution. Aslong as a given obsolete
routine isincluded in this subdirectory, it will continue to function as always.

Backwards Compatibility Obsolete IDL Features

Chapter 1: Obsolete Feature Overview 15

Detecting Use of Obsolete Features

You can search for usage of obsolete routines, system variables, and syntax by setting
the fields of the 'WARN system variable. Setting 'WARN causes IDL to print
informational messages to the command log or console window when it encounters
references to obsolete features. See “!'WARN” (IDL Reference Guide) for details.

Obsolete IDL Features Detecting Use of Obsolete Features

16 Chapter 1: Obsolete Feature Overview

Documentation for Older Obsolete Routines

Routines that became obsolete in IDL version 4.0 or earlier are not documented in
this book or inthe IDL Online Help. However, if the routine is written in the IDL
language, you can inspect the documentation header of the . pro file, or use the
DOC_LIBRARY routine. The .pro files for obsolete routines are located in the
obsolete subdirectory of the 1ib directory of the IDL distribution.

Documentation for Older Obsolete Routines Obsolete IDL Features

Chapter 2
Obsolete Routines

This chapter contains complete documentation for obsoleted IDL routines. New |DL
code should not use these routines. For alist of the routinesthat replace each of these
obsolete routines, see Appendix |, “Obsolete Features’ (IDL Reference Guide).

Obsolete IDL Features 17

18 Chapter 2: Obsolete Routines

DDE Routines

These routines are obsolete and should not be used in new IDL code.

Windows-Only Routines for Dynamic Data Exchange
(DDE)

IDL for Windows supports DDE client capability for cold DDE links. The relevant
system calls are documented bel ow:

Result = DDE_GETSERVERS()

This function returns an array of service names for the currently-available DDE
servers.

Result = DDE_GETTOPICS(server)

This function returns the topics list for the specified server. The server argument isa
scalar string containing the name of the desired DDE server.

Result = DDE_GETITEMS(server)

Thisfunction returns the items list for the specified server. The server argument isa
scalar string containing the name of the desired DDE server.

Result = DDE_REQUEST((server, topic, item)

This function returns the requested data in string format. The server, topic, and item
arguments must be scalar strings.

DDE_EXECUTE, server, topic, command

This procedure causes the DDE server to execute the command for the specified
topic. The server, topic, and command arguments must be scalar strings.

DDE Routines Obsolete IDL Features

Chapter 2: Obsolete Routines 19

DELETE_SYMBOL

The DELETE_SYMBOL procedure deletesa DCL (Digital Command Language)
interpreter symbol for the current process.

Note
This procedureis available on VM S only.

Syntax
DELETE_SYMBOL, Name[, TYPE={1]|2}]
Arguments

Name

A scalar string containing the name of the symbol to be deleted.
Keywords
TYPE

Indicates the table from which Name will be deleted. Set TY PE to 1 to specify the
local symbol table. Set TY PE to 2 to specify the global symbol table. The default isto
search the local table.

Obsolete IDL Features DELETE_SYMBOL

20 Chapter 2: Obsolete Routines

DELLOG

The DELLOG procedure deletesaVMS logical name.

Note
This procedureis available on VM S only.

Syntax
DELLOG, Lognam [, TABLE=string]
Arguments

Lognam

A scalar string containing the name of the logical to be deleted.
Keywords

TABLE

A scalar string giving the name of the logical table from which to delete Lognam. If
TABLE isnot specified, LNM$PROCESS_TABLE is used.

DELLOG Obsolete IDL Features

Chapter 2: Obsolete Routines 21

DEMO_MODE

Thisroutine is obsolete and should not be used in new IDL code.

The DEMO_MODE function returns Trueif IDL isrunning in the timed demo mode
(i.e., alicense manager is not running). Calling this function causesa FLUSH, -1
command to be issued.

Syntax

Result = DEMO_MODE()

Obsolete IDL Features DEMO_MODE

22 Chapter 2: Obsolete Routines

DO _APPLE_SCRIPT

Thisroutine is obsolete and should not be used in new IDL code.

The DO_APPLE_SCRIPT procedure compiles and executes an AppleScript script,
possibly returning aresult. DO_APPLE_SCRIPT isonly availablein IDL for Macintosh.

Syntax
DO_APPLE_SCRIPT, Script [, /AG_STRING] [, RESULT=variabl€]
Arguments

Script
A string or array of strings to be compiled and executed by AppleScript.

Keywords
AS_STRING

Set this keyword to cause the result to be returned as a decompiled string.
Decompiled strings have the same format as the “ The Result” window of Apple's
Script Editor.

RESULT

Set this keyword equal to a named variable that will contain the results of the script.

Example

Suppose you wish to retrieve arange of cell datafrom aMicrosoft Excel spreadshest.
The following AppleScript script and command retrieve the first through fifth rows
of the first two columns of a spreadsheet titled “Worksheet 17, storing the result in
the IDL variable A:

script = ['tell application "Microsoft Excel"',6 $
'get Value of Range "R1C1:R5C2" of Worksheet 1', $
'end tell']

DO_APPLE_SCRIPT, script, RESULT = a

Similarly, the following lines would copy the contents of the IDL variable A to a
range within the spreadsheet:

DO_APPLE_SCRIPT Obsolete IDL Features

Chapter 2: Obsolete Routines

A

[1, 2,
script = [

'into aVariable',
'tell application

'value of range
DO_APPLE_SCRIPT,

3, 4, 5

Obsolete IDL Features

]

$

"Excel"

to copy aVariable to',
"R1C1:R5C1"
script

'tell application "IDL"

to copy variable

$
of worksheet 1'°'

]

DO_APPLE_SCRIPT

A
’

$

23

24 Chapter 2: Obsolete Routines

ERRORF

Thisroutine is obsolete and should not be used in new IDL code.

The ERRORF function returns the value of the error function:
X

_f
erf(x) = 2/ﬁcje dt
0

Theresult is double-precision if the argument is double-precision. If the argument is
floating-point, the result is floating-point. The result always has the same structure as
X. The ERRORF function does not work with complex arguments.

Syntax
Result = ERRORF(X)
Arguments
X

The expression for which the error function is to be evaluated.
Example

To find the error function of 0.4 and print the result, enter:
PRINT, ERRORF (0.4)
IDL prints:

0.428392

ERRORF Obsolete IDL Features

Chapter 2: Obsolete Routines 25

FINDFILE

Thisroutine is obsolete and should not be used in new IDL code.
The FINDFILE function retrieves alist of files that match File_Specification.

Note
Usethe FILE_SEARCH function, included in IDL 5.5 and later, in place of the
FINDFILE function. FILE_SEARCH offers many advantages over FINDFILE,
including cross-platform consistency in wildcard syntax, uniform presentation of
results, filtering by file attributes, and, under UNIX, freedom from performance and
number of file limitations encountered by FINDFILE.

Platform specific differences are described bel ow:

e Under UNIX, to include al thefilesin any subdirectories, use the * wildcard
character in the File_Specification, such asin
result = FINDFILE('/path/*').|f File_Specification containsonly a
directory, with no file information, only filesin that directory are returned.

* Under Windows, FINDFILE appendsa*“\” character to the end of the returned
file nameif thefileisadirectory. To refer to all the filesin a specific directory
only, use result = FINDFILE('\path*').

Syntax
Result = FINDFILE(File_Specification [, COUNT=variable])
Return Value
All matched filenames are returned in a string array, one file name per array element.
If no files exist with names matching the File_Specification, anull scalar string is
returned instead of a string array. FINDFILE returns the full path only if the path
itself is specified in File_Specification. See the “Examples’ section below for details.
Arguments
File_Specification

A scalar string used to find files. The string can contain any valid command-
interpreter wildcard characters. If File_Specification contains path information, that

Obsolete IDL Features FINDFILE

26 Chapter 2: Obsolete Routines

path information is included in the returned value. If File_Specification is omitted,
the names of al filesin the current directory are returned.

Keywords

COUNT

A named variable into which the number of filesfound is placed. If nofiles are
found, avalue of O isreturned.

Examples

To print the file names of all the UNIX fileswith . dat extensionsin the current
directory, use the command:

PRINT, FINDFILE('*.dat')

To print the full path names of all . pro filesinthe IDL 1ib directory that begin with
the letter “x”, use the command:

PRINT, FINDFILE('/usr/local/itt/idl/lib/x*.pro')

To print the path names of all .pro filesintheprofiles subdirectory of the current
directory (arelative path), use the command:

PRINT, FINDFILE('profiles/*.pro')

Note that the values returned are (like the File_Specification) relative path names.
Use caution when comparing values against this type of relative path specification.

Version History

Introduced: Original

FINDFILE Obsolete IDL Features

Chapter 2: Obsolete Routines 27

GETHELP

Thisroutine is obsolete and should not be used in new IDL code.

The GETHELP function returns information on variabl es defined at the program
level from which GETHELPis called. The function builds astring array that contains
information that follows the format used by the IDL HEL P command.

When called without an argument, GETHELP returns a string array that normally
contains variable datathat isin the same format as used by the IDL HELP procedure.
The variablesin thislist are those defined for the routine (or program level) that
called GETHELP . If there are no variables defined, or the specified variable does not
exist, GETHELP returns a null string. Other information can be obtained by setting
keywords.

Syntax
Result = GETHELP([Variable€])
Arguments

Variable

A scalar string that contains the name of the variable from which to get information.
If thisargument is omitted, GETHEL P returns an array of strings where each element
contains information on a separate variable, one element for each defined variable.

Keywords

FULLSTRING

Normally astring that islonger than 45 chars is truncated and followed by “..." just
like the HEL P command. Setting this keyword will cause the full string to be
returned.

FUNCTIONS

Setting this keyword will cause the function to return all current IDL compiled
functions.

Obsolete IDL Features GETHELP

28

Chapter 2: Obsolete Routines

ONELINE

If avariable name is greater than 15 charactersit is usually returned as 2 two
elements of the output array (Variable namein 1st element, variable info in the 2nd
element). Setting this keyword will put al the information in one string, separating
the name and data with a space.

PROCEDURES

Setting this keyword will cause the function to return all current IDL compiled
procedures.

SYS_PROCS

Setting this keyword will cause the function to return the names of all IDL system
(built-in) procedures.

SYS_FUNCS

Setting this keyword will cause the function to return the names of all IDL system
(built-in) functions.

Note
RESTRICTIONS: Due to the difficultiesin determining if avariableis of type
associate, the following conditions will result in the variable being listed as a
structure. These conditions are:

» Associate record typeis structure.
» Associated fileis opened for update (openu).
e Associate fileis not empty.

Another difference between this routine and the IDL help command isthat if a

variable isin a common block, the common block nameis not listed next to the
variable name. Currently there is no method available to get the common block
names used in aroutine.

Example

To obtain alisting in ahelp format of the variables contained in the current routine
you would make the following call:
HelpData = GetHelp()

The variable HelpData would be a string array containing the requested information.

GETHELP Obsolete IDL Features

Chapter 2: Obsolete Routines 29

GET_SYMBOL

Thisroutine is obsolete and should not be used in new IDL code.

The GET_SYMBOL function returns the value of aVMS DCL (Digital Command
Language) interpreter symbol as a scalar string. If the symbol is undefined, the null
string is returned.

Note
This procedure is available on VMS only.

Syntax
Result = GET_SYMBOL(Name [, TYPE={1]|2}])
Arguments

Name

A scalar string containing the name of the symbol to be transl ated.
Keywords

TYPE

Thetable from which Name is translated. Set TY PE to 1 to specify the local symbol
table. A value of 2 specifiesthe global symbol table. The default isto search thelocal
table.

Obsolete IDL Features GET_SYMBOL

30 Chapter 2: Obsolete Routines

HANDLE_CREATE

Thisroutine is obsolete and should not be used in new IDL code.

The HANDLE_CREATE function creates anew handle. A “handle” isa
dynamically-allocated variable that isidentified by a unique integer value known asa
“handle ID”. Handles can have avalue, of any IDL data type and organization,
associated with them. This function returns the handle ID of the newly-created
handle.

Because handles are dynamic, they can be used to create complex data structures.
They are also global in scope, but do not suffer from the limitations of COMMON
blocks. That is, handles are available to all program units at all times. (Remember,
however, that IDL variables containing handle I Ds are not global in scope and must
be declared in a COMMON block if you want to share them between program units.)

Handle Terminology
The following terms are used to describe handles in the documentation for this
function and other handle-related routines:
¢ HandlelID: The unique integer identifier associated with a handle.

e Handlevaue: Dataof any IDL type and organi zation associated with a handle.

e Top-level handle: A handle at the top of a handle hierarchy. A top-level handle
can have children, but does not have a parent.

* Parents, children, and siblings: These terms describe the relationship between
handles in ahandle hierarchy. When anew handleis created, it can be the start
of anew handle hierarchy (atop-level handle) or it can belong to the level of a
handle hierarchy below an existing handle. A handle created in thisway is said
to be achild of the specified parent. Parents can have any number of children.
All handles that share the same parent are said to be siblings.

Syntax

Result = HANDLE_CREATE([ID])

HANDLE_CREATE Obsolete IDL Features

Chapter 2: Obsolete Routines 31

Arguments

ID

If this argument is present, it specifies the handle ID relative to which the new handle
is created. Normally, the new handle becomes the last child of the parent handle
specified by 1D. However, this behavior can be changed by setting the
FIRST_CHILD or SIBLING keywords.

Omit this argument to create a new top-level handle without a parent.
Keywords
FIRST_CHILD

Set this keyword to create the new handle as the first child of the handle specified by
ID. Any existing children of 1D become later siblings of the new first child (i.e., the
existing first child becomes the second child, the second child becomes the third
child, etc.).

NO_COPY

Usually, when the VALUE keyword is used, the source variable memory is copied to
the handle value. If the NO_COPY keyword is set, the value data is taken away from
the source variable and attached directly to the destination. This feature can be used
to move data very efficiently. However, it has the side effect of causing the source
variable to become undefined.

SIBLING

Set this keyword to create the new handle as the sibling handle immediately
following ID. Any other siblings currently following ID become later siblings of the
new handle. Note that you cannot create a handle that is a sibling of a top-level
handle.

VALUE

The value to be assigned to the handle.

Every handle can contain a user-specified value of any data type and organization.
Thisvalueisnot used by the handle in any way, but exists entirely for the
convenience of the IDL programmer. Use this keyword to set the handle value when
the handle isfirst created.

If the VALUE keyword is not specified, the handl€'sinitial value is undefined.

Obsolete IDL Features HANDLE_CREATE

32 Chapter 2: Obsolete Routines
Handle values can be retrieved using the HANDLE_VALUE procedure.

Examples

The following commands create atop-level handle with 3 child handles. Each handle
is assigned a different string value:

;Create top-level handle without an initial handle value:

top = HANDLE_CREATE ()

;Create first child of the top-level handle:

first = HANDLE_CREATE (top, VALUE='First child’)

;Create second child of the top-level handle:

second = HANDLE_CREATE (top, VALUE='Second child’)

;Create a new sibling between first and second.

;This handle is also a child of the top-level handle:

third = HANDLE_CREATE (first, VALUE='Another child’, /SIBLING)

HANDLE_CREATE Obsolete IDL Features

Chapter 2: Obsolete Routines 33

HANDLE_FREE

Thisroutine is obsolete and should not be used in new IDL code.

The HANDLE_FREE procedure frees an existing handle, along with any dynamic
memory currently being used by its value. Any child handles associated with ID are
also freed.
Syntax
HANDLE_FREE, ID
Arguments
ID

The ID of the handle to be freed. Once the handleis freed, further use of it isinvalid
and causes an error to be issued.

Example

To free all memory associated with the top-level handle top, and all its children, use
the command:

HANDLE_FREE, top

Obsolete IDL Features HANDLE_FREE

34 Chapter 2: Obsolete Routines

HANDLE_INFO

Thisroutine is obsolete and should not be used in new IDL code.

The HANDLE_INFO function returns information about handle validity and
connectivity. By default, it returns True if the specified handle ID isvalid. Keywords
can be set to return other types of information.

Syntax
Result = HANDLE_INFO(ID)
Arguments

ID

The ID of the handle for which information is desired. This argument can be scalar or
array an array of IDs. Theresult of HANDLE_INFO has the same structure as ID,
and each element gives the desired information for the corresponding element of ID.

Keywords

FIRST_CHILD

Set this keyword to return the handle ID of the first child of the specified handle. If
the handle has no children, O is returned.

NUM_CHILDREN
Set this keyword to return the number of children related to ID.

PARENT

Set this keyword to return the handle ID of the parent of the specified handle. If the
specified handle is atop-level handle (i.e., it has no parent), O is returned.

SIBLING

Set this keyword to return the handle ID of the sibling handle following ID. If ID has
no later siblings, or if ID isatop-level handle, O is returned.

HANDLE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 35

VALID_ID

Set this keyword to return 1 if ID represents a currently valid handle. Otherwise, zero
isreturned. Thisisthe default action for HANDLE_INFO if no other keywords are
specified.

Examples

The following commands demonstrate a number of different uses of
HANDLE_INFO:

;Print a message if handlel is a valid handle ID.

IF HANDLE_INFO (handlel) THEN PRINT, 'Valid handle.'
;Retrieve the handle ID of the first child of top.
handle = HANDLE_INFO (top, /FIRST_CHILD)

;Retrieve the handle ID of the next sibling of handlel.
next= HANDLE_INFO (handlel, /SIBLING)

Obsolete IDL Features HANDLE_INFO

36

HANDLE_MOVE

Chapter 2: Obsolete Routines

Thisroutine is obsolete and should not be used in new IDL code.

The HANDLE_MOVE procedure moves a handle (specified by Move_ID) to anew
location. This new position is specified relative to Static_ID.

Syntax

HANDLE_MOVE, Satic_ID, Move_ID

Arguments
Static_ID

The handle ID relative to which the handle specified by Move_ID is moved. By

default, Move_ID becomesthe last child of Static_ID. This behavior can be changed
by specifying one of the keywords described below.

If Static_ID issetto 0, Move ID becomes atop level handle without any parent.
Static_ID cannot be a child of Move ID.

Move_ID
The ID of the handle to be moved.

Keywords

FIRST_CHILD

Set this keyword to make Move ID thefirst child of Static ID. Any existing children
of Static_ID become later siblings of the new first child (i.e., the existing first child
becomes the second child, the second child becomes the third child, etc.).

SIBLING

Set this keyword to make Move _|ID the sibling handle immediately following
Static_ID. Any siblings currently following Static 1D become later siblings of the

new handle. Note that you cannot move a handle such that is becomes asibling of a
top-level handle.

HANDLE_MOVE Obsolete IDL Features

Chapter 2: Obsolete Routines 37

Example

; Create top-level handle:

top = HANDLE_CREATE ()

; Create first child of top:

childl = HANDLE_CREATE (top)

; Create second child of top:

child2 = HANDLE_CREATE (top)

; Move the first child to be the last child of top:
HANDLE_MOVE, top, childl

Obsolete IDL Features HANDLE_MOVE

38 Chapter 2: Obsolete Routines

HANDLE_VALUE

This routine is obsolete and should not be used in new IDL code.
The HANDLE_VALUE procedure returns or sets the value of an existing handle.

Syntax
HANDLE_VALUE, ID, Value
Arguments

ID
A valid handleID.
Value

When using HANDLE_VALUE to return an existing handle value (the default),
Vaueisanamed variable in which the value is returned.

When using HANDLE VALUE to set a handle value, Value is the new value. Note
that handle values can have any IDL data type and organization.

Keywords

NO_COPY

By default, HANDLE_VALUE works by making a second copy of the source data.
Although this technique is fine for small data, it can have a significant memory cost
when the data being copied islarge.

If the NO_COPY keyword is set, HANDLE VALUE works differently. Rather than
copy the source data, it takes the data away from the source and attaches it directly to
the destination. This feature can be used to move data very efficiently. However, it
has the side effect of causing the source variable to become undefined. On aretrieve
operation, the handle value becomes undefined. On a set operation, the variable
passed as Value becomes undefined.

SET

Set this keyword to assign Value as the new handle value. The default isto retrieve
the current handle value.

HANDLE_VALUE Obsolete IDL Features

Chapter 2: Obsolete Routines 39

Example
The following commands demonstrate the two different uses of HANDLE VALUE:

; Retrieve the value of handlel into the variable current:

HANDLE_VALUE, handlel, current
Set the value of handlel to a 2-element integer vector:

7

HANDLE_VALUE, handlel, [2,3], /SET

Obsolete IDL Features HANDLE_VALUE

40 Chapter 2: Obsolete Routines

HDF_DFSD_ADDDATA

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_ADDDATA procedure writes data, as well asall other information
set viacallsto HDF_DFSD_SETINFO and HDF_DFSD_DIMSET, to an HDF file.

The Data array must have the same dimensions as the array in the file. The new SDS
is appended to thefile, unless the OVERWRITE keyword is set.

Syntax

HDF_DFSD_ADDDATA, Filename, Data [, /OVERWRITE]
[, SET_DIM=value{ must set either this or the DIMS keyword to
HDF_DFSD_SETINFO}] [, /SET_TY PE]

Arguments

Filename
A scalar string containing the name of the file to be written.
Data

An expression (typically an array) containing the data to write.
Keywords
OVERWRITE

Set this keyword to write Data as the first, and only, SDSin the file. All previously-
written scientific data setsin the file are removed.

SET _DIM

Set this keyword to make the dimension information for the HDF file based upon the
dimensions of Data.

Note
You must set the number of dimensions in the HDF file, either by setting the
SET_DIM keyword or using the DIMS keyword to HDF_DFSD_SETINFO.

HDF_DFSD_ADDDATA Obsolete IDL Features

Chapter 2: Obsolete Routines 41

SET_TYPE

Set this keyword to make the data type of the current SDS based on the data type of
the Data argument.

Obsolete IDL Features HDF_DFSD_ADDDATA

42 Chapter 2: Obsolete Routines

HDF_DFSD DIMGET

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMGET procedure retrieves information about the specified
dimension number of the current HDF file.

Syntax

HDF_DFSD_DIMGET, Dimension [, /FORMAT] [, /LABEL] [, SCALE=vector]
[, /UNIT]

Arguments

Dimension

The dimension number [0, 1, 2, ...] to get information about.
Keywords
FORMAT

Set this keyword to return the dimension format string.
LABEL

Set this keyword to return the dimension label string.
SCALE

Use this keyword to return scale information about the dimension. Set this keyword
to avector of values of the same type as the data.

UNIT

Set this keyword to return the dimension unit string.

HDF_DFSD_DIMGET Obsolete IDL Features

Chapter 2: Obsolete Routines 43

HDF_DFSD_DIMSET

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMSET procedure sets the label, unit, format, or scale of
dimensionsin an HDF. Note that the label, unit, and format of a dataset must be set
simultaneously.

Syntax

HDF_DFSD_DIMSET, Dimension [, FORMAT=string] [, LABEL=string]
[, SCALE=vector] [, UNIT=string]

Arguments

Dimension

The dimension number that the label, unit, format or scale apply to.
Keywords

FORMAT

A string for the dimension format. This string should be a standard IDL formatting
string.

LABEL
A string for the dimension label.
SCALE

A vector of values used to set the dimension scale.

UNIT

A string for the dimension units.
Example
Suppose that a stored dataset is a 20 by 100 by 50 element floating-point array of

values representing water content within the volume of a cloud. Assume further that
each element in the 100-element dimension (the*Y” dimension) was sampled at 1/10

Obsolete IDL Features HDF_DFSD_DIMSET

44 Chapter 2: Obsolete Routines

mile increments. Appropriate labeling, formatting, unit, and scaling information for
the Y dimension can be set with the following command:

HDF_DFSD_DIMSET, 1, LABEL = 'Y Position', FORMAT = 'F8.2', $
UNIT = 'Miles', SCALE = 0.1*FINDGEN(100)

HDF_DFSD_DIMSET Obsolete IDL Features

Chapter 2: Obsolete Routines 45

HDF_DFSD _ENDSLICE

Thisroutine is obsolete and should not be used in new IDL code.
The HDF_DFSD_ENDSLICE procedure ends a sequence of calls started by

HDF _DFSD_STARTSLICE by closing the internal slice interface and synchronizing
thefile.

Syntax
HDF_DFSD_ENDSLICE

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

Obsolete IDL Features HDF_DFSD_ENDSLICE

46 Chapter 2: Obsolete Routines

HDF_DFSD_GETDATA

Thisroutine is obsolete and should not be used in new IDL code.
The HDF_DFSD_GETDATA procedure reads data from an HDF file.

Syntax

HDF_DFSD_GETDATA, Filename, Data [, /GET_DIMS{ Set only if you have not
caled HDF_DFSD_GETINFO with the DIMS keyword}] [, /GET_TY PE]

Arguments

Filename
A scalar string containing the name of the file to be read.
Data

A named variable in which the data is returned.
Keywords

GET_DIMS

Set this keyword to get dimension information for reading the data. This keyword
should only be used if one has not called HDF_DFSD_GETINFO with the DIMS
keyword

GET_TYPE
Set this keyword to get the data type for the current SDS.

HDF_DFSD_GETDATA Obsolete IDL Features

Chapter 2: Obsolete Routines 47

HDF_DFSD GETINFO

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETINFO procedure retrieves information about the current HDF
file.

Note that calling HDF_DFSD_GETINFO with the DIMS or TY PE keywords may
ater which dataset is current. See “ Reading an Entire Scientific Dataset” and

“Getting Other Information About SDSs” in the NCSA HDF Calling Interfaces and
Utilities documentation.

Note that reading alabel, unit, format, or coordinate system string that has more than
256 characters can have unpredictable results.

Syntax

HDF_DFSD_GETINFO, Filename [, CALDATA=variable] [, /COORDSY S]
[, DIMS=variable] [, /FORMAT] [, /LABEL] [, /LASTREF] [, INSDS]
[, /RANGE] [, TY PE=variable] [, /lUNIT]

Arguments

Filename

A scalar string containing the name of the file to be read. A filenameis only needed
to determine SDS dimensions and/or the number of SDSsin afile.

Keywords

CALDATA

Set this keyword to a named variable which will contain the calibration data
associated with an SDS data set. The datawill be returned in a structure of the form:

{ CAL: 0d, CAL_ERR: 0d, OFFSET: 04, $
OFFSET_ERR: 0d,NUM_TYPE: 0L }

COORDSYS

Set this keyword to return the data coordinate system description string.

Obsolete IDL Features HDF_DFSD_GETINFO

48 Chapter 2: Obsolete Routines

DIMS

Set this keyword to a named variable in which the dimensions of the current SDS are
returned in alongword array.

FORMAT

Set this keyword to return the data format description string.
LABEL

Set this keyword to return the data label description string.
LASTREF

Set this keyword to return the last reference number written or read for an SDS.
NSDS

Set this keyword to return the number of SDSsin the file.
RANGE

Set this keyword to return the valid max/min values for the current SDS.
TYPE

Set this keyword to a named variable which returns a string describing the type of the
current SDS (e.g., 'BYTE', 'FLOAT, etc.).

UNIT

Set this keyword to return the data unit description string.
Example

The following commands read an SDS, including information about its dimensions
but not its annotations:

HDF_DFSD_GETINFO, filename, DIMS=d, TYPE=t, RANGE=r, $
LABEL=1, UNIT=u, FORMAT=f, COORDSYS=c

FOR i1 = 0, N_ELEMENTS(d)-1 DO BEGIN

HDF_DFSD_DIMGET, i, LABEL=dl, UNIT=du, FORMAT=df, SCALE=ds
ENDFOR
HDF_DFSD_GETDATA, filename, data

HDF_DFSD_GETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 49

HDF_DFSD GETSLICE

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETSLICE procedure reads a slice of data from the current
Hierarchical Data Format file.

Note
Before calling HDF_DFSD_GETSLICE, call HDF_DFSD_GETINFO with the

DIMS and TY PE keywords to get the dimensions and type of the next data dlice.
Failure to get the dimensions and type will cause the HDF interface to attempt to
read the dataincorrectly, and may cause unexpected results.

Syntax

HDF_DFSD_GETSLICE, Filename, Data [, COUNT=vector] [, OFFSET=vector]
Arguments

Filename
A scalar string containing the name of the file to be read.
Data
A named variable in which the data, read from the SDS, is returned.

Keywords
COUNT

An optional vector containing the counts to be used in reading Value. The default is
to read all eementsin each record taking the value of OFFSET into account.

OFFSET

A vector specifying the array indices within the specified record at which to begin
reading. OFFSET is a 1-dimensional array containing one element per HDF
dimension. The default valueis zero for each dimension.

Obsolete IDL Features HDF_DFSD_GETSLICE

50 Chapter 2: Obsolete Routines

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

HDF_DFSD_GETSLICE Obsolete IDL Features

Chapter 2: Obsolete Routines 51

HDF_DFSD_PUTSLICE

This routine is obsolete and should not be used in new IDL code.
The HDF_DFSD_PUTSLICE procedure writes a data slice to the current HDF file.

Note
Before calling HDF_DFSD_PUTSLIDCE, call HDF_DFSD_SETINFO to set the
dimensions and attributes of the sliceand HDF_DFSD_STARTSLICE to initialize
the dice interface.

Syntax
HDF_DFSD_PUTSLICE, Data [, COUNT=vector]
Arguments

Data

An array containing the datato write. Dimensions used to write the data are taken
from the dimensions of Data, unlessthe COUNT keyword is used.

Keywords
COUNT

An optional vector containing the counts to be used in writing Data. The counts do
have to match the dimensions (number or sizes), but the count cannot describe more
elements than exist.

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

Obsolete IDL Features HDF_DFSD_PUTSLICE

52 Chapter 2: Obsolete Routines

HDF_DFSD_READREF

This routine is obsolete and should not be used in new IDL code.
The HDF_DFSD_READREF procedure specifies the reference number of the HDF

file to be read by the next call to HDF_DFSD_GETINFO or
HDF_DFSD_GETDATA.
Syntax
HDF_DFSD_READREF, Filename, Refno
Arguments
Filename
A scalar string containing the name of the file to be read.
Refno

The reference number of the desired SDS.

HDF_DFSD_READREF Obsolete IDL Features

Chapter 2: Obsolete Routines 53

HDF_DFSD_SETINFO

Thisroutine is obsolete and should not be used in new IDL code.

TheHDF_DFSD_SETINFO procedure controls information associated with an HDF
file. Because of the manner in which the underlying HDF library was written, it is
necessary to set the dimensions and datatype of a scientific data set the first time that
HDF_DFSD_SETINFO iscaled.

This procedure has many options, controlled by keywords. The order in which the
keywords are specified is unimportant as the routine insures the order of operation for
any given call toit. CLEAR and RESTART requests are performed first, followed by
type and dimension setting, followed by length setting, followed by the remaining
keyword requests.

If you are not writing any ancillary information, you can call
HDF_DFSD_ADDDATA with the SET_TY PE and/or SET_DIMS keywords.

Data string lengths should be set before, or at the same time as, writing the
corresponding data string. For example:

HDF_DFSD_SETINFO, LEN_FORMAT=10, FORMAT='12.3F’
or

HDF_DFSD_SETINFO, LEN_FORMAT=10
HDF_DFSD_SETINFO, FORMAT='12.3F’

Dueto the underlying C routines, it is necessary to set al four datastrings at the same
time, or the unspecified strings are treated as ‘' (null strings).

For example:

HDF_DFSD_SETINFO, LABEL = ’'hi’
HDF_DFSD_SETINFO, UNIT = ’'ergs’

is the same as;
HDF_DFSD_SETINFO, LABEL='hi’, UNIT=’’, FORMAT='', COORDSYS='"
HDF_DFSD_SETINFO, LABEL='’, UNIT='ergs’, FORMAT='’, COORDSYS='"'

Syntax

HDF _DFSD_SETINFO [, CALDATA=structure] [, /CLEAR]
[, COORDSY S=string] [, DIMS=vector] [,/BYTE |, /DOUBLE |, /FLOAT, |,
/INT |, /LONG] [, FORMAT=string] [, LABEL=string] [, LEN_LABEL=value]
[, LEN_UNIT=value] [, LEN_FORMAT=valuge] [, LEN_COORDSY S=value]
[, RANGE=[max, min]] [, /RESTART] [, UNIT=string]

Obsolete IDL Features HDF_DFSD_SETINFO

54 Chapter 2: Obsolete Routines

Arguments
None
Keywords

BYTE

Set this keyword to make the SDS datatype DFNT_UINT8 (1-byte unsigned
integer).

CALDATA
Set this keyword to a structure containing calibration information. The structure

should contain five tags, the first four of which are double-precision floating-point,
and fifth of which should be long integer. For example:

caldata = { Cal: 1.0d $; Calibration factor.
Cal_Err: 0.1d $; Calibration error.
Offset: 2.5d $; Uncalibrated offset.
Offset_Err: 0.1d $; Uncalibrated offset error.
Num_Type: 5L S ; Number type of uncalib.data.

Some typical vaues for the Num_Type field include:

For byte data:
3L (DFNT_UCHARS)
21L (DFNT_UINTS8)

For integer data:

22L (DNFT_INT16)
For long-integer data:

24L (DFNT_INT32)
For floating-point data:

5L (DFNT_FLOAT32)
6L (DFNT_FLOAT64)

There are other types, but they are not native to IDL. They can befound inthehdf .h
header file for the HDF library.

CLEAR

Set this keyword to reset al possible set valuesto their default value.

HDF_DFSD_SETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 55

COORDSYS
A string for the data coordinate system description.
DIMS
Set this keyword to a vector of dimensionsto be used in writing the next SDS. For
example:
HDF_DFSD_SETINFO, DIMS = [10, 20, 30]
DOUBLE
Set this keyword to make the SDS data type DFNT_FLOAT64 (8-byte floating
point).
FLOAT
Set this keyword to make the SDS data type DFNT_FLOAT32 (4-byte floating
point).
FORMAT
A string for the data format description.
INT
Set this keyword to make the SDS datatype DFNT_INT16 (2-byte signed integer).
LABEL
A string for the data label description.
LEN_LABEL
The label string length (default is 255).
LEN_UNIT
The unit string length (default is 255).
LEN_FORMAT

The format string length (default is 255).

Obsolete IDL Features HDF_DFSD_SETINFO

56 Chapter 2: Obsolete Routines

LEN_COORDSYS

The format coordinate system string length (default is 255).
LONG

Set this keyword to make the SDS data type DFNT_INT32 (4-byte signed integer).
RANGE

The minimum and maximum range, represented as a 2-element vector of the same
datatype as the datato be written. The first e ement is the maximum, the second is
the minimum. For example:

HDF_DFSD_SETINFO, RANGE = [10,0]
RESTART

Set this keyword to make the get (HDF_DFSD_GETSLICE) routine read from the
first SDSinthefile.

UNIT

A string for the data unit description.
Example

Write a 100x50 array of longs:

data = LONARR(100, 50)

HDF_DFSD_SETINFO, /CLEAR, /LONG, DIMS=[100,50], $
RANGE=[MAX (data), MIN(data)l, $
LABEL='pressure’, UNIT='pascals’, $
FORMAT='F10.0"

HDF_DFSD_SETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 57

HDF_DFSD_STARTSLICE

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_STARTSLICE procedure prepares the system to write a dice of
datato an HDF file. HDF_DFSD_SETINFO must be called before
HDF _DFSD_STARTSLICE to set the dimensions and attributes of the slice.

This procedure must be called before calling HDF_DFSD_PUTSLICE, and must be
terminated with acall to HDF_DFSD_ENDSLICE.

Syntax
HDF_DFSD_STARTSLICE, Filename
Arguments

Filename

A scalar string containing the name of the file to be written.

Example

; Open an HDF file:
fid=HDF_OPEN('test.hdf', /ALL)

; Create two datasets:
slicedatal=FINDGEN(5,10,15)
slicedata2=DINDGEN (4,5)

; Use HDF_DFSD_SETINFO to set the dimensions, then add
; the first slice:

HDF_DFSD_SETINFO, LABEL="'labell', DIMS=[5,10,15], /FLOAT
HDF_DFSD_STARTSLICE, 'test.hdf'

HDF_DFSD_PUTSLICE, slicedatal

HDF_DFSD_ENDSLICE

; Repeat the process for the second slice:
HDF_DFSD_SETINFO, LABEL='label2', DIMS=[4,5], /DOUBLE
HDF_DFSD_STARTSLICE, 'test.hdf'

HDF_DFSD_PUTSLICE, slicedata?2

HDF_DFSD_ENDSLICE

HDF_DFSD_SETINFO, /RESTART

; Use HDF_DFSD_GETINFO to advance slices and set slice

Obsolete IDL Features HDF_DFSD_STARTSLICE

58 Chapter 2: Obsolete Routines

; attributes, then get the slices:
HDF_DFSD_GETINFO, name, DIMS=dims, TYPE=type
HDF_DFSD_GETSLICE, outl

HDF_DFSD_GETINFO, name, DIMS=dims, TYPE=type
HDF_DFSD_GETSLICE, out2

; Close the HDF file:
HDF_CLOSE ('test.hdf"')

;Check the first slice to see if everything worked:

IF TOTAL(outl EQ slicedatal) EQ N_ELEMENTS (outl) THEN $
PRINT, 'SLICE 1 WRITTEN/READ CORRECTLY' ELSE $
PRINT, 'SLICE 1 WRITTEN/READ INCORRECTLY'

; Check the second slice to see if everything worked:

IF TOTAL(out2 EQ slicedata2) EQ N_ELEMENTS (out2) THEN $
PRINT, 'SLICE 2 WRITTEN/READ CORRECTLY' ELSE $
PRINT, 'SLICE 2 WRITTEN/READ INCORRECTLY'

IDL Output

SLICE 1 WRITTEN/READ CORRECTLY

SLICE 2 WRITTEN/READ CORRECTLY

HDF_DFSD_STARTSLICE Obsolete IDL Features

Chapter 2: Obsolete Routines

HDF_ VD GETNEXT

59

The HDF_VD_GETNEXT function returns the reference number of the next object
insideaVDatain an HDF file. If Idis-1, the first item in the VDatais returned,
otherwise Id should be set to areference number previoudy returned by

HDF VD _GETNEXT. HDF_VD_GETNEXT returns -1 if there was an error or
there are no more objects after the one specified by Id.

Syntax
Result = HDF_VD_GETNEXT(VData, |d)
Arguments
VData

The VData handle returned by a previous call to HDF_VD_ATTACH.
Id
A VGroup or VData reference number obtained by a previous call to
HDF VG_GETNEXT or HDF_VD_GETNEXT. Alternatively, this value can be set
to -1 to return the first item in the VData.
Version History

Introduced: 4.0

Obsolete IDL Features HDF_VD_GETNEXT

60 Chapter 2: Obsolete Routines

INP, INPW, OUTP, OUTPW

These routines are obsolete and should not be used in new IDL code.
Windows-Only Routines for Hardware Ports

You can address the hardware ports of your personal computer directly using the
following routines. In each case, Port is specified using the hexadecimal address of
the hardware port. For example, if seria port #1 of your PC is at address 3F8, you
would use the following IDL commands to read that port:

paddr = '3F8'xSet paddr to hexadecimal value.
data = INPW (paddr) Read data.

Result = INP(Port, [Dy ... DyN])

Thisfunction returns either one byte (if only the port number is specified) or an array
(the dimensions of which are specified by D, . . . Dy) read from the specified
hardware port. Port is the hardware port number. For example,

result = INP (paddr)
would read a single byte, and
result = INP(paddr, 2,4)

would read a two-element by four-element array.
Result = INPW(Port, [D4 . .. Dyl)

This function returns either one 16-bit word, as an integer (if only the port number is
specified), or an array (the dimensions of which are specified by D, . . . Dy) from the
specified hardware port. Port is the hardware port number.

OUTP, Port, Value

This procedure writes either one byte or an array of bytes to the specified hardware
port. Port is the hardware port number. Value is the byte value or array to be written.

OUTPW, Port, Value
This procedure writes either one 16-bit word or an array of words to the specified

hardware port. Port is the hardware port number. Value isthe integer value or array to
be written.

INP, INPW, OUTP, OUTPW Obsolete IDL Features

Chapter 2: Obsolete Routines 61

LIVE Tools

The LIVE tools alow you to create, modify, and export visualizations directly from
the IDL command line. In many cases, you can modify your visualizations using the
LIVE tools graphical user interface directly without ever needing to return the IDL
command line. In some cases, however, you may wish to alter your visualizations
programmatically rather than using the graphical user interface. Severa LIVE
routines allow you to do this easily.

The process of using the L1V E tools begins with the creation of a LIVE window via
one of the four main LIVE routines; LIVE_CONTOUR, LIVE_IMAGE,
LIVE_PLQOT, and LIVE_SURFACE. When you use one of these four routines at the
IDL command line, you specify some data to be visualized and a L1V E window
appears. You can modify many of the properties of the itemsin your visualization by
double-clicking on the item to call up a Properties dialog.

If you find that the graphical user interface does not allow you to perform the
operation you wish to perform — saving your visualization as an image file, say —
you can use the auxiliary LIV E routines. These routines can be divided into two
groups.

* Overplotting and Annotation Routines that allow you to add annotations to an
existing LIVE window. Theseroutinesinclude LIVE_LINE, LIVE_OPLOT,
LIVE_RECT, and LIVE_TEXT. (Lines, rectangles, and text can also be added
to LIVE windows using the graphical user interface.)

< Information and Control Routines that allow you to get information about an
existing LIVE window, alter its properties, or export visualizations. These
routines include LIVE_CONTROL, LIVE_DESTROY, LIVE_EXPORT,
LIVE_INFO, LIVE_PRINT, and LIVE_STYLE.

To use the auxiliary routines, you will need to know the Name of the L1V E window
or item you wish to ater. To create an IDL variable containing the names of the
elements of aL1VE window, set the REFERENCE_OUT keyword equal to a named
variable when you first create your L1V E window. The returned variable will be a
structure that contains the names of all of the elementsin the visualization you have
created. Use the contents of this structure to determine the value of the Name
argument for the auxiliary LIVE tools, or to determine the name of the L1V E window
you wish to alter.

Note
The LIVE toolsdo not utilizethe !X, 1Y, and ! Z conventions. Setting these system
variables will have no effect on LIVE tool display.

Obsolete IDL Features LIVE_Tools

62

Chapter 2: Obsolete Routines

LIVE_CONTOUR

The LIVE_CONTOUR procedure displays contour visualizationsin an interactive
environment. Because the interactive environment requires extra system resources,
thisroutine is most suitable for relatively small data sets. If you find that performance
does not meet your expectations, consider using the Direct Graphics CONTOUR
routine or the Object Graphics IDLgrContour class directly.

After LIVE_CONTOUR has been executed, you can double-click on a contour line
to display a properties dialog. A set of buttonsin the upper left corner of the window
alowsyou to print, undo the last operation, redo the last “undone” operation, copy,
draw aline, draw arectangle, or add text.

(Sl [Bl 21O A

oA AN

Print Undo Redo Copy Line Rectangle Text

Figure 2-1: LIVE_CONTOUR Properties Dialog

You can control your LI1VE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 61 for an explanation.

Syntax

LIVE_CONTOUR, Zy,..., Zo] [, /BUFFER] [, DIMENSIONS=[widith,

height]{ normal units}] [, /DOUBLE] [, DRAW_DIMENSIONS=[width,
height]{ devive units}] [, ERROR=variable] [, INDEXED_COLOR]

[, INSTANCING={-1|0] 1}] [, LOCATION=[x, y]{ normal units}]

[, IMANAGE_STYLE] [, NAME=structure] [, /NO_DRAW]
[,/NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]

[, PARENT_BASE=widget_id |, TLB_LOCATION=[Xoffset, Yoffset]{ device
units}] [, PREFERENCE_FILE=filename{full path}]

[, REFERENCE_OUT=variable] [, RENDERER={0 | 1}]

[, REPLACE={structure | {0|1|2]|3]|4}}] [, STYLE=name_or_reference]
[, TEMPLATE_FILE=filename] [, TITLE=string] [, WINDOW_IN=string] [, { X
| Y}INDEPENDENT=value] [, {/X |/Y}LOG] [, {X | Y} RANGE=[min,
max]{dataunits}] [, { X | Y} _TICKNAME=array]

LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 63

Arguments

Zn

A vector of data. Up to 25 of these arguments may be specified. If any of the datais
stored in IDL variables of type DOUBLE, LIVE_CONTOUR uses double-precision
to store the data and to draw the resullt.

Keywords

BUFFER

Set this keyword to bypass the creation of a L1V E window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DOUBLE

Set this keyword to force LIVE_CONTOUR to use double-precision to draw the
result. This has the same effect as specifying datain the Zn argument using IDL
variables of type DOUBLE.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, height]
specifying the dimensions of the visualization in normalized coordinates. The default
is[1.0, 1.0].

DRAW_DIMENSIONS

Set this keyword equal to avector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

Obsolete IDL Features LIVE_CONTOUR

64

Chapter 2: Obsolete Routines

INDEXED COLOR
If set, the indexed color mode will be used. The default is TrueColor.
INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) isto
useinstancing if and only if the “ software renderer” isbeing used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword has no effect if the STYLE keyword is not set to
astyleitem.

NAME

Set this keyword to a structure containing suggested names for the data itemsto be
created for this visualization. See the REPLACE keyword for details on how they
will be used. The fields of the structure are as follows. (Any or all tags may be set.)

Tag Description

DATA Dependent Data Name(s)

IX Independent X Data Name

Y Independent Y Data Name

Table 2-1: Fields of the NAME keyword

The default for afield is to use the given variable name. If the variable does not have
aname (i.e., is an expression), a default name is automatically generated. The

LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 65

dependent data names will be used in around-robin fashion if more data than names
areinput.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing results of
LIVE_CONTOUR. Thisisuseful if multiple visualizations and/or annotations are
being created via calls to other LIVE_Toolsin order to reduce unwanted draws and
help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.
NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.
PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
aLIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert atool into their own widget application will determine the setting
from the parent base sent to the tool.

Note
LIVE_DESTROQOY on awindow isrecommended when using PARENT_BASE so
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in a non-
blocking mode. Putting a LIV E tool into arealized base already controlled by
XMANAGER will override the XMANAGER modeto /NO_BLOCK even if
blocking had been in effect.

Obsolete IDL Features LIVE_CONTOUR

66 Chapter 2: Obsolete Routines

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
XAXIS X-Axis Name
YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)
LEGEND Legend Name

DATA Dependent Data Name(s)
IX Independent X Data Name
' Independent Y Data Name

Table 2-2: Fields of the LIVE_CONTOUR Reference Structure

Note
You can also determine the name of an item by opening its properties dialog and
checking the “Name” field (or for Windows, by clicking thetitle bar).

RENDERER

Set this keyword to 1 to use the “ software renderer”, or 0 to use the “ hardware
renderer”. The default (-1) isto use the setting in the IDL Workbench preferences; if
the IDL Workbench is not running, however, the default is hardware rendering. For
more information, see “Hardware vs. Software Rendering” in the Objects and Object
Graphics manual.

REPLACE
Set this keyword to a structure containing tags as listed for the NAME keyword, with

scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to

LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 67

take when an item (such as data) being input would have the same name as one
aready existing in the given window or buffer (WINDOW_IN).

Alternatively, this keyword may be set to asingle scalar value, which is equivalent to
setting each tag of the structure to that choice.

Setting Action Taken
0 New itemswill be given unique names.
1 Existing itemswill be replaced by new items(i.e., the old itemswill be
deleted and new ones created).
2 User will be prompted for the action to take.
3 The values of existing items will be replaced. Thiswill cause dynamic

updating to occur for any current uses, e.g., avisualization would
redraw to show the new value.

4 Default. Option O will be used for items that do not have names (e.g.,
datainput as an expression rather than a named variable, with no name
provided viathe NAME keyword). Option 3 will be used for dl
named items.

Table 2-3: REPLACE keyword Settings and Action Taken

STYLE

Set this keyword to either a string specifying a style name created using
LIVE_STYLE.

TITLE

Set this keyword to a string specifying thetitle to give the main window. It must not
aready bein use. A default will be chosen if no title is specified.

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is[0, Q].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIV E tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the

Obsolete IDL Features LIVE_CONTOUR

68

Chapter 2: Obsolete Routines

REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XINDEPENDENT

Set this keyword to a vector specifying the X valuesfor LIVE_CONTOUR. The
default is the data’sindex values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

YINDEPENDENT

Set this keyword to a vector specifying the Y valuesfor LIVE_CONTOUR. The
default is the data' s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

XLOG

Set this keyword to make the X axisalog axis. The default is O (linear axis).
YLOG

Set this keyword to makethe Y axisalog axis. The default is O (linear axis).
XRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the datarange.

YRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the datarange.

LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 69

X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equals the values computed from the data range.

Examples

; Create a dataset to display:
Z=DIST(10)

; Display the contour. To manipulate contour lines, click on the
; plot to access a graphical user interface.
LIVE_CONTOUR, Z

Note
Thisisa“Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal data item. For
example, if one does the following:

Y=indgen (10)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=locl
Y=indgen (20)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc2

Thefirst plot will update to use the Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks’ of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LIVE_PLOT, Y1,...
LIVE_PLOT, Y2,...

or;

LIVE_PLOT, Y, ...
LIVE_PLOT, myFunc(Y),...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable isinput.

Obsolete IDL Features LIVE_CONTOUR

70 Chapter 2: Obsolete Routines

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

Version History
Introduced: 5.0
See Also

CONTOUR

LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 71

LIVE_CONTROL

The LIVE_CONTROL procedure alows you to set the properties of (or elements
within) avisualization in aLIVE tool from the IDL command line. See
“LIVE_Tools" on page 61 for additional discussion of the routines that control the
LIVE_tools.

Note
The LIVE toolsdo not utilize the !X, 1Y, and ! Z conventions. Setting these system
variables will have no effect on LIVE tool display.

Syntax

LIVE_CONTROL, [Namé] [, /DIALOG] [, ERROR=variable] [, /INO_DRAW]
[, PROPERTIES=structure] [, /SELECT] [, /UPDATE_DATA]
[, WINDOW_IN=string]

Arguments

Name

If keywords DIALOG and/or PROPERTIES are used, Name is a string (case-
insensitive) containing the name of awindow visualization or graphic to operate on.
WINDOW_IN will default to the window or buffer, if only oneis present in the IDL
session.

If keyword UPDATE_DATA is used, Name must be an IDL variable with the same
name as one already used in the given window or buffer (WINDOW_IN). In thiscase
thereis no default. If UPDATE_DATA is not set, the parameter must be a name of a
window, visualization or visualization element.

Keywords

DIALOG

Set this keyword to have the editable properties dialog of the visualization or graphic
appear.

Obsolete IDL Features LIVE_CONTROL

72 Chapter 2: Obsolete Routines

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

PROPERTIES

Set this keyword to a properties structure with which to modify the given
visualization or graphic. The structure should contain one or more tags as returned
from aLIVE_INFO call on the same type of item.

UPDATE_DATA

Set this keyword to force the window to update all of its visualizations that contain
the given data passed in the parameter to LIVE_CONTROL.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aL1VE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIV E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

; Create a dataset to display:
X=indgen (10)

; Plot the dataset:
LIVE_PLOT, X

LIVE_CONTROL Obsolete IDL Features

Chapter 2: Obsolete Routines

; Modify the dataset:
X=X+2

; Replace old values of X:
LIVE_CONTROL, X, /UPDATE_DATA

Version History
Introduced: 5.1
See Also

LIVE_INFO, LIVE_STYLE

Obsolete IDL Features

73

LIVE_CONTROL

74 Chapter 2: Obsolete Routines

LIVE_DESTROY

The LIVE_DESTROY procedure alows you to destroy awindow visualization or an
element in avisualization.

Syntax

LIVE_DESTROY, [Namey,..., Name,] [, /ENVIRONMENT] [, ERROR=variable]
[, /NO_DRAW] [, /PURGE] [, WINDOW_IN=string]

Arguments

Name

A string containing the name of avalid LIVE visualization or element. If a
visualization is supplied, all componentsin the visualization will be destroyed. Up to
25 components may be specified in asingle call. If not specified, the entire window
or buffer (WINDOW_IN) and its contents will be destroyed.

Warning
Using WIDGET_CONTROL to destroy the parent base of aLIVE tool before using

LIVE_DESTROQY to clean up will leave hanging object references.

Keywords
ENVIRONMENT

Destroysthe LIVE_ Tools environment (background processes).

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

LIVE_DESTROY Obsolete IDL Features

Chapter 2: Obsolete Routines 75

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

PURGE

Destroys LIVE_ Tools (use this keyword for cleaning up the system after fatal errors
in LIVE_ Toals). This keyword may cause the loss of dataif not used correctly.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aL1VE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one L1V E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LIVE_DESTROY, 'Line Plot Visualization'

; Destroy window (if only one window present):
LIVE_DESTROY

Version History

Introduced: 5.1

Obsolete IDL Features LIVE_DESTROY

76 Chapter 2: Obsolete Routines

LIVE_EXPORT

The LIVE_EXPORT procedure alows the user to export a given visualization or
window to an imagefile.

Syntax

LIVE_EXPORT [, /APPEND] [, COMPRESSION={0 | 1| 2}{ TIFF only}]
[, IDIALOG] [, DIMENSIONS=[width, height]] [, ERROR=variable]
[, FILENAME=string] [, ORDER={0 | 1}{JPEG or TIFF}]
[, /IPROGRESSIVE{ JPEG only}] [, QUALITY={0| 1| 2}{for VRML} | {Oto
100}{for JPEG}] [, RESOLUTION=value] [, TY PE={'BMP |'JPG' | PIC' |'SRF'
|'TIE' |'’XWD' | 'VRML'}] [, UNITS={0]1]2}] [, VISUALIZATION_IN=string]
[, WINDOW_IN=string]

Arguments
None
Keywords
APPEND

Specifies that the image should be added to the existing file, creating a multi-image
TIFF file.

COMPRESSION (TIFF)

Set this keyword to select the type of compression to be used:
e 0=none (default)
e 2=PackBits.

DIALOG

Set this keyword to have a dialog appear alowing the user to choose the image type
and specifications.

LIVE_EXPORT Obsolete IDL Features

Chapter 2: Obsolete Routines 77

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the image in units specified by the UNITS keyword. The default is
[640, 480] pixels.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variableis passed in this keyword and an error occurs, the error GUI will

not be displayed.

FILENAME

Set this keyword equal to a string specifying the desired name of the image file. The
default is 1ive_export.extension, where extension isone of the following:

bmp, jpg, jpeg, pic, pict, srf, tif, tiff, xwd, vrml

ORDER (JPEG, TIFF)

Set this keyword to have the image written from top to bottom. Default is bottom to
top.

PROGRESSIVE (JPEG)

Set this keyword to write the image as a series of scans of increasing quality. When
used with alow communications link, a decoder can generate alow-quality image
very quickly, and then improve its quality as more scans are received.

QUALITY (JPEG, VRML)

This keyword specifies the quality index of VRML images and JPEG images. For
VRML, the values are O=Low, 1=Medium, 2=High. For JPEG therange is 0
("terrible") to 100 ("excellent"). This keyword has no effect on non-JPEG or non-
VRML images.

RESOLUTION
Set this keyword to afloating-point val ue specifying the device resolution in
centimeters per pixel. The default is 72 DPI=2.54 (cm/in)/ 0.0352778 (cm/pixel).

Obsolete IDL Features LIVE_EXPORT

78 Chapter 2: Obsolete Routines

Note
It isimportant to match the eventual output device's resolution so that text is scaled

properly.

TYPE
Set this keyword equal to a string specifying the image type to write. Valid strings
are: ‘BMP, ‘JPG’, ‘JPEG’ (default), ‘PIC’, ‘PICT’, ‘SRF', ‘TIF, ‘TIFF, ‘ XWD’,
and ‘VRML'.

UNITS

Set this keyword to indicate the units of measure for the DIMENSIONS keyword.
Valid values are O=Device (default), 1=Inches, 2=Centimeters.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of aLIVE tool
visualization to export. The VIS field from the REFERENCE_OUT keyword from
the creation of the LIVE tool will provide the visualization name. If
VISUALIZATION_IN is not specified, the whole window or buffer (WINDOW _IN)
will be exported.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a L1V E tool window or a
LIVE tool buffer, to export. The WIN tag of the REFERENCE_OUT structure from
the creation of the LIVE tool will provide the window or buffer name. Window
names are also visible in visualization window titlebars. If only one LIVE tool
window (or buffer) is present in the IDL session, this keyword will default to it.

Examples

LIVE_EXPORT, WINDOW_IN='Live Plot 2°'

Version History

Introduced: 5.1

LIVE_EXPORT Obsolete IDL Features

Chapter 2: Obsolete Routines 79

LIVE_IMAGE

The LIVE_IMAGE procedure displays visualizations in an interactive environment.
Double-click ontheimageto display apropertiesdialog. A set of buttonsin the upper
left corner of the image window allows you to print, undo the last operation, redo the
last “undone” operation, copy, draw aline, draw arectangle, or add text.

(Sl [Bl 21O A

A A4 AN NN

Print Undo Redo Copy Line Rectangle Text

Figure 2-2: LIVE_IMAGE Properties Dialog

You can control your LI1VE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 61 for an explanation.

Syntax

LIVE_IMAGE, Image [, RED=byte vector] [, GREEN=byte vector]
[, BLUE=byte vector] [, /BUFFER] [, DIMENSIONS=[width, height]{ normal
units}] [, DRAW_DIMENSIONS=[width, height]{ devive units}]
[, ERROR=variable] [, INDEXED_COLOR] [, INSTANCING={-1| 0| 1}]
[, LOCATION=[X, y]{ normal units}] [, MANAGE_STYLE]
[, NAME=structure] [, /NO_DRAW] [, /NO_SELECTION] [, /NO_STATUS]
[,/NO_TOOLBAR] [, PARENT_BASE=widget_id |,
TLB_LOCATION=[Xoffset, Yoffset] { device units}]
[, PREFERENCE_FILE=filename{ full path}] [, REFERENCE_OUT=variable]
[, RENDERER={0 | 1}] [, REPLACE={structure| {0|1]2]|3]|4}}]
[, STYLE=name_or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]
[, WINDOW_IN=string]

Arguments

Image

A two- or three-dimensiona array of image data. The three-dimensional array must
befor the form [3,X,Y] or [X,3,Y] or [X,Y,3].

Obsolete IDL Features LIVE_IMAGE

80 Chapter 2: Obsolete Routines

Keywords

BLUE
Set this keyword equal to a byte vector of blue values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are
used to form the color table. The 2D array isaset of valuesthat are just indexesinto

this table.

BUFFER

Set this keyword to bypass the creation of a LIV E window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the image in units specified by the UNITS keyword. The default is

[1.0, 1.0].
DRAW_DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variabl e to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

LIVE_IMAGE Obsolete IDL Features

Chapter 2: Obsolete Routines 81

GREEN

Set this keyword equal to a byte vector of green values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are

used to form the color table. The 2D array is aset of valuesthat are just indexesinto
this table.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) isto
useinstancing if and only if the “ software renderer” isbeing used (see RENDERER).
For more information, see“Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to atwo-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STY LE keyword is not

set to astyleitem.

Obsolete IDL Features LIVE_IMAGE

82 Chapter 2: Obsolete Routines

NAME

Set this keyword to a structure containing suggested names for theitemsto be created
for this visualization. See the REPLACE keyword for details on how they will be
used. Thefields of the structure are as follows. (Any or all of the tags may be set.)

Tag Description

DATA Dependent Data Name(s)
CT Color Table Name

Table 2-4: Fields of the NAME keyword

The default for afield is to use the given variable name. If the variable does not have
aname (i.e., is an expression), a default name is automatically generated.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing results of
LIVE_CONTOUR. Thisisuseful if multiple visualizations and/or annotations are
being created via calsto other LIVE_Toolsin order to reduce unwanted draws and
help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.
NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.
PARENT_BASE

Set this keyword to the widget I D of an existing base widget to bypass the creation of
aLIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert atool into their own widget application will determine the setting
from the parent base sent to the tool.

LIVE_IMAGE Obsolete IDL Features

Chapter 2: Obsolete Routines 83

Note
LIVE_DESTROQOY on awindow isrecommended when using PARENT_BASE so

that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in a non-
blocking mode. Putting a LIV E tool into arealized base already controlled by
XMANAGER will override the XMANAGER modeto /NO_BLOCK even if
blocking had been in effect.

RED

Set this keyword equal to a byte vector of red values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are

used to form the color table. The 2D array isaset of valuesthat are just indexesinto
thistable.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table. Note that the
COLORBAR* field does not show up with TrueColor images:

Tag Description
WIN Window Name
VIS Visualization Name
GRAPHIC Graphic Name
CT Color Table Name
COLORBAR* Colorbar Name
DATA Data Name

Table 2-5: Fields of the LIVE_IMAGE Reference Structure

Obsolete IDL Features LIVE_IMAGE

84 Chapter 2: Obsolete Routines

RENDERER

Set this keyword to 1 to use the “ software renderer”, or 0 to use the “hardware
renderer”. The default (-1) isto use the setting in the IDL Workbench preferences; if
the IDL Workbench is not running, however, the default is hardware rendering. For
more information, see “Hardware vs. Software Rendering” in the Objects and Object
Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
aready existing in the given window or buffer (WINDOW_IN).

Setting Action Taken
0 New items will be given unique names.
1 Existing itemswill be replaced by new items (i.e., the old items will
be deleted and new ones created).
2 User will be prompted for the action to take.
3 The values of existing itemswill be replaced. Thiswill cause

dynamic updating to occur for any current uses, e.g., avisualization
would redraw to show the new value.

4 Default. Option O will be used for items that do not have names (e.g.,
datainput as an expression rather than a named variable, with no
name provided viathe NAME keyword). Option 3 will be used for
al named items.

Table 2-6: REPLACE keyword Settings and Action Taken

STYLE

Set this keyword to either a string specifying a style name created using
LIVE STYLE.

TITLE

Set this keyword to a string specifying thetitle to give the main window. It must not
aready bein use. A default will be chosen if no title is specified.

LIVE_IMAGE Obsolete IDL Features

Chapter 2: Obsolete Routines 85

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is[0, Q].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIV E tool window, or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

Examples

LIVE_IMAGE, myImage

Version History
Introduced: 5.0

See Also

TV, TVSCL

Obsolete IDL Features LIVE_IMAGE

86 Chapter 2: Obsolete Routines

LIVE_INFO

The LIVE_INFO procedure alows the user to get the properties of a LIVE tool.

Syntax

LIVE_INFO, [Name] [, ERROR=variabl€] [, PROPERTIES=variable]
[, WINDOW_IN=string]

Arguments

Name

A string containing the name of avisualization or element (case-insensitive). The
default is to use the window or buffer (WINDOW _IN).

Keywords
ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

PROPERTIES

Set this keyword to a named variable to contain the returned properties structure. For
adescription of the structures, see Properties Structures below .

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aL1VE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIV E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

LIVE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 87

Structure Tables for LIVE_INFO and LIVE CONTROL
The following tables describe the properties structures used by LIVE_INFO and
LIVE_CONTROL (viathe PROPERTIES keyword) for:

e Color Names
e Line Annotations
e Rectangle Annotations

¢ Text Annotations

e AXxes

* Colorbars
* Images

e Legends
e Surfaces

* Entire Visudizations

¢ Windows
Color Names

The following color names are the possible values for color properties:

* Black * Red » Green * Yellow

» Blue * Magenta e Cyan e Dark Gray
e Light Gray * Brown e Light Red e Light Green
» Light Blue » Light Cyan e Light Magenta * White

Obsolete IDL Features LIVE_INFO

Chapter 2: Obsolete Routines

Line Annotations

Thefields in the properties structure of Line Annotations are as follows:

Tag Description
thick 1to 10 pixels
arrow_start 1 = arrow head at line start, 0 = no arrowhead
arrow_end 1 =arrow head at line start, 0 = no arrowhead
arrow_size 0.0 to 0.3 normalized units
arrow_angle | 1.0to 179.0 degrees
linestyle 0O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot, 5=long
dash
hide 1 =hidden, 0 = visible
name scalar string (unique within all graphics)
color see “Color Names’ on page 87
location [X, y] normalized units
dimensions [width, height] normalized units
uvaue any value of any type (only returned in structure if defined)

Table 2-7: Line Annotation Properties Structure

Rectangle Annotations

The fieldsin the properties structure of Rectangle Annotations are as follows:

Tag Description
thick 1to 10 pixels
linestyle 0O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot, 5=long
dash
hide 1=hidden, O=visible

LIVE_INFO

Table 2-8: Rectangle Annotation Properties Structure

Obsolete IDL Features

Chapter 2: Obsolete Routines 89
Tag Description
name scalar string (unique within all graphics)
color see “Color Names’ on page 87
location [X, y] normalized units
dimensions | [width, height] normalized units
uvalue any value of any type (only returned in structure if defined)

Table 2-8: Rectangle Annotation Properties Structure (Continued)

Text Annotations

The fields in the properties structure of Text Annotations are as follows:

Tag Description
fontsize 9to 72 points
fontname Helvetica, Courier, Times, Symbol, and Other (where Other
isavalid name of afont on the local system)
textangle 0.0 to 360.0 degrees
alignment 0.0to 1.0 where 0.0 = right justified and 1.0 = left justified
location [X, y] normalized units
hide 1=hidden, O=visible
name scalar string (unique within all graphics)
value string (scalar or vector) annotation formula (see note below)

enable_formatting

set to allow “!” chars for font commands

color

see “Color Names® on page 87

uvalue

any vaue of any type (only returned in structure if defined)

Table 2-9: Text Annotation Properties Structure

Obsolete IDL Features

LIVE_INFO

90

Note

Chapter 2: Obsolete Routines

Each vector element of the annotation formula (see “value’ tag above) is parsed
once, left to right, for vertical bars (]).

e Two vertical bars surrounding a data item name will be replaced by the
corresponding data value(s), possibly requiring multiple lines.

» Two adjacent bars will be replaced by a single bar.

« Two bars surrounding text that is not a dataitem name will be left asis.

AXxes

LIVE_INFO

Thefields in the properties structure of Axes are as follows:

Tag

Description

title_FontSize

9to 72 points

titte_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

title_Color

see “Color Names’ on page 87

tick_FontSize

9to 72 points

tick_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

tick_FontColor

see “Color Names’ on page 87

gridStyle see linestyle

color see “Color Names’ on page 87

thick 1to 10 pixels

location [X, y] data units

minor number of minor ticks (minimum Q)

major number of major ticks (minimum 0)
default_minor set to compute default number of minor ticks
default_major set to compute default number of major ticks

Table 2-10: Axis Properties Structure

Obsolete IDL Features

Chapter 2: Obsolete Routines

91

Tag Description
tickLen normalized units* 100 = percent of visualization dimensions
subticklen normalized units* 100 = percent of ticklen
tickDir 0 =up (or right), 1 = down (or left)
textPos 0 = below (or left), 1 = above (or right)
tickFormat standard IDL FORMAT string (See STRING function)

excluding parentheses

exact Set to use exact range specified

log set to display axisaslog

hide 1=hidden, O=visible

name scalar string (unique within al graphics)

compute_range

set to compute axis range from data min/max

tickName if defined, vector of stringsto use at major tick marks
uvalue any value of any type (only returned in structure if defined)
Table 2-10: Axis Properties Structure (Continued)
Colorbars

The fields in the properties structure of Colorbars are as follows:

Tag

Description

title_Fontsize

9to 72 points

title_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other isa
valid name of afont on the local system)

titte_Color see “Color Names’ on page 87
tick_FontSize see fontsize
tick_Fontname | seefontname

tick_FontColor

see “Color Names’ on page 87

Obsolete IDL Features

Table 2-11: Colorbar Properties Structure

LIVE_INFO

92

LIVE_INFO

Chapter 2: Obsolete Routines

Tag Description

color see “Color Names’ on page 87

thick 1to 10 pixels

location [x, y]; where[O, 0] = lower left and [1, 1] = position where the
entire colorbar fitsinto the upper right of the visualization

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

tickLen normalized units* 100 = percent of visualization dimensions

subticklen normalized units* 100 = percent of ticklen

tickFormat standard IDL FORMAT string (See STRING function)
excluding parentheses

show_axis set to display the colorbar axis

show_outline set to display the colorbar outline

axis_thick see thick

dimensions [width, height] normalized units

hide 1=hidden, O=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Table 2-11: Colorbar Properties Structure (Continued)

Obsolete IDL Features

Chapter 2: Obsolete Routines

Contours

93

The fields in the properties structure of Contours are as follows:

Tag Description
min_value minimum contour value to display
max_value maximum contour value to display
downhill set to display downhill tick marks
fill set to display contour levels asfilled
c_thick vector of thickness values (see thick)
c_linestyle vector of linestyle values (see linestyle)
c_color vector of color names (see “ Color Names’ on page 87)

default_n_levels

set to default the number of levels

n_levels specify a positive number for a specific number of levels
hide 1=hidden, O=visible

name scalar string (unique within all graphics)

uvalue any vaue of any type (only returned in structure if defined)

"The MIN and MAX value of the data are returned as contour levels when
N_LEVELSisset. Because of this, when setting N_LEVELS, contour plots appear
to have N-2 contour levels because the first (MIN) and last (MAX) level is not
shown. With LIVE_CONTOUR, thisresultsin alegend that contains unnecessary
itemsin the legend (the MIN and the MAX contour level).

Obsolete IDL Features

Table 2-12: Contour Properties Structure

LIVE_INFO

94

Images

Chapter 2: Obsolete Routines

The fields in the properties structure of Images are as follows:

Tag

Description

order

set to draw from top to bottom

sizing_constraint

[0[1]2] O=Natural, 1=Aspect, 2=Unrestricted

dont_byte scale

set to inhibit byte scaling the image

palette name of managed colortable
hide 1=hidden, O=visible
name scalar string (unique within all graphics)
uvalue any value of any type (only returned in LIVE_INFO structure
if defined)
Table 2-13: Image Properties Structure
Legends

LIVE_INFO

Thefields in the properties structure of Legends are as follows:

Tag

Description

title_FontSize

9to 72 points

title_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

title_Color

see “Color Names’ on page 87

item_fontSize

seefontsize

item_fontName

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

text_color color of item text (see “Color Names’ on page 87)
border_gap normalized units* 100 = percent of item text height
columns number of columnsto display the itemsin (minimum 0)

Table 2-14: Legend Properties Structure

Obsolete IDL Features

Chapter 2: Obsolete Routines 95
Tag Description

gap normalized units* 100 = percent of item text height

glyph_Width normalized units* 100 = percent of item text height

fill_color see“Color Names” on page 87

outline_color see“Color Names” on page 87

outline_thick see thick

location [, y]; where [0, 0] = lower left and [1, 1] = position where the
entire legend fits into the upper right of the visualization

show_fill set to display thefill color

show_outline set to display the legend outline

title_text String to display in the legend title

item_format standard IDL FORMAT string (See STRING function)
excluding parentheses (contour legends only)

hide 1=hidden, O=visible

name scalar string (unique within all graphics)

uvaue any vaue of any type (only returned in structure if defined)

Table 2-14: Legend Properties Structure (Continued)
Surfaces

The fields in the properties structure of Surfaces are as follows:

Tag Description
min_value minimum plot line value to display
max_value maximum plot line value to display
lineStyle 0O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot,
5=long dash
color see “Color Names® on page 87

Obsolete IDL Features

Table 2-15: Surface Properties Structure

LIVE_INFO

96 Chapter 2: Obsolete Routines
Tag Description
thick 1to 10 pixels
bottom see “Color Names’ on page 87
style O=point, 1=wire, 2=solid, 3=ruledXZ, 4=ruledY Z, 5=lego
(wire), 6=lego (solid)
shading O=flat, 1=Gouraud
hidden_lines set to not display hidden lines or points
show_skirt set to display the surface skirt
skirt z value at which skirt is drawn (data units)
hide 1=hidden, O=visible
name scalar string (unique within all graphics)
uvalue any value of any type (only returned in structure if defined)

Table 2-15: Surface Properties Structure (Continued)

Entire Visualizations

Thefields in the properties structure of Entire Visualizations are as follows:

Tag

Description

location

[X, y] normalized units

dimensions

[width, height] normalized units

transparent

set to avoid erasing to the background color

color

background color (see“Color Names' on page 87)

hide

1=hidden, O=visible

name

scalar string (unique within all graphics)

uvalue

any value of any type (only returned in structure if defined)

LIVE_INFO

Table 2-16: Visualization Properties Structure

Obsolete IDL Features

Chapter 2: Obsolete Routines

Windows

The fields in the properties structure of Windows are as follows:

Tag

Description

dimensions

2-element integer vector (pixels)

hide

boolean (0=show, 1=hide)

location

2-element integer vector (pixels) from upper | eft
corner of screen

title

string

Examples

LIVE_INFO, 'x axis',

Version History

Introduced: 5.1

See Also

Table 2-17: Windows Properties Structure

PROPERTIES=myProps

LIVE_CONTROL, LIVE_STYLE

Obsolete IDL Features

97

LIVE_INFO

98 Chapter 2: Obsolete Routines

LIVE_LINE

The LIVE_LINE procedure is an interface for line annotation.
Syntax

LIVE_LINE[, ARROW_ANGLE=value{1.0 to 179.0}] [, /ARROW_END]
[, ARROW_SIZE=value{0.0t0 0.3}] [, /ARROW_START] [, COLOR="color
name' | [, /DIALOG] [, DIMENSIONS=[widith, height]] [, ERROR=variable]
[, /HIDE] [, LINESTYLE={0|1|2|3]|4|5}] [, LOCATION=[X, y]]
[, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]
[, REFERENCE_OUT=variable] [, THICK=pixels{ 1 to 10}]
[, VISUALIZATION_IN=string] [, WINDOW_IN=string]

Arguments
None
Keywords

ARROW_ANGLE

Set this keyword to afloating-point number between 1.0 and 179.0 degreesto
indicate the angle of the arrowheads. The default is 30.0.

ARROW_END

Set this keyword to indicate an arrowhead should be drawn at the end of theline. Itis
not drawn by default.

ARROW_SIZE

Set this keyword to afloating-point number between 0.0 and 0.3 (normalized
coordinates) to indicate the size of the arrowheads. The default is 0.02.

ARROW_START

Set this keyword to indicate an arrowhead should be drawn at the start of theline. Itis
not drawn by default.

LIVE_LINE Obsolete IDL Features

Chapter 2: Obsolete Routines 99

COLOR

Set this keyword to a string (case-sensitive) of the color to be used for the line. The
default is ‘Black’. The following colors are available:

* Black * Red » Green * Yellow

» Blue * Magenta e Cyan e Dark Gray

» Light Gray e Brown e Light Red e Light Green

» Light Blue e Light Cyan « Light Magenta * White
DIALOG

Set this keyword to display the line properties dialog appear. The dialog will have al
known properties supplied by keywords filled in.

DIMENSIONS

Set this keyword to atwo-element vector of the form [width, height] to specify the X
and Y components of the line in normalized coordinates. The default is[0.2, 0.2].

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

HIDE

Set this keyword to a boolean value indicating whether this item should be hidden.
* 0= Visble (default)
e 1=Hidden
LINESTYLE

Set this keyword to a pre-defined line style integer:
e 0=solid line (default)

Obsolete IDL Features LIVE_LINE

100 Chapter 2: Obsolete Routines

e 1=dotted

e 2=dashed

e 3=dashdot

e 4 =dash dot dot

« 5=]ongdash
LOCATION

Set this keyword to atwo-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.

NAME

Set this keyword equal to a string containing the name to be associated with thisitem.
The name must be unigue within the given window or buffer (WINDOW_IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining names of the modified
visualization’s properties. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name

GRAPHIC Graphic Name the line created

Table 2-18: Fields of the LIVE_LINE Reference Structure

LIVE_LINE Obsolete IDL Features

Chapter 2: Obsolete Routines 101

THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickness
to be used to draw the line, in pixels. The default is one pixel.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of aLI1VE tool
visualization. The VISfield from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aL1VE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIV E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LIVE_LINE, WINDOW_IN='Live Plot 2', $
VISUALIZATION_IN='line plot visualization'
; Units are in the visualization units (based on axis ranges).

Version History
Introduced: 5.1
See Also

LIVE_RECT, LIVE_TEXT

Obsolete IDL Features LIVE_LINE

102

LIVE_LOAD

Chapter 2: Obsolete Routines

The LIVE_LOAD procedure loads into memory the complete set of routines
necessary to run al LIVE tools. By default, portions of the set are loaded when first
needed during the IDL session. If you expect to frequently use the tools, you may
wish to call LIVE_LOAD from your IDL “startup file”.

Syntax

LIVE_LOAD

Arguments
None

Keywords
None

Version History

Introduced: 5.2

LIVE_LOAD Obsolete IDL Features

Chapter 2: Obsolete Routines 103

LIVE_OPLOT

The LIVE_OPLOQOT procedure allows the insertion of datainto pre-existing plots.

Syntax

LIVE_OPLOT, Yvectorl [,..., Yvector25] [, ERROR=variabl€]
[, INDEPENDENT=vector] [, NAME=structure] [, INEW_AXES]
[,/NO_DRAW] [, /NO_SELECTION] [, REFERENCE_OUT=variable]
[, REPLACE={structure | {0|1|2]|3|4}}] [, SUBTYPE={'LinePlot’ |
‘ScatterPlot’ | ‘Histogram’ | ‘PolarPlot'}] [, VISUALIZATION_IN=string]
[, WINDOW_IN=string] [, {X | Y}_TICKNAME=array] [, {X |
Y}AXIS IN=string]

Arguments

YVector

A vector argument of data. Up to 25 of these arguments may be specified.
Keywords
ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,

errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

INDEPENDENT

Set this keyword to an independent vector specifying the X-Values for
LIVE_OPLOT.

NAME

Set this keyword to a structure containing suggested names for the data itemsto be
created for this visualization. See the REPLACE keyword for details on how they

Obsolete IDL Features LIVE_OPLOT

104 Chapter 2: Obsolete Routines

will be used. The fields of the structure are as follows. (Any or al of the tags may be
set.)

Tag Description

DATA Dependent Data Name(s)

I Independent Data Name

Table 2-19: Fields of the NAME keyword

The default for afield isto use the given variable name. If the variable does not have
aname (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in around-robin fashion if more data than names
areinput.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

NEW_AXES

Set this keyword to generate a new set of axes for this plot line. If this keyword is
specified, the [XY]JAXIS_IN keywords will not be used.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to avariable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visudization Name

Table 2-20: Fields of the LIVE_OPLOT Reference Structure

LIVE_OPLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 105

Tag Description
XAXIS X-Axis Name
YAXIS Y-Axis Name
GRAPHIC Graphic Name(s)
LEGEND Legend Name
DATA Dependent Data Name(s)
[Independent Data Name

Table 2-20: Fields of the LIVE_OPLOT Reference Structure (Continued)
REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
aready existing in the given window or buffer (WINDOW_IN).

Setting Action Taken
0 New items will be given unique names.
1 Existing itemswill be replaced by new items (i.e,, the old itemswill be
deleted and new ones created).
2 User will be prompted for the action to take.
3 Thevalues of existing itemswill be replaced. Thiswill cause dynamic

updating to occur for any current uses, e.g., avisualization would
redraw to show the new value.

4 Default. Option O will be used for items that do not have names (e.g.,
datainput as an expression rather than a named variable, with no name
provided viathe NAME keyword). Option 3 will be used for all
named items.

Table 2-21: REPLACE keyword Settings and Action Taken

Obsolete IDL Features LIVE_OPLOT

106 Chapter 2: Obsolete Routines

SUBTYPE

Set this keyword to a string (case-insensitive) containing the desired type of plot.
SUBTY PE defaults to whatever is being inserted into, if the [XY]AXIS_IN keyword
is set. If the keywords are not set, then the default isline plot. Valid strings are:

e ‘LinePlot’ (default)

o ‘ScatterPlot’

e ‘'Histogram’

* ‘PolarPlot’
Note

If inserting into a group (defined by the set of axes) that is polar, SUBTY PE cannot
be defined asline, scatter, or histogram. The oppositeisalso true: if inserting into a
line, scatter, or histogram group, then SUBTY PE cannot be defined as polar.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of aLIVE tool
visualization. The VISfield from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aL1VE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIV E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equals the values computed from the data range.

LIVE_OPLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 107

XAXIS_IN

Set this keyword equal to the string name of an existing axis. The name can be
obtained from the REFERENCE_OUT keyword, or visually from the GUI. The
default isto use thefirst set of axesin the plot.

Note
If this keyword is set, you must aso set the YAXIS IN keyword, and both

keywords must be set to a“pair” of axes. The X and Y axes given must be
associated with the same plot line.

YAXIS_IN

Set this keyword equal to the string name of an existing axis. The name can be
obtained from the REFERENCE_OUT keyword, or visually from the GUI. The
default isto use thefirst set of axesin the plot.

Note
If this keyword is set, you must aso set the XAXIS_IN keyword, and both

keywords must be set to a“pair” of axes. The X and Y axes given must be
associated with the same plot line.

Examples

LIVE_OPLOT, tempData, pressureData

Version History

Introduced: 5.1

See Also

LIVE_PLQOT, PLOT, OPLOT

Obsolete IDL Features LIVE_OPLOT

108 Chapter 2: Obsolete Routines

LIVE_PLOT

The LIVE_PLOT procedure creates an interactive plotting environment.

Click on a section of the plot to display a properties dialog. A set of buttons in the
upper left corner of the image window allows you to print, undo the last operation,
redo the last “undone” operation, copy, draw aline, draw arectangle, or add text.

(Sl [Bl 21O A

A A4 AN NN

Print Undo Redo Copy Line Rectangle Text

Figure 2-3: LIVE_PLOT Properties Dialog

You can control your LI1VE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 61 for an explanation.

Syntax

LIVE_PLOQOT, Yvectorl [, Yvector2,..., Yvector25] [, /BUFFER]
[, DIMENSIONS=[width, height]{ normal units}] [, /DOUBLE]
[, DRAW_DIMENSIONS=[width, height]{ devive units}] [, ERROR=variabl€]
[, /HISTOGRAM |, /LINE |, /POLAR |, /SCATTER] [, INDEXED_COLOR]
[, INSTANCING={-1|0|1}] [, LOCATION=[X, y]{ normal units}]
[, INDEPENDENT=vector] [, MANAGE_STYLE] [, NAME=structure]
[,/NO_DRAW] [, /NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]
[, PARENT _BASE=widget_id |, TLB_LOCATION=[Xoffset, Yoffset]{ device
units}] [, PREFERENCE_FILE=filename{full path}]
[, REFERENCE_OUT=variable] [, RENDERER={0 | 1}]
[, REPLACE={structure|{0|1|2]|3]|4}}] [, STYLE=name or_reference]
[, TEMPLATE_FILE=filename] [, TITLE=string] [, WINDOW _IN=string] [, {/X
| /YILOG] [, {X | Y}RANGE=[min, max]{ dataunits}] [, { X |
Y} TICKNAME=array]

LIVE_PLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 109

Arguments

YVector

A vector of data. Up to 25 of these arguments may be specified. If any of the datais
stored in IDL variables of type DOUBLE, LIVE_PLOT uses double precision to
store the data and to draw the result.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIV E window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element, floating-point vector specifying the dimensions of
the visualization in normalized coordinates. The default is[1.0, 1.0].

DOUBLE

Set this keyword to force LIVE_PLOT to use double-precision to draw the resuilt.
This has the same effect as specifying datain the Y Vector argument using | DL
variables of type DOUBLE.

DRAW_DIMENSIONS

Set this keyword equal to avector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Obsolete IDL Features LIVE_PLOT

110

Chapter 2: Obsolete Routines

Note
If anamed variableis passed in this keyword and an error occurs, the error GUI will
not be displayed.

HISTOGRAM
Set this keyword to represent plot values as a histogram.
INDEPENDENT

Set this keyword to an independent vector specifying X-valuesfor LIVE_PLOT.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or O to turn it off. The default (-1) isto
useinstancing if and only if the “ software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LINE

Set this keyword to represent plot values as aline plot. Thisisthe default. Alternate
choices are provided by keywords HISTOGRAM, POLAR, and SCATTER.

LOCATION

Set this keyword to atwo-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STY LE keyword is not
set to astyleitem.

LIVE_PLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 111

NAME

Set this keyword to a structure containing suggested names for the data itemsto be
created for this visualization. See the REPLACE keyword for details on how they
will be used. The fields of the structure are as follows. (Any or all of the tags may be
set.)

Tag Description

DATA Dependent Data Name(s)
[Independent Data Name

Table 2-22: Fields of the NAME keyword

The default for afield is to use the given variable name. If the variable does not have
aname (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in around-robin fashion if more data than names
areinput.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.
NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.
PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
aLIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. To insert atool into your widget
application, you must determine the setting from the parent base sent to the tool.
LIVE_DESTROY on awindow isrecommended when using PARENT_BASE so
that proper memory cleanup is done. Destroying the parent base is not sufficient.

Obsolete IDL Features LIVE_PLOT

112 Chapter 2: Obsolete Routines

Note
When specifying a PARENT_BASE, that parent base must be running in a non-
blocking mode. Putting a LIV E tool into arealized base already controlled by
XMANAGER will override the XMANAGER modeto /NO_BLOCK even if
blocking had been in effect.

POLAR

Set this keyword to represent plot values asapolar plot. In this case, the arguments to
LIVE_PLOT represent values of r (radius), whilethe INDEPENDENT keyword

represents the values of T (angle theta). If POLAR is set, you must specify
INDEPENDENT.

REFERENCE_OUT

Set this keyword to avariable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
XAXIS X-Axis Name
YAXIS Y-Axis Name
GRAPHIC Graphic Name(s)
LEGEND Legend Name
DATA Dependent Data Name(s)
[Independent Data Name

Table 2-23: Fields of the LIVE_PLOT Reference Structure
RENDERER

Set this keyword to 1 to use the “ software renderer”, or 0 to use the “hardware
renderer”. The default (-1) isto use the setting in the IDL Workbench preferences; if
the IDL Workbench is not running, however, the default is hardware rendering. For
more information, see “Hardware vs. Software Rendering” in the Using IDL manual.

LIVE_PLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 113

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
aready existing in the given window or buffer (WINDOW _IN).

Setting Action Taken
0 New itemswill be given unique names.
1 Existing itemswill be replaced by new items (i.e., the old items
will be deleted and new ones created).
2 User will be prompted for the action to take.
3 The values of existing items will be replaced. This will cause

dynamic updating to occur for any current uses, e.g., a
visualization would redraw to show the new value.

4 Default. Option O will be used for itemsthat do not have names
(e.g., datainput as an expression rather than a named variable,
with no name provided viathe NAME keyword). Option 3 will be
used for al named items.

Table 2-24: REPLACE keyword Settings and Action Taken

SCATTER
Set this keyword to represent plot values as a scatter plot.
STYLE

Set this keyword to either a string specifying a style name created with
LIVE STYLE.

Note
If STYLE isnot set, the default plot style will be used.

TITLE

Set this keyword to a string specifying thetitle to give the main window. It must not
aready bein use. A default will be chosen if no title is specified.

Obsolete IDL Features LIVE_PLOT

114

Chapter 2: Obsolete Routines

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is[0, Q].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aL1VE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XLOG

Set this keyword to make the X axisalog axis. The default is O (linear axis).
YLOG

Set this keyword to makethe Y axisalog axis. The default is O (linear axis).
XRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the data range.

X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equals the values computed from the data range.

LIVE_PLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 115

Examples

; Plot two data sets simultaneously:
LIVE_PLOT, tempdata, pressureData

Note
Thisisa“Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal data item. For
example, if one does the following:

Y= indgen(10)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=locl
Y = indgen (20)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc2

Thefirst plot will updateto use the Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks’ of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LIVE_PLOT, Y1,...
LIVE_PLOT, Y2,...

or

LIVE_PLOT, Y, ...
LIVE_PLOT, myFunc(Y),...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable isinput.

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

Version History
Introduced: 5.0
See Also

LIVE_OPLOT, PLOT, OPLOT

Obsolete IDL Features LIVE_PLOT

116 Chapter 2: Obsolete Routines

LIVE_PRINT

The LIVE_PRINT procedure allows the user to print a given window to the printer.

Syntax

LIVE_PRINT [, /DIALOG] [, ERROR=variable] [, WINDOW_IN=string]
Arguments

None
Keywords

DIALOG
Set this keyword to have a print dialog appear.
ERROR

Set this keyword to a named variabl e to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variableis passed in this keyword and an error occurs, the error GUI will

not be displayed.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aLIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIV E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Obsolete Keywords

The following keywords are obsol ete:
e SETUP
For information on obsol ete keywords, See Appendix |, “Obsolete Features’.

LIVE_PRINT Obsolete IDL Features

Chapter 2: Obsolete Routines

Examples
LIVE_PRINT, WINDOW_IN='Live Plot 2°'

Version History
Introduced: 5.1
See Also

DIALOG_PRINTERSETUP, DIALOG_PRINTJOB

Obsolete IDL Features

117

LIVE_PRINT

118 Chapter 2: Obsolete Routines

LIVE_RECT

The LIVE_RECT procedureis an interface for insertion of rectangles.
Syntax
LIVE_RECT [, COLOR="color name'] [, /DIALOG] [, DIMENSIONS=[width,
height]] [, ERROR=variable] [, /HIDE] [, LINESTYLE={0|1|2]|3|4]|5}]
[, LOCATION=[x, y]] [, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]

[, REFERENCE_OUT=variable] [, THICK=pixel {1 to 10}]
[, VISUALIZATION_IN=string] [, WINDOW_IN=string]

Arguments
None
Keywords

COLOR

Set this keyword to a string (case-sensitive) of the color to be used for the rectangle.
Thedefault is‘Black’. The following colors are available:

* Black * Red e Green * Yellow

» Blue * Magenta e Cyan » Dark Gray

» Light Gray e Brown e Light Red » Light Green

» Light Blue » Light Cyan » Light Magenta * White
DIALOG

Set this keyword to have the rectangle dialog appear. This dialog will fill in known
attributes from set keywords.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, height]
to specify the dimensions of the rectangle in normalized coordinates. The default is
[0.2,0.2].

LIVE_RECT Obsolete IDL Features

Chapter 2: Obsolete Routines 119

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

HIDE
Set this keyword to a boolean val ue indicating whether this item should be hidden.
* 0= Visible (default)
e 1=Hidden
LINESTYLE

Set this keyword to a pre-defined line style integer:
e 0= Solidline (default)

e 1=dotted

* 2=dashed

» 3=dashdot

* 4 =dashdot dot

* 5=longdash
LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.

Obsolete IDL Features LIVE_RECT

120 Chapter 2: Obsolete Routines

NAME

Set this keyword equal to a string containing the name to be associated with thisitem.
The name must be unigque within the given window or buffer (WINDOW _IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to avariable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visudization Name

GRAPHIC Graphic Name the rectangle created

Table 2-25: Fields of the LIVE_RECT Reference Structure

THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickness
to be used to draw theline, in pixels. The default is one pixel.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of aLIVE tool
visualization. The VISfield from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aL1VE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names

LIVE_RECT Obsolete IDL Features

Chapter 2: Obsolete Routines 121

are also visible in visualization window titlebars. If only one L1V E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LIVE_RECT, LOCATION=[0.1,0.1],DIMENSIONS=[0.2,0.2],$
WINDOW_IN='Live Plot 2',VISUALIZATION_IN='line plot'

Version History
Introduced: 5.1
See Also

LIVE_LINE, LIVE_TEXT

Obsolete IDL Features LIVE_RECT

122 Chapter 2: Obsolete Routines

LIVE_STYLE

The LIVE_STYLE function allows the user to create a style.

Syntax

Syle=LIVE_STYLE ({ 'contour' | 'image' | 'plot’' | 'surface’}
[, BASE_STYLE=style name] [, COLORBAR_PROPERTIES=structure]
[, ERROR=variable] [, GRAPHIC_PROPERTIES=structure]
[, GROUP=widget_id] [, LEGEND_PROPERTIES=structure] [, NAME=string]
[, /ISAVE] [, TEMPLATE_FILE=filename]
[, VISUALIZATION_PROPERTIES=structure] [, {X | Y |
Z}AXIS_PROPERTIES=structure])

Arguments

Type
A string (case-insensitive) specifying the visualization style type. Available types
include: plot, contour, image, and surface.

Keywords
BASE_STYLE

Set this keyword equal to a string (case-insensitive) containing the name of a
previously saved style. It will be used for defaulting unspecified properties. If not
specified, only those properties you provide will be put into the style. The basic styles
that will always exist include:

Visualization Type Style Name
plot ‘Basic Plot’
contour ‘Basic Contour’
image ‘Basic Image’
surface ‘Basic Surface’

Table 2-26: Base Style Strings

LIVE_STYLE Obsolete IDL Features

Chapter 2: Obsolete Routines 123

COLORBAR_PROPERTIES
Thetable below lists the structure of the COLORBAR_PROPERTIES keyword.

Tag Description

title_FontSize 9to 72 points

titte_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

title_Color see color table

tick_FontSize see fontsize

tick_Fontname | seefontname

tick_FontColor | seecolor table

color see color table

thick 1to 10 pixels

location [X, y] normalized units

minor number of minor ticks (minimum 0)
major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

tickLen normalized units* 100 = percent of visualization dimensions
subticklen normalized units* 100 = percent of ticklen

tickFormat see format

show_axis set to display the colorbar axis

show_outline set to display the colorbar outline

axis_thick see thick
dimensions [width, height] normalized units
hide 1=hidden, O=visible

Table 2-27: Colorbar Properties Structure

Obsolete IDL Features LIVE_STYLE

124 Chapter 2: Obsolete Routines

GRAPHIC_PROPERTIES

Set this keyword equal to ascalar or vector of structures defining the graphic
properties to use in creating the style. (Use a vector if you want successive graphics
to have different properties, e.g., different colored linesin aline plot. The structures
are used in around-robin fashion.) Not all properties need be specified (see
BASE_STYLE). The complete structure definitions are listed in the following tables.

LIVE_STYLE Obsolete IDL Features

Chapter 2: Obsolete Routines 125

Plots
Tag Data Type/Description
color string (see color table)
hide boolean (1=hidden, O=visible)
linestyle integer (O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot
dot, 5=long dash)
nSum integer (1 to number of elements to average over)
symbol_size [x,y] normalized unitsrelative to the visualization
symbol_type | integer (1-7)
thick integer (1 to 10 pixels)

Table 2-28: Plot Graphic Properties Structure

Images
Tag Data Type/Description
hide boolean (1=hidden, O=visible)
order boolean (set to draw from top to bottom)
sizing_constraint integer (O=natural, 1=aspect, 2=unrestricted)
Table 2-29: Image Graphic Properties Structure
Contours
Tag Data Type/Description
downhill boolean (set to display downhill tick marks)
fill boolean (set to display contour levels asfilled)
hide boolean (1=hidden, O=visible)
n_levels integer (number of levels)

Table 2-30: Contour Graphic Properties Structure

Obsolete IDL Features LIVE_STYLE

126 Chapter 2: Obsolete Routines

Tag Data Type/Description
c_thick vector of thickness values
c_linestyle vector of linestyle values
c_color vector of color names
default_n_levels | integer (set to default number of levels)

Table 2-30: Contour Graphic Properties Structure (Continued)

Surfaces
Tag Data Type/Description

bottom string (see color table)

color string (see color table)

hidden_lines boolean (1=don’t show, 0=show)

hide boolean (1=hidden, O=visible)

lineStyle integer (O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash
dot dot, 5=long dash)

shading boolean (O=flat, 1=Gouraud)

show_skirt boolean (1=show, 0=don’t show)

sKirt float (z value at which skirt is drawn [data units])

style integer (O=point, 1=wire, 2=solid, 3=ruledXZ, 4=ruledY Z,
5=lego (wire), 6=lego (solid))

thick integer (1 to 10 pixels)

Table 2-31: Surface Graphic Properties Structure
GROUP

Set this keyword to the widget ID of the group leader for error message display. This
keyword is used only when the ERROR keyword is not set. If only one LIVE tool
window is present in the IDL session, it will default to that.

LIVE_STYLE Obsolete IDL Features

Chapter 2: Obsolete Routines 127

LEGEND_PROPERTIES

Set this keyword equal to a structure defining the legend propertiesto usein creating
the style. Not all properties need be specified (see BASE_STYLE). The complete
structure definitions for different types of styles are listed in the following tables.

Tag Description

title_FontSize 9to 72 points

titte Fontname | Helvetica, Courier, Times, Symbol, and Other (where Other
isavalid name of afont on the local system)

titte_Color see color table

item_fontSize see fontsize

item_fontName | see fonthname

text_color see color

border_gap normalized units* 100 = percent of item text height
columns number of columns to display the itemsin (minimum 0)
gap normalized units* 100 = percent of item text height

glyph_Width normalized units* 100 = percent of item text height

fill_color see color table
outline_color see color table
outline_thick seethick

location [X, y] normalized units
show_fill set to display thefill color

show_outline set to display the legend outline
hide 1=hidden, O=visible

Table 2-32: Legend Properties Structure

Obsolete IDL Features LIVE_STYLE

128 Chapter 2: Obsolete Routines

NAME

Set this keyword to a string containing a name for the returned style. If the SAVE
keyword is set, the name must be unique template file. If not specified, aname will be
automatically generated.

SAVE

Set this keyword to save the style in the template file. The supplied Name must not
aready exist in the template file or an error will be returned.

VISUALIZATION_PROPERTIES

Set this keyword equal to a structure defining the visualization propertiesto use in
creating the style. Not all properties need be specified (see BASE_STYLE). The
complete structure definition isin the following table.

Tag Data Type

color string (see color table) for background

hide boolean

transparent boolean

Table 2-33: Visualization Properties Structure

XAXIS_PROPERTIES, YAXIS_PROPERTIES,
ZAXIS_PROPERTIES

Set these keywords equal to a scalar or vector of structures defining the axis
properties to use in creating the style. (Use a vector to specify property structures for
successive axes of the same direction have different properties. The structures are
used in around-robin fashion.) Not all properties need be specified (see

BASE STYLE). The user need only define the fields of the structure they wish to be

LIVE_STYLE Obsolete IDL Features

Chapter 2: Obsolete Routines 129

different from the BASE style. The complete structure definition is shown in the
following table.

Tag Data Type
color string (see color table)
default_major integer
default_minor integer
exact boolean
gridstyle integer (0-5) (linestyle)
hide boolean
location 3-element floating vector (normalized units)
major integer (default=-1, computed by IDL)
minor integer (default=-1, computed by IDL)
thick integer (1-10)
tickDir integer
tickLen float (normalized units)
tick_fontname string
tick_fontsize integer

Table 2-34: Axis Properties Structure

Examples

Style=LIVE_STYLE('plot',BASE_STYLE='basic plot', $
GRAPHIC_PROPERTIES={color:'red'})

Version History
Introduced: 5.1
See Also

LIVE_INFO, LIVE_CONTROL

Obsolete IDL Features LIVE_STYLE

130 Chapter 2: Obsolete Routines

LIVE_SURFACE

The LIVE_SURFACE procedure creates an interactive plotting environment for
multiple surfaces. Because the interactive environment requires extra system
resources, this routine is most suitable for relatively small data sets. If you find that
performance does not meet your expectations, consider using the Direct Graphics
SURFACE routine or the Object Graphics IDLgrSurface class directly.

After LIVE_SURFACE has been executed, you can double-click on a section of the
surface to display a properties dialog. A set of buttons in the upper left corner of the
image window allows you to print, undo the last operation, redo the last “undone”
operation, copy, draw aline, draw arectangle, or add text.

(Sl [Bl 21O A

A A4 A vy

Print Undo Redo Copy Line Rectangle Text

Figure 2-4: LIVE_SURFACE Properties Dialog

You can control your LI1VE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 61 for an explanation.

Syntax

LIVE_SURFACE, Data, Data2,... [, /BUFFER] [, DIMENSIONS=[width,
height]{ normal units}] [, /DOUBLE] [, DRAW_DIMENSIONS=[width,
height]{ devive units}] [, ERROR=variable] [, INDEXED_COLOR]

[, INSTANCING={-1|0] 1}] [, LOCATION=[x, y]{ normal units}]

[, IMANAGE_STYLE] [, NAME=structure] [, /NO_DRAW]
[,/NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]

[, PARENT_BASE=widget_id |, TLB_LOCATION=[Xoffset, Yoffset]{ device
units}] [, PREFERENCE_FILE=filename{full path}]

[, REFERENCE_OUT=variable] [, RENDERER={0 | 1}]

[, REPLACE={structure | {0|1|2]|3]|4}}] [, STYLE=name_or_reference]

[, TEMPLATE_FILE=filename] [, TITLE=string] [, WINDOW_IN=string] [, { X
| Y}INDEPENDENT=vector] [, {/X | /Y}LOG] [, {X | Y}RANGE=[min,
max]{dataunits}] [, { X | Y} _TICKNAME=array]

LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 131

Arguments

Data

A vector of data. Up to 25 of these arguments may be specified. If any of the datais
stored in IDL variables of type DOUBLE, LIVE_SURFACE uses double-precision
to store the data and to draw the resullt.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIV E window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, height]
specifying the dimensions of the visualization in normalized coordinates. The default
is[1.0, 1.0].

DOUBLE

Set this keyword to force LIVE_SURFACE to use double-precision to draw the
result. This has the same effect as specifying datain the Data argument using IDL
variables of type DOUBLE.

DRAW_DIMENSIONS

Set this keyword equal to avector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Obsolete IDL Features LIVE_SURFACE

132

Chapter 2: Obsolete Routines

Note
If anamed variableis passed in this keyword and an error occurs, the error GUI will
not be displayed.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or O to turn it off. The default (-1) isto
useinstancing if and only if the “ software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STY LE keyword is not
set to astyleitem.

NAME

Set this keyword to a structure containing suggested names for the data itemsto be
created for this visualization. See the REPLACE keyword for details on how they

LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 133

will be used. The fields of the structure are as follows. (Any or al of the tags may be

Set.)
Tag Description
DATA Dependent Data Name(s)
IX Independent X Data Name
Y Independent Y Data Name

Table 2-35: Fields of the NAME keyword

The default for afield is to use the given variable name. If the variable does not have
aname (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in around-robin fashion if more data than names
areinput.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display

NO_STATUS

Set this keyword to prevent the creation of the status bar.
NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
aLIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert atool into their own widget application will determine the setting
from the parent base sent to the tool.

Obsolete IDL Features LIVE_SURFACE

134 Chapter 2: Obsolete Routines

Note
LIVE_DESTROY on awindow is recommended when using PARENT_BASE so
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in a non-
blocking mode. Putting a LIV E tool into arealized base already controlled by
XMANAGER will override the XMANAGER modeto /NO_BLOCK even if
blocking had been in effect.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
GRAPHIC Graphic Name(s)
XAXIS X-Axis Name
YAXIS Y-Axis Name
ZAXIS Z-Axis Name
LEGEND Legend Name
DATA Dependent Data Name(s)
IX Independent X Data Name
Y Independent Y Data Name

Table 2-36: Fields of the LIVE_SURFACE Reference Structure
RENDERER

Set this keyword to 1 to use the “ software renderer”, or 0 to use the “ hardware
renderer”. The default (-1) isto use the setting in the IDL Workbench preferences; if
the IDL Workbench is not running, however, the default is hardware rendering. For

LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 135

more information, see “Hardware vs. Software Rendering” in the Objects and Object
Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
aready existing in the given window or buffer (WINDOW _IN).

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items will be
deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. Thiswill cause dynamic

updating to occur for any current uses, e.g., avisualization would
redraw to show the new value.

4 Default. Option O will be used for items that do not have names (e.g.,
datainput as an expression rather than a named variable, with no name
provided viathe NAME keyword). Option 3 will be used for all named
items.

Table 2-37: REPLACE keyword Settings and Action Taken

STYLE

Set this keyword to either a string specifying a style name created with
LIVE_STYLE.

TITLE

Set this keyword to a string specifying thetitle to give the main window. It must not
aready bein use. A default will be chosen if no title is specified.

Obsolete IDL Features LIVE_SURFACE

136

Chapter 2: Obsolete Routines

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is[0, Q].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aL1VE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XINDEPENDENT

Set this keyword to a vector specifying X valuesfor LIVE_SURFACE. The defaultis
the data’s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the

independent vector.

YINDEPENDENT

Set this keyword to a vector specifying Y valuesfor LIVE_SURFACE. The defaultis
the data’s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the

independent vector.

XLOG
Set this keyword to make the X axisalog axis. The default is O (linear axis).
YLOG

Set this keyword to makethe Y axisalog axis. The default is O (linear axis).

LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 137

XRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the datarange.

X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equal s the values computed from the data range.

Examples

This example visualizes two surface representations. To manipulate any part of the
surface, double click on surface to access agraphical user interface:

LIVE_SURFACE, tempData, pressureData
Note
Thisisa“Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal data item. For
example, if one does the following:

Y = indgen(10)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=locl
Y = indgen(20)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc2

Thefirst plot will update to use the Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks’ of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LIVE_PLOT, Y1,...
LIVE_PLOT, Y2,...

Obsolete IDL Features LIVE_SURFACE

138 Chapter 2: Obsolete Routines

or;

LIVE_PLOT, Y, ...
LIVE_PLOT, myFunc(Y),...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable isinput.

Note

The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

Version History
Introduced: 5.0
See Also

SURFACE, SHADE_SURF

LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 139

LIVE_TEXT

The LIVE_TEXT procedureis an interface for text annotation. You can control your
LIVE window after it is created using any of several auxiliary routines. See
“LIVE_Tools" on page 61 for an explanation.

Syntax

LIVE_TEXT[, Text] [, ALIGNMENT=value{ 0.0 to 1.0}] [, COLOR="color name']
[, IDIALOG] [, /ENABLE_FORMATTING] [, ERROR=variable]
[, FONTNAME=string] [, FONTSIZE=points{9 to 72}] [, /HIDE]
[, LOCATION=[x, y]] [, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]
[, REFERENCE_OUT=variable] [, TEXTANGL E=value{ 0.0 to 360.0}]
[, VERTICAL_ALIGNMENT=value{ 0.0 to 1.0}]
[, VISUALIZATION_IN=string] [, WINDOW_IN=string]

Arguments

Text

The string to be used for the text annotation. The default is“ Text”. If Text isan array
of strings, each element of the string array will appear on a separate line.

Keywords
ALIGNMENT

Set this keyword to afloating-point value between 0.0 and 1.0 to indicate the
horizontal alignment of the text. The alignment schemeis as follows:

o M— 0.5 - 0.0
Left Middle Right
COLOR

Set this keyword to a string (case-sensitive) of the foreground color to be used for the
text. The default is ‘Black’. The following colors are available:

* Black * Red * Green * Yellow
» Blue * Magenta e Cyan » Dark Gray

Obsolete IDL Features LIVE_TEXT

140 Chapter 2: Obsolete Routines

e Light Gray e Brown e Light Red e Light Green
» Light Blue » Light Cyan » Light Magenta * White
DIALOG

Set this keyword to have the text annotation dialog appear. This dialog will fill in
known attributes from set keywords.

ENABLE_FORMATTING

Set this keyword to have LIVE_TEXT interpret “!” (exclamation mark) as font and
positioning commands.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,

errors are reported viaa GUI.

Note
If anamed variableis passed in this keyword and an error occurs, the error GUI will

not be displayed.

FONTNAME

Set this keyword to a string containing the name of the desired font. The default is
Helvetica

FONTSIZE

Set this keyword to an integer scalar specifying the font point size to be used. The
default is 12. Available point sizes are 9 through 72.

HIDE
Set this keyword to a boolean val ue indicating whether this item should be drawn:
e 0= Draw (default)

 1=Donot draw

LIVE_TEXT Obsolete IDL Features

Chapter 2: Obsolete Routines 141

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.

NAME

Set this keyword equal to a string containing the name to be associated with thisitem.
The name must be unigque within the given window or buffer (WINDOW _IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table:

Tag Description
WIN Window Name
VIS Visualization Name
GRAPHIC Graphic Name the text created

Table 2-38: Fields of the LIVE_TEXT Reference Structure

TEXTANGLE

Set this keyword to afloating-point val ue defining the angle of rotation of the text.
Thevalid range is from 0.0 to 360.0. The default is 0.0.

Obsolete IDL Features LIVE_TEXT

142 Chapter 2: Obsolete Routines

VERTICAL_ALIGNMENT

Set this keyword to a floating-point value between 0.0 and 1.0 to indicate the vertical
alignment of the text baseline. The alignment scheme is as follows:

0.0 Top
05 Middle
1.0 Bottom

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of aLIVE tool
visualization. The VISfield from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aL1VE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one L1V E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LIVE_TEXT, 'My Annotation', WINDOW_IN='Live Plot 2', $
VISUALIZATION_IN='line plot wvisualization'

Version History
Introduced: 5.1

See Also

LIVE_LINE, LIVE_RECT

LIVE_TEXT Obsolete IDL Features

Chapter 2: Obsolete Routines 143

LILCT

Thisroutine is obsolete and should not be used in new IDL code.

The LILCT procedure loads standard color tables for LJ-250/252 printer. The color
tables are modified only if the deviceis currently setto “LJ".

The default color maps used are for the 90 dpi color palette. There are only 8 colors
available at 180 dpi.

If the current deviceis‘LJ, the!D.N_COL ORS system variable is used to determine
how many bit planes are in use (1 to 4). The standard color map for that number of
planes is loaded. These maps are described in Chapter 7 of the LJ250/LJ252
Companion Color Printer Programmer Reference Manual, Table 7-5. That manual
gives the values scaled from 1 to 100, LILCT scales them from 0 to 255.

Thisroutineis written in the IDL language. Its source code can be found in the file
1jlct.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
LILCT
Example

; Set plotting to the LJ device:
SET_PLOT, 'LJ'

; Load the LJ color tables:
LJLCT

Obsolete IDL Features LILCT

144 Chapter 2: Obsolete Routines

MSG_CAT CLOSE

The MSG_CAT_CLOSE procedure closes a catal og file from the stored cache.
Syntax
MSG_CAT_CLOSE, object
Arguments
object
The object reference returned from MSG_CAT_OPEN.
Keywords
None
Version History
Introduced: 5.2.1
See Also

MSG_CAT_COMPILE, MSG_CAT_OPEN, IDLffLanguageCat

MSG_CAT_CLOSE Obsolete IDL Features

Chapter 2: Obsolete Routines

MSG_CAT COMPILE

145

The MSG_CAT_COMPILE procedure creates an IDL language catalog file.

Note

Thelocale is determined from the system locale in effect when compilation takes
place.

Syntax

MSG_CAT_COMPILE, input[, output] [, LOCALE_ALIAS=string] [, /MBCS]
Arguments

input

Theinput file with which to create the catalog. Thefile is atext representation of the
key/MBCS association. Each line in the file must have a key. The language string
must then be surrounded by double quotes, then an optional comment.

For example:
VERSION "Version 1.0" My revision number of thefile

There are 2 specid tags, one of which must be included when creating the file:
APPLICATION (required)

SUB_QUERY (optional)
output

The optional output file name (including path if necessary) of the IDL language
catalog file.

The naming convention for IDL language catalog files is as follows:
idl_ + "Application name" + _ + "Locale" + .cat

For example:
idl_envi_usa_eng.cat

If not set, a default filename is used based on the locale;

idl_[locale] .cat

Obsolete IDL Features MSG_CAT_COMPILE

146 Chapter 2: Obsolete Routines

Keywords

LOCALE_ALIAS

Set this keyword to a scalar string containing any locale aliases for the locale on
which the catalog is being compiled. A semi-colon is used to separate locales.

For example:

MSG_CAT_COMPILE, 'input.txt', 'idl_envi_usa_eng.cat',$
LOCALE_ALIAS='C'

MBCS

If set, this procedure assumes language strings to be in MBCS format. The default is
8-bit ASCII.

Version History
Introduced: 5.2.1
See Also

MSG_CAT_CLOSE, MSG_CAT_OPEN, IDLffLanguageCat

MSG_CAT_COMPILE Obsolete IDL Features

Chapter 2: Obsolete Routines 147

MSG_CAT OPEN

The MSG_CAT_OPEN function opens a specified catalog object file.
Syntax

Result = MSG_CAT_OPEN(application [, DEFAULT_FILENAME=filename]
[, FILENAME=string] [, FOUND=variable] [, LOCALE=string] [, PATH=string]
[, SUB_QUERY=value])

Return Value

Returns a catal og object for the given parametersif found. If amatch is not found, an
unset catal og object isreturned. If unset, the IDLffLanguageCat::Query method will
aways return the empty string unless a default catalog is provided.

Arguments

application

A scalar string representing the name of the desired application's catalog file.
Keywords
DEFAULT_FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open if theinitial request was not found.

FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open. If this keyword is set, application, PATH and LOCALE are ignored.

FOUND

Set this keyword to a named variable that will contain 1 if a catalog file was found, O
otherwise.

Obsolete IDL Features MSG_CAT_OPEN

148 Chapter 2: Obsolete Routines

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current locale
is used.

PATH

Set this keyword to a scalar string containing the path to search for language catal og
files. The default is the current directory.

SUB_QUERY

Set this keyword equal to the value of the SUB_QUERY key to search againgt. If a
match isfound, it is used to further sub-set the possible return catalog choices.

Version History
Introduced: 5.2.1
See Also

MSG_CAT_CLOSE, MSG_CAT_COMPILE, IDLffLanguageCat

MSG_CAT_OPEN Obsolete IDL Features

Chapter 2: Obsolete Routines 149

ONLINE_HELP PDF_INDEX

The ONLINE_HELP_PDF _INDEX procedure displays a searchable index of the

IDL PDF documentation set. It isavailable only on UNIX platforms that support the
IDL-Acrobat plug-in. (For more information on the IDL Acrobat plug-in, see “About
IDL’s Online Help System” in Chapter 16 of the Building IDL Applications manual.)

Warning
ONLINE_HELP_PDF_INDEX isnot supported in IDL releases after IDL 6.2.

ONLINE_HELP_PDF _INDEX isawidget-based graphical application. The
interface and its controls are described in “Using ONLINE_HELP_PDF _INDEX” on
page 150.

Warning
The ONLINE_HELP_PDF _INDEX procedure relies on the presence of the file
mindex. txt intheHelp subdirectory of the IDL distribution. If thisfileis not
present, ONLINE_HELP_PDF_INDEX will exit with an error.

Thisroutineis written in the IDL language. Its source code can be found in the file
online_help_pdf_index.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
ONLINE_HELP_PDF_INDEX [, SearchTerm|
Arguments

SearchTerm

A scalar string containing aterm to be located in the IDL master index. SearchTerm
will be loaded into the ONLINE_HELP_PDF_INDEX widget application’s search
field, and the index list will scroll to the top-level index entry that most closely
matches SearchTerm.

Note
See “The “Always Show This List” Checkbox” on page 151 for information on
modifying this behavior.

Obsolete IDL Features ONLINE_HELP_PDF_INDEX

150 Chapter 2: Obsolete Routines

Keywords

None.
Using ONLINE_HELP_ PDF _INDEX

The ONLINE_HELP_PDF_INDEX utility presents awidget interface with two tabs:
one that allows searching in and selecting items from the IDL Master Index, and one
that allows the user to define topics of interest within the IDL PDF documentation
Set.

| |
¢ IDL Documentation Index [_ o] =] ™ IDL Documentation Index [_ o] =]
Help Help

Index] Bookmarks] Index] Bookmarks]

Enter a search string Select a bookmark

e

HHANAGER, procedure
nanaging widget svents, HEEND
overwiew, 750 Bld
reference, 2413 Ref
uhen ta use HREGISTERED, 758 Eld

HHANAGERTOOL, ses_obsolste routines

HHARGIN kewuord, 3881 Ref

HAH nachine-specific paranster, 1193 Ref

HHENU, see obsolete routines

HHIN nachine-specific paranster, 1193 Ref

HHINDR keyword, 3861 Ref

HL

See also IDLFFAMLSAR.

defined, 572 Bld

D0M, 572 Bld

I7D, 577 Bld

parsers a
defired, 572 Bld
TDLFFEMLSAR, 2680 Ref ~ T

SAH, 573 Bld

Schema, 577 Bld

validation, 577 Bld

HHLSAX cbject, E14 Use
KING_THPL procedurs, 2422 Ref Bocknark Text: iGuid
SHTORL procedure, 2424 Ref s e | it

ROBIWIEW procedure, 2426 Ref

1

| Table Widget Reference, 2307 Ref
Uszing Table Widgets, 848 Bld
Handitusce, AN

1

Manage Bookmarks

KOBJWIEN_ROTATE procedure, 2436 Ref .
HOBJVIEW_URITE_IMAGE procedure, 2438 Ref LRl et Reffereies =
Hoffset, 135 EDG
HOFFSET keguord B bers |27
graphics positioning, 3821 Ref g ||

PostSoript positioning, 3843 Ref

! Add Edit Delste

= I
I” Always Show This List

e | Display Display

Figure 2-5: The ONLINE_HELP_PDF_INDEX Interface

Using the Index Tab

The IDL Master Index is a single document that includes index entries for the entire
IDL documentation set. It isincluded in the he1p subdirectory of the IDL
distribution in an Adobe Acrobat PDF version (mindex . pdf) and atext-only version
(mindex. txt).

ONLINE_HELP_PDF_INDEX Obsolete IDL Features

Chapter 2: Obsolete Routines 151

Selecting and Displaying Topics

Tousethe ONLINE _HELP PDF _INDEX interfaceto search for aterm in the master
index, select the Index tab and type into the Enter a search string field. The index
list will scroll automatically to the top-level index entry that most closely matchesthe
string you enter, and the first page number/book abbreviation combination will be
highlighted.

To display the selected page in the Adobe Acrobat viewer, click Display, press the
Enter key, or double-click on the highlighted entry using the mouse.

To switch between the search field and the index list, press the Tab key. When the
index list is selected, change the highlighted item using the arrow keys on your
keyboard.

Click Done to dismiss the Index widget.
The “Always Show This List” Checkbox

By default, the ONLINE_HELP_PDF_INDEX interfaceis displayed every time the

“?" or ONLINE_HELP command is used, even if SearchTermisfound and displayed
in the Adobe Acrobat viewer. Unchecking the Always Show ThisList checkbox on

the Index tab changes this behavior, and only displaysthe interfaceif SearchTermis
not found in the PDF documentation set.

Using the Bookmarks Tab

To define personal topics of interest in the IDL documentation set, select the
Bookmarks tab.

To display the page associated with a bookmark in the Adobe Acrobat viewer:
1. Highlight the bookmark using the mouse or arrow keys.

2. Click Display, pressthe Enter key, or double-click on the highlighted entry
using the mouse.

To add a new bookmark:
Enter adescriptive string in the Bookmark text field.

2. Select amanual from the IDL documentation set from the Book pulldown
menu.

Enter the page number in the Page number field.
Click Add.

To modify an existing bookmark:

Obsolete IDL Features ONLINE_HELP_PDF_INDEX

152 Chapter 2: Obsolete Routines

1. Highlight the bookmark in the list.

2. Makethe appropriate changes in the Bookmark text, Book pulldown list, and
Page number fields and click Edit.

To delete a bookmark, highlight the bookmark in the list and click Delete.

Note
There must be at least one bookmark. If you delete the only bookmark in the
bookmarks list, a new default bookmark will be created for you.

About Bookmarks

Each IDL user on a UNIX system has a personal bookmarks file that can be used to
store index-like references to pagesin IDL’'s PDF documentation set.

Note
Bookmarks into the PDF documentation set will work only for the version of IDL
with which they were created.

Like index entries, bookmarks refer to a specific page in one of the IDL manuals.
Because page numbers generally change when anew version of an IDL manud is
released, bookmarks from one release of IDL will typically not point to the same
information in the PDF files provided with a different release. This means that
when you install and run anew version of IDL, your existing bookmarks will no
longer be valid, and they will not be copied to the new bookmarksfile.

Examples

On aUNIX platform that supportsthe IDL-Acrobat plug-in, entering “?" with no
search term at the IDL command prompt displaysthe ONLINE_HELP _PDF _INDEX
interface.

ONLINE_HELP_PDF_INDEX Obsolete IDL Features

Chapter 2: Obsolete Routines 153

PICKFILE

Thisroutine is obsolete and should not be used in new IDL code.

The PICKFILE function has been renamed but retains the same functionality it had in
previous releases. See DIALOG_PICKFILE inthe IDL Reference Guide.

Obsolete IDL Features PICKFILE

154 Chapter 2: Obsolete Routines

POLYFITW

This routine is obsolete and should not be used in new IDL code. To perform a
weighted polynomial fit, use the MEASURE_ERRORS keyword to POLY _FIT.

The POLY FITW function performs a weighted |east-square polynomial fit with
optional error estimates and returns a vector of coefficients with alength of
NDegree+1.

The POLY FITW routine uses matrix inversion. A newer version of this routine,
SVDHIT, uses Singular Value Decomposition. The SVD technique is more flexible,
but slower. Another version of thisroutine, POLY _FIT, performs a least square fit
without weighting.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
polyfitw.pro inthelib subdirectory of the IDL distribution.

Syntax

Result = POLYFITW(X, Y, Weights, NDegree [, Yfit, Yband, Sgma, Corrm|
[, /IDOUBLE] [, STATUS=variable])

Arguments

X

An n-dement vector of independent variables.
Y

A vector of independent variables, the same length as X.
Weights

A vector of weights, the same length as X and Y.
NDegree

The degree of the polynomial to fit.
Yfit

A named variable that will contain the vector of calculated Y values. These values
have an error of plus or minus Yband.

POLYFITW Obsolete IDL Features

Chapter 2: Obsolete Routines 155

Yband
A named variable that will contain the error estimate for each point.
Sigma
A named variable that will contain the standard deviation of the returned coefficients.

Corrm

A named variable that will contain the correlation matrix of the coefficients.
Keywords

DOUBLE

Set this keyword to force computations to be done in double-precision arithmetic.

STATUS

Set this keyword to a named variable to receive the status of the operation. Possible
status values are:

* 0= Successful completion.

e 1= Singular array (which indicates that the inversion isinvalid). Result is
NaN.

e 2=Warning that asmall pivot element was used and that significant accuracy
was probably lost.

e 3 =Undefined (NaN) error estimate was encountered.

Note
If STATUS is not specified, any error messages will be output to the screen.

Tip
Status values of 2 or 3 can often be resolved by setting the DOUBLE keyword.

Obsolete IDL Features POLYFITW

156 Chapter 2: Obsolete Routines

REWIND

Thisroutine is obsolete and should not be used in new IDL code.

The REWIND procedure rewinds the tape on the designated IDL tape unit. REWIND
isavailable only under VMS. See the description of the magnetic tape routinesin
“VMS-Specific Information” in Chapter 8 of Application Programming.
Syntax
REWIND, Unit
Arguments
Unit

The magnetic tape unit to rewind. Unit must be a number between 0 and 9, and
should not be confused with standard file Logical Unit Numbers (LUNS).

REWIND Obsolete IDL Features

Chapter 2: Obsolete Routines 157

RIEMANN

Thisroutine is obsolete and should not be used in new IDL code. RIEMANN has
been replaced by the RADON function.

The RIEMANN procedure computes the “ Riemann sum” (or itsinverse) which helps
implement the backprojection operator used to reconstruct the cross-section of an
object, given projections through the object from multiple directions. This technique
iswidely used in medical imaging in the fields of computed x-ray tomography, MRI
imaging, Positron Emission Tomography (PET), and also has applications in other
areas such as seismology and astronomy. The inverse Riemann sum, which evaluates
the projections given a slice through an object, is also a discrete approximation to the
Radon transform.

Given amatrix A(m,n), which will contain the reconstructed slice; a vector P,
containing the ray sums for a given view; and an angle Theta measured in radians
from the vertical: the Riemann sum “backprojects’ the vector P into A. For each
element of A, the value of the closest element of P is summed, leaving the result in A.
Bilinear interpolation is an option. All operations are performed in single-precision
floating point.

In the reverse operation, the ray sums contained in the view vector, P, are computed
given the original dlice, A, and Theta. Thisis sometimes called “front projection”.

The Riemann sum can be written:
M-1

Z A(r-cos(i-A=0),i-A)
i=0

which is the sum of the data along lines through an image with an angle of thetafrom
the vertical.

Syntax

RIEMANN, P, A, Theta [, /BACKPROJECT] [, /BILINEAR] [, CENTER=value]
[, COR=vector] [, CUBIC=value{-1to 0}] [, D=spacing] [, ROW=value]

Obsolete IDL Features RIEMANN

158 Chapter 2: Obsolete Routines

Arguments

P

A k-element floating-point projection vector (or matrix if the ROW keyword is
specified). For backprojection (when the BACKPROJECT keyword is set), P
contains the ray sums for a single view. For the inverse operation, P should contain
zeros on input and will contain the ray sums for the view on outpuit.

An m by n floating-point image matrix. For backprojection, A contains the
accumulated results. For the inverse operation, A contains the original image.
Typically, k should be larger than

AJm? +n?
which isthe diagonal size of A.
Theta

The angle of the ray sums from the vertical.
Keywords
BACKPROJECT

Set this keyword to perform backprojection in which P is summed into A. If this
keyword is not set, the inverse operation occurs and the ray sums are accumulated
into P.

BILINEAR

Set this keyword to use bilinear interpolation rather than the default nearest neighbor
sampling. Results are more accurate but slower when bilinear interpolation is used.

CENTER

Set this keyword equal to afloating-point number specifying the center of the
projection. The default value for CENTER is one-half the number of elements of P.

RIEMANN Obsolete IDL Features

Chapter 2: Obsolete Routines 159

COR

Set thiskeyword equal to atwo-element floating-point vector specifying the center of
rotation in the array A. The default valueis[nV2., n/2.], where Aisan m by n array.

For symmetric results, given symmetric operands, COR should be set to the origin of
symmetry [(m-1)/2, (n-1)/2], and CENTER should be set to (n-1)/2., where n isthe
number of elements in the projection vector, P.

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to avalue greater than zero specifies avalue of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than wg, and f is sampled with spacing |ess than or equal to 1/2w),
then f can be reconstructed by convolving with a sinc function: sinc (x) = sin (nx) /
(7x).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation is
significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniquesfor
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

D

Use this keyword to specify the spacing between elements of P, expressed in the
same units as the spacing between elements of A. The default is 1.0.

Obsolete IDL Features RIEMANN

160 Chapter 2: Obsolete Routines

ROW

Set this keyword to specify the P vector as a given row within a matrix, so that the
sinogram array can be used directly without having to extract or insert each row. In
this case, P must be an array with afirst dimension equal to k, and the value of ROW
must be in the range of 0 to the number of vectors of length kin P, minus one.

Example

This example forms a synthetic image in A, computes Nviews equally spaced views,
and stores the stacked projections (commonly called the “sinogram™) in a matrix PP.
It then backprojects the projectionsinto the matrix B, forming the reconstructed slice.
In practical use, the projections are convolved with afilter before being
backprojected.

; Define number of columns in A:
N = 100L

; Define number of rows in A:
M = 100L

; Number of views:

nviews = 100

; The length of the longest projection. If filtered backprojection
; 1s used, 1/2 the length of the convolution kernel must also be
; added.

K = CEIL(SQRT(N"2 + M"2))

; Form original slice:
A = FLTARR(N, M)

; Simulate a square object:
A[N/2:N/2+5, M/2:M/2+5] = 1.0

; Make array for sinogram:
pp = FLTARR (K, nviews)

; Compute each view:
FOR I=0, NVIEWS-1 DO RIEMANN, pp, A, I * !PI/nviews, ROW=1

; Show sinogram:
TVSCL, pp

; Initial reconstructed image:
B = FLTARR(N, M)

RIEMANN Obsolete IDL Features

Chapter 2: Obsolete Routines 161

; Do the backprojection for each view:

FOR I=0, nviews-1 DO $
RIEMANN, pp, B, I * !PI/nviews, /BACKPROJECT, ROW=i

; Show reconstructed array:
TVSCL, B

Obsolete IDL Features RIEMANN

162 Chapter 2: Obsolete Routines

RSTRPOS

Thisroutine is obsolete and should not be used in new IDL code.

The RSTRPOS function has been replaced by the STRPOS function’s
REVERSE_SEARCH keyword. See “STRPOS’ (IDL Reference Guide).

The RSTRPOS function finds the last occurrence of a substring within an object
string (the STRPOS function finds the first occurrence of a substring). If the substring
is found in the expression, RSTRPOS returns the character position of the match,
otherwise it returns -1.

Syntax
Result = RSTRPOS(Expression, Search_String [, Pos])
Arguments
Expression

The expression string in which to search for the substring.
Search_String
The substring to be searched for within Expression.

Pos

The character position before which the search is begun. If Posis omitted, the search
begins at the last character of Expression.

Example

; Define the expression:

exp = 'Holy smokes, Batman!'

; Find the position of a substring:
pos = RSTRPOS (exp, 'smokes')

; Print the substring’s position:
PRINT, pos

IDL prints:

5

RSTRPOS Obsolete IDL Features

Chapter 2: Obsolete Routines 163

Note
Substring begins at position 5 (the sixth character).

Obsolete IDL Features RSTRPOS

164 Chapter 2: Obsolete Routines

SET_SYMBOL

Thisroutine is obsolete and should not be used in new IDL code.

The SET_SYMBOL procedure definesa DCL (Digital Command Language)
interpreter symbol for the current process. SET_SYMBOL is available only under
VMS.

Syntax
SET_SYMBOL, Name, Value[, TYPE={1|2}]
Arguments
Name
A scalar string containing the name of the symbol to be defined.

Value

A scalar string containing the value with which Name is defined.
Keywords
TYPE

Indicates the table into which Name will be defined. Setting TY PE to 1 specifies the
local symbol table, while avalue of 2 specifiesthe globa symbol table. The default is
the local table.

SET_SYMBOL Obsolete IDL Features

Chapter 2: Obsolete Routines 165

SETLOG

Thisroutine is obsolete and should not be used in new IDL code.
The SETLOG procedure defines alogical name.

Note
This procedure is only available for the VM S platform.

Syntax

SETLOG, Lognam, Value [, /CONCEALED] [, /CONFINE] [, /INO_ALIAS]
[, TABLE=string] [, /TERMINAL]

Arguments

Lognam
A scalar string containing the name of the logical to be defined.
Value

A string containing the value to which the logical will be set. If Valueisastring
array, Lognam is defined as a multi-valued logical where each element of Value
defines one of the equivalence strings.

Keywords

CONCEALED

If this keyword is set, RMS (VM S Record Management Services) interprets the
equivalence name as a device name.

CONFINE

If this keyword is set, the logical nameis not copied from the IDL processto its
spawned subprocesses.

NO_ALIAS

If thiskeyword is set, the logical name cannot be duplicated in the same logical table
at an outer access mode. If another logical name with the same name already exists at

Obsolete IDL Features SETLOG

166 Chapter 2: Obsolete Routines

an outer access mode, it is deleted. See the VMS System Services Manual for
additional information on logical names and access modes.

TABLE

A scalar string containing the name of the logical table into which Lognam will be
entered. If TABLE is not specified, LNM$PROCESS _TABLE isused.

TERMINAL

If this keyword is set, when attempting to trandate the logical, further iterative
logical name translation on the equivalence name is not to be performed.

SETLOG Obsolete IDL Features

Chapter 2: Obsolete Routines 167

SETUP_KEYS

Thisroutine is obsolete and should not be used in new IDL code.

The SETUP_KEY S procedure sets function keys for use with UNIX versions of IDL
when used with the standard tty command interface.

Under UNIX, the number of function keys, their names, and the escape sequences
they send to the host computer vary enough between various keyboards that IDL
cannot be written to understand all keyboards. Therefore, IDL provides avery
general routine named DEFINE_KEY that allows the user to specify the names and
escape sequences of function keys.

SETUP_KEY S provides a convenient interface to DEFINE_KEY, using user input
(viathe keywords described below), the TERM environment variable and the type of
machine the current IDL is running on to determine what kind of keyboard you are
using, and then uses DEFINE_KEY to enter the proper definitions for the function

keys.
The new mappings for the keys can be viewed using the command
HELP, /KEYS

The need for SETUP_KEY S has diminished in recent years because most UNIX
terminal emulators have adopted the ANSI standard for function keys, as represented
by VT100 terminals and their many derivatives, as well as xterm and the newer CDE
based dtterm.

The current version of IDL already knows the function keys of such terminals, so
SETUP_KEY Sisnot required. However, SETUP_KEY Sis still needed to define
keys on non-ANSI terminals such as the Sun shelltool.

Thisroutineis written in the IDL language. Its source code can be found in the file
setup_keys.pro inthe 1ib subdirectory of the IDL distribution.

Syntax

SETUP_KEYSI, /ANSI] [, /EIGHTBIT] [, /SUN |, /VT200 | , IMIPS]
[, /APP_KEYPAD] [, /NUM_KEY PAD]

Arguments

None

Obsolete IDL Features SETUP_KEYS

168 Chapter 2: Obsolete Routines

Keywords

Note
If no keyword is specified, SETUP_KEY S uses !VERSION to determine the type
of machine running IDL. It assumes that the keyboard involved is of the same type
(this assumption is correct).

ANSI
Set this keyword to establish function key definitions for ANSI keyboards.
EIGHTBIT

Set this keyword to use the 8-bit versions of the escape codes (instead of the default
7-bit) when establishing VT200 function key definitions.

SUN
Set this keyword to establish function key definitions for a Sun3 keyboard.
VT200

Set this keyword to establish function key definitions for aDEC VT200 keyboard.

ws use non-standard escape sequences which IDL does not attempt to handle.

MIPS

Set this keyword to establish function key definitions for a Mips RS series keyboard.
APP_KEYPAD

Set this keyword to define escape sequences for the group of keysin the numeric
keypad, enabling these keys to be programmed within IDL.

NUM_KEYPAD

Set this keyword to disable programmability of the numeric keypad.

Version History

Pre-4.0 I ntroduced

SETUP_KEYS Obsolete IDL Features

Chapter 2: Obsolete Routines 169

SIZE Executive Command

This command is obsolete and is should not be used in new IDL code.
SIZE Code_Size, Data_Size

The . s1zE command resizes the memory area used to compile programs. The default
code and data area sizes are 32,768 and 8,192 bytes, respectively. These sizes
represent a compromise between an unlimited program space and conservation of
memory. User procedures and functions are compiled in this large program area.
After successful compilation, a new memory area of the required size is allocated to
contain the newly compiled program unit.

Resizing the code and data areas erases the currently compiled main program and all
main program variables. For example, to extend the code and data areas to 30,000
and 5,000 bytes, respectively, use the following statement:

.SIZE 30000 5000

Each user-defined procedure, function, and main program has its own code area that
contains the compiled code and constants. Although the maximum size of these areas
is set by the . sT7ZE command, thereis virtualy no limit to the number of program
units. Procedures or functions that run out of code area space should be broken into
multiple program units.

The data area contains information describing the user-defined variables and
common blocks for each procedure, function, or main program. Note that the “ data
area’ is not the space available for variable storage, but the space available for that
program unit’'s symbol table.

Warning
Users are sometimes confused about the nature of the code and data areas. Note that

there are separate code and data areas for each compiled function, routine, or main
program. The HEL P command can be used to see the current sizes of the code and
data areas for the program unit in which the HELP function is called.

For example, to see the sizes of the code and data areas for the main program level,
enter the following at the IDL prompt:

HELP

Each compiled function and procedure has its own code and data areas. If the
compiled routine does not use the full amount of code space allocated by the default

Obsolete IDL Features SIZE Executive Command

170

Chapter 2: Obsolete Routines

code area size, the code area“ shrinks” to just the size the routine needs. For example,
enter and compile a simple procedure from the IDL prompt by entering:

.RUN

- PRO EXAMPLE

- PRINT, "Here are the code and data areas for this procedure:"
- HELP

- END

Call the EXAMPLE procedure from the command line to see the resuilt:
EXAMPLE
Thethird line of output from the HEL P procedure displays:
Code area used: 100.00% (100/100), Data area used: 2.02% (2/99)

Note that the code area for the EXAMPLE procedureis completely filled and that the
total size of the code areaisjust 100 bytes.

SIZE Executive Command Obsolete IDL Features

Chapter 2: Obsolete Routines 171

SKIPF

Thisroutine is obsolete and should not be used in new IDL code.

The SKIPF procedure skips records or files on the designated magnetic tape unit.
SKIPF isavailable only under VMS. If two parameters are supplied, files are
skipped. If three parameters are present, individual records are skipped.

The number of files or records actually skipped is stored in the system variable |ERR.
Note that when skipping records, the operation terminatesimmediately when the end
of afileis encountered. See the description of the magnetic tape routinesin “VMS-
Specific Information” in Chapter 8 of Application Programming.

Syntax

SKIPF, Unit, Files
or
SKIPF, Unit, Records, R

Arguments
Unit

The magnetic tape unit to rewind. Unit must be a number between 0 and 9, and
should not be confused with the standard file Logical Unit Numbers (LUNS).

Files

The number of files to be skipped. Skipping isin the forward direction if the second
parameter is positive, otherwise files are skipped backwards.

Records

The number of records to be skipped. Skipping isin the forward direction if the
second parameter is positive, otherwise records are skipped backwards.

R

If thisargument is present, records are skipped, otherwisefiles are skipped. Thevalue
of Risnever examined. Its presence serves only to indicate that records are to be
skipped.

Obsolete IDL Features SKIPF

172

SLICER

Thisroutine is obsolete and should not be used in new IDL code.

The IDL SLICER is awidget-based application to show 3D volume slices and
isosurfaces. On exit, the Z-buffer contains the most recent image generated by the
SLICER. Theimage may be redisplayed on adifferent device by reading the Z-buffer
contents plus the current color table. Note that the volume data must fit in memory.

Using the SLICER

Datais passed to the SLICER viathe common block VOLUME_DATA. Note that the
variable used to contain the volume data must be defined as part of the common block
before the volume datais read into the variable. (See the Example section, below.)

The SLICER has the following modes:

Syntax

SLICER

Chapter 2: Obsolete Routines

Slices: Displays or removes orthogonal or oblique slices through the data
volume.

Block: Displays the surfaces of a selected block inside the volume.
Cutout: Cuts blocks from previously drawn objects.

Isosurface: Draws an isosurface contour.

Probe: Displays the position and value of objects using the mouse.
Colors: Manipulates the color tables and contrast.

Rotations: Sets the orientation of the display.

Journal: Records or plays back files of SLICER commands.

See the SLICER’s help file (available by clicking the “Help” button on the SLICER
widget) for more information about drawing slices and images.

COMMON VOLUME_DATA, A
A =your_volume data
SLICER

Obsolete IDL Features

Chapter 2: Obsolete Routines 173

Arguments

A

A 3D array containing volume data. Note that the variable A must be included in the
common block VOLUME_DATA before being equated with the volume data. Ais
not an explicit argument to SLICER.

Keywords

CMD_FILE

Set this keyword to a string that contains the name of afile containing SLICER
commands to execute as described under SLICER Commands, below. The file should
contain one command per line.

Command files can be created interactively, using the SLICER’s “ Journal” feature.
COMMAND

Set this keyword equal to a1 x n string array containing commands to be executed by
the SLICER before entering interactive mode. Available commands are described
under SLICER Commands, below.

Note that commands passed to the SLICER with the COMMAND keyword must be
inalx narray, rather than in an n-element vector. String arrays can be easily
specified in the proper format using the TRANSPOSE command. For example, the
following passes three commands to the dicer:

com=TRANSPOSE (['COLOR 5', 'TRANS 1 20', 'ISO 17 1'])
SLICER, COMMAND=com
DETACHED

Set this keyword to put the drawable in a separate window. This can be useful when
working with large images.

GROUP

Set this keyword to the widget ID of the widget that calls SLICER. When GROUP is
specified, acommand to destroy the calling widget also destroys the SLICER.

Obsolete IDL Features SLICER

174

Chapter 2: Obsolete Routines

NO_BLOCK

Set this keyword equal to zero to have XMANAGER block when this application is
registered. By default, NO_BLOCK is set equal to one, providing access to the
command line if active command line processing is available. Setting
NO_BLOCK=0will cause all widget applications to block, not just this application.
For more information, see the documentation for the NO_BLOCK keyword to
XMANAGER.

RANGE

Set this keyword to atwo-element array containing minimum and maximum data
values of interest. If RANGE is omitted, the data is scanned for the minimum and
maximum values.

RESOLUTION

Set this keyword to a two-element vector specifying the width and height of the
drawing window. The default is 55% by 44% of the screen width.

SLICER Commands

SLICER

The dlicer accepts a number of commands that replicate the action of controlsin the
graphical user interface. These commands can be specified at the IDL command line
using either CMD_FILE keyword or the COMMAND keyword. Files of SLICER
commands can also be created and played back from within the SLICER, using the
“Journal” feature.

Commands, in this context, are strings that include a command identifier and (in
Some cases) one or more numeric parameters separated by blanks. The following are
the available SLICER commands, with parameters.

COLOR Table_Index Low High Shading

Set the color tables. Table_Index isthe pre-defined color table number (see
LOADCT), or -1 to retain the present table. Low is the contrast minimum, High isthe
contrast maximum, and Shading is the differential shading, all expressed in percent.
For example, the following command picks color table number 2, sets the minimum
contrast to 10%, the maximum contrast to 90%, and the differential shading to 50%:

COLOR 2 10 90 50

Obsolete IDL Features

Chapter 2: Obsolete Routines 175

CUBE Mode Cut_Ovr Interp X0 YO Z0 X1 Y1 Z1

Definesthe volume used for “Block” and “Cutout” operations. Set Mode=1 for Block
mode or Mode=2 for Cutout mode. Set Cut_Owvr=0 to mimic selecting the “Cut Into”
button or Cut_Ovr=1 to mimic selecting the “ Cut Over” button.

Note
These buttons have no effect in Block mode. See the online help on SLICER for
further explanation of Cut Into and Cut Over.

Set Interp=1 for bilinear interpolation sampling or Interp=0 for nearest neighbor
sampling.

X0,Y0,Z0 are the coordinates of the lower corner of the volume, and X1,Y1,Z1 are the
coordinates of the upper corner. For example:

CUBE 1 0 1 20 0 56 60 75 42
selects Block mode, the “Cut Into” button, bilinear interpolation and defines the
volume's corners at (20, 0, 56) and (60, 75, 42).

ERASE
Erases the display. Mimics clicking on the “Erase” button.
ISO Threshold Hi_Lo

Draws an iso-surface. Threshold is the isosurface threshold value. Set Hi_Lo equal to
1 to view the low side, or equal to 0 to view the high side.

ORI X_Axis Y_Axis Z_axis X_Rev Y_Rev Z Rev X_Rot Z_Rot
Asp

Sets the orientation for the SLICER display, mimicking the action of the
“Orientation” button. Set X_Axis, Y_Axis, and Z_Axisto 0, 1, or 2, where O represents
thedata X axis, 1thedataY axis, and 2 thedataZ axis. Set X Rev, Y_Rev,and Z Rev
to O for normal orientation or to 1 for reversed. Set X _Rot and Z_Rot to the desired
rotations of the X and Z axes, in degrees (30 is the default). Set Asp to the desired Z
axis aspect ratio with respect to X and Y. For example, to interchange the X and Z
axes and reverse the Y use the string:

ORI 2 1 0 01 0 30 301

Obsolete IDL Features SLICER

176 Chapter 2: Obsolete Routines

SLICE Axis Value Interp Expose 0

Draws an orthogonal slice. Set Axisto 0 to draw aslice parallel to the X axis, to 1 for
theY axis, or to 2 for the Z axis. Set Value to the pixel value of the slice. Set Interp=1
for bilinear interpolation sampling or Interp=0 for nearest neighbor sampling. Set
Expose=1 to cut out of an existing image (mimicking the “Expose” button) or set
Expose=0 to draw the slice on top of the current display (mimicking the “ Draw”
button). The final zero indicates that the slice is orthogonal rather than oblique. For
example, the following command draws an orthogonal dice parallel to the X axis, at
the pixel value 31, using bilinear interpolation.

SLICE 0 31 1 0 0
SLICE Azimuth Elev Interp Expose 1 X0 YO Z0

Draws an oblique slice. The oblique plane crosses the XY plane at angle Azimuth,
with an elevation of Elev. Set Interp=1for bilinear interpolation sampling or Interp=0
for nearest neighbor sampling. Set Expose=1 to cut out of an existing image
(mimicking the “Expose” button) or set Expose=0 to draw the slice on top of the
current display (mimicking the “Draw” button). The one indicates that the diceis
oblique rather than orthogonal. The plane passes through the point (X0, YO, Z0). For
example, the following command exposes an oblique dice with an azimuth of 42 and
an elevation of 24, using bilinear interpolation. The plane passes through the point
(52, 57, 39).

SLICE 42 24 1 1 1 52 57 39
TRANS On_Off Threshold

Turns transparency on or off and sets the transparency threshold value. Set On_Off=1
to turn transparency on, On_Off=0 to turn transparency off. Threshold is expressed in
percent of data range (0 = minimum data value, 100 = maximum data value). For
example, this command turns transparency on and sets the threshold at 20 percent:

TRANS 1 20
UNDO
Undoes the previous operation.
WAIT Secs

Causes the SLICER to pause for the specified time, in seconds.

SLICER Obsolete IDL Features

Chapter 2: Obsolete Routines 177

Example

Dataistransferred to the SLICER viathe VOLUME_DATA common block instead
of as an argument. Thistechnique is used because volume datasets can be very large
and the duplication that occurs when passing values as arguments is a waste of
memory.

Suppose that you want to read some data from the file head . dat, which isincluded
inthe IDL examples directory, into IDL for usein the SLICER. Before you read the
data, establish the VOLUME_DATA common block with the following command:

COMMON VOLUME_DATA, VOL

The VOLUME_DATA common block has just one variablein it. (The variable can
have any name; here, we're using the name vor.) Now read the datafrom thefile into
voL. For example;

OPENR, UNIT, /GET, FILEPATH('head.dat', SUBDIRECTORY=['examples',
'data'l)

VOL = BYTARR(80, 100, 57, /NOZERO)

READU, UNIT, VOL

CLOSE, UNIT

Now you can run the SLICER widget application by entering:
SLICER

The data stored in VOL is the data being worked on by the SLICER.

To obtain the image in the slicer window after dicer is finished:

SET_PLOT, 'Z' ;Use the Z buffer graphics device.
A = TVRD() ;Read the image.

Obsolete IDL Features SLICER

178 Chapter 2: Obsolete Routines

STR_SEP

Thisroutine is obsolete and should not be used in new IDL code.

The STR_SEP function has been replaced by STRSPLIT for single character
delimiters, and STRSPLIT with the REGEX keyword set for longer delimiters. See
“STRSPLIT” (IDL Reference Guide).

The STR_SEP function divides a string into pieces as designated by a separator
string. STR_SEP returns a string array where each element is a separated piece of the
original string.

Syntax
Result = STR_SEP(Str, Separator [, /TRIM] [, /REMOVE_ALL] [, /ESC])
Arguments

Str
The string to be separated.
Separator

The separator string.
Keywords
TRIM

Set this keyword to remove leading and trailing blanks from each element of the
returned string array. TRIM performs STRTRIM (String, 2).

REMOVE_ALL

Set this keyword to remove all blanks from each element of the returned string array.
REMOVE_ALL performs STRCOMPRESS(String, /REMOVE_ALL)

ESC

Set this keyword to interpret the characters following the <ESC> character literally
and not as separators. For example, if the separator is a comma and the escape

STR_SEP Obsolete IDL Features

Chapter 2: Obsolete Routines 179

character is a backslash, the character sequence “a\,b" isinterpreted asasingle field
containing the characters “a,b”.

Example

; Create a string:
str = 'Doug.is.a.cool.dude!"’

; Separate the parts between the periods:
parts = STR_SEP(stxr, '.')

; Confirm that the string has been broken up into 5 elements:
HELP, parts

PRINT, parts[3]
IDL Output

PARTS STRING = Arrayl[5]
cool

Obsolete IDL Features STR_SEP

180 Chapter 2: Obsolete Routines

TAPRD

Thisroutine is obsolete and should not be used in new IDL code.

The TAPRD procedure reads the next record on the selected tape unit into the
specified array. TAPRD is available only under VMS. No data or format conversion,
with the exception of optional byte reversal, is performed. The array must be defined
with the desired type and dimensions. If the read is successful, the system variable
IERR is set to the number of bytes read. See the description of the magnetic tape
routinesin “VMS-Specific Information” in Chapter 8 of Application Programming.

Syntax
TAPRD, Array, Unit [, Byte Reverse]
Arguments
Unit

The magnetic tape unit to read. This argument must be a number between 0 and 9,
and should not be confused with standard file Logical Unit Numbers (LUN’S).

Array

A named variable into which the datais read. If Array is larger than the tape record,
the extra elements of the array are not changed. If the array is shorter than the tape
record, a data overrun error occurs. The length of Array and the records on the tape
can range from 14 bytes to 65,235 bytes.

Byte Reverse

If this parameter is present, the even and odd numbered bytes are swapped after
reading, regardless of the type of data or variables. This enables reading tapes
containing short integers that were written on machines with different byte ordering.
You can also use the BY TORDER routine to re-order different data types.

TAPRD Obsolete IDL Features

Chapter 2: Obsolete Routines 181

TAPWRT

Thisroutine is obsolete and should not be used in new IDL code.

The TAPWRT procedure writes data from the Array parameter to the selected tape
unit. TAPWRT isavailable only under VMS. One physical record containing the
same number of bytes as the array iswritten each time TAPWRT is called. The
parameters and usage are identical to those in the TAPRD procedure with the
exception that here the Array parameter can be an expression. Consult the TAPRD
procedure for details. See the description of the magnetic tape routinesin “VMS-
Specific Information” in Chapter 8 of Application Programming.

Syntax
TAPWRT, Array, Unit [, Byte Reverse]
Arguments
Unit

The magnetic tape unit to write. This argument must be a number between 0 and 9,
and should not be confused with standard file Logical Unit Numbers (LUNS).

Array

The expression representing the data to be output. The length of Array and the
records on the tape can range from 14 bytes to 65,235 bytes.

Byte Reverse

If this parameter is present, the even and odd numbered bytes are swapped on output,
regardless of the type of data or variables. This enables writing tapes that are
compatible with other machines.

Obsolete IDL Features TAPWRT

182

TIFF_DUMP

Chapter 2: Obsolete Routines

Thisroutine is obsolete and should not be used in new IDL code.

The TIFF_DUMP procedure dumpsthe Image File Directories of a TIFF file directly
to the terminal screen. Each TIFF Image File Directory entry is printed. This
procedure is used mainly for debugging.

Note that not al of the tags have names encoded. In particular, Facsimile, Document
Storage and Retrieval, and most no-longer-recommended fields are not encoded.

Syntax
TIFF_DUMP File
Arguments
File

A scalar string containing the name of file to read.

TIFF_DUMP Obsolete IDL Features

Chapter 2: Obsolete Routines 183

TIFF_READ

Thisroutine is obsolete and should not be used in new IDL code.

The TIFF_READ function has been renamed but retains the same functionality it had
in previous releases. See READ_TIFF in the IDL Reference Guide.

The TIFF_READ function reads 8-bit or 24-bit imagesin TIFF format files (classes
G, P, and R) and returns the image and color table vectorsin the form of IDL
variables. Only one image per fileisread. TIFF_READ returns a byte array
containing theimage data. The dimensions of the result are the same as defined in the
TIFF file (Columns, Rows).

For TIFF images that are RGB interleaved by pixel, the output dimensions are (3,
Columns, Rows).

For TIFF images that are RGB interleaved by image, TIFF_READ returnsthe integer
value zero, sets the variable defined by the PLANARCONFIG keyword to 2, and
returns three separate images in the variables defined by the R, G, and B arguments.

Syntax
Result = TIFF_READ(File[, R, G, B])
Arguments
File
A scalar string containing the name of file to read.
R,G,B

Named variables that will contain the Red, Green, and Blue color vectors extracted
from TIFF Class P, Palette Color images. For TIFF images that are RGB interleaved
by image (when the variable specified by the PLANARCONFIG keyword is returned
as 2) the R, G, and B variables each hold an image with the dimensions (Columns,
Rows).

Obsolete IDL Features TIFF_READ

184 Chapter 2: Obsolete Routines

Keywords

ORDER

Set this keyword to a named variable that will contain the order parameter from the
TIFF File. This parameter is returned as O for images written bottom to top, and 1 for
images written top to bottom. If the Orientation parameter does not appear in the
TIFF file, an order of 1 isreturned.

PLANARCONFIG

Set this keyword to a named variable that will contain the interleave parameter from
the TIFF file. This parameter isreturned as 1 for TIFF files that are GrayScale,
Palette, or RGB color interleaved by pixel, or as 2 for RGB color TIFF files
interleaved by image.

Example

Read thefilemy . ti £ in the current directory into the variable image, and save the
color tablesin the variables, r, G, and B by entering:

image = TIFF_READ('my.tif', R, G, B)
To view the image, load the new color table and display the image by entering:

TVLCT, R, G, B
TV, image

TIFF_READ Obsolete IDL Features

Chapter 2: Obsolete Routines 185

TIFF_WRITE

Thisroutine is obsolete and should not be used in new IDL code.

The TIFF_WRITE procedure has been renamed but retains the same functionality it
had in previous releases. See WRITE_TIFF in the IDL Reference Guide.

The TIFF_WRITE procedure writes 8- or 24-bit imagesto a TIFF file. Filesare
written in one strip, or three strips when the PLANARCONFI G keyword is set to 2.

Syntax
TIFF_WRITE, File, Array [, Orientation]
Arguments
File
A scalar string containing the name of file to create.
Array

Theimage datato be written. If not already abyte array, it ismade abyte array. Array
may be either an (n, m) array for Grayscale or Palette classes, or a (3, n, m) array for
RGB full color, interleaved by image. If the PLANARCONFIG keyword is set to 2
then the Array parameter is ignored (and may be omitted).

Orientation

This parameter should be O if theimage is stored from bottom-to-top (the default).
For images stored from top-to-bottom, this parameter should be 1.

Warning: not all TIFF readers are capable of reversing the scan line order. If in doubt,
first convert the image to top-to-bottom order (use the REVERSE function), and set
Orientation to 1.
Keywords
RED, GREEN, BLUE

If you are writing a Class P, Palette color image, set these keywords equal to the color
table vectors, scaled from 0O to 255.

Obsolete IDL Features TIFF_WRITE

186 Chapter 2: Obsolete Routines

If you are writing an image that is RGB interleaved by image (i.e., if the
PLANARCONFIG keyword is set to 2), set these keywords to the names of the
variables containing the 3 color component image.

PLANARCONFIG

Set this keyword to 2 if writing an RGB image that is contained in three separate
images (color planes). The three images must be stored in variables specified by the
RED, GREEN, and BLUE keywords. Otherwise, omit this parameter (or set it to 1).

XRESOL
The horizontal resolution, in pixels per inch. The default is 100.
YRESOL

The vertical resolution, in pixels per inch. The default is 100.
Examples

Four types of TIFF files can be written:
TIFF Class G, Grayscale.

The variable array contains the 8-bit image array. A value of Oisblack, 255is
white. The Red, Green, and Blue keywords are omitted.

TIFF_WRITE, 'a.tif', array

TIFF Class P, Palette Color

The variable array contains the 8-bit image array. The keyword parameters RED,
GREEN, and BLUE contain the color tables, which can have up to 256 elements,
scaled from 0 to 255.

TIFF_WRITE, 'a.tif', array, RED = r, GREEN = g, BLUE = b
TIFF Class R, RGB Full Color, color interleaved by pixel
The variable array contains the byte data, and is dimensioned (3, cols, rows).
TIFF_WRITE, 'a.tif',6 array
TIFF Class R, RGB Full Color, color interleaved by image

Input is three separate images, provided in the keyword parameters RED, GREEN,
and BLUE. The input argument Array isignored. The keyword PLANARCONFIG
must be set to 2 in this case.

TIFF_WRITE Obsolete IDL Features

Chapter 2: Obsolete Routines 187

TIFF_WRITE, 'a.tif', RED = r, GREEN = g, BLUE = b, PLAN = 2

Obsolete IDL Features TIFF_WRITE

188 Chapter 2: Obsolete Routines

TRNLOG

Thisroutine is obsolete and should not be used in new IDL code.

The TRNLOG function searches the VM S logical name tables for a specified logical
name and returns the equivalence string(s) in an IDL variable. TRNLOG is available
only under VMS. TRNLOG also returns the VMS status code associated with the
trandation as alongword value. Aswith all VMS status codes, success is indicated
by an odd value (least significant bit is set) and failure by an even value.

Syntax

Result = TRNLOG(Logham, Value [, ACMODE={0]1]|2]|3}]
[, /FULL_TRANSLATION] [, /ISSUE_ERROR]
[, RESULT_ACMODE-=variable] [, RESULT_TABLE=variable]
[, TABLE=string])

Arguments

Lognam
A scalar string containing the name of the logical to be translated.
Value

A named variable into which the equivalence string is placed. If Lognam has more
than one equivalence string, the first one isused. The FULL_TRANSLATION
keyword can be used to obtain all equivalence strings.

Keywords
ACMODE

Set this keyword to a value specifying the access mode to be used in the tranglation.
Valid values are:

¢ 0O=Kermad
* 1= Executive
e 2= Supervisor

e 3=User

TRNLOG Obsolete IDL Features

Chapter 2: Obsolete Routines 189

When you specify the ACMODE keyword, all names at access modes | ess privileged
than the specified mode are ignored. If you do not specify ACMODE, the translation
proceeds without regard to access mode. However, the search proceeds from the
outermost (User) to the innermost (Kernal) mode. Thus, if two logical names with the
same name but different access modes exist in the same table, the name with the
outermost access mode is used.

FULL_TRANSLATION

Set this keyword to obtain the full set of equivalence strings for Lognam. By default,
when translating a multivalued logical name, Value only receives the first
equivalence string as a scalar value. When this keyword is set, Valueinstead returns a
string array. Each element of this array contains one of the equivalence strings. For
example, under recent versions of VMS, the SY S$SY SROOT logica can have
multiple values. To see these values from within IDL, enter:

; Translate the logical:

ret = TRNLOG ('SYSSSYSROOT', trans, /FULL, /ISSUE_ERROR)
; View the equivalence strings:

PRINT, trans

ISSUE_ERROR

Set this keyword to issue an error message if the trandation fails. Normally, no error
isissued and the user must examine the return value to determine if the operation
failed.

RESULT_ACMODE

If present, this keyword specifies a named variable in which to place the access mode
of the translated logical. The access modes are summarized above.

RESULT_TABLE

If present, this keyword specifies a named variable. The name of the logical table
containing the translated logical is placed in this variable as a scalar string.

TABLE

A scaar string giving the name of the logical table in which to search for Lognam. If
TABLE isnot specified, the standard VM Slogical tables are searched until amatchis
found, starting with LNM$PROCESS _TABLE and ending with
LNM$SYSTEM_TABLE.

Obsolete IDL Features TRNLOG

190 Chapter 2: Obsolete Routines

VAX_FLOAT

This routine is obsolete and should not be used in new IDL code.
The VAX_FLOAT function performs one of two possible actions:

1. Determine, and optionally change, the default value for the VAX_FLOAT
keyword to the OPEN procedures.

2. Determineif an open file unit has the VAX_FLOAT attribute set.
Syntax
Result = VAX_FLOAT([Default] [, FILE_UNIT=lun])
Arguments

Default

Default is used to change the default value of the VAX_FLOAT keyword to the
OPEN procedures. A value of 0 (zero) makes the default for those keywords False. A
non-zero value makes the default True. Specifying Default in conjunction with the
FILE_UNIT keyword will cause an error.

Note
If the FILE_UNIT keyword is not specified, the value returned from VAX_FLOAT
is the default value before any change is made. Thisisthe case even if Default is
specified. This allows you to get the old setting and change it in a single operation.

Keywords

FILE_UNIT

Set this keyword equal to the logical file unit number (LUN) of an open file.
VAX_FLOAT returns True (1) if the file was opened with the VAX_FLOAT
attribute, or False (0) otherwise. Setting the FILE_UNIT keyword when the Default
argument is specified will cause an error.

Example

To determine if the default VAX_FLOAT keyword value for OPEN is True or False:

default_vax_float = VAX_FLOAT()

VAX_FLOAT Obsolete IDL Features

Chapter 2: Obsolete Routines 191

To determine the current default value of the VAX_FLOAT keyword for OPEN and
changeit to True (1) in asingle operation:

old_vax_float = VAX_FLOAT(1)

To determineif the file currently open on logical file unit 1 was opened with the
VAX_FLOAT keyword set:

file_is_vax_float = VAX _FLOAT(FILE_UNIT=1)

Obsolete IDL Features VAX_FLOAT

192 Chapter 2: Obsolete Routines

WEOF

Thisroutine is obsolete and should not be used in new IDL code.

The WEOF procedure writes an end of file mark, sometimes called a tape mark, on
the designated tape unit at the current position. WEOF is available only under VMS.
The tape must be mounted as a foreign volume. See “V M S-Specific Information” in
Chapter 8 of Application Programming.

Syntax
WEOF, Unit
Arguments
Unit
The magnetic tape unit on which the end of file mark iswritten. This argument must

be a number between 0 and 9, and should not be confused with standard file Logical
Unit Numbers (LUNS).

WEOF Obsolete IDL Features

Chapter 2: Obsolete Routines 193

WIDED

Thisroutine is obsolete and should not be used in new IDL code.

The WIDED procedure invokes IDL’s graphical user interface designer, known as
the Widget Builder.

Syntax

WIDED

Obsolete IDL Features WIDED

194 Chapter 2: Obsolete Routines

WIDGET_MESSAGE

Thisroutine is obsolete and should not be used in new IDL code.

The WIDGET_MESSAGE function has been renamed but retains the same
functionality it had in previous releases. See “DIALOG_MESSAGE” in the IDL
Reference Guide manual.

WIDGET_MESSAGE Obsolete IDL Features

Chapter 3

Obsolete Objects

This chapter contains complete documentation for obsoleted IDL objects. New IDL
code should not use these routines. For alist of the routinesthat replace each of these
obsolete objects, see Appendix |, “ Obsolete Features’ (IDL Reference Guide).

Obsolete IDL Features 195

196 Chapter 3: Obsolete Objects

IDLffLanguageCat

The IDLffLanguageCat object provides an interface to IDL language catalog files.

Note
This object is not savable. Restored I DLffLanguageCat objects may contain invalid
data.

Note
This object is not intended to be created with OBJ NEW. The MULTI function is
used to return the correct object reference.

Superclasses
This class has no superclasses.
Creation
See MULTI.
Properties
Objects of this class have no properties of their own.

Methods

This class has the following methods:
e |DLffLanguageCat::IsValid
e |DLffLanguageCat::Query
» IDLffLanguageCat::SetCatalog

Version History
Introduced: 5.2.1
See Also

MSG_CAT_CLOSE, MSG_CAT_COMPILE, MULTI

IDLffLanguageCat Obsolete IDL Features

Chapter 3: Obsolete Objects 197

IDLffLanguageCat Properties

Objects of this class have no properties of their own.

Obsolete IDL Features IDLffLanguageCat Properties

198 Chapter 3: Obsolete Objects

IDLffLanguageCat::lsValid

The IDLffLanguageCat::l1sValid function method is used to determine whether the
object has avalid catal og.

Syntax

Result = Obj ->[IDLffLanguageCat::]I1sValid()
Return Value

Returnsal if thefileisvalid, O otherwise.
Arguments

None

Keywords

None
Version History

Introduced: 5.2.1

IDLffLanguageCat::IsValid Obsolete IDL Features

Chapter 3: Obsolete Objects 199

IDLffLanguageCat::Query

The IDLffLanguageCat::Query function method is used to return the language string
associated with the given key.

Syntax
Result = Obj ->[IDLffLanguageCat::]Query(Key [, DEFAULT_STRING=string])
Return Value

Returns a string representing the language associated with the given key. If the key is
not found in the given catalog, the default string is returned.

Arguments

Key

Thescalar or array of (string) keys associated with the desired language string. If key
isan array, Result will be astring array of the associated |anguage strings.

Keywords

DEFAULT_STRING

Set this keyword to the desired value of the return string if the key cannot be found in
the catalog file. The default value is the empty string.

Version History

Introduced: 5.2.1

Obsolete IDL Features IDLffLanguageCat::Query

200 Chapter 3: Obsolete Objects

IDLffLanguageCat::SetCatalog

The IDLffLanguageCat::SetCatal og function method is used to set the appropriate
catalog file.

Syntax

Result = Obj ->[IDLffLanguageCat::] SetCatalog(Application [, FILENAME=string]
[, LOCALE=string] [, PATH=string])

Return Value

Returns 1 upon success, and 0 on failure
Arguments

Application

A scalar string representing the name of the desired application’s catalog file.
Keywords
FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open. If this keyword is set, application, PATH, and LOCALE are ignored.

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current locale
isused.

PATH

Set this keyword to a scalar string containing the path to search for language catal og
files. The default is the current directory.

Version History

Introduced: 5.2.1

IDLffLanguageCat::SetCatalog Obsolete IDL Features

Chapter 4

Routines with Obsolete
Arguments or Keywords

This chapter contains documentation for arguments and keywords that have been
removed from IDL routines. New IDL code should not use these parameters. See
Appendix I, “Obsolete Features’ (IDL Reference Guide) for alist of obsolete
parameters and their replacements, if suitable replacements exist.

When IDL attempts to execute aroutine called with an obsolete argument or
keyword, one of the following things will happen:

1. Theroutine may function as originally designed, with no change in behavior.
Thisis often the case when the obsolete parameter has been replaced by
another parameter with amore efficient or dightly different mechanism. In
these cases, the obsolete parameter is generally re-implemented within the
routine to use the mechanism of the new parameter, allowing code that usesthe
obsol ete parameter to run unaltered. Note that although the results will be the
same as before the parameter became obsol ete, the code may run more
efficiently if the replacement parameter is used instead of the obsolete
parameter.

Obsolete IDL Features 201

202

Chapter 4: Routines with Obsolete Arguments or Keywords

Example: The GROUP keyword to the DIALOG_PICKFILE routine was
replaced by the DIALOG_PARENT keyword. Code that uses the GROUP
keyword continues to run as it always did.

The routine may quietly accept the parameter, but ignore its presence. Thisis
the case when the presence of the obsolete parameter does not change the
result returned by the routine. For example, parameter that affected attributes
only available on certain platforms may ssimply be ignored on other platforms.
Code using obsolete parameter of this type can run unaltered.

Example: The MACTY PE keyword to the OPEN routine changed an attribute
of fileson pre-OS X Macintosh filesystems that has no corollary on other
filesystems. IDL simply ignores the presence of this keyword.

The routine may generate an error. Thisisthe case when the presence of the
obsolete parameter changes the result returned by the routine. For example,
parameter that affected the returned datain some way that is no longer
supported must now be removed from IDL code before it will run.

Example: The DTOGFLOAT keyword to the BY TEORDER routine
converted datato aformat only supported under VMS. The underlying
mechanism used is not available in other operating systems, and IDL will
generate an error if such aconversion is specified in the call to BY TEORDER.

In all cases, if IDL code containing calls to obsolete parameter compiles and runs
without error, the results are the same as they would have been before the parameter
was made obsol ete.

Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 203

BYTEORDER

The following keywords to the BY TEORDER procedure are obsol ete.
VMS-Only Keywords
DTOGFLOAT

Set this keyword to convert native (IEEE) double-precision floating-point format to
VAX G float format. Note that IDL does not support the VAX G float format via any
other mechanism.

GFLOATTOD

Set this keyword to convert VAX G float format to native (IEEE) double-precision
floating-point format. Note that IDL does not support the VAX G float format viaany
other mechanism.

Obsolete IDL Features BYTEORDER

204 Chapter 4: Routines with Obsolete Arguments or Keywords

CALL_EXTERNAL

The following keywords to the CALL_EXTERNAL function are obsolete.
Keywords
DEFAULT

Thiskeyword isignored on non-VMS platforms. Under VM, it isastring containing
the default device, directory, file name, and file type information for the file that
contains the sharable image.

PORTABLE

Under VMS, causes CALL_EXTERNAL to usethe IDL Portable calling convention
for passing arguments to the called function instead of the default VMSLIB$CALLG
convention. Under other operating systems, only the portable convention is available,
so this keyword is quietly ignored.

If you are using the IDL Portable calling convention, the AUTO_GLUE or
WRITE_WRAPPER keywords are available to simplify the task of matching theform
in which IDL passes the arguments to the interface of your target function.

VAX_FLOAT (VMS Only)

If specified, al data passed to the called function isfirst converted to VAX F (single)
or D (double) floating point formats. On return, any data passed by referenceis
converted back to the IEEE format used by IDL. This feature allows you to call code
compiled to work with earlier versions of IDL, which used the old VAX formats.

The default setting for this keyword is FALSE, unless IDL was started with the
VAX_FLOAT startup option, in which case the default is TRUE. See “Command
Line Options’ in Chapter 4 of Using IDL for details on this qualifier. You can change
this setting at runtime using the VAX_FLOAT function.

CALL_EXTERNAL Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 205

DEVICE

The following keywords to the DEV I CE procedure are obsol ete.
Keywords

DEPTH

(R
The DEPTH keyword specifies the number of significant bitsin apixel. The LJ250

can support between 1 and 4 significant bits (known also as planes). The number of
available colorsis related to the number of significant planes by the equation:

Colors = 2#Planes

Therefore, the LJ250 can support 2, 4, 8, or 16 separate colors on a single page of
output. The default isto use a single plane, producing monochrome output.

Since IDL isbased around 8-bit pixels, it is necessary to define which bitsin a 8-hit
pixel are used by the LJ250 driver, and which are ignored. When using a depth of 1
(monochrome), dithering techniques are used to render images. In this case, all 8 bits
are used. If morethan asingle planeis used, the least significant n bits of a 8-bit pixel
are used, where n is the selected depth. For example, using a depth of 4, pixel values
of 15, 31, and 47 are all considered to have the value 15 because all three values have
the same binary representation in their 4 least significant digits.

When the depth is changed, the standard color map given in Table 7-5 of the
LJ250/LJ252 Companion Color Printer Programmer Reference Manual is

automatically loaded. Therefore, color maps should be loaded with TVLCT after
changing the depth.

FONT

(WIN, X)

This keyword is now obsolete and has been replaced by the SET_FONT keyword.
Code that usesthe FONT keyword will continue to function as before, but we suggest
that all new code use SET_FONT.

Obsolete IDL Features DEVICE

206 Chapter 4: Routines with Obsolete Arguments or Keywords

DIALOG_PICKFILE

The following keyword to the DIALOG_PICKFILE routine is obsolete.
Keywords

GROUP
This keyword was replaced by the DIALOG_PARENT keyword.

DIALOG_PICKFILE Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 207

DOC_LIBRARY

The following keywords to the DOC_LIBRARY procedure are obsol ete.
VMS Keywords
FILE

If this keyword is set, the output isleft in the fileuser1ib. doc, in the current
directory.

PATH

A string that describes an optional directory/library search path. This keyword uses
the same format and semantics as | PATH. If omitted, |PATH is used.

OUTPUTS

If thiskeyword is set, documentation is sent to the standard output unless the PRINT
keyword is set.

Obsolete IDL Features DOC_LIBRARY

208 Chapter 4: Routines with Obsolete Arguments or Keywords

EXTRACT_SLICE

The following keywords to the EXTRACT_SLICE procedure are obsol ete.
CuBIC

Set this keyword to use cubic interpolation. The default is to use tri-linear
interpolation. If the SAMPLE keyword is set, then the CUBIC keyword is ignored.

EXTRACT_SLICE Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 209

HELP

The following keywords to the HEL P procedure are obsolete.
ALL _KEYS

Set this keyword to show current function-key definitions as set by DEFINE_KEY. If
no arguments are supplied, information on all function keysis displayed. If
arguments are provided, they must be scalar strings containing the names of function
keys, and information on the specified keysis given. Under UNIX, this keyword is
different from KEY S because every key is displayed, no matter what its current
programming. Setting ALL_KEY Sis equivalent to setting both KEY S and FULL.
Under Windows, every key is aways displayed; setting KEY S produces the same
result as setting ALL_KEYS.

CALLS

Set this keyword to a named variable in which to store the procedure call stack. Each
string element contains the name of the program module, source file name, and line
number. Array el ement zero contains the information about the caller of HELP,
element one contains information about its caller, etc. This keyword is useful for
programs that require traceback information.

Obsolete IDL Features HELP

210 Chapter 4: Routines with Obsolete Arguments or Keywords

IDLgrMPEG::Save

The following keywords to the IDLgrM PEG:: Save procedure method are obsol ete.
Keywords
CREATOR_TYPE

Set this keyword to afour character string representing the creator string to be used
when writing thisfile on aMacintosh. This property isignored if the current platform
is not a Macintosh. The default is TvoD (Apple Movie Player application).

IDLgrMPEG::Save Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 211

IDLgrVolume::Init

The following keywords to the IDLgrVolume::Init procedure method are obsol ete.
Keywords
CUTTING_PLANES (Get, Set)

Set this keyword to a floating-point array with dimensions (4, n) specifying the
coefficients of n cutting planes. The cutting plane coefficients are in the form {{n,,
Ny, Nz, D}, ..} where (n)X+(ny)Y+(n)Z+ D >0, and (X, Y, Z) are the voxel
coordinates. To clear the cutting planes, set this property to any scalar value (e.g.
CUTTING_PLANES = 0). By default, no cutting planes are defined.

Obsolete IDL Features IDLgrVolume::Init

212

Chapter 4: Routines with Obsolete Arguments or Keywords

IDLITSYS_CREATETOOL

The following keywords to the IDLITSYS CREATETOOL function are obsolete.

Keywords

PANEL_LOCATION

Set this keyword to an integer value to control where a user interface panel should be
displayed. Possible values are:

position the panel above the iTool window

position the panel below the iTool window

position the panel to the left of the iTool window.

0
1
2
3

position the panel to the right of theiTool window (thisisthe default).

IDLITSYS CREATETOOL Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 213

IDLitTool::RegisterOperation

The following keyword to the I DLitOperation::RegisterOperation procedure method
is obsolete.

Keywords

DISABLE

Set this keyword to indicate that the menu item associated with this operation should
appear disabled (insensitive) when initially created.

Note
This keyword is only a hint to the Tool, and may beignored if a non-standard user
interface is being used.

Obsolete IDL Features IDLitTool::RegisterOperation

214 Chapter 4: Routines with Obsolete Arguments or Keywords

IDLitVisualization::Add

The following keyword to the IDLitVisuaization::Add procedure method is obsol ete.

Keywords

GROUP

Set this keyword to indicate that the added object is to be considered part of the group
that isrooted at thisvisualization. By default, the added objects are not considered to

be part of the group.

IDLitVisualization::Add Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 215

IDLitVisualization::GetCenterRotation

The following keyword to the IDLitVisualization::GetCenterRotation procedure
method is obsol ete.

Keywords

DATA

Set this keyword to indicate that the ranges should be computed for the full data sets
of the contents of this visualization. By default (if the keyword is not set), the ranges
are computed for the displayed portions of the data sets.

Obsolete IDL Features IDLitVisualization::GetCenterRotation

216 Chapter 4: Routines with Obsolete Arguments or Keywords

IDLitVisualization::GetProperty

The following keyword to the IDLitVisualization::GetProperty procedure method is
obsolete.

Keywords

GROUP_PARENT (Get)

A reference to the IDLitVisualization object that serves as the group parent for this
visualization.

IDLitVisualization::GetProperty Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 217

IVECTOR

The following keyword to the IVECTOR procedure method is obsolete.
Keywords
MARK_POINTS (Set)

Set this keyword to mark all missing points with dots. Missing points are given by
either non-finite data values (e.g. NaN) or by points which lie outside of the
MIN_VALUE or MAX_VALUE range.

Obsolete IDL Features IVECTOR

218 Chapter 4: Routines with Obsolete Arguments or Keywords

IVOLUME

The following keyword to the IVOLUME procedure method is obsol ete.
Keywords
CUTTING_PLANES (Get, Set)

Set this keyword to afloating-point array with dimensions (4, n) specifying the
coefficients of n cutting planes. The cutting plane coefficients are in the form {{n,,
Ny, Nz, D}, ..} where (n)X+(ny)Y+(n)Z+ D >0, and (X, Y, Z) are the voxel
coordinates. To clear the cutting planes, set this property to any scalar value (e.g.
CUTTING_PLANES = 0). By default, no cutting planes are defined.

IVOLUME Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 219

LABEL_REGION

The following keyword to the LABEL_REGION function is obsol ete.
Keywords

EIGHT

This keyword is now obsolete. It has been replaced by the ALL_NEIGHBORS
keyword (because this routine now handles N-dimensional data).

Obsolete IDL Features LABEL_REGION

220 Chapter 4: Routines with Obsolete Arguments or Keywords

LINFIT

The following keyword to the LINFIT function is obsolete.
Keywords

SDEV
This keyword has been replaced by the MEASURE_ERRORS keyword.

LINFIT Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 221

LINKIMAGE

The following keywords to the LINKIMAGE procedure are obsol ete.
Keywords
DEFAULT
Thiskeyword isignored on non-VMS platforms. Under VM, it isastring containing
the default device, directory, file name, and file type information for the file that

contains the sharable image. See “VMS LINKIMAGE and
LIBSFIND_IMAGE_SYMBOL” on page 1281 for additional information.

Obsolete IDL Features LINKIMAGE

222 Chapter 4: Routines with Obsolete Arguments or Keywords

LIVE_PRINT

The following keywords to the LIVE_PRINT procedure are obsolete.
Keywords
SETUP

(Macintosh users only) Set this keyword to have a printer setup dialog appear. This
keyword allows the user to setup the page for printing.

LIVE_PRINT Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 223

LM_FIT

The following keyword to the LM_FIT function is obsolete.
Keywords
WEIGHTS

This keyword has been replaced by the MEASURE_ERRORS keyword. Code that
uses the WEIGHTS keyword will continue to work as before, but new code should
use the MEASURE_ERRORS keyword. Note that the definition of the
MEASURE_ERRORS keyword is not the same as the WEIGHTS keyword. Using
the WEIGHTS keyword, SQRT(LY/WEIGHTS[i]) represents the measurement error
for each point Y[i]. Using the MEASURE_ERRORS keyword, the measurement
error for each point is represented as simply MEASURE_ERRORSY[i].

Obsolete IDL Features LM_FIT

224 Chapter 4: Routines with Obsolete Arguments or Keywords

MAKE_DLL

The following keywords to the MAKE_DLL procedure are obsolete.
VMS-Only Keywords

This keyword isfor VMS platforms only, and isignored on all other platforms.
VAX_FLOAT

If set, specifies the sharable library to be compiled for VAX F (single) or D (double)
floating point formats. The default is to use the IEEE format used by IDL.

MAKE_DLL Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 225

MESSAGE

The following keyword to the MESSAGE procedure is obsol ete.
Keywords
TRACEBACK

This keyword is obsolete and is included for compatibility with existing code only.
Traceback information is provided by default.

Obsolete IDL Features MESSAGE

226 Chapter 4: Routines with Obsolete Arguments or Keywords

ONLINE_HELP

The following keywords to the three ONLINE_HELP procedures are obsolete.
HTML_HELP

Set this keyword to a non-zero value to indicate that the file specified by the BOOK
keyword should be viewed with the HTML Help viewer. Explicitly set this keyword
equal to zero to indicate that the file should be viewed with the traditional Windows
help viewer.

Note
Normally, ONLINE_HELP can properly determine which viewer to use based on

the name of thefile, so use of the HTML_HELP keyword is rarely necessary.

FOLD_CASE

This keyword is only available on UNIX platforms.

Normally, the string given by the Value argument isfolded to upper case before being
handed to the IDL help viewer for display. Explicitly set FOLD_CASE=0 to indicate
that the string should be handed to the help viewer without modification.

PAGE

This keyword is only available on UNIX platforms.

Set this keyword equal to a page number. Acrobat will open the specified page in the
specified PDF file.

SUPPRESS_PLUGIN_ERRORS

Under Unix, if the IDL-Acrobat plug-in is not available for your current platform,
ONLINE_HELP will issue warning messages explaining that it is unable to position
the document, and that the user will need to manually navigate to the desired
information once the Acrobat reader application is running. Set this keyword to
prevent these warnings from being issued. On non-Unix platforms, this keyword is
quietly ignored.

TOPICS

This keyword is only available on Windows platforms.
Set this keyword to display the Index dialog for the specified help file.

ONLINE_HELP Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 227

OPEN

The following keywords to the three OPEN procedures are obsol ete.
Macintosh-Only Keywords

MACCREATOR
Use this keyword to specify afour-character scalar string identifying the Macintosh
file creator code of the file being created. For example, set
MACCREATOR = 'MSWD'
to create afile with the creator code Mswp. The default creator code iSMIDL.
MACTYPE
Use this keyword to specify afour-character scalar string identifying the Macintosh
file type of the file being created. For example, set
MACTYPE = 'PICT'

to create afile of type prcT. The default file type is TEXT.

UNIX-Only Keywords

The previous keyword NOSTDIO is now obsolete. It has been renamed RAWIO to
reflect the fact that stdio may or may not actually be used. All references to
NOSTDIO should be changed to be RAW O, but NOSTDIO will still be accepted asa
synonym for RAWI O.

NOSTDIO

Set this keyword to disable all use of the standard UNIX 1/O for the file, in favor of
direct callsto the operating system. This allows direct access to devices, such as tape
drives, that are difficult or impossible to use effectively through the standard 1/O.
Using this keyword has the following implications:

» No formatted or associated (ASSOC) 1/0 isalowed on the file. Only READU
and WRITEU are allowed.

* Normally, attempting to read more data than is available from afile causes the
unfilled space to be set to zero and an error to be issued. This does not happen
with files opened with NOSTDIO. When using NOSTDIO, the programmer

Obsolete IDL Features OPEN

228

Chapter 4: Routines with Obsolete Arguments or Keywords

must check the transfer count, either viathe TRANSFER_COUNT keywords
to READU and WRITEU, or the FSTAT function.

e TheEOF and POINT_LUN functions cannot be used with afile opened with
NOSTDIO.

e Eachcal to READU or WRITEU maps directly to UNIX read(2) and write(2)
system calls. The programmer must read the UNIX system documentation for
these calls and documentation on the target device to determine if there are any
special rulesfor I/O to that device. For example, the size of data that can be
transferred to many cartridge tape drivesis often forced to be a multiple of 512
bytes.

VMS-Only Keywords

OPEN

BLOCK

Set this keyword to process the file using RM S block mode. In this mode, most RMS
processing is bypassed and IDL reads and writes to the file in disk block units. Such
files can only be accessed via unformatted I/O commands. Block mode files are

treated as an uninterpreted stream of bytesin amanner similar to UNIX stream files.

For best performance, by default IDL uses RM S block mode for fixed length record
files. However, when the SHARED keyword is present, IDL uses standard RMS
mode. Do not specify both BLOCK and SHARED.

This keyword isignored when used with stream files.

Note
With some controller/disk combinations, RM S does not allow transfer of an odd

number of bytes.

DEFAULT

A scalar string that provides a default file specification from which missing parts of
the File argument are taken. For example, to make .LOG be the default file extension
when opening a new file, use the command:

OPENW, 'DATA', DEFAULT='.LOG'

This statement will open the file DATA.LOG.

Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 229

EXTENDSIZE

File extension is arelatively slow operation, and it is desirable to minimize the
number of timesit isdone. In order to avoid the unacceptabl e performance that would
result from extending afileasingle block at atime, VM S extends its size by a default
number of blocksin an attempt to trade a small amount of wasted disk space for
better performance. The EXTENDSIZE keyword overrides the default, and specifies
the number of disk blocks by which the file should be extended. This keyword is
often used in conjunction with the INITIALSIZE and TRUNCATE_ON_CLOSE
keywords.

FIXED

Set this keyword to indicate that the file has fixed-length records. The Record Length
argument is required when opening new, fixed-length files.

FORTRAN

Set this keyword to use FORTRAN-style carriage control when creating a new file.
Thefirst byte of each record controls the formatting.

INITIALSIZE

Theinitia size of the file allocation in blocks. This keyword is often used in
conjunction with the EXTENDSIZE and TRUNCATE_ON_CL OSE keywaords.

KEYED

Set this keyword to indicate that the file has indexed organization. Indexed files are
discussed in “VM S-Specific Information” in Chapter 8 of Application Programming.

LIST

Set this keyword to specify carriage-return carriage control when creating a new file.
If no carriage-control keyword is specified, LIST isthe default.

NONE

Set this keyword to specify explicit carriage control when creating a new file. When
using explicit carriage control, VM S does not add any carriage control information to
the file, and the user must explicitly add any desired carriage control to the data being
written to thefile.

Obsolete IDL Features OPEN

230 Chapter 4: Routines with Obsolete Arguments or Keywords

PRINT

Set this keyword to send the file to SY SSPRINT, the default system printer, wheniitis
closed.

SEGMENTED

Set this keyword to indicate that the file has VM S FORTRAN-style segmented
records. Segmented records are amethod by which FORTRAN allowslogical records
to exist with record sizes that exceed the maximum possible physical record sizes
supported by VMS. Segmented record files are useful primarily for passing data
between FORTRAN and IDL programs.

SHARED

Set this keyword to allow other processes read and write access to thefilein parallel
with IDL. If SHARED is not set, read-only files are opened for read sharing and
read/write files are not shared. The SHARED keyword cannot be used with
STREAM files.

Warning
It is not agood ideato allow shared write access to files open in RMS block mode.
In block mode, VMS cannot perform the usual record locking that prevents file
corruption. It istherefore possible for multiple writers to corrupt a block modefile.
Thiswarning a so applies to fixed-length record disk files, which are also processed
in block mode. When using SHARED, do not specify either BLOCK or
UDF_BLOCK.

STREAM
Set this keyword to open the file in stream mode using the Standard C Library (stdio).
SUBMIT

Set this keyword to submit the file to SY SSBATCH, the default system batch queue,
when it is closed.

SUPERSEDE

Set this keyword to alow an existing file to be superseded by a new file of the same
name, type, and version.

OPEN Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 231

TRUNCATE_ON_CLOSE

Set this keyword to free any unused disk space allocated to the file when the fileis
closed. This keyword can be used to get rid of excess allocations caused by the
EXTENDSIZE and INITIALSIZE keywords. If the SHARED keyword is set, or the
fileis open for read-only access, TRUNCATE_ON_CL OSE has no effect.

UDF_BLOCK

Set this keyword to create afile similar to those created with the BLOCK keyword
except that new files are created with the RM S undefined record type. Files created in
thisway can only be accessed by IDL in block mode, and cannot be processed by
many VMS utilities. Do not specify both UDF_BLOCK and SHARED.

VARIABLE

Set this keyword to indicate that the file has variable-length records. If the
Record_Length argument is present, it specifiesthe maximum record size. Otherwise,
the only limit is that imposed by RM S (32767 bytes). If no file organization is
specified, variable-length records are the defaullt.

Warning
VMS variable length records have a 2-byte record-length descriptor at the
beginning of each record. Because the FSTAT function returnsthe length of the data
file including the record descriptors, reading a file with VMS variable length
recordsinto abyte array of the size returned by FSTAT will result in an RMS EOF
error.

Windows-Only Keywords

The Windows-Only keywords BINARY and NOAUTOMODE are now obsol ete.
Input/Output on Windows is now handled indentically to Unix, and does not require
you to be concerned about the difference between “ text” and “ binary” modes. These
keywords are still accepted for backwards compatibility, but are ignored.

BINARY

Set this keyword to treat opened files as binary files. When writing text to a binary
file, CR/ILF pairs are written as LF only. Note that setting the BINARY keyword
alone does not ensure that aroutine that writes to the file will not change the mode to
text.

Obsolete IDL Features OPEN

232 Chapter 4: Routines with Obsolete Arguments or Keywords

NOAUTOMODE

Set this keyword to prevent IDL routines such as PRINTF from automatically
changing the mode from binary to text, or vice versa.

OPEN Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 233

POLY FIT

The following argumentsto POLY _FIT are obsolete.
Arguments
Yfit

A named variable that will contain the vector of calculated Y values. These values
have an error of plus or minus Yband.

Yband

A named variable that will contain the error estimate for each point.
Sigma

A named variable that will contain the standard deviation in Y units.
Corrm

A named variable that will contain the correlation matrix of the coefficients.

Obsolete IDL Features POLY_FIT

234 Chapter 4: Routines with Obsolete Arguments or Keywords

PRINT/PRINTF

The following keywords to the two PRINT procedures are obsol ete.

VMS Keywords
REWRITE

When writing datato a file with indexed organization, set the REWRITE keyword to
specify that the data should update the contents of the most recently input record
instead of creating a new record.

PRINT/PRINTF Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 235

READ_TIFF

The following keywords to the READ_TIFF function are obsol ete.
Keywords
ORDER

Set this keyword to a named variable that will contain the order value from the TIFF
file. Thisvalueisreturned as O for images written bottom to top, and 1 for images
written top to bottom. If an order value does not appear in the TIFF file, an order of 1
isreturned.

The ORDER keyword can return any of the following additional values (depending
on the source of the TIFF file):

Rows Columns

1 top to bottom, left to right

top to bottom, right to left

bottom to top, right to left

bottom to top, left to right

top to bottom, left to right

top to bottom, right to left

bottom to top, right to left

| N Bl WIDN

bottom to top, left to right

Table 4-1: Values for the ORDER keyword
Reference: Aldus TIFF 6.0 spec (TIFF version 42).
UNSIGNED

This keyword is now obsolete because older versions of IDL did not support the
unsigned 16-bit integer data type. Set this keyword to return TIFF files containing
unsigned 16-bit integers as signed 32-bit longword arrays. If not set, return an
unsigned 16-bit integer for these files. This keyword has no effect if the input file
does not contain 16-bit integers.

Obsolete IDL Features READ_TIFF

236

READ/READF

Chapter 4: Routines with Obsolete Arguments or Keywords

The following keywords to the READ procedures are obsol ete.

VMS Keywords

Note also that the obsolete VM S-only routine READ_KEY has been replaced by the
keywords below.

KEY_ID

The index key to be used (primary = 0O, first alternate key = 1, etc...) when accessing

datafrom afile with indexed organization. If this keyword is omitted, the primary
key is used.

KEY_MATCH

The relation to be used when matching the supplied key with key field values (EQ =
0, GE =1, GT = 2) when accessing data from afile with indexed organization. If this
keyword is omitted, the equality relation (0) is used.

KEY_VALUE

The value of akey to be found when accessing data from afile with indexed
organization. This value must match the key definition that is determined when the
file was created in terms of type and size—no conversions are performed. If this
keyword is omitted, the next sequential record is used.

READ/READF Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 237

The following keywords to the READU procedure are obsolete.
VMS-Only Keywords

Note

The obsolete VMS routines FORRD, and FORRD_KEY have been replaced by the
READU command used with the following keywords.

KEY_ID

Theindex key to be used (primary = 0, first alternate key = 1, etc...) when accessing

datafrom afile with indexed organization. If this keyword is omitted, the primary
key is used.

KEY_MATCH

Therelation to be used when matching the supplied key with key field values (EQ =
0, GE =1, GT = 2) when accessing data from afile with indexed organization. If this
keyword is omitted, the equality relation (0) is used.

KEY_VALUE

The value of akey to be found when accessing data from afile with indexed
organization. This value must match the key definition that is determined when the
file was created in terms of type and size—no conversions are performed. If this
keyword is omitted, the previous key valueis used.

Obsolete IDL Features READU

238 Chapter 4: Routines with Obsolete Arguments or Keywords

REGRESS

The following arguments and keywords to REGRESS are obsolete.
Arguments

Weights

An Npoints-element vector of weights for each equation. For instrumental (Gaussian)
weighting, set Weights; = 1.0/standard_deviati on(Yi)z. For statistical (Poisson)
weighting, set Weights; = 1.0/Y;. For no weighting, set Weights; = 1.0, and set the
RELATIVE_WEIGHT keyword.

Yfit

A named variablethat will contain an Npoints-el ements vector of calculated val ues of
Y.

Const
A named variable that will contain the constant term.
Sigma

A named variable that will contain the vector of standard deviations for the returned
coefficients.

Ftest

A named variable that will contain the value of F for test of fit.
R

A named variable that will contain the vector of linear correlation coefficients.

Rmul

A named variable that will contain the multiple linear correlation coefficient.
Chisq

A named variable that will contain a reduced, weighted, chi-squared.

REGRESS Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 239

Status

A named variable that iwll contain the status of theinternal array inversion
computation.

Keywords

RELATIVE_WEIGHT

If this keyword is set, the input weights (the W vector) are assumed to be relative
values, and not based on known uncertainties in the Y vector. Set this keyword in the
case of no weighting.

Obsolete IDL Features REGRESS

240 Chapter 4: Routines with Obsolete Arguments or Keywords

The following keywords to the SAVE procedure are obsol ete.

Keywords
XDR
This keyword is obsolete and will be quietly ignored (there is ho need to remove uses

of the XDR keyword from existing code). IDL always generates XDR format files,

although it will continue to read VAX format SAVE files generated by old versions of
VMSIDL.

SAVE Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 241

SPAWN

The following keywords to the SPAWN procedure are obsol ete.
Keywords

FORCE

Set this keyword to override buffered file output in IDL and force thefile to be closed
no matter what errors occur in the process. If it is not possible to properly flush this
datawhen afile close isrequested, an error is normally issued and the file remains
open. An example of this might be that your disk does not have room to write the
remaining data. This default behavior prevents data from being lost, but the FORCE
keyword overrides this behavior.

Macintosh-Only Keywords
MACCREATOR

Use this keyword to specify afour-character scalar string containing the Macintosh
file creator code of the application to be used to open the specified files. In no files
were specified, the application is launched without any files.

VMS-Only Keywords
NOCLISYM

If this keyword is set, the spawned subprocess does not inherit command language
interpreter symbols from its parent process. You can specify this keyword to prevent
commands redefined by symbol assignments from affecting the spawned commands,
or to speed process startup.

NOLOGNAM

If this keyword is set, the spawned subprocess does not inherit process logical names
from its parent process. You can specify this keyword to prevent commands
redefined by logical name assignments from affecting the spawned commands, or to
speed process startup.

Obsolete IDL Features SPAWN

242 Chapter 4: Routines with Obsolete Arguments or Keywords

NOTIFY

If this keyword is set, amessage is broadcast to SY SSOUTPUT when the child
process completes or aborts. NOTIFY has no effect unless NOWAIT is set.

SPAWN Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 243

SVDFIT

The following keywords to SVDFIT are obsolete.
Keywords
WEIGHTS

Set this keyword equal to a vector of weights for Y. This vector should be the same
length as X and Y. The error for each term is weighted by WEIGHTS; when
computing the fit.

Obsolete IDL Features SVDFIT

244 Chapter 4: Routines with Obsolete Arguments or Keywords

WIDGET_BASE

The following keywords to the WIDGET_BASE function are obsol ete.
Keywords
APP_MBAR

Set this keyword to a named variable that defines awidget application’s menubar. On
the Macintosh, the menubar defined by APP_MBAR becomes the system menubar
(the menubar at the top of the Macintosh screen). On Motif platforms and under
Microsoft Windows, the APP_MBAR istreated in exactly the same fashion as the
menubar created with the MBAR keyword. See“MBAR” on page 2115 for detailson
creating menubars.

Warning
You cannot specify both an APP_MBAR and an MBAR for the same top-level base
widget. Doing so will cause an error.

To apply actionstriggered by menu items to widgets other than the base that includes
the menubar, use the KBRD_FOCUS_EVENTS keyword to keep track of which
widget has (or last had) the keyboard focus.

WIDGET_BASE Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 245

WIDGET_CONTROL

The following keywords to the WIDGET_CONTROL function are obsolete.

Keywords
CANCEL_BUTTON

This keyword applies to widgets created with the WIDGET_BASE function using
the MODAL keyword.

Set this keyword equal to the widget ID of a button widget that will be the Cancel
button on amodal base widget.

On Motif and Windows platforms, selecting Close from the system menu (generally

located at the upper |eft of the base widget) generates a button event for the Cancel
button.

DEFAULT_BUTTON

This keyword applies to widgets created with the WIDGET_BASE function using
the MODAL keyword.

Set this keyword equal to the widget ID of a button widget that will be the default
button on amodal base widget. The default button is highlighted by the window
system.

Obsolete IDL Features WIDGET_CONTROL

246 Chapter 4: Routines with Obsolete Arguments or Keywords

WIDGET_TREE

The following keywords to the WIDGET _TREE function are obsol ete.
Keywords
TOP

Set this keyword to cause the tree node being created to be inserted as the parent
node’s top entry. By default, new nodes are inserted as the parent node’s bottom

entry.
This keyword isonly valid if the Parent of the tree widget is another tree widget.

WIDGET_TREE Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 247

WRITE_TIFF

The following features of the WRITE_TIFF procedure are obsolete.
Arguments

ORDER

This argument should be O if theimage is stored from bottom to top (the default). For
images stored from top to bottom, this argument should be 1.

Warning
Not all TIFF readers honor the value of the Order argument. IDL writes the value
into the file, but many known readers ignore this value. In such cases, we
recommend that you convert the image to top to bottom order with the REVERSE
function and then set Order to 1.

Obsolete IDL Features WRITE_TIFF

248 Chapter 4: Routines with Obsolete Arguments or Keywords

WRITEU

The following keywords to the WRITEU procedure are obsolete.
VMS-Only Keywords

Note
The obsolete FORWRT routine has been replaced by WRITEU.

REWRITE

When writing data to a file with indexed organization, setting the REWRITE
keyword specifies that the data should update the contents of the most recently input
record instead of creating a new record.

WRITEU Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 249

XMANAGER

The following keywords to the XMANAGER procedure are obsol ete.
BACKGROUND

This keyword is obsolete and is included in XMANAGER for compatibility with
existing code only. Its functionality has been replaced by the TIMER keyword to the
WIDGET_CONTROL procedure.

MODAL

This keyword is obsolete and is included in XMANAGER for compatibility with
existing code only. Its functionality has been replaced by the MODAL keyword to the
WIDGET_BASE procedure.

When this keyword is set, the widget that is being registered traps all events and
desensitizes all the other widgets. It is useful when input from the user is necessary to
continue (i.e., “blocking” dialog boxes). Once the modal widget dies, the others are
resensitized and the normal event processing continues.

Obsolete IDL Features XMANAGER

250 Chapter 4: Routines with Obsolete Arguments or Keywords

XMANAGER Obsolete IDL Features

Chapter 5

Obsoleted Graphics
Devices

This chapter contains documentation for graphics devices that are no longer
supported by IDL. If you attempt to set IDL’s graphics device to be one of the
deviceslisted in this chapter viathe SET_PLOT procedure, IDL will generate an
error like

% Graphics device not available: device

For information on keywords to the DEVICE procedure that have become obsolete
along with these graphics devices, see the DEVICE section of Chapter 4, “Routines
with Obsolete Arguments or Keywords”'.

Obsolete IDL Features 251

252 Chapter 5: Obsoleted Graphics Devices

The LJ Device

Device Keywords Accepted by the LJ Device:

CLOSE_FILE, DEPTH, FILENAME, FLOYD, INCHES, LANDSCAPE,
ORDERED, PIXELS, PORTRAIT, RESOLUTION, SET_CHARACTER_SIZE,
THRESHOLD, XOFFSET, XSIZE, YOFFSET, Y SIZE.

The LJ250 and LJ252 are color printers sold by Digital Equipment Corporation
(DEC). To direct graphics output to a picture description file compatible with these
printers, issue the command:

SET_PLOT, 'LJ'

This causes IDL to usethe LJdriver for producing graphical output. To actualy print
the generated graphics, send the file to the printer using the normal printing facilities
supplied by the operating system. Once the LJ driver is enabled via SET_PLOT, the
DEVICE procedureis used to control its actions, as described below. The default
settings for the LJ driver are given in the following table. Usethe HELP, /DEVICE
command to view the current font, file, and other options currently set for LJ output.

Feature Value
File idl.lj
Mode Portrait
Dither method Floyd-Steinberg
Resolution 180 dpi
Number of planes 1 (monochrome)
Horizontal offset v2in.
Vertical offset lin.
Width 7in.
Height 5in.

Table 5-1: Default LJ Driver Settings

The LJ Device Obsolete IDL Features

Chapter 5: Obsoleted Graphics Devices

LJ Driver Strengths

253

The LJ250 produces color graphics at alow cost. It is capable of producing good
quality monochrome output, and is also good at color vector graphics and smple

color imaging using a small number of predefined solid colors.

LJ Driver Limitations

The LJ250 isintended to be used as alow cost printer for business color graphics.
Although it can be used to print color images, it islimited in its ability to produce
satisfactory images of the sort commonly encountered in science and engineering.
These limitations make it a poor choice for such work.

* Although color is specified via the usual RGB triplesusing the TVLCT
procedure, the LJ250 is only capable of generating afixed set of colors. The
number of possible colors depends on the resolution in use. When producing
180 dpi graphics, only the colors given in the following table are possible. In
90 dpi mode, 256 colors are available.

Color Red Value | Green Value | Blue Value
Black 10 10
Yellow 227 212
Magenta 135 13
Cyan 5 56
Red 135 20
Green 8 66
Blue 10 10
White 229 224

Table 5-2: LJ250 Colors Available at 180 dpi

If acolor is specified that the printer cannot produce, it substitutes the closest
color it can. However, the results of such substitutions can give unexpected
results. The fixed set of possible colors means that the LOADCT procedureis
of limited use with the LJ250. It also meansthat it is difficult to produce
satisfactory grayscale images.

Obsolete IDL Features

The LJ Device

254

Chapter 5: Obsoleted Graphics Devices

The number of simultaneous colors possible on an output page is limited.
Although images are specified in 8-bit bytes, the number of significant bits
used ranges from 1 to 4 (as specified viathe DEPTH keyword to the DEVICE
procedure), allowing from 2 to 16 colors. Coupled with the above limitation on
the colors that are possible, it is difficult to produce high quality image output.

LJ Suggestions

The following suggestions are intended to help you get the most out of the L J250,
taking its limitations into account:

The LJ Device

Use monochrome output when possible. This resultsin considerably smaller
output files, and provides most of the abilities the LJ250 handles well. When
producing monochrome output, the LJ250 driver dithersimages. Thiscan
often produce more satisfying grayscale output than is possible using the
printer in color mode.

The table under “LJ Driver Limitations” above gives the RGB values to use
when specifying colors at 180 dpi. To make more colors available, use 90 dpi
resolution. The RGB values for the possible colors at 90 dpi are givenin Table
7-6 of the Lg250/LJ252 Companion Color Printer Programmer Reference
Manual. YOU can cause the printer to display the complete 256 color palette as
follows: With the power off, press and hold the READY and DEC/PCL
switches while momentarily pressing the power switch. Wait approximately 2
seconds and release the READY and DEC/PCL switches. The printer will take
afew minutesto print all 256 colors. The output fits on asingle page.

Use the table in the programmers manual with this display to select the colors
to use. Note that the RGB valuesin the programmers manual are scaled from 1
to 100, while IDL scales such values from 0 to 255. Therefore, multiply the
values obtained from the manual by 2.55 to properly scale them for usein IDL.

Unlike most devices, IDL does not initialize the LJ250 color map to a
grayscal e ramp because the printer cannot produce a satisfactory grayscale
image. Instead, the default palettes given in Table 7-5 of the ro250/L7252
Companion Color Printer Programmer Reference Manual dl€ used. If you
modify the color map, the LILCT procedure can be used to reset the color table
to these defaults. LILCT examinesthe !D.N_COLORS system variable to
determine the number of output planesin use, then loads the appropriate
default color map.

When producing images, stick to images with small amounts of detail and
large sections of uniform color. Complicated images do not reproduce well on
this printer.

Obsolete IDL Features

Chapter 5: Obsoleted Graphics Devices 255

The Macintosh Device

Device Keywords Accepted by the MAC Device:

BYPASS TRANSLATION, COPY, CURSOR_ORIGINAL,
CURSOR_STANDARD, DECOMPOSED, FLOYD, GET_CURRENT_FONT,
GET_FONTNAMES, GET_FONTNUM, GET_GRAPHICS_FUNCTION,
GET_SCREEN_SIZE, GET_WINDOW_POSITION, ORDERED,
PSEUDO_COLOR, RETAIN, SET_CHARACTER_SIZE, SET_FONT,
SET_GRAPHICS_FUNCTION, THRESHOLD, TRANSLATION, TRUE_COLOR

The Macintosh version of IDL usesthe“MAC" device by default. Thisdeviceis
similar to The X Windows Device. The “MAC” deviceisonly availablein IDL for
M acintosh.

To set plotting to the Macintosh device, use the command:

SET_PLOT, 'MAC'

Obsolete IDL Features The Macintosh Device

256 Chapter 5: Obsoleted Graphics Devices

The Macintosh Device Obsolete IDL Features

Chapter 6

Obsolete Remote
Procedure Calls

Note
Remote Procedure Calls are till included in IDL. The RPC API described here (the
APl included with IDL version 4.0) has been replaced with anew API. Seethe
External Development Guide for details on the RPC API included with IDL version
5.0 and later.

Remote Procedure Calls (RPCs) allow one process (the client process) to have
another process (the server process) execute a procedure call just asif the caller
process had executed the procedure call in its own address space. Since the client and
server are separate processes, they can reside on the same machine or on different
machines. RPC libraries allow the creation of network applications without having to
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A library
of C language routinesisincluded to handle communication between client programs
andthe DL server. Nnote that remote procedure calls are supported only on
UNIX platforms.

Obsolete IDL Features 257

258

Chapter 6: Obsolete Remote Procedure Calls

The current implementation allows IDL to be run as an RPC server and your own
program to be run asaclient. IDL commands can be sent from your application to the
IDL server, wherethey are executed. Variabl e structures can be defined in the client
program and then sent to the IDL server for creation as IDL variables. Similarly, the
values of variablesin the IDL server session can be retrieved into the client process.

Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 259

Using IDL as an RPC Server

The IDL RPC Directory

All of thefilesrelated to using IDL’s RPC capabilities are found in the rpc
subdirectory of the external subdirectory of the main IDL directory. The main IDL
directory isreferred to here asidldir.

Running IDL in Server Mode

To use IDL as an RPC server, run IDL in server mode by using the -server
command line option. This option can be invoked one of two ways:

idl -server process_id
or
idl -server=server_ number process_id

where server_number is the hexadecimal server ID number (between 0x20000000
and Ox3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idl -server=20500000

If aserver ID number isnot supplied, IDL uses the default, IDL_DEFAULT _ID,
definedinthefileidldir /external/rpc/rpc_idl.h. Thisvalueisoriginaly set to
0x2010CAFE.

The process_id argument is an optional argument that specifiesthe process ID of a
UNIX process that should be contacted when IDL has finished running in interactive
mode. If the IDL rpc server is placed in interactive mode and a process ID has been
supplied on the command line, IDL sendsthe UNIX signal SIGUSRL1 to the specified
process. This signal allows the client program to know when it can continue to
communicate with the rpc server.

Creating the IDL RPC Library

The machine that runs the client program must have its own version of the IDL RPC
library. The make file for thislibrary is contained in the directory

idldir /external/rpc. If the machine that runs the client program is not licensed to
run IDL, simply copy the contents of the IDL rpc directory to an appropriate
location on the client machine.

Obsolete IDL Features Using IDL as an RPC Server

260 Chapter 6: Obsolete Remote Procedure Calls

To build the IDL RPC library, copy the IDL rpc directory to anew directory, change
to that directory, and enter the make command:

cp -R idldir/external/rpc newrpcdir
cd newrpcdir
make

The created library is contained in the file newrpcdir /rpcidl . a. The functions
contained in the library are described in “The IDL RPC Library” on page 261

Linking your Client Program

Your client program must include thefileidldir /external /rpc/rpc_idl.h.

You must also link the application that communicates with IDL with the IDL RPC
library. For example, to compile and link a program with the IDL RPC library, you
might enter:

cc -c¢ rpcclient.c
cc -o rpcclient.o idldir/external/rpc/rpcidl.a

where rpcclient.c is the name of your program. Note that your actual command lines
and flag settings may be different than the ones shown above, depending upon your C
compiler. TheMakefile contains details on modifications for various systems.

Using IDL as an RPC Server Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 261

The IDL RPC Library

The IDL RPC library contains several C language interface functions that facilitate
communication between your application and IDL. There are functions to register
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are
described below.

Obsolete IDL Features The IDL RPC Library

262 Chapter 6: Obsolete Remote Procedure Calls

free idl variable

Syntax
void free_idl_var (varinfo_t* var);
Description
Thisfunction frees all dynamic memory associated with the given variable. Attempts
to free astatic variable are silently ignored. (See “Notes on Variable Creation and
Memory Management” on page 286)
Parameters

var

The address of the varinfo_t structure that contains the information about the variable
to be freed.

Return Value

None

free_idl_variable Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 263
get_idl _variable

Syntax

int get_idl_variable(CLIENT* client, char* name, varinfo_t* var,
int typecode)

Description

Call thisfunction to retrieve the value of an IDL variablein the IDL session referred
to by client. Any scalar or array variable type can be retrieved. Variables can be
retrieved only from the main program level.

Note that it is not possible to get the value of an IDL structure. To retrieve values
from an IDL structure, “decompose” the structure into regular variablesin IDL, then
use this function to get the values of those individual variables.

It is not possible to get the value of IDL system variables directly. To retrieve the
value of an IDL system variable, first copy it to aregular IDL variable. The value of
the regular variable can then be retrieved with get_idl_variable. For example:

varinfo_t pt;/* Declare variable pt */
send_idl_command(client, "X = !P.T");
get_idl_variable(client, "X", &pt, 0);

Parameters

client
A pointer to the CLIENT structure that corresponds to the desired IDL session.
name

A null terminated string that contains the name of the IDL variable to be retrieved.
Only the first MAXIDLEN characters of this string are used. MAXIDLEN is defined in
thefileidldir/external/rpc/rpc_idl.h.

var

The address of avarinfo_t structure in which to store the returned variable
information. Upon return, the Name field of the var structure contains the name of
thevariable asfoundin IDL. If the name supplied isanillegal IDL variable name, the
Name field is set to <ILLEGAL_NaME>. If the variable is a structure or associated
variable, the Name field is set to <BAD-VAR-TYPE>.

Obsolete IDL Features get_idl_variable

264 Chapter 6: Obsolete Remote Procedure Calls

typecode

If you want IDL to typecast avariable (i.e., guarantee the value to be of a particular
type) beforeit istransported, set typecode to one of the following values (defined in
thefile export.h):

IDL_TYP_BYTE, IDL_TYP_INT, IDL_TYP_LONG, IDL_TYP_FLOAT,
IDL_TYP_DOUBLE, IDL_TYP_STRING, IDL_TYP_COMPLEX, IDL_TYP_DCOMPLEX

For example, the command:
get_idl_variable(client, "x", &xv, IDL_TYP_LONG)
guarantees that the value in x isreturned as a 32-bit integer.

If typecode isO, the variableistransferred with whatever datatype it hasin the
server. Typecasting only affects the variablesin the client — the server sideis not
affected.

Return Value
This function returns a status val ue that denotes the success or failure of thisfunction
as described below.
-1 Failure: bad arguments supplied (e.g., name or var isNULL).
0 RPC mechanism failed (an error message may also be printed).

Success

-2 Illegal variable name (e.g., “213xyz", “#a’, “!DEVICE")

-3 Variable not transportable (e.g., the variable is a structure or associated
variable)

get _idl_variable Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 265

idl_server_interactive

Syntax
int idl_server_interactive (CLIENT*client)

Description
Call thisfunction to cause the IDL server to become an interactive IDL session. It is
likely that this command will time out. Some alternative mechanism for determining
when the server is finished should be implemented. See the example server.cin
theidldir/examples/rpc directory.

Parameters

client

A CLIENT structure that corresponds to the desired IDL session.

Return Value

This function returns TRUE if the interactive IDL session did not time out. FALSE is
returned if the session times out or otherwise fails.

Obsolete IDL Features idl_server_interactive

266 Chapter 6: Obsolete Remote Procedure Calls

Kill server

Syntax
int kill_server (CLIENT*client)

Description

Call thisfunction to kill the IDL RPC server.

Parameters

client

The pointer to a CLIENT structure registered with the server to be killed.

Return Value

This function returns TRUE if the server was successfully killed. FALSE is returned

otherwise.

kill_server

Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 267
register_idl_client

Syntax

CLIENT* register_idl_client(long server_id, char* hostname,
struct timeval* timeout)

Description

Call this function to register your program as aclient of an IDL server. Note that a
program can be the client of a number of different servers at the sametimeand a
single server can have multiple clients.

Parameters

server_id

The ID number of the IDL server that the program is to be registered with. If this
value is 0, the default server ID (0x2010CAFE) is used.

hostname

The name of the machine where the IDL server isrunning. If thisvalueis NULL or
v the default, Localhost, is used.

timeout

A pointer to the timeout value for all communication with IDL servers. If thisvalueis
NULL or 0, the default timeout, 60 seconds, is used.

Return Value

A pointer to the new CLIENT structure is returned. This function returns NULL if it
is unsuccessful.

Obsolete IDL Features register_idl_client

268 Chapter 6: Obsolete Remote Procedure Calls

send _idl_command

Syntax

int send_idl_command (CLIENT* client, char* command) ;

Description
Call thisfunction to send an IDL command to the IDL server referred to by client.
The command is executed just asif it had been entered from the IDL command line.

This function cannot be used to send multi-line commands. If the first part of a multi-
line command is sent, for example:

send_idl_command(client, "FOR I=1,5 DO $");

IDL spawns an interactive session and may hang. In any case, subsequent commands
are not executed.

Parameters

client
A pointer to the CLIENT structure that corresponds to the desired IDL session.
command

A null-terminated string with no more than MAX_STRING_LEN characters.
MAX_STRING_LEN isdefined in thefileidldir /external/rpc/rpc_idl.h.

Return Value

This function returns a status value that denotes success or failure as described below.
e -1 =RPC communication failure (an error message is also printed).
e 0=CommandisNULL.
¢ 1= Success.

For all other errors, the error number is returned. This number could be passed as an
argument t0 STRMESSAGE () ; .

send_idl_command Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 269

set_idl timeout

Syntax
int set_idl_timeout (struct timeval* timeout)

Description

Call thisfunction to replace the current timeout used by the RPC mechanism with the
given timeout.

Parameters

timeout

A pointer to the new timeout value to be used. This parameter has no default.
Return Value

Thisfunction returns TRUE if the timeout was replaced. FALSE isreturned if the
timeout value was NULL or zero.

Obsolete IDL Features set_idl_timeout

270 Chapter 6: Obsolete Remote Procedure Calls
set_idl variable

Syntax
int set_idl_variable (CLIENT* client, varinfo_t* var);

Description

Call thisfunction to assign avalue to an IDL variable in the IDL session referred to
by client. The addressvar pointsto avarinfo_t structure that contains
information about the variable to be set. The “helper” functions can be used to build
var. (See“The varinfo_t Structure” on page 274) Any scalar or array variable type
can be set. Variables can be set only in the main IDL program level.

Note that it is not possible to set the value of an IDL structure. To set valuesin an
IDL structure, set the individua elements of the structure to scalar IDL variables,
then usethe send_1d1 command function to create the structurein IDL.

It is not possible to set the value of IDL system variables directly. To set the value of
an IDL system variable, first set the value of aregular IDL variable. The value of the
regular variable can then be assigned to the system variable. For example:

set_idl_variable(client, &newvar); /* newvar describes the */
/* IDL variable "NEW" */
send_idl_command(client, "!P.T = NEW");
Parameters
client

A pointer to the CLIENT structure that corresponds to the desired IDL session.
var

The address of thevarinfo_t structurethat contains information about the variable
to be set.

Return Value

Thisfunction returns a status val ue that denotes the success or failure of thisfunction
as described below.

e -1 =TFailure: bad arguments supplied (e.g., var isNULL).

set_idl_variable Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 271

e 0=RPC mechanism failed (an error message is also printed).

. 1 = Success

Obsolete IDL Features set_idl_variable

272 Chapter 6: Obsolete Remote Procedure Calls
set_rpc_verbosity

Syntax
void set_rpc_verbosity(verbosity)

Description
This function controls the printing of error messages by RPC library routines. If
verbosity is TRUE, error messages will be printed by the various RPC routines to
explain what failed. If verbosity is FALSE, return codes continue to indicate success
or failure, but no error messages are printed.

Parameters

verbosity

An int specifying TRUE or FAL SE as explained above.

Return Value

None

set_rpc_verbosity Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 273
unregister_idl_client

Syntax
void unregister_idl_client (CLIENT* client)
Description
Call this function to release the resources associated with the given CLIENT
structure. The operating system automatically rel eases the resources associated with
all CLIENT structures when your program exits. This function does not affect the
IDL server.

Parameters

client

The pointer to the CLIENT structure to be unregistered.
Return Value

None

Obsolete IDL Features unregister_idl_client

274 Chapter 6: Obsolete Remote Procedure Calls

The varinfo_t Structure

Thevarinfo_t structureis used to pass variablesto and from the IDL server.

Thevarinfo_t structureisdefined intheidldir/external/rpc/rpc_idl.hfile.
The structureis:

typedef struct _VARINFO {
char Name [MAXIDLEN+1];
IDL_VPTR Variable;
IDL_LONG Length;

} varinfo_t;

Variable Creation Functions

A number of functions are provided to help build varinfo_t structures. These
functions are contained in the fileidldir /external /rpc/helper.c.

The variable creation functions are described below. Unless otherwise noted, all of
the following functions return TRUE if variable creation is successful and FALSE
otherwise. When passing avarinfo_t structure pointer, if thevariable fieldis
NULL, the variable creation functions attempt to all ocate that field.

The varinfo_t Structure Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 275
v_make_byte

Syntax

int v_make_byte(varinfo_t* var_struct, char* var_name,
unsigned value)

Description

Create an IDL byte variable with the given name and value.

Obsolete IDL Features v_make_byte

276 Chapter 6: Obsolete Remote Procedure Calls

v_make_complex

Syntax

int v_make_complex(varinfo_t* var_struct, char* var_name,
double real_value, double imag_value)

Description

Create an IDL complex variable.

v_make_complex Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 277

v_make_dcomplex

Syntax

int v_make_dcomplex(varinfo_ t* var_struct, char* var_name,
double real_value, double imag_value)

Description

Create an IDL double-precision complex variable.

Obsolete IDL Features v_make_dcomplex

278 Chapter 6: Obsolete Remote Procedure Calls

v_make double

Syntax

int v_make_double(varinfo_ t* var_struct, char* var_name,
double value)

Description

Create an IDL double-precision, floating-point variable.

v_make_double Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 279

v_make float

Syntax

int v_make_float(varinfo_t* var_struct, char* var_name,
double value)

Description

Create an IDL single-precision, floating-point variable.

Obsolete IDL Features v_make_float

280 Chapter 6: Obsolete Remote Procedure Calls
v_make int

Syntax
int v_make_int (varinfo_t* var_struct, char* var_name, int value)

Description

Create an IDL (16-bit) integer variable.

v_make_int Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 281

v_make_long

Syntax

int v_make_long(varinfo_t* var_struct, char* var_name,
IDI, LONG value)

Description

Create an IDL long variable.

Obsolete IDL Features v_make_long

282 Chapter 6: Obsolete Remote Procedure Calls
v_make_string

Syntax

int v_make_string(varinfo_t* var_struct, char* name,
char* value)

Description

Create an IDL string variable.

v_make_string Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 283
v_fill_array

Syntax

int v_fill_array(varinfo_t* var, char* name, int type,
int ndimension, IDI_LONG dims[], UCHAR* value,
IDL long length)

Description

Create an IDL array variable. The type argument should be one of the following
values (defined in the file export . h):

IDL_TYP_BYTE, IDL_TYP_ INT, IDL_TYP LONG, IDL_TYP FLOAT,
IDL_TYP_DOUBLE, IDL_TYP_STRING, IDL_TYP COMPLEX, IDL_TYP DCOMPLEX

This function allocates var->variable->value.arr.
If value iISNULL then var->variable->value.arr->data isalocated.
Thedims [] argument should have at least ndimension valid elements.

If value issupplied but 1ength isO, var->Length isfilled with the computed size of
the array (in bytes) and value isassumed to point to at least that many bytes of
memory. If value and length are supplied, length is assumed to be the size (in
bytes) of the region of memory that value pointsto. (See “Notes on Variable Creation
and Memory Management” on page 286)

Obsolete IDL Features v_fill_array

284 Chapter 6: Obsolete Remote Procedure Calls

More Variable Manipulation Macros

The following macros can be used to get information from varinfo_t structures.
Like the variable creation functions, these macros are defined in the file rpc_idl .h.

All of these macros accept asingle argument v of varinfo_t type.
GetArrayData(v)

This macro returns a pointer to the array data described by the varinfo_t structure.
GetArrayDimensions(v)

This macro returns the dimensions of the array described by the varinfo_t
structure. The dimensions are returned as long dimensions|[].

GetArrayNumDims(v)

This macro returns the number of dimensions of the array.
GetVarByte(v)

This macro returns the value of a 1-byte, unsigned char variable.
GetVarComplex(v)

This macro returns the value (as a struct, not a pointer) of acomplex variable.
GetVarDComplex(v)

This macro returns the value (as a struct, not a pointer) of a double-precision,
complex variable.

GetVarDouble(v)
This macro returns the value of a double-precision, floating-point variable.

GetVarFloat(v)

This macro returns the value of a single-precision, floating point variable.

More Variable Manipulation Macros Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 285

GetVarint(v)
This macro returns the value of a 2-byte integer variable.
GetVarLong(v)
This macro returns the value of a4-byte integer variable.
GetVarString(v)
This macro returns the value of a string variable (as a char*).
GetVarType(v)
This macro returns the type of the variable described by the varinfo_t structure.
Thetypeisreturned as IDL_TYP_xxX as described under the documentation for the
get_1idl_variable function.

VarlsArray(v)

This macro returns non-zero if visan array variable.

Obsolete IDL Features More Variable Manipulation Macros

286 Chapter 6: Obsolete Remote Procedure Calls

Notes on Variable Creation and Memory
Management

This section contains miscellaneous notes about variable creation.

Freeing Resources

The variable creation functions (i.e., v_make_xxx) do not free resources associated
with a variable before placing new information there. Your programs should free
resources (if there are any) associated with the varinfo_t structure being passed.

To prevent memory leakage, memory associated with a variable is freed before new
memory is allocated. You should make sure that the varinfo_t structure passed to
theget_idl_variable function contains valid information or has been cleared (to
zeroes) first. If an array of the same size, dimensions, and type is being read into the
existing array variable, no allocation is performed and the same space is re-used. For
example:
/* Assume that:
X = FLTARR(1000, 1000)

Y FLTARR(1000, 1000)
7 LONARR (1000, 1000)same size, different type

*/
bzero (&vinfo, sizeof (vinfo));
get_idl_variable(client, "X", &vinfo, 0); /* array allocated */

get_idl_variable(client, "Y", &vinfo, 0); /* memory re-used */
get_idl_variable(client, "z", &vinfo, 0); /* array allocated */
free_idl_var (&vinfo) ;

Theget_idl_variable function calls free_idl_var before doing any
alocation. So, in the example above, we only needed to free z. x and vy were freed
when were-used vinfo.

Creating a Statically-Allocated Array

It is possible to create a statically-allocated array for receiving information from the
server without having the overhead of memory reallocation every time informationis
received.

If the Length field of the varinfo_t structureis not zero, it is assumed to be the
size of thearray data. The free_idl_var function will not do anything to avariable
where length is non-zero. It is up to the programmer to do their own memory

Notes on Variable Creation and Memory Management Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 287

management if thisisthe case. Storing ascalar in astatic variable (i.e., avariable that
has a non-zero Length field) fails as does attempting to store an array that does not
fit the statically-all ocated array. For example:

/* X = FLTARR(10) 40 bytes of data (10%*4)
Y = LONARR(2,2,2) 32 bytes of data(2*2*2*4)
Z = BYTARR(50) 50 bytes of data
w =12 scalar

*/

char buf[40]

varinfo_t v;
VARIABLE var;

ARRAY arr;

/* Build a static array. Fill in the minimum amount of */
/* information required. */
v.Variable = &var;

v.Length = 40;

var. type = IDL_TYP_ BYTE;

var.flags = V_ARR;

var.value.arr = &arr;

arr.data = buf;

get_idl_variable(client, "X", &v, ; /* ok */

; /* fails — too big */
/* fails — scalar */

get_idl_variable(client, "Z", &v,

(
get_idl_variable(client, "Y", &v,
(
get_idl_variable(client, "W", &v,

o O O o

)
)i /* ok */
)
)

Allocating Space for Strings

All space for strings is assumed to be obtained viamalloc (3). Thisfact isimportant
only when receiving variables (using the get_id1_variable function). For
example, the following code fragment is valid:

v_make_string(&foo, "UGH", "blug");
set_idl_variable(client, &foo);

Here is an example of code that will crash your program:

v_make_string(&foo, "UGH", "blug");
set_idl_variable(me, &foo);
send_idl_command (me, "UGH='hello world'");
get_idl_variable(me, "UGH", &foo, 0);

In this case, the get_id1_variable function attemptsto free the old resources
before allocating new storage. Freeing the constant b1ug resultsin an error. You
could achieve the desired result without an error by changing thefirst line to:

v_make_string(&foo, "UGH", strdup("blug"));

Obsolete IDL Features Notes on Variable Creation and Memory Management

288 Chapter 6: Obsolete Remote Procedure Calls

RPC Examples

A number of examplefilesareincluded in theidldir /external/examples/rpc
directory. A Makefile for these examplesis also included. These short C programs
demonstrate the use of the IDL RPC library.

RPC Examples Obsolete IDL Features

Chapter 7

The IDLDrawWidget
ActiveX Control

This chapter discusses the following topics:

OVEINVIEW .ottt e 290

Creating an Interface and Handling Events . . .
293

Working with IDL Procedures.......... 299
Advanced Examples 302
Copying and Printing IDL Graphics 303

IDL Connectivity Bridges

XLoadCT Functionality Using Visuad Basic . 307
XPalette Functionality Using Visual Basic 309

Integrating Object GraphicsUsingVB .. 310
Sharing a Grid Control Array with IDL .. 311
Handling Events within Visual Basic 313
Distributing Your ActiveX Application .. 315

289

290

Chapter 7: The IDLDrawWidget ActiveX Control

Overview

Overview

Note
Although the IDL DrawWidget ActiveX control has been replaced by the newer and
more robust COM Export bridge, existing applications that include the
IDLDrawWidget will continue to function. We recommend that all new
development that would use the IDL DrawWidget control now use a custom COM
control exported using the COM export bridge.

The 32-bit version of IDL for Microsoft Windows includes an ActiveX control that
provides a powerful way to integrate all the dataanalysis and visualization features of
IDL with other programming languages that support ActiveX controls. (The ActiveX
control is currently not supported by 64-bit IDL for Windows.) ActiveX is a set of
technologies that enabl es software components to interact, regardless of the language
in which they were written. This makesit possible, for example, to design a software
interface with Microsoft Visual Basic and have IDL respond to the eventsit
generates. The mgjor features of the IDL ActiveX control include the following:

e ThelDL ActiveX control makesit possible to display IDL direct and object
graphics within an OLE container that supports ActiveX controls

« ThelDL ActiveX control can respond to events, regardless of whether they are
generated by an external program or IDL itself

* ThelDL ActiveX control greatly simplifies the process of moving data to and
from IDL and an external program

* Theinterfacetothe IDL ActiveX control appears native to the external
application

Other issues to note regarding the ActiveX control are;

e ThelDL ActiveX control isintended primarily for use in applications
developed with Visual Basic 5.0 or greater. The control can be included in any
programming language designed to use ActiveX controls (e.g. Visual C++ or
Delphi). Users who intend to utilize the IDL ActiveX control in Visual C++
applications should be thoroughly familiar with Microsoft Foundation Classes
and ActiveX programming. The IDL ActiveX control uses Visual Basic-style
data types to exchange data between a Visual Basic application and IDL. A
Visual C++ programmer will need to use OLE’S VARIANT and SAFEARRAY
types. A discussion of how to usethe IDL ActiveX control with these
languages is beyond the scope of this manual.

IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 291

e ThelDL ActiveX control does not support any non-blocking IDL widgets.
When you call awidget from an ActiveX Control, you will not have access to
the active command line and control will not pass back to the calling program
until the blocking has been removed (the widget has been dismissed). You can,
however, recreate the functionality of awidget using the given functionality.

For an example, see “XLoadCT Functionality Using Visual Basic” on
page 307.

IDL Connectivity Bridges Overview

292

Chapter 7: The IDLDrawWidget ActiveX Control

The ActiveX interface to IDL consists of asingle control called | DL DrawWidget.
When this contral isincluded in a project, it exposes the features of IDL through its
properties and methods. The | DL DrawWidget can aso trigger events. The
properties and methods of the IDL DrawWidget are listed in Chapter 8,
“IDLDrawWidget Control Reference”.

In this chapter, you will be guided through a series of examples designed to
demonstrate techniques for integrating IDL with programs written in Microsoft
Visual Basic. These techniques begin with writing a simple application that shows
how IDL can respond to Visual Basic events and draw graphicsin aVisual Basic
window.

A Note about Versions of the IDL ActiveX Control

Overview

Periodically, we release a new version of the IDLDrawX ActiveX control. Older
versions of the control will continue to work as they always have, but the new
versions may include new features or other enhancements.

Why Are New Versions of the Control Created?

One of the features of COM isthat interfaces are immutable. That isto say that when
you create an interface, you “ contractually” agree that the interface won't change.
Changes to the way the control interacts with other components require that a new
interface, and thus a new version of the control, must be created. Since the IDL
ActiveX control isa COM object it is bound by this agreement. When we make
improvements to the ActiveX control interface by adding new methods and
properties, we release a new ActiveX control with the new interface.

What Must You Change to Take Advantage of a New Control?

If you areaVisua Basic user, you need to add the new version of the control to your
project and remove the old versions. For example, if you are upgrading to the
“IDLDrawX3 ActiveX Control Module” included with IDL version 5.6 and later,
you would add this control to your project and remove the “IDLDrawX ActiveX
Control Module” or “IDLDrawX2 ActiveX Control Module” from your project. The
source code need not change.

What About Previous ActiveX Controls?

While previous versions of the IDLDrawX control will continue to work with new
versions of IDL, they are no longer supported and will not be shipped with IDL. It is
recommended that you upgrade to the new version to take advantage of new features
and bug fixes.

IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 293

Creating an Interface and Handling Events

The goal of thisfirst exampleisvery simple: to create a user interface in Microsoft
Visual Basic and have IDL respond to events and display an image. The following
figure shows what the finished project looks like when it runs. The Visua Basic
source code used to create the exampleis shown in the following figure:

. IDL OCX Control: Simple Example [O] X]

% Compiled module: DIST.
40 4 1800 J

|

Figure 7-1: A Simple Example Showing the IDLDrawWidget and
Text Returned by IDL

Asthe figure shows, our first example program consists of two buttons (“Plot Data”
and “Exit"), agraphics area, and atext box. All of these elements reside on top of
what iscalled aform in Visual Basic parlance. (A formin Visual Basicissimilar to a
top level basein IDL.) Clicking the Plot Data button causes IDL to produce the
surface plot shown. Clicking Exit causes IDL and the Visual Basic program to free
memory and exit.

IDL Connectivity Bridges Creating an Interface and Handling Events

294 Chapter 7: The IDLDrawWidget ActiveX Control

1Q Private Sub Form_Load()
2 n = IDLDrawWidgetl.InitIDL (Forml.hWnd)
3 If n <= 0 Then
4 MsgBox ("IDL failed to initialize")
5 End
6 End If
7 IDLDrawWidgetl.CreateDrawWidget
8 IDLDrawWidgetl.SetOutputWnd (IDL_Output_Box.hWnd)
9] End Sub
Visual %) . ,
. 11f Private Sub Plot_Button_Click()
Basic 12 IDLDrawWidgetl.ExecuteStr ("Z = SHIFT(DIST(40),
13 IDLDrawWidgetl.ExecuteStr ("Z = EXP(-(z/10)"2)")
14 IDLDrawWidgetl.ExecuteStr ("SURFACE, Z")
15 IDLDrawWidgetl.ExecuteStr ("PRINT, SIZE(Z)")
16§ End Sub
17
18 Private Sub Exit_Button_Click()
19 IDLDrawWidgetl.DoExit
20 End
21Q End Sub

20, 20)")

Table 7-1: Source code for a Simple Example

Drawing the Interface

Begin building the first example by creating a new Visual Basic project, adding the

IDL ActiveX control, and drawing the interface components.

Launch Microsoft Visual Basic and create a new project.

Creating an Interface and Handling Events

1. AddthelIDL ActiveX component to the project. Visual Basic displays alist of
all available components when you select the Components from the Project
menu.

IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 295

Components E

Cantrols | Designers Insertable Objects |

[Index OLE Cantral module
[keywardsearch OLE Contral madule
[ILM Runtime Contral

Figure 7-2: List of Available Components

Select the “IDLDrawX 3 ActiveX Control module” check box and close the
Components window. Visual Basic will display the IDLDrawWidget'siconin
the tool bar.

2. Begindrawing theinterface. The “Plot” and “Exit” buttons were created with
the CommandButton widget, the text box was created with the TextBox
widget, and the graphics display areawas created with | DL DrawWidget.

Specifying the IDL Path and Graphics Level

Having added | DL DrawWidget to the Visual Basic project, we now have access to
IDL DrawWidget's properties and methods. Use the I dIPath and GraphicsL evel
properties to specify the directory path of the IDL ActiveX control and to choose
between IDL’s direct and object graphics capabilities. Refer to Chapter 8,
“IDLDrawWidget Control Reference” for acomplete list of the properties and
methods to | DL DrawWidget.

1. UseVisual Basic's Properties window to select the IDL DrawWidget. All of
the IDL DrawWidget's properties can be set using the Properties window.
Many properties can also be set within the source code. These distinctions are
noted in Chapter 8, “IDLDrawWidget Control Reference’.

IDL Connectivity Bridges Creating an Interface and Handling Events

296 Chapter 7: The IDLDrawWidget ActiveX Control

Properties - IDLDrawWwidget1]
|IDLDrawWidget1 IDLDrawtidget =
Alphabetic |Categorized |
(Custom) -~
M [OL D awtidiget 1
BackColor [e+5000000F2,
EaseMame IDLDr awtidget 1 Base
Eiorderstyle 0 - Mone
Bufferld -1
Causestalidation True
Craglcon (Mone)
Cragtode 0 - vbranual
CravatvidgetMarme IDLDEawWidget 1
Enable True
Enabled True
Getvalueiame
ot aphicsLewel 1
Height 2415
HelpContextID 0
IdPath hd|
{Name)
Returns the name used in code to identify an
object.

Figure 7-3: Visual Basic Properties Window
2. Locate the I dIPath property and enter the directory path to your IDL
installation. If you installed IDL inits default location, this path will be:
c:\ITT\idlxx
where xx isthe current IDL version.

3. Locatethe GraphicsL evel property and set it equal to 1. ThisselectsIDL's
direct graphics. A setting of 2 selects IDL’s object graphics.

Initializing IDL

With the interface drawn and the properties of the IDL DrawWidget set, now write
some Visual Basic code to give the application behavior. By double-clicking on the
form which contains all of the interface components, Visual Basic will automatically
generate the following subroutine.

Private Sub Form_Load()
End Sub

Creating an Interface and Handling Events IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 297

Visual Basic's Form_L oad routine executes automatically when a program starts
running. This procedure can be used to initialize IDL, create the | DL DrawWidget,
and direct output from IDL to atext box. The code to accomplish these tasks will be
placed between the two statements listed above.

IDL needsto beinitialized before Visual Basic can interact with the

IDL DrawWidget. Thisis done with the I nitI DL method. InitIDL takesthe hWnd
of the form containing the DL DrawWidget as an argument and returns 1 or less
than 1, depending on whether or not IDL initialized successfully. Assuming that the
default names given to the form and the | DL DrawWidget were not changed, IDL
can beinitialized with the following statement.

n = IDLDrawWidgetl.InitIDL (Forml.hWnd)

A conditional statement isincluded to display an error message and exit the program
if IDL failed toinitialize.

If n <= 0 Then
MsgBox ("IDL failed to initialize")
End

End If

Creating the Draw Widget

When a box is drawn with the “IDL DrawWidget” icon in the toolbar, an OCX frame
is created. Thisisacontainer for the IDL DrawWidget. This container is analogous
to an IDL widget base. The graphics window that will be used by IDL still must be
created. Thisis accomplished with the CreateDrawWidget method, as shown in the
following statement:

IDLDrawWidgetl.CreateDrawWidget
Directing IDL Output to a Text Box

The example program displays any output returned by IDL in atext box created in
Visual Basic. Thisisaccomplished with the SetOutputWnd method of the

IDL DrawWidget. The SetOutputW nd method takes the hWnd of the text box that
will contain the IDL output as an argument. The text box in the example program is
named | DL_Output_Box, hence the following statement.

IDLDrawWidgetl.SetOutputWnd (IDL_Output_Box.hWnd)

Note
Although thisis the last statement within the Form_L oad() subroutine, it could be
placed before the call to I nitIDL to get standard IDL version information printed.

IDL Connectivity Bridges Creating an Interface and Handling Events

Chapter 7: The IDLDrawWidget ActiveX Control

Responding to Events and Issuing IDL Commands

The easiest way to integrate IDL with Visual Basicisto let Visual Basic manage the
events and passinstructionsto IDL. Recall that our example program contains two
buttons: “Plot Data” and “Exit”. When you double-click on “Plot Data’, Visual Basic
automatically creates the following subroutine;

Private Sub Plot_Button_Click()
End Sub

Visual Basic will execute any statements within this subroutine when the user clicks
“Plot Data’. Instructions are passed to IDL using the ExecuteStr method to the

IDL DrawWidget. The ExecuteStr method takes a string as an argument. This string
ispassed to IDL for execution asif it were entered at the IDL command line.

The five statements which follow instruct IDL to produce the surface plot shown in
the figure above.

IDLDrawWidgetl.ExecuteStr (
IDLDrawWidgetl.ExecuteStr (
IDLDrawWidgetl.ExecuteStr (
IDLDrawWidgetl.ExecuteStr ("

= SHIFT(DIST(40), 20, 20)")
= EXP(-(Z/10)"2)")

URFACE, Z")

"PRINT, SIZE(Z)")

'Z
'Z
'S

Cleaning Up and Exiting

This project exits when the user clicks “Exit”. Exiting is atwo step process. IDL is
given a chance to clean up and exit by issuing the DoExit method. The Visual Basic
program then exits with an End statement.

Private Sub Exit_Button_Click()
IDLDrawWidgetl.DoExit
End

End Sub

Creating an Interface and Handling Events IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 299

Working with IDL Procedures

In this next example aproject is created that uses multiple IDL procedures. Here the
same issues apply as when developing a standard IDL program with a graphical user
interface. In addition, managing memory when moving from one procedure to
another should be considered. It isimportant to realize that the ActiveX control
interacts with IDL at the main level. Thus, a Visual Basic program passing
instructionsto IDL isidentical to entering the sameinstructions at the IDL command
line. In this example Visual Basic is only used to create the user interface and
dispatch events. The data resides in memory controlled by IDL. IDL is used for all
data processing and display functions.

The following figure shows the user interface of the example project. The project is
part of the IDL distribution and residesin the
examples\doc\ActiveX\SecondExample directory.

. Second Example: Interacting with IDL Procedures [O] X]

Open

Scale Original |
IBIack #whhite VI

Roberts

Exit

.

Original Filtered

% Compiled module: SETCOLORS. ;I
% Compiled module: APPLYSOBEL.

*% Compiled module: APPLYROBERTS.

% Loaded DLM: JPEG.

% Compiled module: COMGRID.

% Compiled module: LOADCT.

% Compiled module: FILEPATH.

% LOADCT: Loading table B LINEAR LI

Figure 7-4: The User Interface with Two Draw Widgets

The user interface consists of two | DL DrawWidget objects. The one on the left will
display an image read from a JPEG file. The window on the right displays what the
image looks like after processing. Buttons allow the user to scale the image and
perform Roberts and Sobel filtering operations on the data.

IDL Connectivity Bridges Working with IDL Procedures

300 Chapter 7: The IDLDrawWidget ActiveX Control

Creating the Interface

Theinterface is created as it was in the first example, by drawing the interface
componentsin Visua Basic. Two | DL DrawWidgets are created. Set the path
(c:\itt\idlxx wherexx isthe current IDL version) and graphicslevel properties
(type 1) of both.

Initializing IDL

Although there are two | DL DrawWidget objects, only one instance of the ActiveX
control needsto beinitialized. Both of the IDL DrawWidget objects do need to be
created, however.

Thisis done with the two statements bel ow:

IDLDrawWidgetl.CreateDrawWidget
IDLDrawWidget?2.CreateDrawWidget

Compiling the IDL Code

This example uses IDL procedures contained ina . pro file named
SecondExample.pro. Thisfile contains IDL procedures. Before these procedures
can be called from Visual Basic, SecondExample . pro needsto be compiled.
This assumesthat the . pro fileresidesin the same directory as the Visual Basic
project. The path method of the App object returns the directory from which the
Visual Basic application was launched. Pass this directory to IDL with the statements

WorkingDirectory = "CD, '" + App.Path + "’'"
IDLDrawWidgetl.ExecuteStr (WorkingDirectory)

The .pro can then be compiled. A conditional statement is used to exit the program
if IDL wasunableto locate the .pro file.

Dispatching Button Events to IDL
Because Visual Basic isused primarily for the user interface components of the

application, IDL’s procedures have been created for processing the button eventsin
the application. Thisis accomplished through the ExecuteStr method of the

Working with IDL Procedures IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 301

IDL DrawWidget, as caled in the following figure; when you click “Open”, the
OpenFile procedure is defined as below.

Visual
Basic

Private Sub Open_Button_Click(Index As Integer)
IDLCommand = "OpenFile, " + Str (BaselID)
IDLDrawWidgetl.ExecuteStr (IDLCommand)

End Sub

W R

Table 7-2: User Interface of Example Project

OpenFileisauser procedure that utilizes IDL’s DIALOG_PICKFILE function to
enable the user to select afile for display within the IDL DrawWidget.

Cleaning Up and Exiting

Like the first example, this program exits when the user clicks “Exit”. An additional
call has been made to DestroyDrawWidget. Thisisn't necessary when exiting
because the windowing system will destroy the widget. If you want to change the
GraphicsL evel property of the IDL DrawWidget during program execution use this
method.

IDL

0 o Ul WwWN

e
U WP oW

PRO OpenFile, TLB
WIDGET_CONTROL, TLB, GET_UVALUE = ptr
PathName = DIALOG_PICKFILE(TITLE = $
'Select a JPEG file', FILTER = '*.jpg')
IF (PathName NE '') THEN BEGIN
DEVICE, DECOMPOSED = 0
READ_JPEG, PathName, Data, ColorTable
(* (*ptr) .OriginalArrayPTR) = Data
(* (*ptr) .0OrigColorMapPTR) = ColorTable

TVLCT, (*(*ptr).OrigColorMapPTR)
TV, (*(*ptr).OriginalArrayPTR)
ENDIF ELSE BEGIN
Result = DIALOG_MESSAGE('No JPEG file selected', /ERROR)
ENDELSE
END

Table 7-3: The Open File Procedure

IDL Connectivity Bridges Working with IDL Procedures

302

Chapter 7: The IDLDrawWidget ActiveX Control

Advanced Examples

Each of the following examples builds on the concepts that you've already learned in
this chapter.

Example Code

The user interface and projects for each of the examples have been created and can
be found in the distribution in the examples\doc\ActiveX\project
directory where project is the name of the example.

These examples assume that you are already familiar with the following concepts:

Creating anew project in Visual Basic;

Adding the | DL DrawWidget control to the VB control toolbar;

Drawing the IDL DrawWidget on your form;

Initializing IDL with InitIDL;

Creating the draw widget with CreateDrawWidget;

Executing commands with ExecuteStr;

Using IDL .pro code to respond to auto-events within the | DL DrawWidget;
Setting properties for the IDL DrawWidget objects.

These examples demonstrate the following:

Copying and Printing IDL Graphics
XLoadCT Functionality Using Visual Basic
XPalette Functionality Using Visual Basic
Integrating Object Graphics Using VB
Sharing a Grid Control Array with IDL

Handling Events within Visual Basic

Advanced Examples IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 303

Copying and Printing IDL Graphics

The VBCopyPrint example demonstrates how to use either the Windows clipboard or
object graphics to print the contents of an | DL DrawWidget window.

This example illustrates the following concepts:
* Opening an existing project in Visual Basic;

* Copying an IDL graphic to the Windows clipboard using the CopyWindow
method;

e Executing IDL user routines,
e Printing an IDL graphic.
Opening the VBCopyPrint project
Select “Existing” from the Visual Basic New Project dialog. In the IDL distribution,

change to the examples\docs\ActiveX\VBCopyPrint directory, and open the
project VBCopyPrint.vbp, as shown in the following figure.

MNew Project H

Mew Edisting | Recent|

Laok in: 3 VBCopyPrint j il E?
T rsi = p——
VBCopyPr 03 14653
1 examples J
3 doc
1 Activey
B} /B CopyPrin
g E_Diive [E:]
g2 F_Drive [F) -
File name: | Dpen I
Fies ol typ=: [Project Fies [~.vbp:"mak " vbg) =l Cancel

Help

[~ Don't show this dislog in the future

Figure 7-5: Opening the VBCopyPrint project

IDL Connectivity Bridges Copying and Printing IDL Graphics

304 Chapter 7: The IDLDrawWidget ActiveX Control

Running the VBCopyPrint Example

Select “ Start” from the Run menu to run the example. You should see the graphic
shown in the following figure.

Printing and Copying Direct Graphics

Copy

1DL Print

il

B Print

Figure 7-6: VBCopyPrint example

Copying IDL Graphic to the Clipboard

To copy the graphic, click on “Copy”. The code for “Copy” uses the CopyWindow
method to copy the contents of the graphic to the Windows clipboard as shownin line
6 of the following table.

Private Sub cmdCopy_Click()
'Copy the direct graphics window to the clipboard
Screen.MousePointer = vbHourglass
'Erase anything currently on the clipboard
Clipboard.Clear
'Copy the draw widget to the clipboard
IDLDrawWidgetl.CopyWindow
Screen.MousePointer = vbDefault
MsgBox "Window copied to clipboard."

End Sub

Visual
Basic

O W oo Jo Ul WN R

=

Table 7-4: Copy button Source Code

Copying and Printing IDL Graphics IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 305

Printing the IDL Graphic Using IDL Object Graphics

To print the graphic using IDL, click on “IDL Print”. The “IDL Print” button uses
IDL’s object graphics to print the contents of the window by creating an image object
and sending the image to a printer object through a user routine VBPrintWindow.

1§ PRO VBPrintWindow, DrawId
2
3
4 .
5 ;Get the window index of the drawable to be printed
6 WIDGET_ CONTROL, DrawId, Get_Value=Index
7
8
9 .
10 ;Create a Printer object and draw the graphic to it
11 oPrinter = OBJ_NEW ('IDLgrPrinter')
IDL
12
13 ;Display a print dialog box
14 Result = DIALOG_PRINTERSETUP (oPrinter)
15
16
17 .
18 oPrinter->Draw, oView
19
20
21 .
22Q END ;VBPrintWindow

Table 7-5: IDL VBPrintWindow Code

Executing IDL User Routines with Visual Basic

The VBCopyPrint example executes a user routine, written in IDL, to support the
printing of the | DL DrawWidget window. Thisis done with the ExecuteStr method,

IDL Connectivity Bridges Copying and Printing IDL Graphics

306 Chapter 7: The IDLDrawWidget ActiveX Control
as shown in line 4 below, by passing a string of the routine name along with the ID of
the IDL DrawWidget.

1f Private Sub cmdPrintIDL_Click()
2 'Print the current drawable widget's window contents
3 'using IDL object graphics
Visual 4 Screen.MousePointer = vbHourglass
. 5 IDLDrawWidgetl.ExecuteStr "VBPrintWindow," &
Basic 6 Str$ (IDLDrawWidgetl.DrawId)
7 Screen.MousePointer = vbDefault
8 MsgBox "Window sent to printer."
9 End Sub
Table 7-6: Print Button Source Code
Printing the IDL Graphic Using Visual Basic
The VBPrint command uses the Windows clipboard and Visual Basic printer
support to print the IDL Graphic, as shown in the following table.
1 Private Sub cmdPrintVB_Click()
2 CommonDialogl.CancelError = True
3 On Error GoTo ErrHandler
4 CommonDialogl.ShowPrinter
5§ '-- Copy the window's contents to the clipboard
6 'Erase anything currently on the clipboard
7 Clipboard.Clear
Visual 8 IDLDrawWidgetl.CopyWindow
. 9 '-— Send the picture located on the clipboard,
Basic 10 'to the printer
11 Printer.PaintPicture Clipboard.GetData, 0
12 Printer.EndDoc 'Send it to the printer
13 Exit Sub
14§ ErrHandler:
15
16 Exit Sub
17§ End Sub

Table 7-7: VBPrint Command

Copying and Printing IDL Graphics

IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 307

XLoadCT Functionality Using Visual Basic

The VBL0adCT example duplicates the XLOADCT functionality using aVB
interface. The VBLoadCT . pro source code (located in the
examples\docs\Activex\VBLoadCt directory of the IDL installation directory)
isafunctional duplicate of XLOADCT with procedure calls replacing the
xloadct_event procedure aswell asIDL widgets being replaced by VB controls.
See the following figure for more information.

In addition, this example extends XLOADCT by adding the following features:
» Options menu by clicking the right mouse button on a color;
* Useof IDL syntax to create separate functions for red, blue and green;
e Ability to save user created color tables.

This exampleillustrates the following concepts:
» Maodifying existing IDL library code for use with the | DL DrawWidget;
» IDL to Visua Basic color table conversion

IDL Connectivity Bridges XLoadCT Functionality Using Visual Basic

308 Chapter 7: The IDLDrawWidget ActiveX Control

&, VBLoadCT I E3
File Edit
B LINEAR -
BLUEAWHITE
GRM-RED-BLUAWHT
RED TEMPERATURE
BLUE/GREEN/RED/YELLOW
STD GamMba-|
1} PRISH
RED-PURFLE
4 »
J—I J GREENAWHITE LINEAR
Stretch Bottomn GRMNAWHT EXPOMENTIAL
100 GREEM-PINK
. » ELUE-RED
[l —IJ 16 LEVEL
Stretch Top RAIMNBOW
1 STEPS
STERM SPECIAL
4 3
J —I J Haze LI

Gamma Caomection

Figure 7-7: VBLoadCT Example

XLoadCT Functionality Using Visual Basic IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 309

XPalette Functionality Using Visual Basic

Like VBL 0adCT, VBPalette demonstrates how to duplicate IDL tool functionality
using a Visual Basic interface. The vBPalette.pro file (located in the
examples\docs\Activex\VBPalette directory of the IDL instalation
directory) isafunctional duplicate of the X Palette source with the event procedure
and IDL widgets replaced with auto-event procedures and VB controls.

This exampleillustrates the following concepts:
* Maodifying existing IDL library code for use with the | DL DrawWidget;

e Converting an IDL event procedure to the | DL DrawWidget auto-event
procedures

. ¥BPalette [_[o]x]

File Palette

50 100 150 200 250 300

Green

50 100 150 200 250 300

) Blue
Calor Indes | 115 B LINEAR
GRN-RED-BLU-WHT
B 5 RED TEMPERATURE
ELUE/GREEN/RED/VELLOW
Green |29 5TD GAMMAII
PRISM
Blue 295 RED-PURPLE 50 100 150 200 250 300
1 colors].thl
Cieate 5 Color Function -
Start Index 1DL Function Output bfindow
-
Red= a |bylscl[sm[mdgen[ZSE]‘.WD]] Reset Red J
Gireen = 0 |bylscl[sm[mdgen[ZSE]‘.DS]] Resst Green
Blue = I Reset Bl
lue 0 |hylscl[sm[mdgan[255] 025)) eset Blue j

Figure 7-8: VBPalette Example

IDL Connectivity Bridges XPalette Functionality Using Visual Basic

310 Chapter 7: The IDLDrawWidget ActiveX Control

Integrating Object Graphics Using VB

Most of the examples covered to this point have used IDL’s direct graphics sub-
system to demonstrate using the | DL DrawWidget control. The | DL DrawWidget
can also use IDL’s object graphics sub-system by changing the

IDL DrawWidget.GraphicsL evel property as demonstrated with the VBObjGraph
example in the following figure. This example illustrates the following concepts:

e Setting the GraphicsL evel property to create an object graphics window;
e Trandating agraphics abject using VB controls.
e Using I DL DrawWidget auto-events.

Object Graphics Example
FEile Edit

Left click and drag on surface to rotate.

l Auto Rotate

Figure 7-9: VBObjGraph example

Example Code
See thefileslocated in the examples\docs\Activex\VBObjGraph directory
of the IDL installation directory for example code.

Integrating Object Graphics Using VB IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control

Sharing a Grid Control Array with IDL

311

VBSharelD demonstrates sharing one dimensional data between Visual Basic and
IDL using the SetNamedArray method of the DL DrawWidget object. The datais
presented to the user in a Visual Basic grid control enabling the user to edit the data

and see theresultsin real time. See the following figure.

This example illustrates the following concepts:

» Shows how to process mouse events within VB to get the data coordinates of

an IDL plot.

» Demonstrates how to convert (x,y) VB coordinatesinto IDL data coordinates,
to give the cursor location in data values relative to the current plot.

e Demonstrates how to use aVB grid control to edit datavaluesthat are reflected
inthe IDL plot after each keystroke

. VBShareld

Move the cursor over the plot. and type a number to edit the current
value. or click on the cell to edit.

(O] %]

1.0
0.5
0.0

0.5

& T

)
z0 40 &0 &0 100

aon] 309 14 - 757 - 359 .27 B&7 583 a2
- 544 -1.000 -537 420 591 50 -288 - 561 -751 150
13 a7 -009 - 46 -132 7E3 956 71 - B4
- 988 - 404 61 1.000 529 -428 -39z -E44 29, £
745 -1859 -917 -8z g 251 a0z 14 - 768 - 954
-262 &70 £ 396 -553 -1.000 -522 A% 993 87
- 305 - 966 -7 187 820 827 -027 - 856 -89 115
774 951 254 -E77 -985 -388 GGG 1.000 514 - 444
-394 -Ban Kk e 733 176 -323 -g22 035 860

.834

106

779

- 343

- 245 633

.924

.380

573

Reset |

IbICaords

IDL Connectivity Bridges

Figure 7-10: VBSharelD

Sharing a Grid Control Array with IDL

312 Chapter 7: The IDLDrawWidget ActiveX Control

Example Code
Seethefileslocated in the examples\docs\ActivexX\VBSharelD directory of
the IDL installation directory for example code.

Sharing a Grid Control Array with IDL IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 313

Handling Events within Visual Basic

The VBPaint example uses direct graphics to create a simple drawing program. A
direct graphics window is used to respond to events within VB. Each click event will
get the (x,y) location within the window, and modify the color of the current pixel in
the image. See the following figure:..

This example illustrates the following concepts:
e Converting from aVB pixel coordinate system to the IDL coordinate system;

e Converting aVB color representation (long) into an IDL color representation
(RGB);

* Modifying an IDL RGB color table item with a color chosen/created from VB
and the Window's common color diaog;

e Processing mouse events within VB to draw into an IDL window

. Exampled =] E3
Hold Left button o draw, Right button to erase

Color...

Lo |

Color

B
H

Basic colors:

|
T EC.
T
N ..
EEEEEN

=

—

LCustom colors:

|) i
5.

Define Cugtom Colors »»

Cancel |

—
=
|
|
|
|
=
|

Ef THEENT

Figure 7-11: VBPaint Example

IDL Connectivity Bridges Handling Events within Visual Basic

314 Chapter 7: The IDLDrawWidget ActiveX Control

Example Code
See thefileslocated in the examples\docs\Activex\VBPaint directory of
the IDL installation directory for example code.

Handling Events within Visual Basic IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 315

Distributing Your ActiveX Application

For information on how to distribute an application developed with the IDL ActiveX
control, see Chapter 9, “Distributing ActiveX Applications’ (Building IDL
Applications).

IDL Connectivity Bridges Distributing Your ActiveX Application

316 Chapter 7: The IDLDrawWidget ActiveX Control

Distributing Your ActiveX Application IDL Connectivity Bridges

Chapter 8

IDLDrawWidget
Control Reference

This chapter describes the following topics:

IDLDrawWidget 318
Methods 319
Do Methods (Runtime Only) 329
Properties............. 331

IDL Connectivity Bridges

Read Only Properties 335
Auto Event Properties 337
Events i 339

317

318 Chapter 8: IDLDrawWidget Control Reference

IDLDrawWidget

Note
Although the IDL DrawWidget ActiveX control has been replaced by the newer and
more robust COM Export bridge, existing applications that include the
IDLDrawWidget will continue to function. We recommend that all new
development that would use the IDL DrawWidget control now use a custom COM
control exported using the COM export bridge.

The IDLDrawWidget is an ActiveX control that provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in C, C++, Visua
Basic, Fortran, Delphi, etc. Methods and properties of the IDLDrawWidget provide
the interface between IDL and an external application. The rest of this section
describes the following for the IDL DrawWidget:

¢ Methods

« Do Methods (Runtime Only)
e Properties

e Read Only Properties

¢ Auto Event Properties

« Events

IDLDrawWidget IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 319

Methods

In ActiveX terminology, methods are specia statements that execute on behalf of an
object in a program. For example, the ExecuteStr method can be used to execute an
IDL statement, function, or procedure when the user clicks on a button in a Visual
Basic program. The syntax of a method statement is:

object.method value
where

* Object isthe name of an object you want to control, for example an
IDLDrawWidget.

* Method isthe name of the method you want to execute.

* Valueisan optional parameter used by the method. The various methods to the
IDLDrawWidget may require zero, one, or multiple parameters.

Note
When a method returns a BOOL, the value TRUE is equal to 1 and FALSE is equal
to 0.

CopyNamedArray

This method copies an IDL array to an OLE Variant array.
Parameters

BSTR: The name of the array variable that you wish to copy.
Returns

VARIANT: Reference to the array.
Remarks

This function returns an array reference that islocal to the calling function.
Attempting to use this array outside the calling function could result in runtime
errors.

IDL Connectivity Bridges Methods

320 Chapter 8: IDLDrawWidget Control Reference

CopyWindow

This method copies the contents of the IDL DrawWidget window to the Windows
clipboard.

Parameters
None.
Returns

BOOL: TRUE if successful.

CreateDrawWidget

This method creates an IDLDrawWidget in an ActiveX control frame. When you
drag and drop the IDLDrawWidget, you are creating the frame that will contain the
actual draw widget. Drawing operations to the control cannot be made until this

method is called.
Parameters
None.

Returns

LONG: The widget 1D of the created draw widget or -1 in the event of an error.

DestroyDrawWidget
This method destroys the IDLDrawWidget, but not the ActiveX control frame.
Parameters
None.
Returns

None.
DoEXxit

This method exits the ActiveX control and frees any resourcesin use by IDL.

Methods IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 321

After all IDL ActiveX control use is complete, but before the EDE application exits,
you must call DoEXxit to allow the ActiveX control to shutdown IDL gracefully and
free any resourcesin use.

Parameters
None.

Returns
None.

Remarks

In spite of the name, DoEXxit is not one of the IDL ActiveX control auto events. Like
InitIDL, DoExit should be called once and only when you are exiting the EDE
application.

Warning
Once DoExit is called, you are not allowed to call methods or set properties within

the IDL ActiveX control from the currently running EDE application, regardl ess of
which I DL DrawWidget the method was called on. Attempting to do so will result in
aruntime error subsequently causing the EDE application to crash.

ExecuteStr

This method passes a string to IDL which IDL then executes.
Parameters

BSTR: A string containing the command that IDL will execute.
Returns

LONG: 0 if successful or the IDL error code if it fails.
Remarks

Most IDL commands that are executed with ExecuteStr run in the main level.

GetNamedData

This method returns the IDL data value associated with the named variable.

IDL Connectivity Bridges Methods

322 Chapter 8: IDLDrawWidget Control Reference

Parameters
BSTR: A string containing the name of an IDL variable.
Returns

VARIANT: Returns the value of the requested data. The type will be EMPTY if the
IDL variable doesn’t exist.

Remarks

The following table lists the supported IDL data types and the corresponding
VARIANT datatypes.

IDL Type Variant Type

IDL_TYP BYTE VT _UIl
IDL_TYP_INT VT 12
IDL_TYP LONG | VT 14
IDL_TYP FLOAT |VT R4
IDL_TYP_DOUBLE | VT _R8
IDL_TYP_STRING | VT BSTR

Table 8-1: Supported IDL Data Types and the Corresponding
VARIANT Data Types

InitIDL

Thismethod initializes IDL. IDL only needsto be initialized once for each instance
of the ActiveX control.

Parameters

LONG: InitIDL is caled with the hWnd of the main window for the container
application. If thisvalueis null, the ActiveX control uses the hwnd of the ActiveX
control frame.

Methods IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 323

Returns

LONG: Long valueindicating status of IDL

Value Meaning
1 Successful
0 Failure
-1 IDL ActiveX control is
not licensed
-2 IDL isunlicensed (demo)

Table 8-2: Status of IDL

If your application contains more than a single IDLDrawWidget (e.g.,
IDLDrawWidgetl and IDL DrawWidget2), the InitIDL method should only be called
on one of the objects, not both.

TheIDL ActiveX control relieson IDL and must, at a minimum, have an IDL
runtime distribution to operate successfully. The IdIPath property can be set so the
control can find avalid IDL distribution (the ia1.411). If avalid distribution is not
found in either the path as set in the I dIPath property or the current directory, adialog
will be displayed giving the user the opportunity to specify the location of hisIDL
distribution. This behavior may be overridden at runtime by locating and specifying
the path to the IDL distribution prior to calling either the InitIDL or SetOutputWnd
methods.

InitIDLEX

Thismethod initializes IDL. It isidentical to the InitIDL method except that it has an
additional parameter, Flags, allowing initialization flags to be passed on to IDL. See
the description of the “InitIDL” on page 322 for details on the return value.

Parameters

LONG: InitIDL iscalled with the hwnd of the main window for the container
application. If thisvalueis null, the ActiveX control uses the hwnd of the ActiveX
control frame.

IDL Connectivity Bridges Methods

324 Chapter 8: IDLDrawWidget Control Reference

LONG: Flags. A bitmask used to specify initialization options. The allowed bit
values are:

Flag Meaning

IDL_INIT_RUNTIME | Setting this bit causes IDL to check out aruntime
license instead of the normal license. In Visual C++
applications, the #define IDL_INIT_ RUNTIME
value exported in export . h can be used. For Visua
Basic applications use the actual value of this
constant, IDL_INIT RUNTIME=4, since the defined
constant is not available.

IDL_INIT_STUDENT | Setting thisbit causes IDL to check out a student
license instead of the normal license. In Visual C++
applications, the #define IDL_INIT_ STUDENT
value exported in export . h can be used. For Visual
Basic applications use the actual value of this
constant, IDL_INIT STUDENT=128, sincethe
defined constant is not available.

Table 8-3: InitIDLEX Flags

Returns

LONG: Long valueindicating status of IDL. See the description of the return value
under “InitIDL” on page 322 for details.

Print

This method prints the contents of the ActiveX control to the current default printer
for both Direct and Object Graphics windows. The Print method will print the
contents of a Direct Graphics window at screen resolution (72-96 dpi). For
information about controlling print resolution of an object graphics window, see the
Bufferld property.

Note
In order to print the contents of an Object Graphics window, you must associate the
IDL graphicstree (an IDLgrView object) with the IDLgrWindow object used by the
underlying draw widget. Do this by setting the GRAPHICS_TREE property of the
IDLgrWindow object to the IDLgrView object:

;Retrieve the window object associated with the draw widget.

Methods IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 325

IDLDrawWidget: :ExecuteStr ("Widget_Control, IDLDrawWidget, $
Get_Value =oWindow") ;

;Set the Graphics_Tree property to the view object.

IDLDrawWidget: : ExecuteStr ("oWindow->SetProperty, $
Graphics_Tree = oView");

Parameters

XOffset: The X offset to print the graphic in 0.01 of amillimeter.
YOffset: The'Y offset to print the graphic in 0.01 of amillimeter.

Width: The desired width of the printed graphic in 0.01 of a millimeter.
Height: The desired height of the printed graphic in 0.01 of amillimeter.

The X offset plus the width should be |ess than or equal to the width of asingle page.
TheY offset plus the height should be less than or equal to the height of asingle
page. The origin of the offset 0,0 isin the upper left corner of a page. If these values
are set to 0, the ActiveX control will print agraphic in the upper left corner of the
page with the size of the graphic approximating the size of the image on the screen.

Returns

BOOL: TRUE if printing succeeded.
RegisterForEvents

This method causes | DL DrawWidget to pass the specified events to the application.
These events only apply if the user hasn’t set the corresponding auto event property.

Parameters

LONG: Flags that indicate which events you wish to forward to your application.
Values can be combined if multiple events are desired.

Value Meaning
0 Stop forwarding all events
1 Forward mouse move events
2 Forward mouse button events

Table 8-4: Forwarding Events

IDL Connectivity Bridges Methods

326 Chapter 8: IDLDrawWidget Control Reference

Value Meaning
4 Forward view scrolled events
8 Forward expose events

Table 8-4: Forwarding Events (Continued)

Note
Motion events may be generated continuously in response to certain operationsin
IDL. Asaresult, if you forward mouse move events, your event handler should
check the reported position of the mouse to determine whether it has in fact moved
before doing extensive processing.

Returns

BOOL: TRUE if successful.
SetNamedArray

This method creates a named IDL array with the specified data. The data pointer is
shared with IDL and the EDE application. Thus, changesin either IDL or the EDE
will be reflected in both.

Parameters

BSTR: Name of array variable to createin IDL.
VARIANT: Array datato be shared with IDL.

BOOL: Trueif IDL should free a shared array when IDL releases its reference, false
if not.

Returns
WORD: 1 if successful, O if set failed.

Remarks

Because SetNamedArray creates an array whose datais shared between IDL and the
EDE application, IDL constructs that could change the type and/or dimensionality of
the array must be avoided, as these constructs could have the side effect of creating a
new array in IDL and thus breaking the shared link.

Methods IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference

327

The array parameter of SetNamedArray must have a lifetime beyond the calling
function. Thus, in Visual Basic, it is recommended that the array be declared as
global in scope to prevent runtime errors from occurring.

Note

In order to alow data to be shared between IDL and the external environment, the
lock count on the underlying array is incremented. Some external environments,
notably later versions of Delphi, do not allow array locking to extend beyond a
single method call and will signal an error when SetNamedArray returns. If this
occurs, the data cannot be shared between IDL and the externa environment using
SetNamedArray. Use the SetNamedData method to insert a copy of the array into

IDL.

The following table lists the accepted variant types and the corresponding IDL types.

Variant Types IDL Types
VT_UI1 - unsigned char IDL_TYP BYTE
VT _I1- signed char IDL_TYP BYTE
VT _12 - signed short IDL_TYP_INT
VT _l4 - signed long IDL_TYP_LONG

VT _R4 - float

IDL_TYP_FLOAT

VT_R8 - double

IDL_TYP_DOUBLE

Table 8-5: Accepted Variant Types and the Corresponding IDL Types

SetNamedData

This method creates an IDL variable with the specified name and value. Both the
EDE and IDL maintain their own copy of the data. SetNamedData can also be used to
change the value of an existing IDL variable.

Parameters

BSTR: Name of the variableto createin IDL.

VARIANT: Datato be copiedin IDL.

IDL Connectivity Bridges

Methods

328 Chapter 8: IDLDrawWidget Control Reference

Returns
WORD 1 if successful.

SetOutputWnd

This method sends output from IDL to the specified window.
Parameters

HWND: The hwnd of the edit control that will receive the output.
Returns

None.

Note
SetOutputWnd is the only method that can be called prior to acall to InitIDL.

VariableExists

This method determines if a specified variable is defined in IDL.
Parameters

BSTR: Name of variable to check.
Returns

BOOL:TRUE if variableis defined in IDL at the main level. Falseif the variableis
not defined.

Methods IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 329

Do Methods (Runtime Only)

Do Methods are methods that execute auto event procedures. Calling these methods
is helpful in simulating user interaction with a draw widget by forcing an auto event
to be called.

DoButtonPress
This method calls the IDL procedure specified in the OnButtonPress property.
Parameters
None.

Returns

None.
DoButtonRelease
This method calls the IDL procedure specified in the OnButtonRel ease property.
Parameters
None.

Returns

None.
DoExpose
This method calls the IDL procedure specified in the OnExpose property.
Parameters
None.

Returns

None.

IDL Connectivity Bridges Do Methods (Runtime Only)

330 Chapter 8: IDLDrawWidget Control Reference

DoMotion

This method calls the IDL procedure specified in the OnMotion property.
Parameters

None.
Returns

None.

Do Methods (Runtime Only) IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 331

Properties

Properties are used to specify the various attributes of an IDLDrawWidget, such asits
color, width and height. Most properties may be set at design time by configuring the
properties sheet in Visual Basic, or at runtime by executing statementsin the program
code.

The syntax for setting a property in the codeiis:
object.property = value
where

* object isthe name of the object you want to change (e.g. IDLDrawWidgetn
where nisthe number Visual Basic assigned to the IDL DrawWidget)

* property isthe characteristic you want to change

* value isthe new property setting

Note
All properties relating to window size and/or position are in pixel units unless

otherwise indicated.

BackColor

This property specifies the background color of the IDL widget. BackColor may be
specified at design time or runtime.

BaseName

This property names avariable that IDL will use for the pseudo base. If this property
is set, the IDLDrawWidget will create an IDL variable with this name that contains
the ID of the base widget. Because the base widget is a pseudo base, you should not
destroy it. The BaseName property can be set at design time or at runtime prior to a
call to CreateDrawWidget.

The default value is IDL DrawWidgetBase.

Bufferld

The Bufferld controls the type of print output you receive when printing with an
Object Graphics window (when the GraphicsLevel property is set to 2).

IDL Connectivity Bridges Properties

332 Chapter 8: IDLDrawWidget Control Reference

1. A valueof -1 will cause the graphicsto print using vector output. This format
is suitable for line graphs and mesh surfaces.

2. A value of 0 will cause the graphics to print at roughly two times the screen
resolution. Thisformat is suitable for shaded surfaces or vertex colored mesh
surfaces. Thisis the default.

3. A value greater then O will be construed a s an IDLgrBuffer object reference
whose data will be used for printing. Thisformat allows the programmer to
control the resolution of the output of the image.

For more information, see “IDLgrBuffer” (IDL Reference Guide).

Note
You must set the GRAPHICS_TREE property of the IDLgrWindow object for these
print options to work.

DrawWidgetName

Returns or setsavariable that IDL will use for the draw widget. If this property is set,
the IDLDrawWidget will create an IDL variable with this name that contains the ID
of the draw widget. The DrawWidgetName property can be set at design time, or at
runtime prior to a call to CreateDrawWidget.

The default value is IDL DrawWidget.
Enabled

Returns or sets a value that determines whether aform or control can respond to user-
generated events such as mouse events.

The default valueis TRUE.
GraphicsLevel (Runtime/Design time)

This property specifies the graphics level of the draw widget. Legal valuesare 1 or 2.
If you set GraphicsLevel=1 and call the CreateDrawWidget method, the procedure
will create an IDL direct graphics window. GraphicsLevel=2 resultsin an IDL object
graphics window. The GraphicsLevel property can be set at design time or at runtime
prior to acall to CreateDrawWidget.

The default valueis 1.

Properties IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 333

|dIPath

This property specifies the fully qualified path to the IDL.DLL. The IdIPath property
can be set at design time or at runtime prior to acall to InitIDL or SetOutputWnd.

The default valueis NULL.

Renderer

This property specifies either the software or hardware renderer for object graphics
windowsisto be used. It has no effect if the GraphicsLevel property isset to 1. Valid
values are:

0 Platform native OpenGL

1 IDL’s software
implementation

By default, the setting in your IDL preferencesis used.

Retain (Runtime/Design time)

This property setsthe retain mode of the IDLDrawWidget: 0, 1, or 2. The retain mode
specifies how IDL should handle backing store for the draw widget. Retain=0
specifies no backing store. Retain=1 requests that the server or window system
provide backing store. Retain=2 specifiesthat IDL provide backing store directly.
The Retain property can be set at design time or at runtime prior to acall to
CreateDrawWidget.

The default valueis 1.
Visible (Runtime/Design time)

Shows or hides the IDL DrawWidget. When Visible is TRUE, the IDLDrawWidget is
shown; when FALSE, the IDLDrawWidget is hidden. Hiding the IDLDrawWidget is
useful when the control is used as an interface to IDL and no graphics are intended

for display.
The default valueis TRUE.

IDL Connectivity Bridges Properties

334 Chapter 8: IDLDrawWidget Control Reference

Xsize (Design time)

Virtual width of IDLDrawWidget. If thisvalue is greater than the Xviewport value,
scroll bars will be added.

Ysize (Design time)

Virtual height of IDLDrawWidget. If thisvalueis greater than the Y viewport value,
scroll bars will be added.

Properties IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 335

Read Only Properties

Baseld (Runtime)

Widget ID of the pseudo base. The Baseld property is not valid until acall to
CreateDrawWidget has been made.

Drawld (Runtime)

Widget 1D of the created draw widget. The Drawld property isnot valid until acall to
CreateDrawWidget has been made.

hwWnd (Runtime)

Window handle of the ActiveX control. The hwnd property isnot valid until acall to
CreateDrawWidget has been made.

LastldIError (Runtime)

A string that contains the last IDL error message. This string will not change if the
ExecuteStr method is called and an error does not occur.

Scroll

Trueif the widget will contain scroll bars.
The default valueis FALSE.

Xoffset

Set at design time when the control is dropped or moved. Represents the x offset of
the draw widget within the parent application.

Xviewport

Set at design time when the control is dropped or moved. Represents the visible width
of the draw widget. If scroll bars are present, Xviewport will include the width of the
scroll bars.

IDL Connectivity Bridges Read Only Properties

336 Chapter 8: IDLDrawWidget Control Reference

Yoffset

Set at design time when the control is dropped or moved. Represents the y offset of
the draw widget within the parent application.

Yviewport
Set at design time when the control is dropped or moved. Represents the visible

height of the draw widget. If scroll bars are present, Yviewport will include the
height of the scroll bars.

Read Only Properties IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 337

Auto Event Properties

Auto events are IDL procedures that are called automatically by the control in
response to certain events.

OnButtonPress

An IDL procedure that will be called when a mouse button is pressed. The procedure
must bein the form:

pro button_press, drawlId, button, xPos, yPos

The default valueis NULL.
OnButtonRelease

An IDL procedure that will be called when amouse button isreleased. The procedure
must bein the form:

pro button_release, drawId, button, xPos, yPos

The default valueis NULL.
OnDDbIClick

An IDL procedure that will be called when a mouse button is double clicked within
the draw widget. The procedure must be in the form:

pro button_dblclick, drawId, button, xPos, yPos

The following table describes each parameter of the syntax:

Parameter Description

button Describes which mouse button has been clicked. The valid values
are:

» 1 — Left mouse button.
o 2 — Middle mouse button.
» 4 — Right mouse button.

Table 8-6: OnDblClick Parameters

IDL Connectivity Bridges Auto Event Properties

338 Chapter 8: IDLDrawWidget Control Reference

Parameter Description
xPos The horizontal position of the mouse when the button was clicked.
yPos The vertical position of the mouse when the button was clicked.

Table 8-6: OnDbIClick Parameters (Continued)
The default valueis NULL.

OnExpose

An IDL procedure that will be called when an expose message is received by the
draw widget. The procedure must be in the form:

pro expose, drawId

The default valueis NULL.
Onlnit

An IDL procedure that will be called when adraw widget isinitially created. The
procedure must be in the form:

pro init, drawId, baseId

This auto event procedure is called once when the CreateDrawWidget method is
invoked.

The default valueis NULL.

OnMotion

An IDL procedure that will be called when the mouse is moved over the draw widget
while a mouse button is pressed. The procedure must be in the form:

pro motion, drawId, button, xPos, yPos

The default valueis NULL.

Note
Motion events may be generated continuously in response to certain operationsin
IDL. Asaresult, if you provide an event-handler for mouse motion events, your
event handler should check the reported position of the mouse to determine whether
it has in fact moved before doing extensive processing.

Auto Event Properties IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 339

Events

Events are functions or procedures that can be handled by the EDE application on
behalf of IDLDrawWidget. If an auto event property is set, its corresponding event
will not be called; instead, the auto event procedure will be called. By disabling the
auto-events, IDLDrawWidget can respond to the following standard Visual Basic

events:
* MouseDown
* MouseMove
e MouseUp

OnViewScrolled

OnViewScrolled is an IDLDrawWidget event that notifies the container application
when the graphics window has been scrolled. This event will only be sent when the
Scroll property is TRUE.

Note
You must call RegisterForEvents passing the flags to indicate the events you want to

process. Neglecting this step will send the eventsto IDL for processing.

IDL Connectivity Bridges Events

340 Chapter 8: IDLDrawWidget Control Reference

Events IDL Connectivity Bridges

Chapter 9

Distributing ActiveX

Applications

This chapter describes the process of creating IDL ActiveX applications for distribution.

What Isan ActiveX Application? 342
Limitations of Runtime Mode ActiveX Applications 343
Stepsto Distribute an ActiveX Application 344
Preferences for ActiveX Applications 345
RUNtimMeLiCenSiNgo oo ve et e e 346
EmbeddedLicensingciiiiiiiiiin... 347
Creating an Application Distribution 349
Starting Your ActiveX Application 350
Installing Your ActiveX Application 351

Building IDL Applications

341

342 Chapter 9: Distributing ActiveX Applications

What Is an ActiveX Application?

The IDL ActiveX control can be used to access IDL functionality in applications
written in other languages that support ActiveX, such as C++ or Visual Basic. The
process of creating IDL ActiveX control applications is covered in the External
Devel opment Guide.

Unlike applications written entirely in IDL, the process of creating an application
distribution for aIDL ActiveX application is the same whether the application’s end
user has an IDL development license or not. This chapter describes the packaging
process for IDL ActiveX applications using any licensing mechanism.

IDL ActiveX applications are packaged for distribution in much the same way as
native IDL applications. Before beginning the process of packaging your ActiveX
application, you should be familiar with the contents of Chapter 23, “ Distributing
Runtime Mode Applications’. This chapter describes the additional steps necessary
to create and distribute a IDL ActiveX application.

Licensing Options for IDL ActiveX Applications

When you have an IDL ActiveX application that you want to distribute to users who
do not already have IDL installed and licensed, you must purchase a runtime or
embedded license from ITT Visual Information Solutions. These options are
described in detail in “Runtime Licensing” on page 346 and “Embedded Licensing”
on page 347.

If your end user aready has an IDL development license, you can simply package
your IDL ActiveX application as described in this chapter and distribute it without
including alicense.

What Is an ActiveX Application? Building IDL Applications

Chapter 9: Distributing ActiveX Applications 343

Limitations of Runtime Mode ActiveX
Applications

IDL applications that run without an IDL development license — whether native
IDL, Callable, or ActiveX — do not have access to the IDL compiler and thus cannot
compile IDL source code from . pro files. Asaresult, operations that require the
compiler will not execute when a development license is not present. In addition, if
you are writing an IDL application to be distributed to users who do not have an IDL
development license, you should be aware of the restrictions described in
“Limitations of Runtime Mode ActiveX Applications’ on page 343.

Note
Startup files are not executed when you launch an IDL application without a

command line. See “Understanding When Startup Files are Not Executed” (Chapter
2, IDL Interface) for details.

Building IDL Applications Limitations of Runtime Mode ActiveX Applications

344

Chapter 9: Distributing ActiveX Applications

Steps to Distribute an ActiveX Application

To create and distribute an IDL ActiveX application, do the following:

1

Create your application using an IDL development license. Test the application
using the type of license you expect your end user to have. See the External
Development Guide for information on creating IDL ActiveX applications.

Decide on alicensing mechanism for your application. (For an overview of
licensing mechanisms, see “Licensing Optionsfor IDL ActiveX Applications”
on page 342.)

Obtain licenses for your application from ITT Visual Information Solutions.
See “Runtime Licensing” on page 346 or “Embedded Licensing” on page 347
for details.

Create an application distribution as described in “ Creating an Application
Distribution” on page 349.

Create invocation and use instructions for your application. See “ Starting Your
ActiveX Application” on page 350 for additional information.

Createan instaler, if desired, and installation instructions for your application.
See “Installing Your ActiveX Application” on page 351 for additional
information.

Steps to Distribute an ActiveX Application Building IDL Applications

Chapter 9: Distributing ActiveX Applications 345

Preferences for ActiveX Applications

IDL’s preference system allows devel opers, administrators, and individual usersto
control default values for many aspects of IDL’s environment and configuration.
Creators of runtime applications can take advantage of the preference system to
customize the environment in which a particular application runs.

See “Preferences for Runtime Applications” (Chapter 23, Application Programming)
for adiscussion of using preferences in the context of alDL runtime application.

The process of specifying preferencesfor an IDL ActiveX application is complicated
by the fact that users never launch IDL directly. This meansthat in order to specify
preference values, you must do one of the following:

e Modify theidl.pref fileinthe resource\pref subdirectory of the
application distribution.

e Createan idl.pref fileandinstall itinthebin\bin.platform
subdirectory of the application distribution where p1at form isthe platform-
specific bin directory.

Note
These two methods are only useful if you are distributing an IDL distribution to
support your application — you should not modify an existing id1 .pref filein
your end user’sinstalled IDL distribution.

e Instruct your usersto set environment variablesthat correspond the preferences
you need to specify, or explicitly set the variables yourself in a batch file or
Windows shortcut.

Building IDL Applications Preferences for ActiveX Applications

346 Chapter 9: Distributing ActiveX Applications

Runtime Licensing

A runtime license alows you to run an IDL application that cannot display the IDL
Workbench or IDL command line and which cannot compile . pro files. Thistype of
licensing offers developers who have smaller customer bases the opportunity to buy
single distribution licenses as they are needed, paying a small fee for each license.
Thelicenseis either anode-locked license tied to the specific machine on which your
application will run (which means you will need to obtain information about your
customer’s machine), or amore costly but less restricted floating license that will run
on any machine of a given platform.

When using runtime licensing, you can distribute licenses to your usersin two ways.

« If you wish to distribute alicensed application to each customer, you can
perform the necessary licensing steps for each license you purchase and
distribute a ready-to-run application to each customer. This saves your
customers from having to perform the licensing themselves, but forces you to
create separate distributions for each customer.

< |f you would rather create a single unlicensed distribution that you can
distribute to all your customers, you can purchase alicense for each customer
and provide that license along with the information necessary for the customer
to license your application.

See “Obtaining and Installing Runtime Licenses’” (Chapter 23, Application
Programming) for information on obtaining and installing runtime licenses for your
Callable IDL application.

Runtime Licensing Building IDL Applications

Chapter 9: Distributing ActiveX Applications 347

Embedded Licensing

An embedded license allows your application to run without an IDL license. It can be
distributed to multiple users and will run on any system supported by IDL. Licensing
an IDL application with an embedded license is the simplest form of licensing.

In order to create applications with embedded licenses, you must purchase a special
IDL Developer’sKit license from ITT Visual Information Solutions. The
Developer’'s Kit license gives your copy of IDL the ability to automatically embed a
license in your application’s SAVE file.

If you specify that you will be distributing an IDL ActiveX application when you
purchase your Developer’s Kit license, ITT Visua Information Solutions will
provide you with alicense string and some initialization code to be embedded into
your application code before the application’sinitial call to IDL.

Obtaining Your Licensing Information
Contact ITT Visual Information Solutions for your license information. You will

need to provide the following information:

e Thelicense installation number for your embedded license. Note that this
number is different from the installation number for IDL itself.

e Your company name.

e Application title (e.g., My App).

* Name of the application executable (e.g., myapp).

« IDL interface being called (Callable IDL or ActiveX).

e Cadlling program language (e.g., VB, C++, C, Fortran).
You will receive atext file containing a function that IDL usesto retrieve the
licensing information.

Modifying Your Application Code

After you receive your license information, insert the initialization string into your
code prior to calling IDL. Although the licensing information you receive will be
dightly different, it will resemble the following:

' IDL ActiveX Control Application license for: myapp, My App
' License built for IDL Version 6.4
theApp.InitStringInfo("12345678abcdabcd, -

Building IDL Applications Embedded Licensing

348 Chapter 9: Distributing ActiveX Applications

12345678abcdabed, _
12345678abcdabed, _
12345678abcdabecd, _
12345678abcdabcd")

Note
The InitstringInfo method must be called prior to ActiveX initialization.

Embedded Licensing Building IDL Applications

Chapter 9: Distributing ActiveX Applications 349

Creating an Application Distribution

This section discusses the process of creating an application distribution that includes
the files necessary to run IDL, allowing you to distribute your application to users
who do not already have IDL installed.

First, see “Creating an Application Distribution” on page 349 for information on
creating an IDL application distribution. If your IDL ActiveX application uses one or
more SAVE files, you may find it convenient to use the IDL Project mechanism to
create the distribution. If your application does not use a SAVE file, usethe

Project — Export mechanism to create an IDL application distribution into which
you will place the executable file or files for your application. See “Using the Export
Feature without a Project (Windows Only)” (Chapter 22, Application Programming)
for details.

Once you have created an IDL application distribution, you must do the following:

1. Addyour ActiveX application executablesto thebin/bin.platform
subdirectory of the distribution where p1at form isthe platform-specific bin
directory.

2. If your application uses preferences, addthebin\bin.plat form\idl .pref
file or edit the resource\pref\idl.pref fileto contain the correct
preference val ues.

Building IDL Applications Creating an Application Distribution

350 Chapter 9: Distributing ActiveX Applications

Starting Your ActiveX Application

You must provide your end users with instructions describing how to start your
application. You may choose to provide users with the name and location of your
application executable along with alaunch command to execute, or (if you are using
an installer for your application) with shortcuts or Start menu items.

Give your users instructions describing how to start your application based on the
following:

To start an IDL ActiveX application if you have exported an IDL distribution using
the IDL Project interface, change directories to the
application\bin\bin.platformdirectory (where application isthename
of the directory that contains your exported distribution and p1atformisthe
platform-specific bin directory) and double-click on the executable file.

Note
The executable file must reside in the bin\bin. platform subdirectory of your
exported application distribution. For your users’ convenience, you may want to
create a Windows shortcut to the executable file in another location.

Starting Your ActiveX Application Building IDL Applications

Chapter 9: Distributing ActiveX Applications 351

Installing Your ActiveX Application

Installation of your application on the end user’'s machine can be performed manually
by the user, or it can be automated using an installer. There are anumber of
commercial applications available to help you build installers.

In order to avoid any possible conflicts with existing versions of IDL, you should
warn your users NOT to install your application in the same directory as IDL x.X,
where IDL x.x isthe version used by your application.

Note
ITT Visua Information Solutions' Global Services group can create installation
packages for your application. Contact your ITT Visua Information Solutions sales
representative for additional information.

Installing and Registering ActiveX Files

To install an ActiveX application on the end user’s system, you must ensure that the
following steps are performed either by an installer or manually by the end user:

e Theidldrawx3.ocx filefromthebin\bin.platform directory (where
platformisthe platform-specific bin directory) of your distribution tree
must be transferred to the windows \ system32 directory.

e Theidldrawx3.ocx file must be registered with Windows. This can be
accomplished using the regsvr32 . exe executable. For example, your
installation script could contain the following command:

regsvr32 idldrawx3.ocx

For more information, refer to your Microsoft Windows documentation.

Building IDL Applications Installing Your ActiveX Application

352 Chapter 9: Distributing ActiveX Applications

Installing Your ActiveX Application Building IDL Applications

Chapter 10

Obsolete IDE
Preferences

Beginning with IDL version 7.0, the following IDL system preferences are no longer
supported. Most of the obsolete preferences are replaced by IDL Workbench
preferences. As aresult, these values can be set within the IDL Workbench interface
viathe Preferences diaog, but not from within IDL using the IDL system
preferences mechanism.

All of the obsolete IDE preferences have the prefix IDL_MDE (Motif Development
Environment) or IDL_WDE (Windows Devel opment Environment). The table below
listsal of the obsolete | DE preferences along with the IDL Workbench equivalents, if
any. Note that although an IDE preference may have only been available for one of
the two Development Environments, the IDL Workbench equivalents are valid on all
IDL platforms.

Building IDL Applications 353

354

Chapter 10: Obsolete IDE Preferences

Obsolete IDE Preference

IDL Workbench Equivalent

IDL_MDE_EDIT_BACKUP
IDL_WDE_EDIT_BACKUP

Thelocal history of afile is maintained when you
create or modify afile. Each time you edit and
save afile acopy of itissaved. Thisallowsyou to
replace the file with a previous state.

IDL_WDE_EDIT_[B|F]COLOR

The background and foreground colors for various
categories of text are set in the Preferences dialog,
inthe IDL > Syntax Coloring section.

IDL_WDE_EDIT_CHROMAC
ODE

None.

IDL_MDE_EDIT_COMPILE_O
PTION

IDL_WDE_EDIT_COMPILE_O
PTION

1. Inthe Preferencesdiaog, select
IDL > Editor.

2. Select Enable Compile on Saveto
automatically compile files when you save
them.

IDL_MDE_EDIT_CWD
IDL_WDE_EDIT_CWD

To change the IDL process current working
directory to the directory containing the file just
opened:

1. InthePreferencesdiaog, select IDL >
Editor.

2. Select Changedirectory on file open.
3. Click OK.

IDL_WDE_EDIT_FONT

The genera editor font is set in the Colorsand
Fonts section of the Preferences dialog.

To set the general editor font:

1. InthePreferencesdialog, select General >
Appearance > Colors and Fonts.

Open the Basic folder and select Text Font.
Click Change.

On the Font dialog, choose the font options.
Click OK on both dialogs.

ok DN

Building IDL Applications

Chapter 10: Obsolete IDE Preferences

355

Obsolete IDE Preference

IDL Workbench Equivalent

IDL_WDE_EDIT_OPEN_ON_
DEBUG

None.

Note - When execution halts due to an error, the
file and line number at which the error occurred
are shown in the Console view as a hyperlink.
Clicking the link opens the file automatically.

IDL_MDE_EDIT_READONLY
IDL_WDE_EDIT_READONLY

1. Inthe Project Explorer view, right-click afile
and select Properties.

2. Onthe Propertiesdialog, select Read only.
3. Click OK.

IDL_WDE_EDIT_TAB_ENAB
LE

To determine whether atab character or spaces are
inserted when pressing the Tab key in the IDL
editor:

1. InthePreferencesdialog, select IDL >
Editor.

2. If you don't want to use tab characters, select
Use spacesinstead of tabs.

3. Click OK.
IDL_WDE_EDIT_TAB_SP_ON | None.
_SAVE
IDL_WDE _EDIT_TAB WIDT | To set the number of spaces used to display atab
H character:

1. InthePreferencesdiaog, select IDL >
Editor.

2. Change the Displayed tab width value.
3. Click OK.

Building IDL Applications

356

Chapter 10: Obsolete IDE Preferences

Obsolete IDE Preference

IDL Workbench Equivalent

IDL_MDE_EXIT_CONFIRM
IDL_WDE_EXIT_CONFIRM

To exit the Workbench, select File > Exit from the
menu bar or close the workbench with the window
close button (x). When the latter option isused a
prompt will ask if you really wish to exit the
Workbench.

To enable or disable the exit prompt:

1
2.

4.

Select Window > Preferences.

On the Preferences dialog, select General >
Startup and Shutdown.

Select Confirm exit when closing last
window.

Click OK.

IDL_WDE_INPUT_FONT

To set the command line font;

1
2.

4,
5.
6.

Select Window > Preferences.

On the Preferences dialog, select General >
Appearance > Colors and Fonts.

Open the IDL folder and select Command
Linefont.

Click Change.
On the Font diaog, choose the font options.
Click OK on both dialogs.

IDL_WDE_LOG_FONT

To set the Console view font:

1
2.

Select Window > Preferences.

On the Preferences dialog, select General >
Appearance > Colors and Fonts.

Open the Debug folder and select Console
font.

Click Change.
On the Font dialog, choose the font options.
Click OK on both dialogs.

Building IDL Applications

Chapter 10: Obsolete IDE Preferences

357

Obsolete IDE Preference

IDL Workbench Equivalent

IDL_MDE_LOG_LINES
IDL_WDE_LOG_LINES

You cannot control the number of lines written to
the Console view, but you can set the maximum
number of characters written:

1. Select Window > Preferences.

2. OnthePreferencesdialog, select Run/Debug
> Console.

3. Select Limit console output.
4. Enter aConsole buffer size (in characters).
5. Click OK.

IDL_WDE_SPLASHSCREEN

IDL_MDE_LOG_TRIM None.
IDL_WDE_LOG_TRIM
IDL_MDE_SPLASHSCREEN | None.

IDL_MDE_START DIR
IDL_WDE_START _DIR

These preferences are replaced by the
IDL_START_DIR preference.

TosettheIDL_START_DIR preference, either use
the PREF_SET routine or the IDL Workbench
Prererences dialog:

1. InthePreferencesdialog, select IDL.

2. Typeadirectory inthe Initial working
directory box, or browse for a directory.

3. Click OK.

Building IDL Applications

358 Chapter 10: Obsolete IDE Preferences

Building IDL Applications

	Online Manuals
	IDL Documentation
	What's New in IDL 7.0
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Analyst Reference Guide
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Obsolete IDL Features
	Contents
	Obsolete Feature Overview
	Backwards Compatibility
	Detecting Use of Obsolete Features
	Documentation for Older Obsolete Routines

	Obsolete Routines
	DDE Routines
	DELETE_SYMBOL
	DELLOG
	DEMO_MODE
	DO_APPLE_SCRIPT
	ERRORF
	FINDFILE
	GETHELP
	GET_SYMBOL
	HANDLE_CREATE
	HANDLE_FREE
	HANDLE_INFO
	HANDLE_MOVE
	HANDLE_VALUE
	HDF_DFSD_ADDDATA
	HDF_DFSD_DIMGET
	HDF_DFSD_DIMSET
	HDF_DFSD_ENDSLICE
	HDF_DFSD_GETDATA
	HDF_DFSD_GETINFO
	HDF_DFSD_GETSLICE
	HDF_DFSD_PUTSLICE
	HDF_DFSD_READREF
	HDF_DFSD_SETINFO
	HDF_DFSD_STARTSLICE
	HDF_VD_GETNEXT
	INP, INPW, OUTP, OUTPW
	LIVE_Tools
	LIVE_CONTOUR
	LIVE_CONTROL
	LIVE_DESTROY
	LIVE_EXPORT
	LIVE_IMAGE
	LIVE_INFO
	LIVE_LINE
	LIVE_LOAD
	LIVE_OPLOT
	LIVE_PLOT
	LIVE_PRINT
	LIVE_RECT
	LIVE_STYLE
	LIVE_SURFACE
	LIVE_TEXT
	LJLCT
	MSG_CAT_CLOSE
	MSG_CAT_COMPILE
	MSG_CAT_OPEN
	ONLINE_HELP_PDF_INDEX
	PICKFILE
	POLYFITW
	REWIND
	RIEMANN
	RSTRPOS
	SET_SYMBOL
	SETLOG
	SETUP_KEYS
	SIZE Executive Command
	SKIPF
	SLICER
	STR_SEP
	TAPRD
	TAPWRT
	TIFF_DUMP
	TIFF_READ
	TIFF_WRITE
	TRNLOG
	VAX_FLOAT
	WEOF
	WIDED
	WIDGET_MESSAGE

	Obsolete Objects
	IDLffLanguageCat
	IDLffLanguageCat Properties
	IDLffLanguageCat::IsValid
	IDLffLanguageCat::Query
	IDLffLanguageCat::SetCatalog

	Routines with Obsolete Arguments or Keywords
	BYTEORDER
	CALL_EXTERNAL
	DEVICE
	DIALOG_PICKFILE
	DOC_LIBRARY
	EXTRACT_SLICE
	HELP
	IDLgrMPEG::Save
	IDLgrVolume::Init
	IDLITSYS_CREATETOOL
	IDLitTool::RegisterOperation
	IDLitVisualization::Add
	IDLitVisualization::GetCenterRotation
	IDLitVisualization::GetProperty
	IVECTOR
	IVOLUME
	LABEL_REGION
	LINFIT
	LINKIMAGE
	LIVE_PRINT
	LM_FIT
	MAKE_DLL
	MESSAGE
	ONLINE_HELP
	OPEN
	POLY_FIT
	PRINT/PRINTF
	READ_TIFF
	READ/READF
	READU
	REGRESS
	SAVE
	SPAWN
	SVDFIT
	WIDGET_BASE
	WIDGET_CONTROL
	WIDGET_TREE
	WRITE_TIFF
	WRITEU
	XMANAGER

	Obsoleted Graphics Devices
	The LJ Device
	The Macintosh Device

	Obsolete Remote Procedure Calls
	Using IDL as an RPC Server
	The IDL RPC Library
	free_idl_variable
	get_idl_variable
	idl_server_interactive
	kill_server
	register_idl_client
	send_idl_command
	set_idl_timeout
	set_idl_variable
	set_rpc_verbosity
	unregister_idl_client
	The varinfo_t Structure
	v_make_byte
	v_make_complex
	v_make_dcomplex
	v_make_double
	v_make_float
	v_make_int
	v_make_long
	v_make_string
	v_fill_array
	More Variable Manipulation Macros
	Notes on Variable Creation and Memory Management
	RPC Examples

	The IDLDrawWidget ActiveX Control
	Overview
	Creating an Interface and Handling Events
	Working with IDL Procedures
	Advanced Examples
	Copying and Printing IDL Graphics
	XLoadCT Functionality Using Visual Basic
	XPalette Functionality Using Visual Basic
	Integrating Object Graphics Using VB
	Sharing a Grid Control Array with IDL
	Handling Events within Visual Basic
	Distributing Your ActiveX Application

	IDLDrawWidget Control Reference
	IDLDrawWidget
	Methods
	Do Methods (Runtime Only)
	Properties
	Read Only Properties
	Auto Event Properties
	Events

	Distributing ActiveX Applications
	What Is an ActiveX Application?
	Limitations of Runtime Mode ActiveX Applications
	Steps to Distribute an ActiveX Application
	Preferences for ActiveX Applications
	Runtime Licensing
	Embedded Licensing
	Creating an Application Distribution
	Starting Your ActiveX Application
	Installing Your ActiveX Application

	Obsolete IDE Preferences

