
IDL Version 7.0
November 2007 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

Obsolete IDL
Features

1107IDL70OBS

Restricted Rights Notice
The IDL®, IDL Analyst™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures, functions, and
documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the
restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document at
any time and without notice.

Limitation of Warranty
ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information
This software and its associated documentation are subject to the controls of the Export Administration Regulations (EAR). It has
been determined that this software is classified as EAR99 under U.S. Export Control laws and regulations, and may not be re-
transferred to any destination expressly prohibited by U.S. laws and regulations. The recipient is responsible for ensuring compliance
to all applicable U.S. Export Control laws and regulations.

Acknowledgments
ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, ION Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.

NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has a commercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN is licensed from the United States of America under U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.

FLAASH is licensed from Spectral Sciences, Inc. under a U.S. Patent Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.

IMSL is a trademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visual Numerics, Inc. All Rights Reserved.

Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents
Chapter 1
Obsolete Feature Overview .. 13
Backwards Compatibility .. 14

IDL Internal Routines ... 14
Routines Written in IDL ... 14

Detecting Use of Obsolete Features .. 15
Documentation for Older Obsolete Routines .. 16

Chapter 2
Obsolete Routines .. 17
DDE Routines .. 18
DELETE_SYMBOL ... 19
DELLOG ... 20
DEMO_MODE ... 21
DO_APPLE_SCRIPT ... 22
ERRORF ... 24
Obsolete IDL Features 3

4

FINDFILE .. 25
GETHELP .. 27
GET_SYMBOL ... 29
HANDLE_CREATE .. 30
HANDLE_FREE ... 33
HANDLE_INFO .. 34
HANDLE_MOVE ... 36
HANDLE_VALUE .. 38
HDF_DFSD_ADDDATA .. 40
HDF_DFSD_DIMGET .. 42
HDF_DFSD_DIMSET .. 43
HDF_DFSD_ENDSLICE .. 45
HDF_DFSD_GETDATA .. 46
HDF_DFSD_GETINFO .. 47
HDF_DFSD_GETSLICE .. 49
HDF_DFSD_PUTSLICE ... 51
HDF_DFSD_READREF ... 52
HDF_DFSD_SETINFO ... 53
HDF_DFSD_STARTSLICE .. 57
HDF_VD_GETNEXT ... 59
INP, INPW, OUTP, OUTPW .. 60
LIVE_Tools ... 61
LIVE_CONTOUR ... 62
LIVE_CONTROL .. 71
LIVE_DESTROY .. 74
LIVE_EXPORT ... 76
LIVE_IMAGE ... 79
LIVE_INFO ... 86
LIVE_LINE ... 98
LIVE_LOAD ... 102
LIVE_OPLOT .. 103
LIVE_PLOT .. 108
LIVE_PRINT ... 116
LIVE_RECT .. 118
LIVE_STYLE .. 122
LIVE_SURFACE .. 130
Contents Obsolete IDL Features

5

LIVE_TEXT .. 139
LJLCT ... 143
MSG_CAT_CLOSE .. 144
MSG_CAT_COMPILE ... 145
MSG_CAT_OPEN .. 147
ONLINE_HELP_PDF_INDEX .. 149
PICKFILE ... 153
POLYFITW ... 154
REWIND ... 156
RIEMANN .. 157
RSTRPOS .. 162
SET_SYMBOL ... 164
SETLOG .. 165
SETUP_KEYS .. 167
SIZE Executive Command .. 169
SKIPF .. 171
SLICER ... 172
STR_SEP ... 178
TAPRD .. 180
TAPWRT ... 181
TIFF_DUMP ... 182
TIFF_READ .. 183
TIFF_WRITE .. 185
TRNLOG ... 188
VAX_FLOAT ... 190
WEOF .. 192
WIDED .. 193
WIDGET_MESSAGE ... 194

Chapter 3
Obsolete Objects ... 195
IDLffLanguageCat ... 196

IDLffLanguageCat Properties ... 197
IDLffLanguageCat::IsValid .. 198
IDLffLanguageCat::Query .. 199
IDLffLanguageCat::SetCatalog .. 200
Obsolete IDL Features Contents

6

Chapter 4
Routines with Obsolete Arguments or Keywords 201
BYTEORDER .. 203
CALL_EXTERNAL .. 204
DEVICE ... 205
DIALOG_PICKFILE ... 206
DOC_LIBRARY .. 207
EXTRACT_SLICE .. 208
HELP .. 209
IDLgrMPEG::Save .. 210
IDLgrVolume::Init ... 211
IDLITSYS_CREATETOOL .. 212
IDLitTool::RegisterOperation .. 213
IDLitVisualization::Add .. 214
IDLitVisualization::GetCenterRotation ... 215
IDLitVisualization::GetProperty .. 216
IVECTOR .. 217
IVOLUME ... 218
LABEL_REGION .. 219
LINFIT ... 220
LINKIMAGE ... 221
LIVE_PRINT ... 222
LM_FIT .. 223
MAKE_DLL .. 224
MESSAGE ... 225
ONLINE_HELP ... 226
OPEN ... 227
POLY_FIT ... 233
PRINT/PRINTF ... 234
READ_TIFF .. 235
READ/READF .. 236
READU .. 237
REGRESS .. 238
SAVE ... 240
SPAWN .. 241
SVDFIT .. 243
Contents Obsolete IDL Features

7

WIDGET_BASE ... 244
WIDGET_CONTROL .. 245
WIDGET_TREE ... 246
WRITE_TIFF .. 247
WRITEU ... 248
XMANAGER .. 249

Chapter 5
Obsoleted Graphics Devices ... 251
The LJ Device ... 252

LJ Driver Strengths ... 253
LJ Driver Limitations .. 253
LJ Suggestions .. 254

The Macintosh Device ... 255

Chapter 6
Obsolete Remote Procedure Calls .. 257
Using IDL as an RPC Server ... 259

The IDL RPC Directory .. 259
Running IDL in Server Mode ... 259
Creating the IDL RPC Library .. 259
Linking your Client Program .. 260

The IDL RPC Library .. 261
free_idl_variable .. 262
get_idl_variable ... 263
idl_server_interactive .. 265
kill_server .. 266
register_idl_client .. 267
send_idl_command .. 268
set_idl_timeout .. 269
set_idl_variable ... 270
set_rpc_verbosity ... 272
unregister_idl_client .. 273
The varinfo_t Structure ... 274

Variable Creation Functions ... 274
v_make_byte ... 275
v_make_complex ... 276
Obsolete IDL Features Contents

8

v_make_dcomplex ... 277
v_make_double .. 278
v_make_float .. 279
v_make_int ... 280
v_make_long .. 281
v_make_string .. 282
v_fill_array ... 283
More Variable Manipulation Macros ... 284
Notes on Variable Creation and Memory Management .. 286

Freeing Resources ... 286
Creating a Statically-Allocated Array ... 286
Allocating Space for Strings .. 287

RPC Examples ... 288

Chapter 7
The IDLDrawWidget ActiveX Control .. 289
Overview .. 290

A Note about Versions of the IDL ActiveX Control ... 292
Creating an Interface and Handling Events ... 293

Drawing the Interface .. 294
Specifying the IDL Path and Graphics Level .. 295
Initializing IDL .. 296
Creating the Draw Widget ... 297
Directing IDL Output to a Text Box ... 297
Responding to Events and Issuing IDL Commands .. 298
Cleaning Up and Exiting ... 298

Working with IDL Procedures ... 299
Creating the Interface .. 300
Initializing IDL .. 300
Compiling the IDL Code ... 300
Dispatching Button Events to IDL .. 300
Cleaning Up and Exiting ... 301

Advanced Examples ... 302
Copying and Printing IDL Graphics .. 303

Opening the VBCopyPrint project .. 303
Running the VBCopyPrint Example ... 304
Contents Obsolete IDL Features

9

Copying IDL Graphic to the Clipboard .. 304
Printing the IDL Graphic Using IDL Object Graphics ... 305
Executing IDL User Routines with Visual Basic ... 305
Printing the IDL Graphic Using Visual Basic .. 306

XLoadCT Functionality Using Visual Basic ... 307
XPalette Functionality Using Visual Basic ... 309
Integrating Object Graphics Using VB ... 310
Sharing a Grid Control Array with IDL .. 311
Handling Events within Visual Basic .. 313
Distributing Your ActiveX Application .. 315

Chapter 8
IDLDrawWidget Control Reference .. 317
IDLDrawWidget .. 318
Methods ... 319

CopyNamedArray ... 319
CopyWindow .. 320
CreateDrawWidget ... 320
DestroyDrawWidget ... 320
DoExit ... 320
ExecuteStr ... 321
GetNamedData .. 321
InitIDL .. 322
InitIDLEx .. 323
Print ... 324
RegisterForEvents ... 325
SetNamedArray .. 326
SetNamedData .. 327
SetOutputWnd .. 328
VariableExists ... 328

Do Methods (Runtime Only) ... 329
DoButtonPress .. 329
DoButtonRelease .. 329
DoExpose .. 329
DoMotion .. 330

Properties ... 331
Obsolete IDL Features Contents

10
BackColor .. 331
BaseName .. 331
BufferId ... 331
DrawWidgetName ... 332
Enabled .. 332
GraphicsLevel (Runtime/Design time) ... 332
IdlPath ... 333
Renderer .. 333
Retain (Runtime/Design time) ... 333
Visible (Runtime/Design time) ... 333
Xsize (Design time) ... 334
Ysize (Design time) ... 334

Read Only Properties ... 335
BaseId (Runtime) .. 335
DrawId (Runtime) ... 335
hWnd (Runtime) .. 335
LastIdlError (Runtime) .. 335
Scroll ... 335
Xoffset ... 335
Xviewport .. 335
Yoffset ... 336
Yviewport .. 336

Auto Event Properties .. 337
OnButtonPress ... 337
OnButtonRelease ... 337
OnDblClick ... 337
OnExpose .. 338
OnInit ... 338
OnMotion .. 338

Events ... 339
OnViewScrolled .. 339

Chapter 9
Distributing ActiveX Applications ... 341
What Is an ActiveX Application? .. 342

Licensing Options for IDL ActiveX Applications .. 342
Contents Obsolete IDL Features

11
Limitations of Runtime Mode ActiveX Applications ... 343
Steps to Distribute an ActiveX Application .. 344
Preferences for ActiveX Applications ... 345
Runtime Licensing .. 346
Embedded Licensing ... 347

Obtaining Your Licensing Information .. 347
Modifying Your Application Code ... 347

Creating an Application Distribution .. 349
Starting Your ActiveX Application ... 350
Installing Your ActiveX Application .. 351

Installing and Registering ActiveX Files .. 351

Chapter 10
Obsolete IDE Preferences .. 353
Obsolete IDL Features Contents

12
Contents Obsolete IDL Features

Chapter 1

Obsolete Feature
Overview
This chapter discusses the following topics:
Backwards Compatibility 14
Detecting Use of Obsolete Features 15

Documentation for Older Obsolete Routines . .
16
Obsolete IDL Features 13

14 Chapter 1: Obsolete Feature Overview
Backwards Compatibility

Avoid using obsolete routines when writing new IDL code. As IDL continues to
evolve, the likelihood that obsolete routines will no longer function as expected
increases. While we will continue to make every effort to ensure that obsolete
routines shipped with IDL function, in a small number of cases this may not be
possible.

IDL Internal Routines

Routines that are built into the IDL executable—routines not written in the IDL
language—will either continue to be included in the executable until the scheduled
removal release or will be re-implemented in the IDL language. In the latter case,
obsolete routines may run slower than the original version. Note that obsolete
routines that have been re-implemented in the IDL language may also be scheduled
for eventual removal.

Routines Written in IDL

Routines written in the IDL language (.pro files) are contained in the obsolete
subdirectory of the lib directory of the IDL distribution. As long as a given obsolete
routine is included in this subdirectory, it will continue to function as always.
Backwards Compatibility Obsolete IDL Features

Chapter 1: Obsolete Feature Overview 15
Detecting Use of Obsolete Features

You can search for usage of obsolete routines, system variables, and syntax by setting
the fields of the !WARN system variable. Setting !WARN causes IDL to print
informational messages to the command log or console window when it encounters
references to obsolete features. See “!WARN” (IDL Reference Guide) for details.
Obsolete IDL Features Detecting Use of Obsolete Features

16 Chapter 1: Obsolete Feature Overview
Documentation for Older Obsolete Routines

Routines that became obsolete in IDL version 4.0 or earlier are not documented in
this book or in the IDL Online Help. However, if the routine is written in the IDL
language, you can inspect the documentation header of the .pro file, or use the
DOC_LIBRARY routine. The .pro files for obsolete routines are located in the
obsolete subdirectory of the lib directory of the IDL distribution.
Documentation for Older Obsolete Routines Obsolete IDL Features

Chapter 2

Obsolete Routines
This chapter contains complete documentation for obsoleted IDL routines. New IDL
code should not use these routines. For a list of the routines that replace each of these
obsolete routines, see Appendix I, “Obsolete Features” (IDL Reference Guide).
Obsolete IDL Features 17

18 Chapter 2: Obsolete Routines
DDE Routines

These routines are obsolete and should not be used in new IDL code.

Windows-Only Routines for Dynamic Data Exchange
(DDE)

IDL for Windows supports DDE client capability for cold DDE links. The relevant
system calls are documented below:

Result = DDE_GETSERVERS()

This function returns an array of service names for the currently-available DDE
servers.

Result = DDE_GETTOPICS(server)

This function returns the topics list for the specified server. The server argument is a
scalar string containing the name of the desired DDE server.

Result = DDE_GETITEMS(server)

This function returns the items list for the specified server. The server argument is a
scalar string containing the name of the desired DDE server.

Result = DDE_REQUEST(server, topic, item)

This function returns the requested data in string format. The server, topic, and item
arguments must be scalar strings.

DDE_EXECUTE, server, topic, command

This procedure causes the DDE server to execute the command for the specified
topic. The server, topic, and command arguments must be scalar strings.
DDE Routines Obsolete IDL Features

Chapter 2: Obsolete Routines 19
DELETE_SYMBOL

The DELETE_SYMBOL procedure deletes a DCL (Digital Command Language)
interpreter symbol for the current process.

Note
This procedure is available on VMS only.

Syntax

DELETE_SYMBOL, Name [, TYPE={1 | 2}]

Arguments

Name

A scalar string containing the name of the symbol to be deleted.

Keywords

TYPE

Indicates the table from which Name will be deleted. Set TYPE to 1 to specify the
local symbol table. Set TYPE to 2 to specify the global symbol table. The default is to
search the local table.
Obsolete IDL Features DELETE_SYMBOL

20 Chapter 2: Obsolete Routines
DELLOG

The DELLOG procedure deletes a VMS logical name.

Note
This procedure is available on VMS only.

Syntax

DELLOG, Lognam [, TABLE=string]

Arguments

Lognam

A scalar string containing the name of the logical to be deleted.

Keywords

TABLE

A scalar string giving the name of the logical table from which to delete Lognam. If
TABLE is not specified, LNM$PROCESS_TABLE is used.
DELLOG Obsolete IDL Features

Chapter 2: Obsolete Routines 21
DEMO_MODE

This routine is obsolete and should not be used in new IDL code.

The DEMO_MODE function returns True if IDL is running in the timed demo mode
(i.e., a license manager is not running). Calling this function causes a FLUSH, -1
command to be issued.

Syntax

Result = DEMO_MODE()
Obsolete IDL Features DEMO_MODE

22 Chapter 2: Obsolete Routines
DO_APPLE_SCRIPT

This routine is obsolete and should not be used in new IDL code.

The DO_APPLE_SCRIPT procedure compiles and executes an AppleScript script,
possibly returning a result. DO_APPLE_SCRIPT is only available in IDL for Macintosh.

Syntax

DO_APPLE_SCRIPT, Script [, /AG_STRING] [, RESULT=variable]

Arguments

Script

A string or array of strings to be compiled and executed by AppleScript.

Keywords

AS_STRING

Set this keyword to cause the result to be returned as a decompiled string.
Decompiled strings have the same format as the “The Result” window of Apple’s
Script Editor.

RESULT

Set this keyword equal to a named variable that will contain the results of the script.

Example

Suppose you wish to retrieve a range of cell data from a Microsoft Excel spreadsheet.
The following AppleScript script and command retrieve the first through fifth rows
of the first two columns of a spreadsheet titled “Worksheet 1”, storing the result in
the IDL variable A:

script = ['tell application "Microsoft Excel"', $
'get Value of Range "R1C1:R5C2" of Worksheet 1', $
'end tell']

DO_APPLE_SCRIPT, script, RESULT = a

Similarly, the following lines would copy the contents of the IDL variable A to a
range within the spreadsheet:
DO_APPLE_SCRIPT Obsolete IDL Features

Chapter 2: Obsolete Routines 23
A = [1, 2, 3, 4, 5]
script = ['tell application "IDL" to copy variable "A"', $

'into aVariable', $
'tell application "Excel" to copy aVariable to', $
'value of range "R1C1:R5C1" of worksheet 1']

DO_APPLE_SCRIPT, script
Obsolete IDL Features DO_APPLE_SCRIPT

24 Chapter 2: Obsolete Routines
ERRORF

This routine is obsolete and should not be used in new IDL code.

The ERRORF function returns the value of the error function:

The result is double-precision if the argument is double-precision. If the argument is
floating-point, the result is floating-point. The result always has the same structure as
X. The ERRORF function does not work with complex arguments.

Syntax

Result = ERRORF(X)

Arguments

X

The expression for which the error function is to be evaluated.

Example

To find the error function of 0.4 and print the result, enter:

PRINT, ERRORF(0.4)

IDL prints:

0.428392

erf x() 2 π⁄ e
t2–

td

0

x

∫=
ERRORF Obsolete IDL Features

Chapter 2: Obsolete Routines 25
FINDFILE

This routine is obsolete and should not be used in new IDL code.

The FINDFILE function retrieves a list of files that match File_Specification.

Note
Use the FILE_SEARCH function, included in IDL 5.5 and later, in place of the
FINDFILE function. FILE_SEARCH offers many advantages over FINDFILE,
including cross-platform consistency in wildcard syntax, uniform presentation of
results, filtering by file attributes, and, under UNIX, freedom from performance and
number of file limitations encountered by FINDFILE.

Platform specific differences are described below:

• Under UNIX, to include all the files in any subdirectories, use the * wildcard
character in the File_Specification, such as in
result = FINDFILE('/path/*'). If File_Specification contains only a
directory, with no file information, only files in that directory are returned.

• Under Windows, FINDFILE appends a “\” character to the end of the returned
file name if the file is a directory. To refer to all the files in a specific directory
only, use result = FINDFILE('\path*').

Syntax

Result = FINDFILE(File_Specification [, COUNT=variable])

Return Value

All matched filenames are returned in a string array, one file name per array element.
If no files exist with names matching the File_Specification, a null scalar string is
returned instead of a string array. FINDFILE returns the full path only if the path
itself is specified in File_Specification. See the “Examples” section below for details.

Arguments

File_Specification

A scalar string used to find files. The string can contain any valid command-
interpreter wildcard characters. If File_Specification contains path information, that
Obsolete IDL Features FINDFILE

26 Chapter 2: Obsolete Routines
path information is included in the returned value. If File_Specification is omitted,
the names of all files in the current directory are returned.

Keywords

COUNT

A named variable into which the number of files found is placed. If no files are
found, a value of 0 is returned.

Examples

To print the file names of all the UNIX files with .dat extensions in the current
directory, use the command:

PRINT, FINDFILE('*.dat')

To print the full path names of all .pro files in the IDL lib directory that begin with
the letter “x”, use the command:

PRINT, FINDFILE('/usr/local/itt/idl/lib/x*.pro')

To print the path names of all .pro files in the profiles subdirectory of the current
directory (a relative path), use the command:

PRINT, FINDFILE('profiles/*.pro')

Note that the values returned are (like the File_Specification) relative path names.
Use caution when comparing values against this type of relative path specification.

Version History

Introduced: Original
FINDFILE Obsolete IDL Features

Chapter 2: Obsolete Routines 27
GETHELP

This routine is obsolete and should not be used in new IDL code.

The GETHELP function returns information on variables defined at the program
level from which GETHELP is called. The function builds a string array that contains
information that follows the format used by the IDL HELP command.

When called without an argument, GETHELP returns a string array that normally
contains variable data that is in the same format as used by the IDL HELP procedure.
The variables in this list are those defined for the routine (or program level) that
called GETHELP. If there are no variables defined, or the specified variable does not
exist, GETHELP returns a null string. Other information can be obtained by setting
keywords.

Syntax

Result = GETHELP([Variable])

Arguments

Variable

A scalar string that contains the name of the variable from which to get information.
If this argument is omitted, GETHELP returns an array of strings where each element
contains information on a separate variable, one element for each defined variable.

Keywords

FULLSTRING

Normally a string that is longer than 45 chars is truncated and followed by “...” just
like the HELP command. Setting this keyword will cause the full string to be
returned.

FUNCTIONS

Setting this keyword will cause the function to return all current IDL compiled
functions.
Obsolete IDL Features GETHELP

28 Chapter 2: Obsolete Routines
ONELINE

If a variable name is greater than 15 characters it is usually returned as 2 two
elements of the output array (Variable name in 1st element, variable info in the 2nd
element). Setting this keyword will put all the information in one string, separating
the name and data with a space.

PROCEDURES

Setting this keyword will cause the function to return all current IDL compiled
procedures.

SYS_PROCS

Setting this keyword will cause the function to return the names of all IDL system
(built-in) procedures.

SYS_FUNCS

Setting this keyword will cause the function to return the names of all IDL system
(built-in) functions.

Note
RESTRICTIONS: Due to the difficulties in determining if a variable is of type
associate, the following conditions will result in the variable being listed as a
structure. These conditions are:

• Associate record type is structure.

• Associated file is opened for update (openu).

• Associate file is not empty.

Another difference between this routine and the IDL help command is that if a
variable is in a common block, the common block name is not listed next to the
variable name. Currently there is no method available to get the common block
names used in a routine.

Example

To obtain a listing in a help format of the variables contained in the current routine
you would make the following call:

HelpData = GetHelp()

The variable HelpData would be a string array containing the requested information.
GETHELP Obsolete IDL Features

Chapter 2: Obsolete Routines 29
GET_SYMBOL

This routine is obsolete and should not be used in new IDL code.

The GET_SYMBOL function returns the value of a VMS DCL (Digital Command
Language) interpreter symbol as a scalar string. If the symbol is undefined, the null
string is returned.

Note
This procedure is available on VMS only.

Syntax

Result = GET_SYMBOL(Name [, TYPE={1 | 2}])

Arguments

Name

A scalar string containing the name of the symbol to be translated.

Keywords

TYPE

The table from which Name is translated. Set TYPE to 1 to specify the local symbol
table. A value of 2 specifies the global symbol table. The default is to search the local
table.
Obsolete IDL Features GET_SYMBOL

30 Chapter 2: Obsolete Routines
HANDLE_CREATE

This routine is obsolete and should not be used in new IDL code.

The HANDLE_CREATE function creates a new handle. A “handle” is a
dynamically-allocated variable that is identified by a unique integer value known as a
“handle ID”. Handles can have a value, of any IDL data type and organization,
associated with them. This function returns the handle ID of the newly-created
handle.

Because handles are dynamic, they can be used to create complex data structures.
They are also global in scope, but do not suffer from the limitations of COMMON
blocks. That is, handles are available to all program units at all times. (Remember,
however, that IDL variables containing handle IDs are not global in scope and must
be declared in a COMMON block if you want to share them between program units.)

Handle Terminology

The following terms are used to describe handles in the documentation for this
function and other handle-related routines:

• Handle ID: The unique integer identifier associated with a handle.

• Handle value: Data of any IDL type and organization associated with a handle.

• Top-level handle: A handle at the top of a handle hierarchy. A top-level handle
can have children, but does not have a parent.

• Parents, children, and siblings: These terms describe the relationship between
handles in a handle hierarchy. When a new handle is created, it can be the start
of a new handle hierarchy (a top-level handle) or it can belong to the level of a
handle hierarchy below an existing handle. A handle created in this way is said
to be a child of the specified parent. Parents can have any number of children.
All handles that share the same parent are said to be siblings.

Syntax

Result = HANDLE_CREATE([ID])
HANDLE_CREATE Obsolete IDL Features

Chapter 2: Obsolete Routines 31
Arguments

ID

If this argument is present, it specifies the handle ID relative to which the new handle
is created. Normally, the new handle becomes the last child of the parent handle
specified by ID. However, this behavior can be changed by setting the
FIRST_CHILD or SIBLING keywords.

Omit this argument to create a new top-level handle without a parent.

Keywords

FIRST_CHILD

Set this keyword to create the new handle as the first child of the handle specified by
ID. Any existing children of ID become later siblings of the new first child (i.e., the
existing first child becomes the second child, the second child becomes the third
child, etc.).

NO_COPY

Usually, when the VALUE keyword is used, the source variable memory is copied to
the handle value. If the NO_COPY keyword is set, the value data is taken away from
the source variable and attached directly to the destination. This feature can be used
to move data very efficiently. However, it has the side effect of causing the source
variable to become undefined.

SIBLING

Set this keyword to create the new handle as the sibling handle immediately
following ID. Any other siblings currently following ID become later siblings of the
new handle. Note that you cannot create a handle that is a sibling of a top-level
handle.

VALUE

The value to be assigned to the handle.

Every handle can contain a user-specified value of any data type and organization.
This value is not used by the handle in any way, but exists entirely for the
convenience of the IDL programmer. Use this keyword to set the handle value when
the handle is first created.

If the VALUE keyword is not specified, the handle’s initial value is undefined.
Obsolete IDL Features HANDLE_CREATE

32 Chapter 2: Obsolete Routines
Handle values can be retrieved using the HANDLE_VALUE procedure.

Examples

The following commands create a top-level handle with 3 child handles. Each handle
is assigned a different string value:

;Create top-level handle without an initial handle value:
top = HANDLE_CREATE()
;Create first child of the top-level handle:
first = HANDLE_CREATE(top, VALUE=’First child’)
;Create second child of the top-level handle:
second = HANDLE_CREATE(top, VALUE=’Second child’)
;Create a new sibling between first and second.
;This handle is also a child of the top-level handle:
third = HANDLE_CREATE(first, VALUE=’Another child’, /SIBLING)
HANDLE_CREATE Obsolete IDL Features

Chapter 2: Obsolete Routines 33
HANDLE_FREE

This routine is obsolete and should not be used in new IDL code.

The HANDLE_FREE procedure frees an existing handle, along with any dynamic
memory currently being used by its value. Any child handles associated with ID are
also freed.

Syntax

HANDLE_FREE, ID

Arguments

ID

The ID of the handle to be freed. Once the handle is freed, further use of it is invalid
and causes an error to be issued.

Example

To free all memory associated with the top-level handle top, and all its children, use
the command:

HANDLE_FREE, top
Obsolete IDL Features HANDLE_FREE

34 Chapter 2: Obsolete Routines
HANDLE_INFO

This routine is obsolete and should not be used in new IDL code.

The HANDLE_INFO function returns information about handle validity and
connectivity. By default, it returns True if the specified handle ID is valid. Keywords
can be set to return other types of information.

Syntax

Result = HANDLE_INFO(ID)

Arguments

ID

The ID of the handle for which information is desired. This argument can be scalar or
array an array of IDs. The result of HANDLE_INFO has the same structure as ID,
and each element gives the desired information for the corresponding element of ID.

Keywords

FIRST_CHILD

Set this keyword to return the handle ID of the first child of the specified handle. If
the handle has no children, 0 is returned.

NUM_CHILDREN

Set this keyword to return the number of children related to ID.

PARENT

Set this keyword to return the handle ID of the parent of the specified handle. If the
specified handle is a top-level handle (i.e., it has no parent), 0 is returned.

SIBLING

Set this keyword to return the handle ID of the sibling handle following ID. If ID has
no later siblings, or if ID is a top-level handle, 0 is returned.
HANDLE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 35
VALID_ID

Set this keyword to return 1 if ID represents a currently valid handle. Otherwise, zero
is returned. This is the default action for HANDLE_INFO if no other keywords are
specified.

Examples

The following commands demonstrate a number of different uses of
HANDLE_INFO:

;Print a message if handle1 is a valid handle ID.
IF HANDLE_INFO(handle1) THEN PRINT, 'Valid handle.'
;Retrieve the handle ID of the first child of top.
handle = HANDLE_INFO(top, /FIRST_CHILD)
;Retrieve the handle ID of the next sibling of handle1.
next= HANDLE_INFO(handle1, /SIBLING)
Obsolete IDL Features HANDLE_INFO

36 Chapter 2: Obsolete Routines
HANDLE_MOVE

This routine is obsolete and should not be used in new IDL code.

The HANDLE_MOVE procedure moves a handle (specified by Move_ID) to a new
location. This new position is specified relative to Static_ID.

Syntax

HANDLE_MOVE, Static_ID, Move_ID

Arguments

Static_ID

The handle ID relative to which the handle specified by Move_ID is moved. By
default, Move_ID becomes the last child of Static_ID. This behavior can be changed
by specifying one of the keywords described below.

If Static_ID is set to 0, Move_ID becomes a top level handle without any parent.
Static_ID cannot be a child of Move_ID.

Move_ID

The ID of the handle to be moved.

Keywords

FIRST_CHILD

Set this keyword to make Move_ID the first child of Static_ID. Any existing children
of Static_ID become later siblings of the new first child (i.e., the existing first child
becomes the second child, the second child becomes the third child, etc.).

SIBLING

Set this keyword to make Move_ID the sibling handle immediately following
Static_ID. Any siblings currently following Static_ID become later siblings of the
new handle. Note that you cannot move a handle such that is becomes a sibling of a
top-level handle.
HANDLE_MOVE Obsolete IDL Features

Chapter 2: Obsolete Routines 37
Example

; Create top-level handle:
top = HANDLE_CREATE()
; Create first child of top:
child1 = HANDLE_CREATE(top)
; Create second child of top:
child2 = HANDLE_CREATE(top)
; Move the first child to be the last child of top:
HANDLE_MOVE, top, child1
Obsolete IDL Features HANDLE_MOVE

38 Chapter 2: Obsolete Routines
HANDLE_VALUE

This routine is obsolete and should not be used in new IDL code.

The HANDLE_VALUE procedure returns or sets the value of an existing handle.

Syntax

HANDLE_VALUE, ID, Value

Arguments

ID

A valid handle ID.

Value

When using HANDLE_VALUE to return an existing handle value (the default),
Value is a named variable in which the value is returned.

When using HANDLE_VALUE to set a handle value, Value is the new value. Note
that handle values can have any IDL data type and organization.

Keywords

NO_COPY

By default, HANDLE_VALUE works by making a second copy of the source data.
Although this technique is fine for small data, it can have a significant memory cost
when the data being copied is large.

If the NO_COPY keyword is set, HANDLE_VALUE works differently. Rather than
copy the source data, it takes the data away from the source and attaches it directly to
the destination. This feature can be used to move data very efficiently. However, it
has the side effect of causing the source variable to become undefined. On a retrieve
operation, the handle value becomes undefined. On a set operation, the variable
passed as Value becomes undefined.

SET

Set this keyword to assign Value as the new handle value. The default is to retrieve
the current handle value.
HANDLE_VALUE Obsolete IDL Features

Chapter 2: Obsolete Routines 39
Example

The following commands demonstrate the two different uses of HANDLE_VALUE:

; Retrieve the value of handle1 into the variable current:
HANDLE_VALUE, handle1, current
; Set the value of handle1 to a 2-element integer vector:
HANDLE_VALUE,handle1,[2,3],/SET
Obsolete IDL Features HANDLE_VALUE

40 Chapter 2: Obsolete Routines
HDF_DFSD_ADDDATA

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_ADDDATA procedure writes data, as well as all other information
set via calls to HDF_DFSD_SETINFO and HDF_DFSD_DIMSET, to an HDF file.

The Data array must have the same dimensions as the array in the file. The new SDS
is appended to the file, unless the OVERWRITE keyword is set.

Syntax

HDF_DFSD_ADDDATA, Filename, Data [, /OVERWRITE]
[, SET_DIM=value{must set either this or the DIMS keyword to
HDF_DFSD_SETINFO}] [, /SET_TYPE]

Arguments

Filename

A scalar string containing the name of the file to be written.

Data

An expression (typically an array) containing the data to write.

Keywords

OVERWRITE

Set this keyword to write Data as the first, and only, SDS in the file. All previously-
written scientific data sets in the file are removed.

SET_DIM

Set this keyword to make the dimension information for the HDF file based upon the
dimensions of Data.

Note
You must set the number of dimensions in the HDF file, either by setting the
SET_DIM keyword or using the DIMS keyword to HDF_DFSD_SETINFO.
HDF_DFSD_ADDDATA Obsolete IDL Features

Chapter 2: Obsolete Routines 41
SET_TYPE

Set this keyword to make the data type of the current SDS based on the data type of
the Data argument.
Obsolete IDL Features HDF_DFSD_ADDDATA

42 Chapter 2: Obsolete Routines
HDF_DFSD_DIMGET

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMGET procedure retrieves information about the specified
dimension number of the current HDF file.

Syntax

HDF_DFSD_DIMGET, Dimension [, /FORMAT] [, /LABEL] [, SCALE=vector]
[, /UNIT]

Arguments

Dimension

The dimension number [0, 1, 2, ...] to get information about.

Keywords

FORMAT

Set this keyword to return the dimension format string.

LABEL

Set this keyword to return the dimension label string.

SCALE

Use this keyword to return scale information about the dimension. Set this keyword
to a vector of values of the same type as the data.

UNIT

Set this keyword to return the dimension unit string.
HDF_DFSD_DIMGET Obsolete IDL Features

Chapter 2: Obsolete Routines 43
HDF_DFSD_DIMSET

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMSET procedure sets the label, unit, format, or scale of
dimensions in an HDF. Note that the label, unit, and format of a dataset must be set
simultaneously.

Syntax

HDF_DFSD_DIMSET, Dimension [, FORMAT=string] [, LABEL=string]
[, SCALE=vector] [, UNIT=string]

Arguments

Dimension

The dimension number that the label, unit, format or scale apply to.

Keywords

FORMAT

A string for the dimension format. This string should be a standard IDL formatting
string.

LABEL

A string for the dimension label.

SCALE

A vector of values used to set the dimension scale.

UNIT

A string for the dimension units.

Example

Suppose that a stored dataset is a 20 by 100 by 50 element floating-point array of
values representing water content within the volume of a cloud. Assume further that
each element in the 100-element dimension (the “Y” dimension) was sampled at 1/10
Obsolete IDL Features HDF_DFSD_DIMSET

44 Chapter 2: Obsolete Routines
mile increments. Appropriate labeling, formatting, unit, and scaling information for
the Y dimension can be set with the following command:

HDF_DFSD_DIMSET, 1, LABEL = 'Y Position', FORMAT = 'F8.2', $
UNIT = 'Miles', SCALE = 0.1*FINDGEN(100)
HDF_DFSD_DIMSET Obsolete IDL Features

Chapter 2: Obsolete Routines 45
HDF_DFSD_ENDSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_ENDSLICE procedure ends a sequence of calls started by
HDF_DFSD_STARTSLICE by closing the internal slice interface and synchronizing
the file.

Syntax

HDF_DFSD_ENDSLICE

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.
Obsolete IDL Features HDF_DFSD_ENDSLICE

46 Chapter 2: Obsolete Routines
HDF_DFSD_GETDATA

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETDATA procedure reads data from an HDF file.

Syntax

HDF_DFSD_GETDATA, Filename, Data [, /GET_DIMS{Set only if you have not
called HDF_DFSD_GETINFO with the DIMS keyword}] [, /GET_TYPE]

Arguments

Filename

A scalar string containing the name of the file to be read.

Data

A named variable in which the data is returned.

Keywords

GET_DIMS

Set this keyword to get dimension information for reading the data. This keyword
should only be used if one has not called HDF_DFSD_GETINFO with the DIMS
keyword

GET_TYPE

Set this keyword to get the data type for the current SDS.
HDF_DFSD_GETDATA Obsolete IDL Features

Chapter 2: Obsolete Routines 47
HDF_DFSD_GETINFO

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETINFO procedure retrieves information about the current HDF
file.

Note that calling HDF_DFSD_GETINFO with the DIMS or TYPE keywords may
alter which dataset is current. See “Reading an Entire Scientific Dataset” and
“Getting Other Information About SDSs” in the NCSA HDF Calling Interfaces and
Utilities documentation.

Note that reading a label, unit, format, or coordinate system string that has more than
256 characters can have unpredictable results.

Syntax

HDF_DFSD_GETINFO, Filename [, CALDATA=variable] [, /COORDSYS]
[, DIMS=variable] [, /FORMAT] [, /LABEL] [, /LASTREF] [, /NSDS]
[, /RANGE] [, TYPE=variable] [, /UNIT]

Arguments

Filename

A scalar string containing the name of the file to be read. A filename is only needed
to determine SDS dimensions and/or the number of SDSs in a file.

Keywords

CALDATA

Set this keyword to a named variable which will contain the calibration data
associated with an SDS data set. The data will be returned in a structure of the form:

{ CAL: 0d, CAL_ERR: 0d, OFFSET: 0d, $
OFFSET_ERR: 0d,NUM_TYPE: 0L }

COORDSYS

Set this keyword to return the data coordinate system description string.
Obsolete IDL Features HDF_DFSD_GETINFO

48 Chapter 2: Obsolete Routines
DIMS

Set this keyword to a named variable in which the dimensions of the current SDS are
returned in a longword array.

FORMAT

Set this keyword to return the data format description string.

LABEL

Set this keyword to return the data label description string.

LASTREF

Set this keyword to return the last reference number written or read for an SDS.

NSDS

Set this keyword to return the number of SDSs in the file.

RANGE

Set this keyword to return the valid max/min values for the current SDS.

TYPE

Set this keyword to a named variable which returns a string describing the type of the
current SDS (e.g., 'BYTE', 'FLOAT', etc.).

UNIT

Set this keyword to return the data unit description string.

Example

The following commands read an SDS, including information about its dimensions
but not its annotations:

HDF_DFSD_GETINFO, filename, DIMS=d, TYPE=t, RANGE=r, $
LABEL=l, UNIT=u, FORMAT=f, COORDSYS=c

...
FOR i = 0, N_ELEMENTS(d)-1 DO BEGIN

HDF_DFSD_DIMGET, i, LABEL=dl, UNIT=du, FORMAT=df, SCALE=ds
ENDFOR
HDF_DFSD_GETDATA, filename, data
HDF_DFSD_GETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 49
HDF_DFSD_GETSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETSLICE procedure reads a slice of data from the current
Hierarchical Data Format file.

Note
Before calling HDF_DFSD_GETSLICE, call HDF_DFSD_GETINFO with the
DIMS and TYPE keywords to get the dimensions and type of the next data slice.
Failure to get the dimensions and type will cause the HDF interface to attempt to
read the data incorrectly, and may cause unexpected results.

Syntax

HDF_DFSD_GETSLICE, Filename, Data [, COUNT=vector] [, OFFSET=vector]

Arguments

Filename

A scalar string containing the name of the file to be read.

Data

A named variable in which the data, read from the SDS, is returned.

Keywords

COUNT

An optional vector containing the counts to be used in reading Value. The default is
to read all elements in each record taking the value of OFFSET into account.

OFFSET

A vector specifying the array indices within the specified record at which to begin
reading. OFFSET is a 1-dimensional array containing one element per HDF
dimension. The default value is zero for each dimension.
Obsolete IDL Features HDF_DFSD_GETSLICE

50 Chapter 2: Obsolete Routines
Example

See the example in the documentation for HDF_DFSD_STARTSLICE.
HDF_DFSD_GETSLICE Obsolete IDL Features

Chapter 2: Obsolete Routines 51
HDF_DFSD_PUTSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_PUTSLICE procedure writes a data slice to the current HDF file.

Note
Before calling HDF_DFSD_PUTSLIDCE, call HDF_DFSD_SETINFO to set the
dimensions and attributes of the slice and HDF_DFSD_STARTSLICE to initialize
the slice interface.

Syntax

HDF_DFSD_PUTSLICE, Data [, COUNT=vector]

Arguments

Data

An array containing the data to write. Dimensions used to write the data are taken
from the dimensions of Data, unless the COUNT keyword is used.

Keywords

COUNT

An optional vector containing the counts to be used in writing Data. The counts do
have to match the dimensions (number or sizes), but the count cannot describe more
elements than exist.

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.
Obsolete IDL Features HDF_DFSD_PUTSLICE

52 Chapter 2: Obsolete Routines
HDF_DFSD_READREF

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_READREF procedure specifies the reference number of the HDF
file to be read by the next call to HDF_DFSD_GETINFO or
HDF_DFSD_GETDATA.

Syntax

HDF_DFSD_READREF, Filename, Refno

Arguments

Filename

A scalar string containing the name of the file to be read.

Refno

The reference number of the desired SDS.
HDF_DFSD_READREF Obsolete IDL Features

Chapter 2: Obsolete Routines 53
HDF_DFSD_SETINFO

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_SETINFO procedure controls information associated with an HDF
file. Because of the manner in which the underlying HDF library was written, it is
necessary to set the dimensions and data type of a scientific data set the first time that
HDF_DFSD_SETINFO is called.

This procedure has many options, controlled by keywords. The order in which the
keywords are specified is unimportant as the routine insures the order of operation for
any given call to it. CLEAR and RESTART requests are performed first, followed by
type and dimension setting, followed by length setting, followed by the remaining
keyword requests.

If you are not writing any ancillary information, you can call
HDF_DFSD_ADDDATA with the SET_TYPE and/or SET_DIMS keywords.

Data string lengths should be set before, or at the same time as, writing the
corresponding data string. For example:

HDF_DFSD_SETINFO, LEN_FORMAT=10, FORMAT=’12.3F’

or

HDF_DFSD_SETINFO, LEN_FORMAT=10
HDF_DFSD_SETINFO, FORMAT=’12.3F’

Due to the underlying C routines, it is necessary to set all four data strings at the same
time, or the unspecified strings are treated as ‘’ (null strings).

For example:

HDF_DFSD_SETINFO, LABEL = ’hi’
HDF_DFSD_SETINFO, UNIT = ’ergs’

is the same as:

HDF_DFSD_SETINFO, LABEL=’hi’, UNIT=’’, FORMAT=’’, COORDSYS=’’
HDF_DFSD_SETINFO, LABEL=’’, UNIT=’ergs’, FORMAT=’’, COORDSYS=’’

Syntax

HDF_DFSD_SETINFO [, CALDATA=structure] [, /CLEAR]
[, COORDSYS=string] [, DIMS=vector] [, /BYTE | , /DOUBLE | , /FLOAT, | ,
/INT | , /LONG] [, FORMAT=string] [, LABEL=string] [, LEN_LABEL=value]
[, LEN_UNIT=value] [, LEN_FORMAT=value] [, LEN_COORDSYS=value]
[, RANGE=[max, min]] [, /RESTART] [, UNIT=string]
Obsolete IDL Features HDF_DFSD_SETINFO

54 Chapter 2: Obsolete Routines
Arguments

None

Keywords

BYTE

Set this keyword to make the SDS data type DFNT_UINT8 (1-byte unsigned
integer).

CALDATA

Set this keyword to a structure containing calibration information. The structure
should contain five tags, the first four of which are double-precision floating-point,
and fifth of which should be long integer. For example:

caldata = { Cal: 1.0d $; Calibration factor.
Cal_Err: 0.1d $; Calibration error.
Offset: 2.5d $; Uncalibrated offset.
Offset_Err: 0.1d $; Uncalibrated offset error.
Num_Type: 5L $; Number type of uncalib.data.

Some typical values for the Num_Type field include:

For byte data:

3L (DFNT_UCHAR8)
21L (DFNT_UINT8)

For integer data:

22L (DNFT_INT16)

For long-integer data:

24L (DFNT_INT32)

For floating-point data:

5L (DFNT_FLOAT32)
6L (DFNT_FLOAT64)

There are other types, but they are not native to IDL. They can be found in the hdf.h
header file for the HDF library.

CLEAR

Set this keyword to reset all possible set values to their default value.
HDF_DFSD_SETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 55
COORDSYS

A string for the data coordinate system description.

DIMS

Set this keyword to a vector of dimensions to be used in writing the next SDS. For
example:

HDF_DFSD_SETINFO, DIMS = [10, 20, 30]

DOUBLE

Set this keyword to make the SDS data type DFNT_FLOAT64 (8-byte floating
point).

FLOAT

Set this keyword to make the SDS data type DFNT_FLOAT32 (4-byte floating
point).

FORMAT

A string for the data format description.

INT

Set this keyword to make the SDS data type DFNT_INT16 (2-byte signed integer).

LABEL

A string for the data label description.

LEN_LABEL

The label string length (default is 255).

LEN_UNIT

The unit string length (default is 255).

LEN_FORMAT

The format string length (default is 255).
Obsolete IDL Features HDF_DFSD_SETINFO

56 Chapter 2: Obsolete Routines
LEN_COORDSYS

The format coordinate system string length (default is 255).

LONG

Set this keyword to make the SDS data type DFNT_INT32 (4-byte signed integer).

RANGE

The minimum and maximum range, represented as a 2-element vector of the same
data type as the data to be written. The first element is the maximum, the second is
the minimum. For example:

HDF_DFSD_SETINFO, RANGE = [10,0]

RESTART

Set this keyword to make the get (HDF_DFSD_GETSLICE) routine read from the
first SDS in the file.

UNIT

A string for the data unit description.

Example

Write a 100x50 array of longs:

data = LONARR(100, 50)
HDF_DFSD_SETINFO, /CLEAR, /LONG, DIMS=[100,50], $

RANGE=[MAX(data), MIN(data)], $
LABEL=’pressure’, UNIT=’pascals’, $
FORMAT=’F10.0’
HDF_DFSD_SETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 57
HDF_DFSD_STARTSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_STARTSLICE procedure prepares the system to write a slice of
data to an HDF file. HDF_DFSD_SETINFO must be called before
HDF_DFSD_STARTSLICE to set the dimensions and attributes of the slice.

This procedure must be called before calling HDF_DFSD_PUTSLICE, and must be
terminated with a call to HDF_DFSD_ENDSLICE.

Syntax

HDF_DFSD_STARTSLICE, Filename

Arguments

Filename

A scalar string containing the name of the file to be written.

Example

; Open an HDF file:
fid=HDF_OPEN('test.hdf',/ALL)

; Create two datasets:
slicedata1=FINDGEN(5,10,15)
slicedata2=DINDGEN(4,5)

; Use HDF_DFSD_SETINFO to set the dimensions, then add
; the first slice:
HDF_DFSD_SETINFO,LABEL='label1', DIMS=[5,10,15], /FLOAT
HDF_DFSD_STARTSLICE,'test.hdf'
HDF_DFSD_PUTSLICE, slicedata1
HDF_DFSD_ENDSLICE

; Repeat the process for the second slice:
HDF_DFSD_SETINFO, LABEL='label2', DIMS=[4,5], /DOUBLE
HDF_DFSD_STARTSLICE,'test.hdf'
HDF_DFSD_PUTSLICE, slicedata2
HDF_DFSD_ENDSLICE
HDF_DFSD_SETINFO, /RESTART

; Use HDF_DFSD_GETINFO to advance slices and set slice
Obsolete IDL Features HDF_DFSD_STARTSLICE

58 Chapter 2: Obsolete Routines
; attributes, then get the slices:
HDF_DFSD_GETINFO, name, DIMS=dims, TYPE=type
HDF_DFSD_GETSLICE, out1
HDF_DFSD_GETINFO, name, DIMS=dims, TYPE=type
HDF_DFSD_GETSLICE, out2

; Close the HDF file:
HDF_CLOSE('test.hdf')

;Check the first slice to see if everything worked:
IF TOTAL(out1 EQ slicedata1) EQ N_ELEMENTS(out1) THEN $

PRINT, 'SLICE 1 WRITTEN/READ CORRECTLY' ELSE $
PRINT, 'SLICE 1 WRITTEN/READ INCORRECTLY'

; Check the second slice to see if everything worked:
IF TOTAL(out2 EQ slicedata2) EQ N_ELEMENTS(out2) THEN $

PRINT, 'SLICE 2 WRITTEN/READ CORRECTLY' ELSE $
PRINT, 'SLICE 2 WRITTEN/READ INCORRECTLY'

IDL Output

SLICE 1 WRITTEN/READ CORRECTLY

SLICE 2 WRITTEN/READ CORRECTLY
HDF_DFSD_STARTSLICE Obsolete IDL Features

Chapter 2: Obsolete Routines 59
HDF_VD_GETNEXT

The HDF_VD_GETNEXT function returns the reference number of the next object
inside a VData in an HDF file. If Id is -1, the first item in the VData is returned,
otherwise Id should be set to a reference number previously returned by
HDF_VD_GETNEXT. HDF_VD_GETNEXT returns -1 if there was an error or
there are no more objects after the one specified by Id.

Syntax

Result = HDF_VD_GETNEXT(VData, Id)

Arguments

VData

The VData handle returned by a previous call to HDF_VD_ATTACH.

Id

A VGroup or VData reference number obtained by a previous call to
HDF_VG_GETNEXT or HDF_VD_GETNEXT. Alternatively, this value can be set
to -1 to return the first item in the VData.

Version History

Introduced: 4.0
Obsolete IDL Features HDF_VD_GETNEXT

60 Chapter 2: Obsolete Routines
INP, INPW, OUTP, OUTPW

These routines are obsolete and should not be used in new IDL code.

Windows-Only Routines for Hardware Ports

You can address the hardware ports of your personal computer directly using the
following routines. In each case, Port is specified using the hexadecimal address of
the hardware port. For example, if serial port #1 of your PC is at address 3F8, you
would use the following IDL commands to read that port:

paddr = '3F8'xSet paddr to hexadecimal value.
data = INPW(paddr)Read data.

Result = INP(Port, [D1 . . . DN])

This function returns either one byte (if only the port number is specified) or an array
(the dimensions of which are specified by D1 . . . DN) read from the specified
hardware port. Port is the hardware port number. For example,

result = INP(paddr)

would read a single byte, and

result = INP(paddr, 2,4)

would read a two-element by four-element array.

Result = INPW(Port, [D1 . . . DN])

This function returns either one 16-bit word, as an integer (if only the port number is
specified), or an array (the dimensions of which are specified by D1 . . . DN) from the
specified hardware port. Port is the hardware port number.

OUTP, Port, Value

This procedure writes either one byte or an array of bytes to the specified hardware
port. Port is the hardware port number. Value is the byte value or array to be written.

OUTPW, Port, Value

This procedure writes either one 16-bit word or an array of words to the specified
hardware port. Port is the hardware port number. Value is the integer value or array to
be written.
INP, INPW, OUTP, OUTPW Obsolete IDL Features

Chapter 2: Obsolete Routines 61
LIVE_Tools

The LIVE tools allow you to create, modify, and export visualizations directly from
the IDL command line. In many cases, you can modify your visualizations using the
LIVE tools’ graphical user interface directly without ever needing to return the IDL
command line. In some cases, however, you may wish to alter your visualizations
programmatically rather than using the graphical user interface. Several LIVE
routines allow you to do this easily.

The process of using the LIVE tools begins with the creation of a LIVE window via
one of the four main LIVE routines: LIVE_CONTOUR, LIVE_IMAGE,
LIVE_PLOT, and LIVE_SURFACE. When you use one of these four routines at the
IDL command line, you specify some data to be visualized and a LIVE window
appears. You can modify many of the properties of the items in your visualization by
double-clicking on the item to call up a Properties dialog.

If you find that the graphical user interface does not allow you to perform the
operation you wish to perform — saving your visualization as an image file, say —
you can use the auxiliary LIVE routines. These routines can be divided into two
groups:

• Overplotting and Annotation Routines that allow you to add annotations to an
existing LIVE window. These routines include LIVE_LINE, LIVE_OPLOT,
LIVE_RECT, and LIVE_TEXT. (Lines, rectangles, and text can also be added
to LIVE windows using the graphical user interface.)

• Information and Control Routines that allow you to get information about an
existing LIVE window, alter its properties, or export visualizations. These
routines include LIVE_CONTROL, LIVE_DESTROY, LIVE_EXPORT,
LIVE_INFO, LIVE_PRINT, and LIVE_STYLE.

To use the auxiliary routines, you will need to know the Name of the LIVE window
or item you wish to alter. To create an IDL variable containing the names of the
elements of a LIVE window, set the REFERENCE_OUT keyword equal to a named
variable when you first create your LIVE window. The returned variable will be a
structure that contains the names of all of the elements in the visualization you have
created. Use the contents of this structure to determine the value of the Name
argument for the auxiliary LIVE tools, or to determine the name of the LIVE window
you wish to alter.

Note
The LIVE tools do not utilize the !X, !Y, and !Z conventions. Setting these system
variables will have no effect on LIVE tool display.
Obsolete IDL Features LIVE_Tools

62 Chapter 2: Obsolete Routines
LIVE_CONTOUR

The LIVE_CONTOUR procedure displays contour visualizations in an interactive
environment. Because the interactive environment requires extra system resources,
this routine is most suitable for relatively small data sets. If you find that performance
does not meet your expectations, consider using the Direct Graphics CONTOUR
routine or the Object Graphics IDLgrContour class directly.

After LIVE_CONTOUR has been executed, you can double-click on a contour line
to display a properties dialog. A set of buttons in the upper left corner of the window
allows you to print, undo the last operation, redo the last “undone” operation, copy,
draw a line, draw a rectangle, or add text.

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 61 for an explanation.

Syntax

LIVE_CONTOUR [, Z1,..., Z25] [, /BUFFER] [, DIMENSIONS=[width,
height]{normal units}] [, /DOUBLE] [, DRAW_DIMENSIONS=[width,
height]{devive units}] [, ERROR=variable] [, /INDEXED_COLOR]
[, INSTANCING={-1 | 0 | 1}] [, LOCATION=[x, y]{normal units}]
[, /MANAGE_STYLE] [, NAME=structure] [, /NO_DRAW]
[, /NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]
[, PARENT_BASE=widget_id | , TLB_LOCATION=[Xoffset, Yoffset]{device
units}] [, PREFERENCE_FILE=filename{full path}]
[, REFERENCE_OUT=variable] [, RENDERER={0 | 1}]
[, REPLACE={structure | {0 | 1 | 2 | 3 | 4}}] [, STYLE=name_or_reference]
[, TEMPLATE_FILE=filename] [, TITLE=string] [, WINDOW_IN=string] [, {X
| Y}INDEPENDENT=value] [, {/X | /Y}LOG] [, {X | Y}RANGE=[min,
max]{data units}] [, {X | Y}_TICKNAME=array]

Figure 2-1: LIVE_CONTOUR Properties Dialog

Print Undo Redo Copy Line Rectangle Text
LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 63
Arguments

Zn

A vector of data. Up to 25 of these arguments may be specified. If any of the data is
stored in IDL variables of type DOUBLE, LIVE_CONTOUR uses double-precision
to store the data and to draw the result.

Keywords

BUFFER

 Set this keyword to bypass the creation of a LIVE window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DOUBLE

Set this keyword to force LIVE_CONTOUR to use double-precision to draw the
result. This has the same effect as specifying data in the Zn argument using IDL
variables of type DOUBLE.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, height]
specifying the dimensions of the visualization in normalized coordinates. The default
is [1.0, 1.0].

DRAW_DIMENSIONS

Set this keyword equal to a vector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.
Obsolete IDL Features LIVE_CONTOUR

64 Chapter 2: Obsolete Routines
INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor.

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) is to
use instancing if and only if the “software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword has no effect if the STYLE keyword is not set to
a style item.

NAME

Set this keyword to a structure containing suggested names for the data items to be
created for this visualization. See the REPLACE keyword for details on how they
will be used. The fields of the structure are as follows. (Any or all tags may be set.)

The default for a field is to use the given variable name. If the variable does not have
a name (i.e., is an expression), a default name is automatically generated. The

Tag Description

DATA Dependent Data Name(s)

IX Independent X Data Name

IY Independent Y Data Name

Table 2-1: Fields of the NAME keyword
LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 65
dependent data names will be used in a round-robin fashion if more data than names
are input.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing results of
LIVE_CONTOUR. This is useful if multiple visualizations and/or annotations are
being created via calls to other LIVE_Tools in order to reduce unwanted draws and
help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.

NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
a LIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert a tool into their own widget application will determine the setting
from the parent base sent to the tool.

Note
LIVE_DESTROY on a window is recommended when using PARENT_BASE so
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in a non-
blocking mode. Putting a LIVE tool into a realized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.
Obsolete IDL Features LIVE_CONTOUR

66 Chapter 2: Obsolete Routines
REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table.

Note
You can also determine the name of an item by opening its properties dialog and
checking the “Name” field (or for Windows, by clicking the title bar).

RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) is to use the setting in the IDL Workbench preferences; if
the IDL Workbench is not running, however, the default is hardware rendering. For
more information, see “Hardware vs. Software Rendering” in the Objects and Object
Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to

Tag Description

WIN Window Name

VIS Visualization Name

XAXIS X-Axis Name

YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)

LEGEND Legend Name

DATA Dependent Data Name(s)

IX Independent X Data Name

IY Independent Y Data Name

Table 2-2: Fields of the LIVE_CONTOUR Reference Structure
LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 67
take when an item (such as data) being input would have the same name as one
already existing in the given window or buffer (WINDOW_IN).

Alternatively, this keyword may be set to a single scalar value, which is equivalent to
setting each tag of the structure to that choice.

STYLE

Set this keyword to either a string specifying a style name created using
LIVE_STYLE.

TITLE

Set this keyword to a string specifying the title to give the main window. It must not
already be in use. A default will be chosen if no title is specified.

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items will be
deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause dynamic
updating to occur for any current uses, e.g., a visualization would
redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names (e.g.,
data input as an expression rather than a named variable, with no name
provided via the NAME keyword). Option 3 will be used for all
named items.

Table 2-3: REPLACE keyword Settings and Action Taken
Obsolete IDL Features LIVE_CONTOUR

68 Chapter 2: Obsolete Routines
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XINDEPENDENT

Set this keyword to a vector specifying the X values for LIVE_CONTOUR. The
default is the data’s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

YINDEPENDENT

Set this keyword to a vector specifying the Y values for LIVE_CONTOUR. The
default is the data’s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

XLOG

Set this keyword to make the X axis a log axis. The default is 0 (linear axis).

YLOG

Set this keyword to make the Y axis a log axis. The default is 0 (linear axis).

XRANGE

Set this keyword equal to a two-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to a two-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the data range.
LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 69
X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equals the values computed from the data range.

Examples

; Create a dataset to display:
Z=DIST(10)

; Display the contour. To manipulate contour lines, click on the
; plot to access a graphical user interface.
LIVE_CONTOUR, Z

Note
This is a “Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal data item. For
example, if one does the following:

Y=indgen(10)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc1
Y=indgen(20)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc2

The first plot will update to use the Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks” of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LIVE_PLOT, Y1,...
LIVE_PLOT, Y2,...

or;

LIVE_PLOT, Y,...
LIVE_PLOT, myFunc(Y),...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable is input.
Obsolete IDL Features LIVE_CONTOUR

70 Chapter 2: Obsolete Routines
Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

Version History

Introduced: 5.0

See Also

CONTOUR
LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 71
LIVE_CONTROL

The LIVE_CONTROL procedure allows you to set the properties of (or elements
within) a visualization in a LIVE tool from the IDL command line. See
“LIVE_Tools” on page 61 for additional discussion of the routines that control the
LIVE_ tools.

Note
The LIVE tools do not utilize the !X, !Y, and !Z conventions. Setting these system
variables will have no effect on LIVE tool display.

Syntax

LIVE_CONTROL, [Name] [, /DIALOG] [, ERROR=variable] [, /NO_DRAW]
[, PROPERTIES=structure] [, /SELECT] [, /UPDATE_DATA]
[, WINDOW_IN=string]

Arguments

Name

If keywords DIALOG and/or PROPERTIES are used, Name is a string (case-
insensitive) containing the name of a window visualization or graphic to operate on.
WINDOW_IN will default to the window or buffer, if only one is present in the IDL
session.

If keyword UPDATE_DATA is used, Name must be an IDL variable with the same
name as one already used in the given window or buffer (WINDOW_IN). In this case
there is no default. If UPDATE_DATA is not set, the parameter must be a name of a
window, visualization or visualization element.

Keywords

DIALOG

Set this keyword to have the editable properties dialog of the visualization or graphic
appear.
Obsolete IDL Features LIVE_CONTROL

72 Chapter 2: Obsolete Routines
ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

PROPERTIES

Set this keyword to a properties structure with which to modify the given
visualization or graphic. The structure should contain one or more tags as returned
from a LIVE_INFO call on the same type of item.

UPDATE_DATA

Set this keyword to force the window to update all of its visualizations that contain
the given data passed in the parameter to LIVE_CONTROL.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

; Create a dataset to display:
X=indgen(10)

; Plot the dataset:
LIVE_PLOT, X
LIVE_CONTROL Obsolete IDL Features

Chapter 2: Obsolete Routines 73
; Modify the dataset:
X=X+2

; Replace old values of X:
LIVE_CONTROL, X, /UPDATE_DATA

Version History

Introduced: 5.1

See Also

LIVE_INFO, LIVE_STYLE
Obsolete IDL Features LIVE_CONTROL

74 Chapter 2: Obsolete Routines
LIVE_DESTROY

The LIVE_DESTROY procedure allows you to destroy a window visualization or an
element in a visualization.

Syntax

LIVE_DESTROY, [Name1,..., Name25] [, /ENVIRONMENT] [, ERROR=variable]
[, /NO_DRAW] [, /PURGE] [, WINDOW_IN=string]

Arguments

Name

A string containing the name of a valid LIVE visualization or element. If a
visualization is supplied, all components in the visualization will be destroyed. Up to
25 components may be specified in a single call. If not specified, the entire window
or buffer (WINDOW_IN) and its contents will be destroyed.

Warning
Using WIDGET_CONTROL to destroy the parent base of a LIVE tool before using
LIVE_DESTROY to clean up will leave hanging object references.

Keywords

ENVIRONMENT

Destroys the LIVE_ Tools environment (background processes).

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.
LIVE_DESTROY Obsolete IDL Features

Chapter 2: Obsolete Routines 75
NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

PURGE

Destroys LIVE_ Tools (use this keyword for cleaning up the system after fatal errors
in LIVE_ Tools). This keyword may cause the loss of data if not used correctly.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LIVE_DESTROY, 'Line Plot Visualization'

; Destroy window (if only one window present):
LIVE_DESTROY

Version History

Introduced: 5.1
Obsolete IDL Features LIVE_DESTROY

76 Chapter 2: Obsolete Routines
LIVE_EXPORT

The LIVE_EXPORT procedure allows the user to export a given visualization or
window to an image file.

Syntax

LIVE_EXPORT [, /APPEND] [, COMPRESSION={0 | 1 | 2}{TIFF only}]
[, /DIALOG] [, DIMENSIONS=[width, height]] [, ERROR=variable]
[, FILENAME=string] [, ORDER={0 | 1}{JPEG or TIFF}]
[, /PROGRESSIVE{JPEG only}] [, QUALITY={0 | 1 | 2}{for VRML} | {0 to
100}{for JPEG}] [, RESOLUTION=value] [, TYPE={'BMP' | 'JPG' | 'PIC' | 'SRF'
| 'TIF' | 'XWD' | 'VRML'}] [, UNITS={0 | 1 | 2}] [, VISUALIZATION_IN=string]
[, WINDOW_IN=string]

Arguments

None

Keywords

APPEND

Specifies that the image should be added to the existing file, creating a multi-image
TIFF file.

COMPRESSION (TIFF)

Set this keyword to select the type of compression to be used:

• 0 = none (default)

• 2 = PackBits.

DIALOG

Set this keyword to have a dialog appear allowing the user to choose the image type
and specifications.
LIVE_EXPORT Obsolete IDL Features

Chapter 2: Obsolete Routines 77
DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the image in units specified by the UNITS keyword. The default is
[640, 480] pixels.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

FILENAME

Set this keyword equal to a string specifying the desired name of the image file. The
default is live_export.extension, where extension is one of the following:

bmp, jpg, jpeg, pic, pict, srf, tif, tiff, xwd, vrml

ORDER (JPEG, TIFF)

Set this keyword to have the image written from top to bottom. Default is bottom to
top.

PROGRESSIVE (JPEG)

Set this keyword to write the image as a series of scans of increasing quality. When
used with a slow communications link, a decoder can generate a low-quality image
very quickly, and then improve its quality as more scans are received.

QUALITY (JPEG, VRML)

This keyword specifies the quality index of VRML images and JPEG images. For
VRML, the values are 0=Low, 1=Medium, 2=High. For JPEG the range is 0
("terrible") to 100 ("excellent"). This keyword has no effect on non-JPEG or non-
VRML images.

RESOLUTION

Set this keyword to a floating-point value specifying the device resolution in
centimeters per pixel. The default is 72 DPI=2.54 (cm/in)/ 0.0352778 (cm/pixel).
Obsolete IDL Features LIVE_EXPORT

78 Chapter 2: Obsolete Routines
Note
It is important to match the eventual output device’s resolution so that text is scaled
properly.

TYPE

Set this keyword equal to a string specifying the image type to write. Valid strings
are: ‘BMP’, ‘JPG’, ‘JPEG’ (default), ‘PIC’, ‘PICT’, ‘SRF’, ‘TIF’, ‘TIFF’, ‘XWD’,
and ‘VRML’.

UNITS

Set this keyword to indicate the units of measure for the DIMENSIONS keyword.
Valid values are 0=Device (default), 1=Inches, 2=Centimeters.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool
visualization to export. The VIS field from the REFERENCE_OUT keyword from
the creation of the LIVE tool will provide the visualization name. If
VISUALIZATION_IN is not specified, the whole window or buffer (WINDOW_IN)
will be exported.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer, to export. The WIN tag of the REFERENCE_OUT structure from
the creation of the LIVE tool will provide the window or buffer name. Window
names are also visible in visualization window titlebars. If only one LIVE tool
window (or buffer) is present in the IDL session, this keyword will default to it.

Examples

LIVE_EXPORT, WINDOW_IN='Live Plot 2'

Version History

Introduced: 5.1
LIVE_EXPORT Obsolete IDL Features

Chapter 2: Obsolete Routines 79
LIVE_IMAGE

The LIVE_IMAGE procedure displays visualizations in an interactive environment.
Double-click on the image to display a properties dialog. A set of buttons in the upper
left corner of the image window allows you to print, undo the last operation, redo the
last “undone” operation, copy, draw a line, draw a rectangle, or add text.

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 61 for an explanation.

Syntax

LIVE_IMAGE, Image [, RED=byte_vector] [, GREEN=byte_vector]
[, BLUE=byte_vector] [, /BUFFER] [, DIMENSIONS=[width, height]{normal
units}] [, DRAW_DIMENSIONS=[width, height]{devive units}]
[, ERROR=variable] [, /INDEXED_COLOR] [, INSTANCING={-1 | 0 | 1}]
[, LOCATION=[x, y]{normal units}] [, /MANAGE_STYLE]
[, NAME=structure] [, /NO_DRAW] [, /NO_SELECTION] [, /NO_STATUS]
[, /NO_TOOLBAR] [, PARENT_BASE=widget_id | ,
TLB_LOCATION=[Xoffset, Yoffset]{device units}]
[, PREFERENCE_FILE=filename{full path}] [, REFERENCE_OUT=variable]
[, RENDERER={0 | 1}] [, REPLACE={structure | {0 | 1 | 2 | 3 | 4}}]
[, STYLE=name_or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]
[, WINDOW_IN=string]

Arguments

Image

A two- or three-dimensional array of image data. The three-dimensional array must
be for the form [3,X,Y] or [X,3,Y] or [X,Y,3].

Figure 2-2: LIVE_IMAGE Properties Dialog

Print Undo Redo Copy Line Rectangle Text
Obsolete IDL Features LIVE_IMAGE

80 Chapter 2: Obsolete Routines
Keywords

BLUE

Set this keyword equal to a byte vector of blue values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are
used to form the color table. The 2D array is a set of values that are just indexes into
this table.

BUFFER

Set this keyword to bypass the creation of a LIVE window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the image in units specified by the UNITS keyword. The default is
[1.0, 1.0].

DRAW_DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.
LIVE_IMAGE Obsolete IDL Features

Chapter 2: Obsolete Routines 81
GREEN

Set this keyword equal to a byte vector of green values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are
used to form the color table. The 2D array is a set of values that are just indexes into
this table.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) is to
use instancing if and only if the “software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STYLE keyword is not
set to a style item.
Obsolete IDL Features LIVE_IMAGE

82 Chapter 2: Obsolete Routines
NAME

Set this keyword to a structure containing suggested names for the items to be created
for this visualization. See the REPLACE keyword for details on how they will be
used. The fields of the structure are as follows. (Any or all of the tags may be set.)

The default for a field is to use the given variable name. If the variable does not have
a name (i.e., is an expression), a default name is automatically generated.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing results of
LIVE_CONTOUR. This is useful if multiple visualizations and/or annotations are
being created via calls to other LIVE_Tools in order to reduce unwanted draws and
help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.

NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
a LIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert a tool into their own widget application will determine the setting
from the parent base sent to the tool.

Tag Description

DATA Dependent Data Name(s)

CT Color Table Name

Table 2-4: Fields of the NAME keyword
LIVE_IMAGE Obsolete IDL Features

Chapter 2: Obsolete Routines 83
Note
LIVE_DESTROY on a window is recommended when using PARENT_BASE so
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in a non-
blocking mode. Putting a LIVE tool into a realized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.

RED

Set this keyword equal to a byte vector of red values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are
used to form the color table. The 2D array is a set of values that are just indexes into
this table.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table. Note that the
COLORBAR* field does not show up with TrueColor images:

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name

CT Color Table Name

COLORBAR* Colorbar Name

DATA Data Name

Table 2-5: Fields of the LIVE_IMAGE Reference Structure
Obsolete IDL Features LIVE_IMAGE

84 Chapter 2: Obsolete Routines
RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) is to use the setting in the IDL Workbench preferences; if
the IDL Workbench is not running, however, the default is hardware rendering. For
more information, see “Hardware vs. Software Rendering” in the Objects and Object
Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
already existing in the given window or buffer (WINDOW_IN).

STYLE

Set this keyword to either a string specifying a style name created using
LIVE_STYLE.

TITLE

Set this keyword to a string specifying the title to give the main window. It must not
already be in use. A default will be chosen if no title is specified.

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items will
be deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause
dynamic updating to occur for any current uses, e.g., a visualization
would redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names (e.g.,
data input as an expression rather than a named variable, with no
name provided via the NAME keyword). Option 3 will be used for
all named items.

Table 2-6: REPLACE keyword Settings and Action Taken
LIVE_IMAGE Obsolete IDL Features

Chapter 2: Obsolete Routines 85
TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window, or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

Examples

LIVE_IMAGE, myImage

Version History

Introduced: 5.0

See Also

TV, TVSCL
Obsolete IDL Features LIVE_IMAGE

86 Chapter 2: Obsolete Routines
LIVE_INFO

The LIVE_INFO procedure allows the user to get the properties of a LIVE tool.

Syntax

LIVE_INFO, [Name] [, ERROR=variable] [, PROPERTIES=variable]
[, WINDOW_IN=string]

Arguments

Name

A string containing the name of a visualization or element (case-insensitive). The
default is to use the window or buffer (WINDOW_IN).

Keywords

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

PROPERTIES

Set this keyword to a named variable to contain the returned properties structure. For
a description of the structures, see Properties Structures below.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.
LIVE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 87
Structure Tables for LIVE_INFO and LIVE CONTROL

The following tables describe the properties structures used by LIVE_INFO and
LIVE_CONTROL (via the PROPERTIES keyword) for:

• Color Names

• Line Annotations

• Rectangle Annotations

• Text Annotations

• Axes

• Colorbars

• Images

• Legends

• Surfaces

• Entire Visualizations

• Windows

Color Names

The following color names are the possible values for color properties:

• Black • Red • Green • Yellow

• Blue • Magenta • Cyan • Dark Gray

• Light Gray • Brown • Light Red • Light Green

• Light Blue • Light Cyan • Light Magenta • White
Obsolete IDL Features LIVE_INFO

88 Chapter 2: Obsolete Routines
Line Annotations

The fields in the properties structure of Line Annotations are as follows:

Rectangle Annotations

The fields in the properties structure of Rectangle Annotations are as follows:

Tag Description

thick 1 to 10 pixels

arrow_start 1 = arrow head at line start, 0 = no arrowhead

arrow_end 1 = arrow head at line start, 0 = no arrowhead

arrow_size 0.0 to 0.3 normalized units

arrow_angle 1.0 to 179.0 degrees

linestyle 0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot, 5=long
dash

hide 1 = hidden, 0 = visible

name scalar string (unique within all graphics)

color see “Color Names” on page 87

location [x, y] normalized units

dimensions [width, height] normalized units

uvalue any value of any type (only returned in structure if defined)

Table 2-7: Line Annotation Properties Structure

Tag Description

thick 1 to 10 pixels

linestyle 0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot, 5=long
dash

hide 1=hidden, 0=visible

Table 2-8: Rectangle Annotation Properties Structure
LIVE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 89
Text Annotations

The fields in the properties structure of Text Annotations are as follows:

name scalar string (unique within all graphics)

color see “Color Names” on page 87

location [x, y] normalized units

dimensions [width, height] normalized units

uvalue any value of any type (only returned in structure if defined)

Tag Description

fontsize 9 to 72 points

fontname Helvetica, Courier, Times, Symbol, and Other (where Other
is a valid name of a font on the local system)

textangle 0.0 to 360.0 degrees

alignment 0.0 to 1.0 where 0.0 = right justified and 1.0 = left justified

location [x, y] normalized units

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

value string (scalar or vector) annotation formula (see note below)

enable_formatting set to allow “!” chars for font commands

color see “Color Names” on page 87

uvalue any value of any type (only returned in structure if defined)

Table 2-9: Text Annotation Properties Structure

Tag Description

Table 2-8: Rectangle Annotation Properties Structure (Continued)
Obsolete IDL Features LIVE_INFO

90 Chapter 2: Obsolete Routines
Note
Each vector element of the annotation formula (see “value” tag above) is parsed
once, left to right, for vertical bars (|).

• Two vertical bars surrounding a data item name will be replaced by the
corresponding data value(s), possibly requiring multiple lines.

• Two adjacent bars will be replaced by a single bar.

• Two bars surrounding text that is not a data item name will be left as is.

Axes

The fields in the properties structure of Axes are as follows:

Tag Description

title_FontSize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other is
a valid name of a font on the local system)

title_Color see “Color Names” on page 87

tick_FontSize 9 to 72 points

tick_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other is
a valid name of a font on the local system)

tick_FontColor see “Color Names” on page 87

gridStyle see linestyle

color see “Color Names” on page 87

thick 1 to 10 pixels

location [x, y] data units

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

Table 2-10: Axis Properties Structure
LIVE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 91
Colorbars

The fields in the properties structure of Colorbars are as follows:

tickLen normalized units * 100 = percent of visualization dimensions

subticklen normalized units * 100 = percent of ticklen

tickDir 0 = up (or right), 1 = down (or left)

textPos 0 = below (or left), 1 = above (or right)

tickFormat standard IDL FORMAT string (See STRING function)
excluding parentheses

exact set to use exact range specified

log set to display axis as log

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

compute_range set to compute axis range from data min/max

tickName if defined, vector of strings to use at major tick marks

uvalue any value of any type (only returned in structure if defined)

Tag Description

title_Fontsize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other is a
valid name of a font on the local system)

title_Color see “Color Names” on page 87

tick_FontSize see fontsize

tick_Fontname see fontname

tick_FontColor see “Color Names” on page 87

Table 2-11: Colorbar Properties Structure

Tag Description

Table 2-10: Axis Properties Structure (Continued)
Obsolete IDL Features LIVE_INFO

92 Chapter 2: Obsolete Routines
color see “Color Names” on page 87

thick 1 to 10 pixels

location [x, y]; where [0, 0] = lower left and [1, 1] = position where the

entire colorbar fits into the upper right of the visualization

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

tickLen normalized units * 100 = percent of visualization dimensions

subticklen normalized units * 100 = percent of ticklen

tickFormat standard IDL FORMAT string (See STRING function)
excluding parentheses

show_axis set to display the colorbar axis

show_outline set to display the colorbar outline

axis_thick see thick

dimensions [width, height] normalized units

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Tag Description

Table 2-11: Colorbar Properties Structure (Continued)
LIVE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 93
Contours

The fields in the properties structure of Contours are as follows:

Tag Description

min_value minimum contour value to display

max_value maximum contour value to display

downhill set to display downhill tick marks

fill set to display contour levels as filled

c_thick vector of thickness values (see thick)

c_linestyle vector of linestyle values (see linestyle)

c_color vector of color names (see “Color Names” on page 87)

default_n_levels set to default the number of levels

n_levels* specify a positive number for a specific number of levels

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

*The MIN and MAX value of the data are returned as contour levels when
N_LEVELS is set. Because of this, when setting N_LEVELS, contour plots appear
to have N-2 contour levels because the first (MIN) and last (MAX) level is not
shown. With LIVE_CONTOUR, this results in a legend that contains unnecessary
items in the legend (the MIN and the MAX contour level).

Table 2-12: Contour Properties Structure
Obsolete IDL Features LIVE_INFO

94 Chapter 2: Obsolete Routines
Images

The fields in the properties structure of Images are as follows:

Legends

The fields in the properties structure of Legends are as follows:

Tag Description

order set to draw from top to bottom

sizing_constraint [0|1|2] 0=Natural, 1=Aspect, 2=Unrestricted

dont_byte_scale set to inhibit byte scaling the image

palette name of managed colortable

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in LIVE_INFO structure
if defined)

Table 2-13: Image Properties Structure

Tag Description

title_FontSize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other is
a valid name of a font on the local system)

title_Color see “Color Names” on page 87

item_fontSize see fontsize

item_fontName Helvetica, Courier, Times, Symbol, and Other (where Other is
a valid name of a font on the local system)

text_color color of item text (see “Color Names” on page 87)

border_gap normalized units * 100 = percent of item text height

columns number of columns to display the items in (minimum 0)

Table 2-14: Legend Properties Structure
LIVE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 95
Surfaces

The fields in the properties structure of Surfaces are as follows:

gap normalized units * 100 = percent of item text height

glyph_Width normalized units * 100 = percent of item text height

fill_color see “Color Names” on page 87

outline_color see “Color Names” on page 87

outline_thick see thick

location [x, y]; where [0, 0] = lower left and [1, 1] = position where the

entire legend fits into the upper right of the visualization

show_fill set to display the fill color

show_outline set to display the legend outline

title_text String to display in the legend title

item_format standard IDL FORMAT string (See STRING function)
excluding parentheses (contour legends only)

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Tag Description

min_value minimum plot line value to display

max_value maximum plot line value to display

lineStyle 0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot,
5=long dash

color see “Color Names” on page 87

Table 2-15: Surface Properties Structure

Tag Description

Table 2-14: Legend Properties Structure (Continued)
Obsolete IDL Features LIVE_INFO

96 Chapter 2: Obsolete Routines
Entire Visualizations

The fields in the properties structure of Entire Visualizations are as follows:

thick 1 to 10 pixels

bottom see “Color Names” on page 87

style 0=point, 1=wire, 2=solid, 3=ruledXZ, 4=ruledYZ, 5=lego
(wire), 6=lego (solid)

shading 0=flat, 1=Gouraud

hidden_lines set to not display hidden lines or points

show_skirt set to display the surface skirt

skirt z value at which skirt is drawn (data units)

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Tag Description

location [x, y] normalized units

dimensions [width, height] normalized units

transparent set to avoid erasing to the background color

color background color (see “Color Names” on page 87)

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Table 2-16: Visualization Properties Structure

Tag Description

Table 2-15: Surface Properties Structure (Continued)
LIVE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 97
Windows

The fields in the properties structure of Windows are as follows:

Examples

LIVE_INFO, 'x axis', PROPERTIES=myProps

Version History

Introduced: 5.1

See Also

LIVE_CONTROL, LIVE_STYLE

Tag Description

dimensions 2-element integer vector (pixels)

hide boolean (0=show, 1=hide)

location 2-element integer vector (pixels) from upper left
corner of screen

title string

Table 2-17: Windows Properties Structure
Obsolete IDL Features LIVE_INFO

98 Chapter 2: Obsolete Routines
LIVE_LINE

The LIVE_LINE procedure is an interface for line annotation.

Syntax

LIVE_LINE [, ARROW_ANGLE=value{1.0 to 179.0}] [, /ARROW_END]
[, ARROW_SIZE=value{0.0 to 0.3}] [, /ARROW_START] [, COLOR='color
name'] [, /DIALOG] [, DIMENSIONS=[width, height]] [, ERROR=variable]
[, /HIDE] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, LOCATION=[x, y]]
[, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]
[, REFERENCE_OUT=variable] [, THICK=pixels{1 to 10}]
[, VISUALIZATION_IN=string] [, WINDOW_IN=string]

Arguments

None

Keywords

ARROW_ANGLE

Set this keyword to a floating-point number between 1.0 and 179.0 degrees to
indicate the angle of the arrowheads. The default is 30.0.

ARROW_END

Set this keyword to indicate an arrowhead should be drawn at the end of the line. It is
not drawn by default.

ARROW_SIZE

Set this keyword to a floating-point number between 0.0 and 0.3 (normalized
coordinates) to indicate the size of the arrowheads. The default is 0.02.

ARROW_START

Set this keyword to indicate an arrowhead should be drawn at the start of the line. It is
not drawn by default.
LIVE_LINE Obsolete IDL Features

Chapter 2: Obsolete Routines 99
COLOR

Set this keyword to a string (case-sensitive) of the color to be used for the line. The
default is ‘Black’. The following colors are available:

DIALOG

Set this keyword to display the line properties dialog appear. The dialog will have all
known properties supplied by keywords filled in.

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the X
and Y components of the line in normalized coordinates. The default is [0.2, 0.2].

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

HIDE

Set this keyword to a boolean value indicating whether this item should be hidden.

• 0 = Visible (default)

• 1 = Hidden

LINESTYLE

Set this keyword to a pre-defined line style integer:

• 0 = solid line (default)

• Black • Red • Green • Yellow

• Blue • Magenta • Cyan • Dark Gray

• Light Gray • Brown • Light Red • Light Green

• Light Blue • Light Cyan • Light Magenta • White
Obsolete IDL Features LIVE_LINE

100 Chapter 2: Obsolete Routines
• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot

• 5 = long dash

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.

NAME

Set this keyword equal to a string containing the name to be associated with this item.
The name must be unique within the given window or buffer (WINDOW_IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining names of the modified
visualization’s properties. The fields of the structure are shown in the following table.

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name the line created

Table 2-18: Fields of the LIVE_LINE Reference Structure
LIVE_LINE Obsolete IDL Features

Chapter 2: Obsolete Routines 101
THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickness
to be used to draw the line, in pixels. The default is one pixel.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool
visualization. The VIS field from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LIVE_LINE, WINDOW_IN='Live Plot 2', $
VISUALIZATION_IN='line plot visualization'

; Units are in the visualization units (based on axis ranges).

Version History

Introduced: 5.1

See Also

LIVE_RECT, LIVE_TEXT
Obsolete IDL Features LIVE_LINE

102 Chapter 2: Obsolete Routines
LIVE_LOAD

The LIVE_LOAD procedure loads into memory the complete set of routines
necessary to run all LIVE tools. By default, portions of the set are loaded when first
needed during the IDL session. If you expect to frequently use the tools, you may
wish to call LIVE_LOAD from your IDL “startup file”.

Syntax

 LIVE_LOAD

Arguments

None

Keywords

None

Version History

Introduced: 5.2
LIVE_LOAD Obsolete IDL Features

Chapter 2: Obsolete Routines 103
LIVE_OPLOT

The LIVE_OPLOT procedure allows the insertion of data into pre-existing plots.

Syntax

LIVE_OPLOT, Yvector1 [,... , Yvector25] [, ERROR=variable]
[, INDEPENDENT=vector] [, NAME=structure] [, /NEW_AXES]
[, /NO_DRAW] [, /NO_SELECTION] [, REFERENCE_OUT=variable]
[, REPLACE={structure | {0 | 1 | 2 | 3 | 4}}] [, SUBTYPE={‘LinePlot’ |
‘ScatterPlot’ | ‘Histogram’ | ‘PolarPlot’}] [, VISUALIZATION_IN=string]
[, WINDOW_IN=string] [, {X | Y}_TICKNAME=array] [, {X |
Y}AXIS_IN=string]

Arguments

YVector

A vector argument of data. Up to 25 of these arguments may be specified.

Keywords

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

INDEPENDENT

Set this keyword to an independent vector specifying the X-Values for
LIVE_OPLOT.

NAME

Set this keyword to a structure containing suggested names for the data items to be
created for this visualization. See the REPLACE keyword for details on how they
Obsolete IDL Features LIVE_OPLOT

104 Chapter 2: Obsolete Routines
will be used. The fields of the structure are as follows. (Any or all of the tags may be
set.)

The default for a field is to use the given variable name. If the variable does not have
a name (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in a round-robin fashion if more data than names
are input.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

NEW_AXES

Set this keyword to generate a new set of axes for this plot line. If this keyword is
specified, the [XY]AXIS_IN keywords will not be used.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

Tag Description

DATA Dependent Data Name(s)

I Independent Data Name

Table 2-19: Fields of the NAME keyword

Tag Description

WIN Window Name

VIS Visualization Name

Table 2-20: Fields of the LIVE_OPLOT Reference Structure
LIVE_OPLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 105
REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
already existing in the given window or buffer (WINDOW_IN).

XAXIS X-Axis Name

YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)

LEGEND Legend Name

DATA Dependent Data Name(s)

I Independent Data Name

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items will be
deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause dynamic
updating to occur for any current uses, e.g., a visualization would
redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names (e.g.,
data input as an expression rather than a named variable, with no name
provided via the NAME keyword). Option 3 will be used for all
named items.

Table 2-21: REPLACE keyword Settings and Action Taken

Tag Description

Table 2-20: Fields of the LIVE_OPLOT Reference Structure (Continued)
Obsolete IDL Features LIVE_OPLOT

106 Chapter 2: Obsolete Routines
SUBTYPE

Set this keyword to a string (case-insensitive) containing the desired type of plot.
SUBTYPE defaults to whatever is being inserted into, if the [XY]AXIS_IN keyword
is set. If the keywords are not set, then the default is line plot. Valid strings are:

• ‘LinePlot’ (default)

• ‘ScatterPlot’

• ‘Histogram’

• ‘PolarPlot’

Note
If inserting into a group (defined by the set of axes) that is polar, SUBTYPE cannot
be defined as line, scatter, or histogram. The opposite is also true: if inserting into a
line, scatter, or histogram group, then SUBTYPE cannot be defined as polar.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool
visualization. The VIS field from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equals the values computed from the data range.
LIVE_OPLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 107
XAXIS_IN

Set this keyword equal to the string name of an existing axis. The name can be
obtained from the REFERENCE_OUT keyword, or visually from the GUI. The
default is to use the first set of axes in the plot.

Note
If this keyword is set, you must also set the YAXIS_IN keyword, and both
keywords must be set to a “pair” of axes. The X and Y axes given must be
associated with the same plot line.

YAXIS_IN

Set this keyword equal to the string name of an existing axis. The name can be
obtained from the REFERENCE_OUT keyword, or visually from the GUI. The
default is to use the first set of axes in the plot.

Note
If this keyword is set, you must also set the XAXIS_IN keyword, and both
keywords must be set to a “pair” of axes. The X and Y axes given must be
associated with the same plot line.

Examples

LIVE_OPLOT, tempData, pressureData

Version History

Introduced: 5.1

See Also

LIVE_PLOT, PLOT, OPLOT
Obsolete IDL Features LIVE_OPLOT

108 Chapter 2: Obsolete Routines
LIVE_PLOT

The LIVE_PLOT procedure creates an interactive plotting environment.

Click on a section of the plot to display a properties dialog. A set of buttons in the
upper left corner of the image window allows you to print, undo the last operation,
redo the last “undone” operation, copy, draw a line, draw a rectangle, or add text.

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 61 for an explanation.

Syntax

LIVE_PLOT, Yvector1 [, Yvector2,..., Yvector25] [, /BUFFER]
[, DIMENSIONS=[width, height]{normal units}] [, /DOUBLE]
[, DRAW_DIMENSIONS=[width, height]{devive units}] [, ERROR=variable]
[, /HISTOGRAM | , /LINE | , /POLAR | , /SCATTER] [, /INDEXED_COLOR]
[, INSTANCING={-1 | 0 | 1}] [, LOCATION=[x, y]{normal units}]
[, INDEPENDENT=vector] [, /MANAGE_STYLE] [, NAME=structure]
[, /NO_DRAW] [, /NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]
[, PARENT_BASE=widget_id | , TLB_LOCATION=[Xoffset, Yoffset]{device
units}] [, PREFERENCE_FILE=filename{full path}]
[, REFERENCE_OUT=variable] [, RENDERER={0 | 1}]
[, REPLACE={structure | {0 | 1 | 2 | 3 | 4}}] [, STYLE=name_or_reference]
[, TEMPLATE_FILE=filename] [, TITLE=string] [, WINDOW_IN=string] [, {/X
| /Y}LOG] [, {X | Y}RANGE=[min, max]{data units}] [, {X |
Y}_TICKNAME=array]

Figure 2-3: LIVE_PLOT Properties Dialog

Print Undo Redo Copy Line Rectangle Text
LIVE_PLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 109
Arguments

YVector

A vector of data. Up to 25 of these arguments may be specified. If any of the data is
stored in IDL variables of type DOUBLE, LIVE_PLOT uses double precision to
store the data and to draw the result.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIVE window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element, floating-point vector specifying the dimensions of
the visualization in normalized coordinates. The default is [1.0, 1.0].

DOUBLE

Set this keyword to force LIVE_PLOT to use double-precision to draw the result.
This has the same effect as specifying data in the YVector argument using IDL
variables of type DOUBLE.

DRAW_DIMENSIONS

Set this keyword equal to a vector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.
Obsolete IDL Features LIVE_PLOT

110 Chapter 2: Obsolete Routines
Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

HISTOGRAM

Set this keyword to represent plot values as a histogram.

INDEPENDENT

Set this keyword to an independent vector specifying X-values for LIVE_PLOT.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) is to
use instancing if and only if the “software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LINE

Set this keyword to represent plot values as a line plot. This is the default. Alternate
choices are provided by keywords HISTOGRAM, POLAR, and SCATTER.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STYLE keyword is not
set to a style item.
LIVE_PLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 111
NAME

Set this keyword to a structure containing suggested names for the data items to be
created for this visualization. See the REPLACE keyword for details on how they
will be used. The fields of the structure are as follows. (Any or all of the tags may be
set.)

The default for a field is to use the given variable name. If the variable does not have
a name (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in a round-robin fashion if more data than names
are input.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.

NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
a LIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. To insert a tool into your widget
application, you must determine the setting from the parent base sent to the tool.
LIVE_DESTROY on a window is recommended when using PARENT_BASE so
that proper memory cleanup is done. Destroying the parent base is not sufficient.

Tag Description

DATA Dependent Data Name(s)

I Independent Data Name

Table 2-22: Fields of the NAME keyword
Obsolete IDL Features LIVE_PLOT

112 Chapter 2: Obsolete Routines
Note
When specifying a PARENT_BASE, that parent base must be running in a non-
blocking mode. Putting a LIVE tool into a realized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.

POLAR

Set this keyword to represent plot values as a polar plot. In this case, the arguments to
LIVE_PLOT represent values of r (radius), while the INDEPENDENT keyword
represents the values of T (angle theta). If POLAR is set, you must specify
INDEPENDENT.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) is to use the setting in the IDL Workbench preferences; if
the IDL Workbench is not running, however, the default is hardware rendering. For
more information, see “Hardware vs. Software Rendering” in the Using IDL manual.

Tag Description

WIN Window Name

VIS Visualization Name

XAXIS X-Axis Name

YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)

LEGEND Legend Name

DATA Dependent Data Name(s)

I Independent Data Name

Table 2-23: Fields of the LIVE_PLOT Reference Structure
LIVE_PLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 113
REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
already existing in the given window or buffer (WINDOW_IN).

SCATTER

Set this keyword to represent plot values as a scatter plot.

STYLE

Set this keyword to either a string specifying a style name created with
LIVE_STYLE.

Note
If STYLE is not set, the default plot style will be used.

TITLE

Set this keyword to a string specifying the title to give the main window. It must not
already be in use. A default will be chosen if no title is specified.

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items
will be deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause
dynamic updating to occur for any current uses, e.g., a
visualization would redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names
(e.g., data input as an expression rather than a named variable,
with no name provided via the NAME keyword). Option 3 will be
used for all named items.

Table 2-24: REPLACE keyword Settings and Action Taken
Obsolete IDL Features LIVE_PLOT

114 Chapter 2: Obsolete Routines
TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XLOG

Set this keyword to make the X axis a log axis. The default is 0 (linear axis).

YLOG

Set this keyword to make the Y axis a log axis. The default is 0 (linear axis).

XRANGE

Set this keyword equal to a two-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to a two-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the data range.

X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equals the values computed from the data range.
LIVE_PLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 115
Examples

; Plot two data sets simultaneously:
LIVE_PLOT, tempdata, pressureData

Note
This is a “Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal data item. For
example, if one does the following:

Y= indgen(10)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc1
Y = indgen(20)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc2

The first plot will update to use the Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks” of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LIVE_PLOT, Y1,...
LIVE_PLOT, Y2,...

or

LIVE_PLOT, Y,...
LIVE_PLOT, myFunc(Y),...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable is input.

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

Version History

Introduced: 5.0

See Also

LIVE_OPLOT, PLOT, OPLOT
Obsolete IDL Features LIVE_PLOT

116 Chapter 2: Obsolete Routines
LIVE_PRINT

The LIVE_PRINT procedure allows the user to print a given window to the printer.

Syntax

LIVE_PRINT [, /DIALOG] [, ERROR=variable] [, WINDOW_IN=string]

Arguments

None

Keywords

DIALOG

Set this keyword to have a print dialog appear.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Obsolete Keywords

The following keywords are obsolete:

• SETUP

For information on obsolete keywords, See Appendix I, “Obsolete Features”.
LIVE_PRINT Obsolete IDL Features

Chapter 2: Obsolete Routines 117
Examples

LIVE_PRINT, WINDOW_IN='Live Plot 2'

Version History

Introduced: 5.1

See Also

DIALOG_PRINTERSETUP, DIALOG_PRINTJOB
Obsolete IDL Features LIVE_PRINT

118 Chapter 2: Obsolete Routines
LIVE_RECT

The LIVE_RECT procedure is an interface for insertion of rectangles.

Syntax

LIVE_RECT [, COLOR='color name'] [, /DIALOG] [, DIMENSIONS=[width,
height]] [, ERROR=variable] [, /HIDE] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, LOCATION=[x, y]] [, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]
[, REFERENCE_OUT=variable] [, THICK=pixels{1 to 10}]
[, VISUALIZATION_IN=string] [, WINDOW_IN=string]

Arguments

None

Keywords

COLOR

Set this keyword to a string (case-sensitive) of the color to be used for the rectangle.
The default is ‘Black’. The following colors are available:

DIALOG

Set this keyword to have the rectangle dialog appear. This dialog will fill in known
attributes from set keywords.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, height]
to specify the dimensions of the rectangle in normalized coordinates. The default is
[0.2, 0.2].

• Black • Red • Green • Yellow

• Blue • Magenta • Cyan • Dark Gray

• Light Gray • Brown • Light Red • Light Green

• Light Blue • Light Cyan • Light Magenta • White
LIVE_RECT Obsolete IDL Features

Chapter 2: Obsolete Routines 119
ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

HIDE

Set this keyword to a boolean value indicating whether this item should be hidden.

• 0 = Visible (default)

• 1 = Hidden

LINESTYLE

Set this keyword to a pre-defined line style integer:

• 0 = Solid line (default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot

• 5 = long dash

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.
Obsolete IDL Features LIVE_RECT

120 Chapter 2: Obsolete Routines
NAME

Set this keyword equal to a string containing the name to be associated with this item.
The name must be unique within the given window or buffer (WINDOW_IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickness
to be used to draw the line, in pixels. The default is one pixel.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool
visualization. The VIS field from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name the rectangle created

Table 2-25: Fields of the LIVE_RECT Reference Structure
LIVE_RECT Obsolete IDL Features

Chapter 2: Obsolete Routines 121
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LIVE_RECT, LOCATION=[0.1,0.1],DIMENSIONS=[0.2,0.2],$
WINDOW_IN='Live Plot 2',VISUALIZATION_IN='line plot'

Version History

Introduced: 5.1

See Also

LIVE_LINE, LIVE_TEXT
Obsolete IDL Features LIVE_RECT

122 Chapter 2: Obsolete Routines
LIVE_STYLE

The LIVE_STYLE function allows the user to create a style.

Syntax

Style = LIVE_STYLE ({ 'contour' | 'image' | 'plot' | 'surface'}
[, BASE_STYLE=style_name] [, COLORBAR_PROPERTIES=structure]
[, ERROR=variable] [, GRAPHIC_PROPERTIES=structure]
[, GROUP=widget_id] [, LEGEND_PROPERTIES=structure] [, NAME=string]
[, /SAVE] [, TEMPLATE_FILE=filename]
[, VISUALIZATION_PROPERTIES=structure] [, {X | Y |
Z}AXIS_PROPERTIES=structure])

Arguments

Type

A string (case-insensitive) specifying the visualization style type. Available types
include: plot, contour, image, and surface.

Keywords

BASE_STYLE

Set this keyword equal to a string (case-insensitive) containing the name of a
previously saved style. It will be used for defaulting unspecified properties. If not
specified, only those properties you provide will be put into the style. The basic styles
that will always exist include:

Visualization Type Style Name

plot ‘Basic Plot’

contour ‘Basic Contour’

image ‘Basic Image’

surface ‘Basic Surface’

Table 2-26: Base Style Strings
LIVE_STYLE Obsolete IDL Features

Chapter 2: Obsolete Routines 123
COLORBAR_PROPERTIES

The table below lists the structure of the COLORBAR_PROPERTIES keyword.

Tag Description

title_FontSize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other is
a valid name of a font on the local system)

title_Color see color table

tick_FontSize see fontsize

tick_Fontname see fontname

tick_FontColor see color table

color see color table

thick 1 to 10 pixels

location [x, y] normalized units

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

tickLen normalized units * 100 = percent of visualization dimensions

subticklen normalized units * 100 = percent of ticklen

tickFormat see format

show_axis set to display the colorbar axis

show_outline set to display the colorbar outline

axis_thick see thick

dimensions [width, height] normalized units

hide 1=hidden, 0=visible

Table 2-27: Colorbar Properties Structure
Obsolete IDL Features LIVE_STYLE

124 Chapter 2: Obsolete Routines
GRAPHIC_PROPERTIES

Set this keyword equal to a scalar or vector of structures defining the graphic
properties to use in creating the style. (Use a vector if you want successive graphics
to have different properties, e.g., different colored lines in a line plot. The structures
are used in a round-robin fashion.) Not all properties need be specified (see
BASE_STYLE). The complete structure definitions are listed in the following tables.
LIVE_STYLE Obsolete IDL Features

Chapter 2: Obsolete Routines 125
Plots

Images

Contours

Tag Data Type/Description

color string (see color table)

hide boolean (1=hidden, 0=visible)

linestyle integer (0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot
dot, 5=long dash)

nSum integer (1 to number of elements to average over)

symbol_size [x,y] normalized units relative to the visualization

symbol_type integer (1-7)

thick integer (1 to 10 pixels)

Table 2-28: Plot Graphic Properties Structure

Tag Data Type/Description

hide boolean (1=hidden, 0=visible)

order boolean (set to draw from top to bottom)

sizing_constraint integer (0=natural, 1=aspect, 2=unrestricted)

Table 2-29: Image Graphic Properties Structure

Tag Data Type/Description

downhill boolean (set to display downhill tick marks)

fill boolean (set to display contour levels as filled)

hide boolean (1=hidden, 0=visible)

n_levels integer (number of levels)

Table 2-30: Contour Graphic Properties Structure
Obsolete IDL Features LIVE_STYLE

126 Chapter 2: Obsolete Routines
Surfaces

GROUP

Set this keyword to the widget ID of the group leader for error message display. This
keyword is used only when the ERROR keyword is not set. If only one LIVE tool
window is present in the IDL session, it will default to that.

c_thick vector of thickness values

c_linestyle vector of linestyle values

c_color vector of color names

default_n_levels integer (set to default number of levels)

Tag Data Type/Description

bottom string (see color table)

color string (see color table)

hidden_lines boolean (1=don’t show, 0=show)

hide boolean (1=hidden, 0=visible)

lineStyle integer (0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash
dot dot, 5=long dash)

shading boolean (0=flat, 1=Gouraud)

show_skirt boolean (1=show, 0=don’t show)

skirt float (z value at which skirt is drawn [data units])

style integer (0=point, 1=wire, 2=solid, 3=ruledXZ, 4=ruledYZ,
5=lego (wire), 6=lego (solid))

thick integer (1 to 10 pixels)

Table 2-31: Surface Graphic Properties Structure

Tag Data Type/Description

Table 2-30: Contour Graphic Properties Structure (Continued)
LIVE_STYLE Obsolete IDL Features

Chapter 2: Obsolete Routines 127
LEGEND_PROPERTIES

Set this keyword equal to a structure defining the legend properties to use in creating
the style. Not all properties need be specified (see BASE_STYLE). The complete
structure definitions for different types of styles are listed in the following tables.

Tag Description

title_FontSize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other
is a valid name of a font on the local system)

title_Color see color table

item_fontSize see fontsize

item_fontName see fontname

text_color see color

border_gap normalized units * 100 = percent of item text height

columns number of columns to display the items in (minimum 0)

gap normalized units * 100 = percent of item text height

glyph_Width normalized units * 100 = percent of item text height

fill_color see color table

outline_color see color table

outline_thick see thick

location [x, y] normalized units

show_fill set to display the fill color

show_outline set to display the legend outline

hide 1=hidden, 0=visible

Table 2-32: Legend Properties Structure
Obsolete IDL Features LIVE_STYLE

128 Chapter 2: Obsolete Routines
NAME

Set this keyword to a string containing a name for the returned style. If the SAVE
keyword is set, the name must be unique template file. If not specified, a name will be
automatically generated.

SAVE

Set this keyword to save the style in the template file. The supplied Name must not
already exist in the template file or an error will be returned.

VISUALIZATION_PROPERTIES

Set this keyword equal to a structure defining the visualization properties to use in
creating the style. Not all properties need be specified (see BASE_STYLE). The
complete structure definition is in the following table.

XAXIS_PROPERTIES, YAXIS_PROPERTIES,
ZAXIS_PROPERTIES

Set these keywords equal to a scalar or vector of structures defining the axis
properties to use in creating the style. (Use a vector to specify property structures for
successive axes of the same direction have different properties. The structures are
used in a round-robin fashion.) Not all properties need be specified (see
BASE_STYLE). The user need only define the fields of the structure they wish to be

Tag Data Type

color string (see color table) for background

hide boolean

transparent boolean

Table 2-33: Visualization Properties Structure
LIVE_STYLE Obsolete IDL Features

Chapter 2: Obsolete Routines 129
different from the BASE style. The complete structure definition is shown in the
following table.

Examples

Style=LIVE_STYLE('plot',BASE_STYLE='basic plot', $
GRAPHIC_PROPERTIES={color:'red'})

Version History

Introduced: 5.1

See Also

LIVE_INFO, LIVE_CONTROL

Tag Data Type

color string (see color table)

default_major integer

default_minor integer

exact boolean

gridstyle integer (0-5) (linestyle)

hide boolean

location 3-element floating vector (normalized units)

major integer (default=-1, computed by IDL)

minor integer (default=-1, computed by IDL)

thick integer (1-10)

tickDir integer

tickLen float (normalized units)

tick_fontname string

tick_fontsize integer

Table 2-34: Axis Properties Structure
Obsolete IDL Features LIVE_STYLE

130 Chapter 2: Obsolete Routines
LIVE_SURFACE

The LIVE_SURFACE procedure creates an interactive plotting environment for
multiple surfaces. Because the interactive environment requires extra system
resources, this routine is most suitable for relatively small data sets. If you find that
performance does not meet your expectations, consider using the Direct Graphics
SURFACE routine or the Object Graphics IDLgrSurface class directly.

After LIVE_SURFACE has been executed, you can double-click on a section of the
surface to display a properties dialog. A set of buttons in the upper left corner of the
image window allows you to print, undo the last operation, redo the last “undone”
operation, copy, draw a line, draw a rectangle, or add text.

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 61 for an explanation.

Syntax

LIVE_SURFACE, Data, Data2,... [, /BUFFER] [, DIMENSIONS=[width,
height]{normal units}] [, /DOUBLE] [, DRAW_DIMENSIONS=[width,
height]{devive units}] [, ERROR=variable] [, /INDEXED_COLOR]
[, INSTANCING={-1 | 0 | 1}] [, LOCATION=[x, y]{normal units}]
[, /MANAGE_STYLE] [, NAME=structure] [, /NO_DRAW]
[, /NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]
[, PARENT_BASE=widget_id | , TLB_LOCATION=[Xoffset, Yoffset]{device
units}] [, PREFERENCE_FILE=filename{full path}]
[, REFERENCE_OUT=variable] [, RENDERER={0 | 1}]
[, REPLACE={structure | {0 | 1 | 2 | 3 | 4}}] [, STYLE=name_or_reference]
[, TEMPLATE_FILE=filename] [, TITLE=string] [, WINDOW_IN=string] [, {X
| Y}INDEPENDENT=vector] [, {/X | /Y}LOG] [, {X | Y}RANGE=[min,
max]{data units}] [, {X | Y}_TICKNAME=array]

Figure 2-4: LIVE_SURFACE Properties Dialog

Print Undo Redo Copy Line Rectangle Text
LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 131
Arguments

Data

A vector of data. Up to 25 of these arguments may be specified. If any of the data is
stored in IDL variables of type DOUBLE, LIVE_SURFACE uses double-precision
to store the data and to draw the result.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIVE window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, height]
specifying the dimensions of the visualization in normalized coordinates. The default
is [1.0, 1.0].

DOUBLE

Set this keyword to force LIVE_SURFACE to use double-precision to draw the
result. This has the same effect as specifying data in the Data argument using IDL
variables of type DOUBLE.

DRAW_DIMENSIONS

Set this keyword equal to a vector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.
Obsolete IDL Features LIVE_SURFACE

132 Chapter 2: Obsolete Routines
Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) is to
use instancing if and only if the “software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STYLE keyword is not
set to a style item.

NAME

Set this keyword to a structure containing suggested names for the data items to be
created for this visualization. See the REPLACE keyword for details on how they
LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 133
will be used. The fields of the structure are as follows. (Any or all of the tags may be
set.)

The default for a field is to use the given variable name. If the variable does not have
a name (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in a round-robin fashion if more data than names
are input.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display

NO_STATUS

Set this keyword to prevent the creation of the status bar.

NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
a LIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert a tool into their own widget application will determine the setting
from the parent base sent to the tool.

Tag Description

DATA Dependent Data Name(s)

IX Independent X Data Name

IY Independent Y Data Name

Table 2-35: Fields of the NAME keyword
Obsolete IDL Features LIVE_SURFACE

134 Chapter 2: Obsolete Routines
Note
LIVE_DESTROY on a window is recommended when using PARENT_BASE so
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in a non-
blocking mode. Putting a LIVE tool into a realized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table.

RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) is to use the setting in the IDL Workbench preferences; if
the IDL Workbench is not running, however, the default is hardware rendering. For

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name(s)

XAXIS X-Axis Name

YAXIS Y-Axis Name

ZAXIS Z-Axis Name

LEGEND Legend Name

DATA Dependent Data Name(s)

IX Independent X Data Name

IY Independent Y Data Name

Table 2-36: Fields of the LIVE_SURFACE Reference Structure
LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 135
more information, see “Hardware vs. Software Rendering” in the Objects and Object
Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
already existing in the given window or buffer (WINDOW_IN).

STYLE

Set this keyword to either a string specifying a style name created with
LIVE_STYLE.

TITLE

Set this keyword to a string specifying the title to give the main window. It must not
already be in use. A default will be chosen if no title is specified.

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items will be
deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause dynamic
updating to occur for any current uses, e.g., a visualization would
redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names (e.g.,
data input as an expression rather than a named variable, with no name
provided via the NAME keyword). Option 3 will be used for all named
items.

Table 2-37: REPLACE keyword Settings and Action Taken
Obsolete IDL Features LIVE_SURFACE

136 Chapter 2: Obsolete Routines
TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XINDEPENDENT

Set this keyword to a vector specifying X values for LIVE_SURFACE. The default is
the data’s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

YINDEPENDENT

Set this keyword to a vector specifying Y values for LIVE_SURFACE. The default is
the data’s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

XLOG

Set this keyword to make the X axis a log axis. The default is 0 (linear axis).

YLOG

Set this keyword to make the Y axis a log axis. The default is 0 (linear axis).
LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 137
XRANGE

Set this keyword equal to a two-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to a two-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the data range.

X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equals the values computed from the data range.

Examples

This example visualizes two surface representations. To manipulate any part of the
surface, double click on surface to access a graphical user interface:

LIVE_SURFACE, tempData, pressureData

Note
This is a “Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal data item. For
example, if one does the following:

Y = indgen(10)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc1
Y = indgen(20)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc2

The first plot will update to use the Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks” of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LIVE_PLOT, Y1,...
LIVE_PLOT, Y2,...
Obsolete IDL Features LIVE_SURFACE

138 Chapter 2: Obsolete Routines
or;

LIVE_PLOT, Y,...
LIVE_PLOT, myFunc(Y),...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable is input.

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

Version History

Introduced: 5.0

See Also

SURFACE, SHADE_SURF
LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 139
LIVE_TEXT

The LIVE_TEXT procedure is an interface for text annotation. You can control your
LIVE window after it is created using any of several auxiliary routines. See
“LIVE_Tools” on page 61 for an explanation.

Syntax

LIVE_TEXT[, Text] [, ALIGNMENT=value{0.0 to 1.0}] [, COLOR='color name']
[, /DIALOG] [, /ENABLE_FORMATTING] [, ERROR=variable]
[, FONTNAME=string] [, FONTSIZE=points{9 to 72}] [, /HIDE]
[, LOCATION=[x, y]] [, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]
[, REFERENCE_OUT=variable] [, TEXTANGLE=value{0.0 to 360.0}]
[, VERTICAL_ALIGNMENT=value{0.0 to 1.0}]
[, VISUALIZATION_IN=string] [, WINDOW_IN=string]

Arguments

Text

The string to be used for the text annotation. The default is “Text”. If Text is an array
of strings, each element of the string array will appear on a separate line.

Keywords

ALIGNMENT

Set this keyword to a floating-point value between 0.0 and 1.0 to indicate the
horizontal alignment of the text. The alignment scheme is as follows:

1.0---- -----0.5----- ---0.0

Left Middle Right

COLOR

Set this keyword to a string (case-sensitive) of the foreground color to be used for the
text. The default is ‘Black’. The following colors are available:

• Black • Red • Green • Yellow

• Blue • Magenta • Cyan • Dark Gray
Obsolete IDL Features LIVE_TEXT

140 Chapter 2: Obsolete Routines
DIALOG

Set this keyword to have the text annotation dialog appear. This dialog will fill in
known attributes from set keywords.

ENABLE_FORMATTING

Set this keyword to have LIVE_TEXT interpret “!” (exclamation mark) as font and
positioning commands.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

FONTNAME

Set this keyword to a string containing the name of the desired font. The default is
Helvetica.

FONTSIZE

Set this keyword to an integer scalar specifying the font point size to be used. The
default is 12. Available point sizes are 9 through 72.

HIDE

Set this keyword to a boolean value indicating whether this item should be drawn:

• 0 = Draw (default)

• 1 = Do not draw

• Light Gray • Brown • Light Red • Light Green

• Light Blue • Light Cyan • Light Magenta • White
LIVE_TEXT Obsolete IDL Features

Chapter 2: Obsolete Routines 141
LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.

NAME

Set this keyword equal to a string containing the name to be associated with this item.
The name must be unique within the given window or buffer (WINDOW_IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table:

TEXTANGLE

Set this keyword to a floating-point value defining the angle of rotation of the text.
The valid range is from 0.0 to 360.0. The default is 0.0.

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name the text created

Table 2-38: Fields of the LIVE_TEXT Reference Structure
Obsolete IDL Features LIVE_TEXT

142 Chapter 2: Obsolete Routines
VERTICAL_ALIGNMENT

Set this keyword to a floating-point value between 0.0 and 1.0 to indicate the vertical
alignment of the text baseline. The alignment scheme is as follows:

0.0 Top
.
0.5 Middle
.
1.0 Bottom

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool
visualization. The VIS field from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LIVE_TEXT, 'My Annotation', WINDOW_IN='Live Plot 2', $
VISUALIZATION_IN='line plot visualization'

Version History

Introduced: 5.1

See Also

LIVE_LINE, LIVE_RECT
LIVE_TEXT Obsolete IDL Features

Chapter 2: Obsolete Routines 143
LJLCT

This routine is obsolete and should not be used in new IDL code.

The LJLCT procedure loads standard color tables for LJ-250/252 printer. The color
tables are modified only if the device is currently set to “LJ”.

The default color maps used are for the 90 dpi color palette. There are only 8 colors
available at 180 dpi.

If the current device is ‘LJ’, the !D.N_COLORS system variable is used to determine
how many bit planes are in use (1 to 4). The standard color map for that number of
planes is loaded. These maps are described in Chapter 7 of the LJ250/LJ252
Companion Color Printer Programmer Reference Manual, Table 7-5. That manual
gives the values scaled from 1 to 100, LJLCT scales them from 0 to 255.

This routine is written in the IDL language. Its source code can be found in the file
ljlct.pro in the lib subdirectory of the IDL distribution.

Syntax

LJLCT

Example

; Set plotting to the LJ device:
SET_PLOT, 'LJ'

; Load the LJ color tables:
LJLCT
Obsolete IDL Features LJLCT

144 Chapter 2: Obsolete Routines
MSG_CAT_CLOSE

The MSG_CAT_CLOSE procedure closes a catalog file from the stored cache.

Syntax

MSG_CAT_CLOSE, object

Arguments

object

The object reference returned from MSG_CAT_OPEN.

Keywords

None

Version History

Introduced: 5.2.1

See Also

MSG_CAT_COMPILE, MSG_CAT_OPEN, IDLffLanguageCat
MSG_CAT_CLOSE Obsolete IDL Features

Chapter 2: Obsolete Routines 145
MSG_CAT_COMPILE

The MSG_CAT_COMPILE procedure creates an IDL language catalog file.

Note
The locale is determined from the system locale in effect when compilation takes
place.

Syntax

MSG_CAT_COMPILE, input[, output] [, LOCALE_ALIAS=string] [, /MBCS]

Arguments

input

The input file with which to create the catalog. The file is a text representation of the
key/MBCS association. Each line in the file must have a key. The language string
must then be surrounded by double quotes, then an optional comment.

For example:

VERSION "Version 1.0" My revision number of the file

There are 2 special tags, one of which must be included when creating the file:

APPLICATION (required)

SUB_QUERY (optional)

output

The optional output file name (including path if necessary) of the IDL language
catalog file.

The naming convention for IDL language catalog files is as follows:

idl_ + "Application name" + _ + "Locale" + .cat

For example:

idl_envi_usa_eng.cat

If not set, a default filename is used based on the locale:

idl_[locale].cat
Obsolete IDL Features MSG_CAT_COMPILE

146 Chapter 2: Obsolete Routines
Keywords

LOCALE_ALIAS

Set this keyword to a scalar string containing any locale aliases for the locale on
which the catalog is being compiled. A semi-colon is used to separate locales.

For example:

MSG_CAT_COMPILE,'input.txt', 'idl_envi_usa_eng.cat',$
LOCALE_ALIAS='C'

MBCS

If set, this procedure assumes language strings to be in MBCS format. The default is
8-bit ASCII.

Version History

Introduced: 5.2.1

See Also

MSG_CAT_CLOSE, MSG_CAT_OPEN, IDLffLanguageCat
MSG_CAT_COMPILE Obsolete IDL Features

Chapter 2: Obsolete Routines 147
MSG_CAT_OPEN

The MSG_CAT_OPEN function opens a specified catalog object file.

Syntax

Result = MSG_CAT_OPEN(application [, DEFAULT_FILENAME=filename]
[, FILENAME=string] [, FOUND=variable] [, LOCALE=string] [, PATH=string]
[, SUB_QUERY=value])

Return Value

Returns a catalog object for the given parameters if found. If a match is not found, an
unset catalog object is returned. If unset, the IDLffLanguageCat::Query method will
always return the empty string unless a default catalog is provided.

Arguments

application

A scalar string representing the name of the desired application's catalog file.

Keywords

DEFAULT_FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open if the initial request was not found.

FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open. If this keyword is set, application, PATH and LOCALE are ignored.

FOUND

Set this keyword to a named variable that will contain 1 if a catalog file was found, 0
otherwise.
Obsolete IDL Features MSG_CAT_OPEN

148 Chapter 2: Obsolete Routines
LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current locale
is used.

PATH

Set this keyword to a scalar string containing the path to search for language catalog
files. The default is the current directory.

SUB_QUERY

Set this keyword equal to the value of the SUB_QUERY key to search against. If a
match is found, it is used to further sub-set the possible return catalog choices.

Version History

Introduced: 5.2.1

See Also

MSG_CAT_CLOSE, MSG_CAT_COMPILE, IDLffLanguageCat
MSG_CAT_OPEN Obsolete IDL Features

Chapter 2: Obsolete Routines 149
ONLINE_HELP_PDF_INDEX

The ONLINE_HELP_PDF_INDEX procedure displays a searchable index of the
IDL PDF documentation set. It is available only on UNIX platforms that support the
IDL-Acrobat plug-in. (For more information on the IDL Acrobat plug-in, see “About
IDL’s Online Help System” in Chapter 16 of the Building IDL Applications manual.)

Warning
ONLINE_HELP_PDF_INDEX is not supported in IDL releases after IDL 6.2.

ONLINE_HELP_PDF_INDEX is a widget-based graphical application. The
interface and its controls are described in “Using ONLINE_HELP_PDF_INDEX” on
page 150.

Warning
The ONLINE_HELP_PDF_INDEX procedure relies on the presence of the file
mindex.txt in the Help subdirectory of the IDL distribution. If this file is not
present, ONLINE_HELP_PDF_INDEX will exit with an error.

This routine is written in the IDL language. Its source code can be found in the file
online_help_pdf_index.pro in the lib subdirectory of the IDL distribution.

Syntax

ONLINE_HELP_PDF_INDEX [, SearchTerm]

Arguments

SearchTerm

A scalar string containing a term to be located in the IDL master index. SearchTerm
will be loaded into the ONLINE_HELP_PDF_INDEX widget application’s search
field, and the index list will scroll to the top-level index entry that most closely
matches SearchTerm.

Note
See “The “Always Show This List” Checkbox” on page 151 for information on
modifying this behavior.
Obsolete IDL Features ONLINE_HELP_PDF_INDEX

150 Chapter 2: Obsolete Routines
Keywords

None.

Using ONLINE_HELP_PDF_INDEX

The ONLINE_HELP_PDF_INDEX utility presents a widget interface with two tabs:
one that allows searching in and selecting items from the IDL Master Index, and one
that allows the user to define topics of interest within the IDL PDF documentation
set.

Using the Index Tab

The IDL Master Index is a single document that includes index entries for the entire
IDL documentation set. It is included in the help subdirectory of the IDL
distribution in an Adobe Acrobat PDF version (mindex.pdf) and a text-only version
(mindex.txt).

Figure 2-5: The ONLINE_HELP_PDF_INDEX Interface
ONLINE_HELP_PDF_INDEX Obsolete IDL Features

Chapter 2: Obsolete Routines 151
Selecting and Displaying Topics

To use the ONLINE_HELP_PDF_INDEX interface to search for a term in the master
index, select the Index tab and type into the Enter a search string field. The index
list will scroll automatically to the top-level index entry that most closely matches the
string you enter, and the first page number/book abbreviation combination will be
highlighted.

To display the selected page in the Adobe Acrobat viewer, click Display, press the
Enter key, or double-click on the highlighted entry using the mouse.

To switch between the search field and the index list, press the Tab key. When the
index list is selected, change the highlighted item using the arrow keys on your
keyboard.

Click Done to dismiss the Index widget.

The “Always Show This List” Checkbox

By default, the ONLINE_HELP_PDF_INDEX interface is displayed every time the
“?” or ONLINE_HELP command is used, even if SearchTerm is found and displayed
in the Adobe Acrobat viewer. Unchecking the Always Show This List checkbox on
the Index tab changes this behavior, and only displays the interface if SearchTerm is
not found in the PDF documentation set.

Using the Bookmarks Tab

To define personal topics of interest in the IDL documentation set, select the
Bookmarks tab.

To display the page associated with a bookmark in the Adobe Acrobat viewer:

1. Highlight the bookmark using the mouse or arrow keys.

2. Click Display, press the Enter key, or double-click on the highlighted entry
using the mouse.

To add a new bookmark:

1. Enter a descriptive string in the Bookmark text field.

2. Select a manual from the IDL documentation set from the Book pulldown
menu.

3. Enter the page number in the Page number field.

4. Click Add.

To modify an existing bookmark:
Obsolete IDL Features ONLINE_HELP_PDF_INDEX

152 Chapter 2: Obsolete Routines
1. Highlight the bookmark in the list.

2. Make the appropriate changes in the Bookmark text, Book pulldown list, and
Page number fields and click Edit.

To delete a bookmark, highlight the bookmark in the list and click Delete.

Note
There must be at least one bookmark. If you delete the only bookmark in the
bookmarks list, a new default bookmark will be created for you.

About Bookmarks

Each IDL user on a UNIX system has a personal bookmarks file that can be used to
store index-like references to pages in IDL’s PDF documentation set.

Note
Bookmarks into the PDF documentation set will work only for the version of IDL
with which they were created.

Like index entries, bookmarks refer to a specific page in one of the IDL manuals.
Because page numbers generally change when a new version of an IDL manual is
released, bookmarks from one release of IDL will typically not point to the same
information in the PDF files provided with a different release. This means that
when you install and run a new version of IDL, your existing bookmarks will no
longer be valid, and they will not be copied to the new bookmarks file.

Examples

On a UNIX platform that supports the IDL-Acrobat plug-in, entering “?” with no
search term at the IDL command prompt displays the ONLINE_HELP_PDF_INDEX
interface.
ONLINE_HELP_PDF_INDEX Obsolete IDL Features

Chapter 2: Obsolete Routines 153
PICKFILE

This routine is obsolete and should not be used in new IDL code.

The PICKFILE function has been renamed but retains the same functionality it had in
previous releases. See DIALOG_PICKFILE in the IDL Reference Guide.
Obsolete IDL Features PICKFILE

154 Chapter 2: Obsolete Routines
POLYFITW

This routine is obsolete and should not be used in new IDL code. To perform a
weighted polynomial fit, use the MEASURE_ERRORS keyword to POLY_FIT.

The POLYFITW function performs a weighted least-square polynomial fit with
optional error estimates and returns a vector of coefficients with a length of
NDegree+1.

The POLYFITW routine uses matrix inversion. A newer version of this routine,
SVDFIT, uses Singular Value Decomposition. The SVD technique is more flexible,
but slower. Another version of this routine, POLY_FIT, performs a least square fit
without weighting.

This routine is written in the IDL language. Its source code can be found in the file
polyfitw.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = POLYFITW(X, Y, Weights, NDegree [, Yfit, Yband, Sigma, Corrm]
[, /DOUBLE] [, STATUS=variable])

Arguments

X

An n-element vector of independent variables.

Y

A vector of independent variables, the same length as X.

Weights

A vector of weights, the same length as X and Y.

NDegree

The degree of the polynomial to fit.

Yfit

A named variable that will contain the vector of calculated Y values. These values
have an error of plus or minus Yband.
POLYFITW Obsolete IDL Features

Chapter 2: Obsolete Routines 155
Yband

A named variable that will contain the error estimate for each point.

Sigma

A named variable that will contain the standard deviation of the returned coefficients.

Corrm

A named variable that will contain the correlation matrix of the coefficients.

Keywords

DOUBLE

Set this keyword to force computations to be done in double-precision arithmetic.

STATUS

Set this keyword to a named variable to receive the status of the operation. Possible
status values are:

• 0 = Successful completion.

• 1 = Singular array (which indicates that the inversion is invalid). Result is
NaN.

• 2 = Warning that a small pivot element was used and that significant accuracy
was probably lost.

• 3 = Undefined (NaN) error estimate was encountered.

Note
If STATUS is not specified, any error messages will be output to the screen.

Tip
Status values of 2 or 3 can often be resolved by setting the DOUBLE keyword.
Obsolete IDL Features POLYFITW

156 Chapter 2: Obsolete Routines
REWIND

This routine is obsolete and should not be used in new IDL code.

The REWIND procedure rewinds the tape on the designated IDL tape unit. REWIND
is available only under VMS. See the description of the magnetic tape routines in
“VMS-Specific Information” in Chapter 8 of Application Programming.

Syntax

REWIND, Unit

Arguments

Unit

The magnetic tape unit to rewind. Unit must be a number between 0 and 9, and
should not be confused with standard file Logical Unit Numbers (LUNs).
REWIND Obsolete IDL Features

Chapter 2: Obsolete Routines 157
RIEMANN

This routine is obsolete and should not be used in new IDL code. RIEMANN has
been replaced by the RADON function.

The RIEMANN procedure computes the “Riemann sum” (or its inverse) which helps
implement the backprojection operator used to reconstruct the cross-section of an
object, given projections through the object from multiple directions. This technique
is widely used in medical imaging in the fields of computed x-ray tomography, MRI
imaging, Positron Emission Tomography (PET), and also has applications in other
areas such as seismology and astronomy. The inverse Riemann sum, which evaluates
the projections given a slice through an object, is also a discrete approximation to the
Radon transform.

Given a matrix A(m,n), which will contain the reconstructed slice; a vector P,
containing the ray sums for a given view; and an angle Theta measured in radians
from the vertical: the Riemann sum “backprojects” the vector P into A. For each
element of A, the value of the closest element of P is summed, leaving the result in A.
Bilinear interpolation is an option. All operations are performed in single-precision
floating point.

In the reverse operation, the ray sums contained in the view vector, P, are computed
given the original slice, A, and Theta. This is sometimes called “front projection”.

The Riemann sum can be written:

which is the sum of the data along lines through an image with an angle of theta from
the vertical.

Syntax

RIEMANN, P, A, Theta [, /BACKPROJECT] [, /BILINEAR] [, CENTER=value]
[, COR=vector] [, CUBIC=value{-1 to 0}] [, D=spacing] [, ROW=value]

A r i ∆ θ–⋅()cos⋅ i ∆⋅,()
i 0=

M 1–

∑

Obsolete IDL Features RIEMANN

158 Chapter 2: Obsolete Routines
Arguments

P

A k-element floating-point projection vector (or matrix if the ROW keyword is
specified). For backprojection (when the BACKPROJECT keyword is set), P
contains the ray sums for a single view. For the inverse operation, P should contain
zeros on input and will contain the ray sums for the view on output.

A

An m by n floating-point image matrix. For backprojection, A contains the
accumulated results. For the inverse operation, A contains the original image.
Typically, k should be larger than

which is the diagonal size of A.

Theta

The angle of the ray sums from the vertical.

Keywords

BACKPROJECT

Set this keyword to perform backprojection in which P is summed into A. If this
keyword is not set, the inverse operation occurs and the ray sums are accumulated
into P.

BILINEAR

Set this keyword to use bilinear interpolation rather than the default nearest neighbor
sampling. Results are more accurate but slower when bilinear interpolation is used.

CENTER

Set this keyword equal to a floating-point number specifying the center of the
projection. The default value for CENTER is one-half the number of elements of P.

m2 n2+
RIEMANN Obsolete IDL Features

Chapter 2: Obsolete Routines 159
COR

Set this keyword equal to a two-element floating-point vector specifying the center of
rotation in the array A. The default value is [m/2., n/2.], where A is an m by n array.

For symmetric results, given symmetric operands, COR should be set to the origin of
symmetry [(m-1)/2, (n-1)/2], and CENTER should be set to (n-1)/2., where n is the
number of elements in the projection vector, P.

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than ω0, and f is sampled with spacing less than or equal to 1/2ω0,
then f can be reconstructed by convolving with a sinc function: sinc (x) = sin (πx) /
(πx).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation is
significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques for
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

D

Use this keyword to specify the spacing between elements of P, expressed in the
same units as the spacing between elements of A. The default is 1.0.
Obsolete IDL Features RIEMANN

160 Chapter 2: Obsolete Routines
ROW

Set this keyword to specify the P vector as a given row within a matrix, so that the
sinogram array can be used directly without having to extract or insert each row. In
this case, P must be an array with a first dimension equal to k, and the value of ROW
must be in the range of 0 to the number of vectors of length k in P, minus one.

Example

This example forms a synthetic image in A, computes Nviews equally spaced views,
and stores the stacked projections (commonly called the “sinogram”) in a matrix PP.
It then backprojects the projections into the matrix B, forming the reconstructed slice.
In practical use, the projections are convolved with a filter before being
backprojected.

; Define number of columns in A:
N = 100L

; Define number of rows in A:
M = 100L
; Number of views:
nviews = 100

; The length of the longest projection. If filtered backprojection
; is used, 1/2 the length of the convolution kernel must also be
; added.

K = CEIL(SQRT(N^2 + M^2))

; Form original slice:
A = FLTARR(N, M)

; Simulate a square object:
A[N/2:N/2+5, M/2:M/2+5] = 1.0

; Make array for sinogram:
pp = FLTARR(K, nviews)

; Compute each view:
FOR I=0, NVIEWS-1 DO RIEMANN, pp, A, I * !PI/nviews, ROW=i

; Show sinogram:
TVSCL, pp

; Initial reconstructed image:
B = FLTARR(N,M)
RIEMANN Obsolete IDL Features

Chapter 2: Obsolete Routines 161
; Do the backprojection for each view:
FOR I=0, nviews-1 DO $

RIEMANN, pp, B, I * !PI/nviews, /BACKPROJECT, ROW=i

; Show reconstructed array:
TVSCL, B
Obsolete IDL Features RIEMANN

162 Chapter 2: Obsolete Routines
RSTRPOS

This routine is obsolete and should not be used in new IDL code.

The RSTRPOS function has been replaced by the STRPOS function’s
REVERSE_SEARCH keyword. See “STRPOS” (IDL Reference Guide).

The RSTRPOS function finds the last occurrence of a substring within an object
string (the STRPOS function finds the first occurrence of a substring). If the substring
is found in the expression, RSTRPOS returns the character position of the match,
otherwise it returns -1.

Syntax

Result = RSTRPOS(Expression, Search_String [, Pos])

Arguments

Expression

The expression string in which to search for the substring.

Search_String

The substring to be searched for within Expression.

Pos

The character position before which the search is begun. If Pos is omitted, the search
begins at the last character of Expression.

Example

; Define the expression:
exp = 'Holy smokes, Batman!'
; Find the position of a substring:
pos = RSTRPOS(exp, 'smokes')
; Print the substring’s position:
PRINT, pos

IDL prints:

5

RSTRPOS Obsolete IDL Features

Chapter 2: Obsolete Routines 163
Note
Substring begins at position 5 (the sixth character).
Obsolete IDL Features RSTRPOS

164 Chapter 2: Obsolete Routines
SET_SYMBOL

This routine is obsolete and should not be used in new IDL code.

The SET_SYMBOL procedure defines a DCL (Digital Command Language)
interpreter symbol for the current process. SET_SYMBOL is available only under
VMS.

Syntax

SET_SYMBOL, Name, Value [, TYPE={1 | 2}]

Arguments

Name

A scalar string containing the name of the symbol to be defined.

Value

A scalar string containing the value with which Name is defined.

Keywords

TYPE

Indicates the table into which Name will be defined. Setting TYPE to 1 specifies the
local symbol table, while a value of 2 specifies the global symbol table. The default is
the local table.
SET_SYMBOL Obsolete IDL Features

Chapter 2: Obsolete Routines 165
SETLOG

This routine is obsolete and should not be used in new IDL code.

The SETLOG procedure defines a logical name.

Note
This procedure is only available for the VMS platform.

Syntax

SETLOG, Lognam, Value [, /CONCEALED] [, /CONFINE] [, /NO_ALIAS]
[, TABLE=string] [, /TERMINAL]

Arguments

Lognam

A scalar string containing the name of the logical to be defined.

Value

A string containing the value to which the logical will be set. If Value is a string
array, Lognam is defined as a multi-valued logical where each element of Value
defines one of the equivalence strings.

Keywords

CONCEALED

If this keyword is set, RMS (VMS Record Management Services) interprets the
equivalence name as a device name.

CONFINE

If this keyword is set, the logical name is not copied from the IDL process to its
spawned subprocesses.

NO_ALIAS

If this keyword is set, the logical name cannot be duplicated in the same logical table
at an outer access mode. If another logical name with the same name already exists at
Obsolete IDL Features SETLOG

166 Chapter 2: Obsolete Routines
an outer access mode, it is deleted. See the VMS System Services Manual for
additional information on logical names and access modes.

TABLE

A scalar string containing the name of the logical table into which Lognam will be
entered. If TABLE is not specified, LNM$PROCESS_TABLE is used.

TERMINAL

If this keyword is set, when attempting to translate the logical, further iterative
logical name translation on the equivalence name is not to be performed.
SETLOG Obsolete IDL Features

Chapter 2: Obsolete Routines 167
SETUP_KEYS

This routine is obsolete and should not be used in new IDL code.

The SETUP_KEYS procedure sets function keys for use with UNIX versions of IDL
when used with the standard tty command interface.

Under UNIX, the number of function keys, their names, and the escape sequences
they send to the host computer vary enough between various keyboards that IDL
cannot be written to understand all keyboards. Therefore, IDL provides a very
general routine named DEFINE_KEY that allows the user to specify the names and
escape sequences of function keys.

SETUP_KEYS provides a convenient interface to DEFINE_KEY, using user input
(via the keywords described below), the TERM environment variable and the type of
machine the current IDL is running on to determine what kind of keyboard you are
using, and then uses DEFINE_KEY to enter the proper definitions for the function
keys.

The new mappings for the keys can be viewed using the command

HELP, /KEYS

The need for SETUP_KEYS has diminished in recent years because most UNIX
terminal emulators have adopted the ANSI standard for function keys, as represented
by VT100 terminals and their many derivatives, as well as xterm and the newer CDE
based dtterm.

The current version of IDL already knows the function keys of such terminals, so
SETUP_KEYS is not required. However, SETUP_KEYS is still needed to define
keys on non-ANSI terminals such as the Sun shelltool.

This routine is written in the IDL language. Its source code can be found in the file
setup_keys.pro in the lib subdirectory of the IDL distribution.

Syntax

SETUP_KEYS [, /ANSI] [, /EIGHTBIT] [, /SUN | , /VT200 | , /MIPS]
[, /APP_KEYPAD] [, /NUM_KEYPAD]

Arguments

None
Obsolete IDL Features SETUP_KEYS

168 Chapter 2: Obsolete Routines
Keywords

Note
If no keyword is specified, SETUP_KEYS uses !VERSION to determine the type
of machine running IDL. It assumes that the keyboard involved is of the same type
(this assumption is correct).

ANSI

Set this keyword to establish function key definitions for ANSI keyboards.

EIGHTBIT

Set this keyword to use the 8-bit versions of the escape codes (instead of the default
7-bit) when establishing VT200 function key definitions.

SUN

Set this keyword to establish function key definitions for a Sun3 keyboard.

VT200

Set this keyword to establish function key definitions for a DEC VT200 keyboard.

ws use non-standard escape sequences which IDL does not attempt to handle.

MIPS

Set this keyword to establish function key definitions for a Mips RS series keyboard.

APP_KEYPAD

Set this keyword to define escape sequences for the group of keys in the numeric
keypad, enabling these keys to be programmed within IDL.

NUM_KEYPAD

Set this keyword to disable programmability of the numeric keypad.

Version History

Pre-4.0 Introduced
SETUP_KEYS Obsolete IDL Features

Chapter 2: Obsolete Routines 169
SIZE Executive Command

This command is obsolete and is should not be used in new IDL code.

.SIZE Code_Size, Data_Size

The .SIZE command resizes the memory area used to compile programs. The default
code and data area sizes are 32,768 and 8,192 bytes, respectively. These sizes
represent a compromise between an unlimited program space and conservation of
memory. User procedures and functions are compiled in this large program area.
After successful compilation, a new memory area of the required size is allocated to
contain the newly compiled program unit.

Resizing the code and data areas erases the currently compiled main program and all
main program variables. For example, to extend the code and data areas to 30,000
and 5,000 bytes, respectively, use the following statement:

.SIZE 30000 5000

Each user-defined procedure, function, and main program has its own code area that
contains the compiled code and constants. Although the maximum size of these areas
is set by the .SIZE command, there is virtually no limit to the number of program
units. Procedures or functions that run out of code area space should be broken into
multiple program units.

The data area contains information describing the user-defined variables and
common blocks for each procedure, function, or main program. Note that the “data
area” is not the space available for variable storage, but the space available for that
program unit’s symbol table.

Warning
Users are sometimes confused about the nature of the code and data areas. Note that
there are separate code and data areas for each compiled function, routine, or main
program. The HELP command can be used to see the current sizes of the code and
data areas for the program unit in which the HELP function is called.

For example, to see the sizes of the code and data areas for the main program level,
enter the following at the IDL prompt:

HELP

Each compiled function and procedure has its own code and data areas. If the
compiled routine does not use the full amount of code space allocated by the default
Obsolete IDL Features SIZE Executive Command

170 Chapter 2: Obsolete Routines
code area size, the code area “shrinks” to just the size the routine needs. For example,
enter and compile a simple procedure from the IDL prompt by entering:

.RUN
- PRO EXAMPLE
- PRINT, "Here are the code and data areas for this procedure:"
- HELP
- END

Call the EXAMPLE procedure from the command line to see the result:

EXAMPLE

The third line of output from the HELP procedure displays:

Code area used: 100.00% (100/100), Data area used: 2.02% (2/99)

Note that the code area for the EXAMPLE procedure is completely filled and that the
total size of the code area is just 100 bytes.
SIZE Executive Command Obsolete IDL Features

Chapter 2: Obsolete Routines 171
SKIPF

This routine is obsolete and should not be used in new IDL code.

The SKIPF procedure skips records or files on the designated magnetic tape unit.
SKIPF is available only under VMS. If two parameters are supplied, files are
skipped. If three parameters are present, individual records are skipped.

The number of files or records actually skipped is stored in the system variable !ERR.
Note that when skipping records, the operation terminates immediately when the end
of a file is encountered. See the description of the magnetic tape routines in “VMS-
Specific Information” in Chapter 8 of Application Programming.

Syntax

SKIPF, Unit, Files

or

SKIPF, Unit, Records, R

Arguments

Unit

The magnetic tape unit to rewind. Unit must be a number between 0 and 9, and
should not be confused with the standard file Logical Unit Numbers (LUNs).

Files

The number of files to be skipped. Skipping is in the forward direction if the second
parameter is positive, otherwise files are skipped backwards.

Records

The number of records to be skipped. Skipping is in the forward direction if the
second parameter is positive, otherwise records are skipped backwards.

R

If this argument is present, records are skipped, otherwise files are skipped. The value
of R is never examined. Its presence serves only to indicate that records are to be
skipped.
Obsolete IDL Features SKIPF

172 Chapter 2: Obsolete Routines
SLICER

This routine is obsolete and should not be used in new IDL code.

The IDL SLICER is a widget-based application to show 3D volume slices and
isosurfaces. On exit, the Z-buffer contains the most recent image generated by the
SLICER. The image may be redisplayed on a different device by reading the Z-buffer
contents plus the current color table. Note that the volume data must fit in memory.

Using the SLICER

Data is passed to the SLICER via the common block VOLUME_DATA. Note that the
variable used to contain the volume data must be defined as part of the common block
before the volume data is read into the variable. (See the Example section, below.)

The SLICER has the following modes:

• Slices: Displays or removes orthogonal or oblique slices through the data
volume.

• Block: Displays the surfaces of a selected block inside the volume.

• Cutout: Cuts blocks from previously drawn objects.

• Isosurface: Draws an isosurface contour.

• Probe: Displays the position and value of objects using the mouse.

• Colors: Manipulates the color tables and contrast.

• Rotations: Sets the orientation of the display.

• Journal: Records or plays back files of SLICER commands.

See the SLICER’s help file (available by clicking the “Help” button on the SLICER
widget) for more information about drawing slices and images.

Syntax

COMMON VOLUME_DATA, A

A = your_volume_data

SLICER
SLICER Obsolete IDL Features

Chapter 2: Obsolete Routines 173
Arguments

A

A 3D array containing volume data. Note that the variable A must be included in the
common block VOLUME_DATA before being equated with the volume data. A is
not an explicit argument to SLICER.

Keywords

CMD_FILE

Set this keyword to a string that contains the name of a file containing SLICER
commands to execute as described under SLICER Commands, below. The file should
contain one command per line.

Command files can be created interactively, using the SLICER’s “Journal” feature.

COMMAND

Set this keyword equal to a 1 x n string array containing commands to be executed by
the SLICER before entering interactive mode. Available commands are described
under SLICER Commands, below.

Note that commands passed to the SLICER with the COMMAND keyword must be
in a 1 x n array, rather than in an n-element vector. String arrays can be easily
specified in the proper format using the TRANSPOSE command. For example, the
following passes three commands to the slicer:

com=TRANSPOSE(['COLOR 5', 'TRANS 1 20', 'ISO 17 1'])
SLICER, COMMAND=com

DETACHED

Set this keyword to put the drawable in a separate window. This can be useful when
working with large images.

GROUP

Set this keyword to the widget ID of the widget that calls SLICER. When GROUP is
specified, a command to destroy the calling widget also destroys the SLICER.
Obsolete IDL Features SLICER

174 Chapter 2: Obsolete Routines
NO_BLOCK

Set this keyword equal to zero to have XMANAGER block when this application is
registered. By default, NO_BLOCK is set equal to one, providing access to the
command line if active command line processing is available. Setting
NO_BLOCK=0 will cause all widget applications to block, not just this application.
For more information, see the documentation for the NO_BLOCK keyword to
XMANAGER.

RANGE

Set this keyword to a two-element array containing minimum and maximum data
values of interest. If RANGE is omitted, the data is scanned for the minimum and
maximum values.

RESOLUTION

Set this keyword to a two-element vector specifying the width and height of the
drawing window. The default is 55% by 44% of the screen width.

SLICER Commands

The slicer accepts a number of commands that replicate the action of controls in the
graphical user interface. These commands can be specified at the IDL command line
using either CMD_FILE keyword or the COMMAND keyword. Files of SLICER
commands can also be created and played back from within the SLICER, using the
“Journal” feature.

Commands, in this context, are strings that include a command identifier and (in
some cases) one or more numeric parameters separated by blanks. The following are
the available SLICER commands, with parameters.

COLOR Table_Index Low High Shading

Set the color tables. Table_Index is the pre-defined color table number (see
LOADCT), or -1 to retain the present table. Low is the contrast minimum, High is the
contrast maximum, and Shading is the differential shading, all expressed in percent.
For example, the following command picks color table number 2, sets the minimum
contrast to 10%, the maximum contrast to 90%, and the differential shading to 50%:

COLOR 2 10 90 50
SLICER Obsolete IDL Features

Chapter 2: Obsolete Routines 175
CUBE Mode Cut_Ovr Interp X0 Y0 Z0 X1 Y1 Z1

Defines the volume used for “Block” and “Cutout” operations. Set Mode=1 for Block
mode or Mode=2 for Cutout mode. Set Cut_Ovr=0 to mimic selecting the “Cut Into”
button or Cut_Ovr=1 to mimic selecting the “Cut Over” button.

Note
These buttons have no effect in Block mode. See the online help on SLICER for
further explanation of Cut Into and Cut Over.

Set Interp=1 for bilinear interpolation sampling or Interp=0 for nearest neighbor
sampling.

X0,Y0,Z0 are the coordinates of the lower corner of the volume, and X1,Y1,Z1 are the
coordinates of the upper corner. For example:

CUBE 1 0 1 20 0 56 60 75 42

selects Block mode, the “Cut Into” button, bilinear interpolation and defines the
volume’s corners at (20, 0, 56) and (60, 75, 42).

ERASE

Erases the display. Mimics clicking on the “Erase” button.

ISO Threshold Hi_Lo

Draws an iso-surface. Threshold is the isosurface threshold value. Set Hi_Lo equal to
1 to view the low side, or equal to 0 to view the high side.

ORI X_Axis Y_Axis Z_axis X_Rev Y_Rev Z_Rev X_Rot Z_Rot
Asp

Sets the orientation for the SLICER display, mimicking the action of the
“Orientation” button. Set X_Axis, Y_Axis, and Z_Axis to 0, 1, or 2, where 0 represents
the data X axis, 1 the data Y axis, and 2 the data Z axis. Set X_Rev, Y_Rev, and Z_Rev
to 0 for normal orientation or to 1 for reversed. Set X_Rot and Z_Rot to the desired
rotations of the X and Z axes, in degrees (30 is the default). Set Asp to the desired Z
axis aspect ratio with respect to X and Y. For example, to interchange the X and Z
axes and reverse the Y use the string:

ORI 2 1 0 0 1 0 30 30 1
Obsolete IDL Features SLICER

176 Chapter 2: Obsolete Routines
SLICE Axis Value Interp Expose 0

Draws an orthogonal slice. Set Axis to 0 to draw a slice parallel to the X axis, to 1 for
the Y axis, or to 2 for the Z axis. Set Value to the pixel value of the slice. Set Interp=1
for bilinear interpolation sampling or Interp=0 for nearest neighbor sampling. Set
Expose=1 to cut out of an existing image (mimicking the “Expose” button) or set
Expose=0 to draw the slice on top of the current display (mimicking the “Draw”
button). The final zero indicates that the slice is orthogonal rather than oblique. For
example, the following command draws an orthogonal slice parallel to the X axis, at
the pixel value 31, using bilinear interpolation.

SLICE 0 31 1 0 0

SLICE Azimuth Elev Interp Expose 1 X0 Y0 Z0

Draws an oblique slice. The oblique plane crosses the XY plane at angle Azimuth,
with an elevation of Elev. Set Interp=1 for bilinear interpolation sampling or Interp=0
for nearest neighbor sampling. Set Expose=1 to cut out of an existing image
(mimicking the “Expose” button) or set Expose=0 to draw the slice on top of the
current display (mimicking the “Draw” button). The one indicates that the slice is
oblique rather than orthogonal. The plane passes through the point (X0, Y0, Z0). For
example, the following command exposes an oblique slice with an azimuth of 42 and
an elevation of 24, using bilinear interpolation. The plane passes through the point
(52, 57, 39).

SLICE 42 24 1 1 1 52 57 39

TRANS On_Off Threshold

Turns transparency on or off and sets the transparency threshold value. Set On_Off=1
to turn transparency on, On_Off=0 to turn transparency off. Threshold is expressed in
percent of data range (0 = minimum data value, 100 = maximum data value). For
example, this command turns transparency on and sets the threshold at 20 percent:

TRANS 1 20

UNDO

Undoes the previous operation.

WAIT Secs

Causes the SLICER to pause for the specified time, in seconds.
SLICER Obsolete IDL Features

Chapter 2: Obsolete Routines 177
Example

Data is transferred to the SLICER via the VOLUME_DATA common block instead
of as an argument. This technique is used because volume datasets can be very large
and the duplication that occurs when passing values as arguments is a waste of
memory.

Suppose that you want to read some data from the file head.dat, which is included
in the IDL examples directory, into IDL for use in the SLICER. Before you read the
data, establish the VOLUME_DATA common block with the following command:

COMMON VOLUME_DATA, VOL

The VOLUME_DATA common block has just one variable in it. (The variable can
have any name; here, we’re using the name VOL.) Now read the data from the file into
VOL. For example:

OPENR, UNIT, /GET, FILEPATH('head.dat', SUBDIRECTORY=['examples',
'data'])
VOL = BYTARR(80, 100, 57, /NOZERO)
READU, UNIT, VOL
CLOSE, UNIT

Now you can run the SLICER widget application by entering:

SLICER

The data stored in VOL is the data being worked on by the SLICER.

To obtain the image in the slicer window after slicer is finished:

SET_PLOT, 'Z' ;Use the Z buffer graphics device.
A = TVRD() ;Read the image.
Obsolete IDL Features SLICER

178 Chapter 2: Obsolete Routines
STR_SEP

This routine is obsolete and should not be used in new IDL code.

The STR_SEP function has been replaced by STRSPLIT for single character
delimiters, and STRSPLIT with the REGEX keyword set for longer delimiters. See
“STRSPLIT” (IDL Reference Guide).

The STR_SEP function divides a string into pieces as designated by a separator
string. STR_SEP returns a string array where each element is a separated piece of the
original string.

Syntax

Result = STR_SEP(Str, Separator [, /TRIM] [, /REMOVE_ALL] [, /ESC])

Arguments

Str

The string to be separated.

Separator

The separator string.

Keywords

TRIM

Set this keyword to remove leading and trailing blanks from each element of the
returned string array. TRIM performs STRTRIM(String, 2).

REMOVE_ALL

Set this keyword to remove all blanks from each element of the returned string array.
REMOVE_ALL performs STRCOMPRESS(String, /REMOVE_ALL)

ESC

Set this keyword to interpret the characters following the <ESC> character literally
and not as separators. For example, if the separator is a comma and the escape
STR_SEP Obsolete IDL Features

Chapter 2: Obsolete Routines 179
character is a backslash, the character sequence “a\,b” is interpreted as a single field
containing the characters “a,b”.

Example

; Create a string:
str = 'Doug.is.a.cool.dude!'

; Separate the parts between the periods:
parts = STR_SEP(str, '.')

; Confirm that the string has been broken up into 5 elements:
HELP, parts

PRINT, parts[3]

IDL Output

PARTS STRING = Array[5]
cool
Obsolete IDL Features STR_SEP

180 Chapter 2: Obsolete Routines
TAPRD

This routine is obsolete and should not be used in new IDL code.

The TAPRD procedure reads the next record on the selected tape unit into the
specified array. TAPRD is available only under VMS. No data or format conversion,
with the exception of optional byte reversal, is performed. The array must be defined
with the desired type and dimensions. If the read is successful, the system variable
!ERR is set to the number of bytes read. See the description of the magnetic tape
routines in “VMS-Specific Information” in Chapter 8 of Application Programming.

Syntax

TAPRD, Array, Unit [, Byte_Reverse]

Arguments

Unit

The magnetic tape unit to read. This argument must be a number between 0 and 9,
and should not be confused with standard file Logical Unit Numbers (LUN’s).

Array

A named variable into which the data is read. If Array is larger than the tape record,
the extra elements of the array are not changed. If the array is shorter than the tape
record, a data overrun error occurs. The length of Array and the records on the tape
can range from 14 bytes to 65,235 bytes.

Byte_Reverse

If this parameter is present, the even and odd numbered bytes are swapped after
reading, regardless of the type of data or variables. This enables reading tapes
containing short integers that were written on machines with different byte ordering.
You can also use the BYTORDER routine to re-order different data types.
TAPRD Obsolete IDL Features

Chapter 2: Obsolete Routines 181
TAPWRT

This routine is obsolete and should not be used in new IDL code.

The TAPWRT procedure writes data from the Array parameter to the selected tape
unit. TAPWRT is available only under VMS. One physical record containing the
same number of bytes as the array is written each time TAPWRT is called. The
parameters and usage are identical to those in the TAPRD procedure with the
exception that here the Array parameter can be an expression. Consult the TAPRD
procedure for details. See the description of the magnetic tape routines in “VMS-
Specific Information” in Chapter 8 of Application Programming.

Syntax

TAPWRT, Array, Unit [, Byte_Reverse]

Arguments

Unit

The magnetic tape unit to write. This argument must be a number between 0 and 9,
and should not be confused with standard file Logical Unit Numbers (LUNs).

Array

The expression representing the data to be output. The length of Array and the
records on the tape can range from 14 bytes to 65,235 bytes.

Byte_Reverse

If this parameter is present, the even and odd numbered bytes are swapped on output,
regardless of the type of data or variables. This enables writing tapes that are
compatible with other machines.
Obsolete IDL Features TAPWRT

182 Chapter 2: Obsolete Routines
TIFF_DUMP

This routine is obsolete and should not be used in new IDL code.

The TIFF_DUMP procedure dumps the Image File Directories of a TIFF file directly
to the terminal screen. Each TIFF Image File Directory entry is printed. This
procedure is used mainly for debugging.

Note that not all of the tags have names encoded. In particular, Facsimile, Document
Storage and Retrieval, and most no-longer-recommended fields are not encoded.

Syntax

TIFF_DUMP, File

Arguments

File

A scalar string containing the name of file to read.
TIFF_DUMP Obsolete IDL Features

Chapter 2: Obsolete Routines 183
TIFF_READ

This routine is obsolete and should not be used in new IDL code.

The TIFF_READ function has been renamed but retains the same functionality it had
in previous releases. See READ_TIFF in the IDL Reference Guide.

The TIFF_READ function reads 8-bit or 24-bit images in TIFF format files (classes
G, P, and R) and returns the image and color table vectors in the form of IDL
variables. Only one image per file is read. TIFF_READ returns a byte array
containing the image data. The dimensions of the result are the same as defined in the
TIFF file (Columns, Rows).

For TIFF images that are RGB interleaved by pixel, the output dimensions are (3,
Columns, Rows).

For TIFF images that are RGB interleaved by image, TIFF_READ returns the integer
value zero, sets the variable defined by the PLANARCONFIG keyword to 2, and
returns three separate images in the variables defined by the R, G, and B arguments.

Syntax

Result = TIFF_READ(File [, R, G, B])

Arguments

File

A scalar string containing the name of file to read.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors extracted
from TIFF Class P, Palette Color images. For TIFF images that are RGB interleaved
by image (when the variable specified by the PLANARCONFIG keyword is returned
as 2) the R, G, and B variables each hold an image with the dimensions (Columns,
Rows).
Obsolete IDL Features TIFF_READ

184 Chapter 2: Obsolete Routines
Keywords

ORDER

Set this keyword to a named variable that will contain the order parameter from the
TIFF File. This parameter is returned as 0 for images written bottom to top, and 1 for
images written top to bottom. If the Orientation parameter does not appear in the
TIFF file, an order of 1 is returned.

PLANARCONFIG

Set this keyword to a named variable that will contain the interleave parameter from
the TIFF file. This parameter is returned as 1 for TIFF files that are GrayScale,
Palette, or RGB color interleaved by pixel, or as 2 for RGB color TIFF files
interleaved by image.

Example

Read the file my.tif in the current directory into the variable image, and save the
color tables in the variables, R, G, and B by entering:

image = TIFF_READ('my.tif', R, G, B)

To view the image, load the new color table and display the image by entering:

TVLCT, R, G, B
TV, image
TIFF_READ Obsolete IDL Features

Chapter 2: Obsolete Routines 185
TIFF_WRITE

This routine is obsolete and should not be used in new IDL code.

The TIFF_WRITE procedure has been renamed but retains the same functionality it
had in previous releases. See WRITE_TIFF in the IDL Reference Guide.

The TIFF_WRITE procedure writes 8- or 24-bit images to a TIFF file. Files are
written in one strip, or three strips when the PLANARCONFIG keyword is set to 2.

Syntax

TIFF_WRITE, File, Array [, Orientation]

Arguments

File

A scalar string containing the name of file to create.

Array

The image data to be written. If not already a byte array, it is made a byte array. Array
may be either an (n, m) array for Grayscale or Palette classes, or a (3, n, m) array for
RGB full color, interleaved by image. If the PLANARCONFIG keyword is set to 2
then the Array parameter is ignored (and may be omitted).

Orientation

This parameter should be 0 if the image is stored from bottom-to-top (the default).
For images stored from top-to-bottom, this parameter should be 1.

Warning: not all TIFF readers are capable of reversing the scan line order. If in doubt,
first convert the image to top-to-bottom order (use the REVERSE function), and set
Orientation to 1.

Keywords

RED, GREEN, BLUE

If you are writing a Class P, Palette color image, set these keywords equal to the color
table vectors, scaled from 0 to 255.
Obsolete IDL Features TIFF_WRITE

186 Chapter 2: Obsolete Routines
If you are writing an image that is RGB interleaved by image (i.e., if the
PLANARCONFIG keyword is set to 2), set these keywords to the names of the
variables containing the 3 color component image.

PLANARCONFIG

Set this keyword to 2 if writing an RGB image that is contained in three separate
images (color planes). The three images must be stored in variables specified by the
RED, GREEN, and BLUE keywords. Otherwise, omit this parameter (or set it to 1).

XRESOL

The horizontal resolution, in pixels per inch. The default is 100.

YRESOL

The vertical resolution, in pixels per inch. The default is 100.

Examples

Four types of TIFF files can be written:

TIFF Class G, Grayscale.

The variable array contains the 8-bit image array. A value of 0 is black, 255 is
white. The Red, Green, and Blue keywords are omitted.

TIFF_WRITE, 'a.tif', array

TIFF Class P, Palette Color

The variable array contains the 8-bit image array. The keyword parameters RED,
GREEN, and BLUE contain the color tables, which can have up to 256 elements,
scaled from 0 to 255.

TIFF_WRITE, 'a.tif', array, RED = r, GREEN = g, BLUE = b

TIFF Class R, RGB Full Color, color interleaved by pixel

The variable array contains the byte data, and is dimensioned (3, cols, rows).

TIFF_WRITE, 'a.tif', array

TIFF Class R, RGB Full Color, color interleaved by image

Input is three separate images, provided in the keyword parameters RED, GREEN,
and BLUE. The input argument Array is ignored. The keyword PLANARCONFIG
must be set to 2 in this case.
TIFF_WRITE Obsolete IDL Features

Chapter 2: Obsolete Routines 187
TIFF_WRITE, 'a.tif', RED = r, GREEN = g, BLUE = b, PLAN = 2
Obsolete IDL Features TIFF_WRITE

188 Chapter 2: Obsolete Routines
TRNLOG

This routine is obsolete and should not be used in new IDL code.

The TRNLOG function searches the VMS logical name tables for a specified logical
name and returns the equivalence string(s) in an IDL variable. TRNLOG is available
only under VMS. TRNLOG also returns the VMS status code associated with the
translation as a longword value. As with all VMS status codes, success is indicated
by an odd value (least significant bit is set) and failure by an even value.

Syntax

Result = TRNLOG(Lognam, Value [, ACMODE={0 | 1 | 2 | 3}]
[, /FULL_TRANSLATION] [, /ISSUE_ERROR]
[, RESULT_ACMODE=variable] [, RESULT_TABLE=variable]
[, TABLE=string])

Arguments

Lognam

A scalar string containing the name of the logical to be translated.

Value

A named variable into which the equivalence string is placed. If Lognam has more
than one equivalence string, the first one is used. The FULL_TRANSLATION
keyword can be used to obtain all equivalence strings.

Keywords

ACMODE

Set this keyword to a value specifying the access mode to be used in the translation.
Valid values are:

• 0 = Kernal

• 1 = Executive

• 2 = Supervisor

• 3 = User
TRNLOG Obsolete IDL Features

Chapter 2: Obsolete Routines 189
When you specify the ACMODE keyword, all names at access modes less privileged
than the specified mode are ignored. If you do not specify ACMODE, the translation
proceeds without regard to access mode. However, the search proceeds from the
outermost (User) to the innermost (Kernal) mode. Thus, if two logical names with the
same name but different access modes exist in the same table, the name with the
outermost access mode is used.

FULL_TRANSLATION

Set this keyword to obtain the full set of equivalence strings for Lognam. By default,
when translating a multivalued logical name, Value only receives the first
equivalence string as a scalar value. When this keyword is set, Value instead returns a
string array. Each element of this array contains one of the equivalence strings. For
example, under recent versions of VMS, the SYS$SYSROOT logical can have
multiple values. To see these values from within IDL, enter:

; Translate the logical:
ret = TRNLOG('SYS$SYSROOT', trans, /FULL, /ISSUE_ERROR)
; View the equivalence strings:
PRINT, trans

ISSUE_ERROR

Set this keyword to issue an error message if the translation fails. Normally, no error
is issued and the user must examine the return value to determine if the operation
failed.

RESULT_ACMODE

If present, this keyword specifies a named variable in which to place the access mode
of the translated logical. The access modes are summarized above.

RESULT_TABLE

If present, this keyword specifies a named variable. The name of the logical table
containing the translated logical is placed in this variable as a scalar string.

TABLE

A scalar string giving the name of the logical table in which to search for Lognam. If
TABLE is not specified, the standard VMS logical tables are searched until a match is
found, starting with LNM$PROCESS_TABLE and ending with
LNM$SYSTEM_TABLE.
Obsolete IDL Features TRNLOG

190 Chapter 2: Obsolete Routines
VAX_FLOAT

This routine is obsolete and should not be used in new IDL code.

The VAX_FLOAT function performs one of two possible actions:

1. Determine, and optionally change, the default value for the VAX_FLOAT
keyword to the OPEN procedures.

2. Determine if an open file unit has the VAX_FLOAT attribute set.

Syntax

Result = VAX_FLOAT([Default] [, FILE_UNIT=lun])

Arguments

Default

Default is used to change the default value of the VAX_FLOAT keyword to the
OPEN procedures. A value of 0 (zero) makes the default for those keywords False. A
non-zero value makes the default True. Specifying Default in conjunction with the
FILE_UNIT keyword will cause an error.

Note
If the FILE_UNIT keyword is not specified, the value returned from VAX_FLOAT
is the default value before any change is made. This is the case even if Default is
specified. This allows you to get the old setting and change it in a single operation.

Keywords

FILE_UNIT

Set this keyword equal to the logical file unit number (LUN) of an open file.
VAX_FLOAT returns True (1) if the file was opened with the VAX_FLOAT
attribute, or False (0) otherwise. Setting the FILE_UNIT keyword when the Default
argument is specified will cause an error.

Example

To determine if the default VAX_FLOAT keyword value for OPEN is True or False:

default_vax_float = VAX_FLOAT()
VAX_FLOAT Obsolete IDL Features

Chapter 2: Obsolete Routines 191
To determine the current default value of the VAX_FLOAT keyword for OPEN and
change it to True (1) in a single operation:

old_vax_float = VAX_FLOAT(1)

To determine if the file currently open on logical file unit 1 was opened with the
VAX_FLOAT keyword set:

file_is_vax_float = VAX_FLOAT(FILE_UNIT=1)
Obsolete IDL Features VAX_FLOAT

192 Chapter 2: Obsolete Routines
WEOF

This routine is obsolete and should not be used in new IDL code.

The WEOF procedure writes an end of file mark, sometimes called a tape mark, on
the designated tape unit at the current position. WEOF is available only under VMS.
The tape must be mounted as a foreign volume. See “VMS-Specific Information” in
Chapter 8 of Application Programming.

Syntax

WEOF, Unit

Arguments

Unit

The magnetic tape unit on which the end of file mark is written. This argument must
be a number between 0 and 9, and should not be confused with standard file Logical
Unit Numbers (LUNs).
WEOF Obsolete IDL Features

Chapter 2: Obsolete Routines 193
WIDED

This routine is obsolete and should not be used in new IDL code.

The WIDED procedure invokes IDL’s graphical user interface designer, known as
the Widget Builder.

Syntax

WIDED
Obsolete IDL Features WIDED

194 Chapter 2: Obsolete Routines
WIDGET_MESSAGE

This routine is obsolete and should not be used in new IDL code.

The WIDGET_MESSAGE function has been renamed but retains the same
functionality it had in previous releases. See “DIALOG_MESSAGE” in the IDL
Reference Guide manual.
WIDGET_MESSAGE Obsolete IDL Features

Chapter 3

Obsolete Objects
This chapter contains complete documentation for obsoleted IDL objects. New IDL
code should not use these routines. For a list of the routines that replace each of these
obsolete objects, see Appendix I, “Obsolete Features” (IDL Reference Guide).
Obsolete IDL Features 195

196 Chapter 3: Obsolete Objects
IDLffLanguageCat

The IDLffLanguageCat object provides an interface to IDL language catalog files.

Note
This object is not savable. Restored IDLffLanguageCat objects may contain invalid
data.

Note
This object is not intended to be created with OBJ_NEW. The MULTI function is
used to return the correct object reference.

Superclasses

This class has no superclasses.

Creation

See MULTI.

Properties

Objects of this class have no properties of their own.

Methods

This class has the following methods:

• IDLffLanguageCat::IsValid

• IDLffLanguageCat::Query

• IDLffLanguageCat::SetCatalog

Version History

Introduced: 5.2.1

See Also

MSG_CAT_CLOSE, MSG_CAT_COMPILE, MULTI
IDLffLanguageCat Obsolete IDL Features

Chapter 3: Obsolete Objects 197
IDLffLanguageCat Properties

Objects of this class have no properties of their own.
Obsolete IDL Features IDLffLanguageCat Properties

198 Chapter 3: Obsolete Objects
IDLffLanguageCat::IsValid

The IDLffLanguageCat::IsValid function method is used to determine whether the
object has a valid catalog.

Syntax

Result = Obj ->[IDLffLanguageCat::]IsValid()

Return Value

Returns a 1 if the file is valid, 0 otherwise.

Arguments

None

Keywords

None

Version History

Introduced: 5.2.1
IDLffLanguageCat::IsValid Obsolete IDL Features

Chapter 3: Obsolete Objects 199
IDLffLanguageCat::Query

The IDLffLanguageCat::Query function method is used to return the language string
associated with the given key.

Syntax

Result = Obj ->[IDLffLanguageCat::]Query(Key [, DEFAULT_STRING=string])

Return Value

Returns a string representing the language associated with the given key. If the key is
not found in the given catalog, the default string is returned.

Arguments

Key

The scalar or array of (string) keys associated with the desired language string. If key
is an array, Result will be a string array of the associated language strings.

Keywords

DEFAULT_STRING

Set this keyword to the desired value of the return string if the key cannot be found in
the catalog file. The default value is the empty string.

Version History

Introduced: 5.2.1
Obsolete IDL Features IDLffLanguageCat::Query

200 Chapter 3: Obsolete Objects
IDLffLanguageCat::SetCatalog

The IDLffLanguageCat::SetCatalog function method is used to set the appropriate
catalog file.

Syntax

Result = Obj ->[IDLffLanguageCat::]SetCatalog(Application [, FILENAME=string]
[, LOCALE=string] [, PATH=string])

Return Value

Returns 1 upon success, and 0 on failure

Arguments

Application

A scalar string representing the name of the desired application’s catalog file.

Keywords

FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open. If this keyword is set, application, PATH, and LOCALE are ignored.

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current locale
is used.

PATH

Set this keyword to a scalar string containing the path to search for language catalog
files. The default is the current directory.

Version History

Introduced: 5.2.1
IDLffLanguageCat::SetCatalog Obsolete IDL Features

Chapter 4

Routines with Obsolete
Arguments or Keywords
This chapter contains documentation for arguments and keywords that have been
removed from IDL routines. New IDL code should not use these parameters. See
Appendix I, “Obsolete Features” (IDL Reference Guide) for a list of obsolete
parameters and their replacements, if suitable replacements exist.

When IDL attempts to execute a routine called with an obsolete argument or
keyword, one of the following things will happen:

1. The routine may function as originally designed, with no change in behavior.
This is often the case when the obsolete parameter has been replaced by
another parameter with a more efficient or slightly different mechanism. In
these cases, the obsolete parameter is generally re-implemented within the
routine to use the mechanism of the new parameter, allowing code that uses the
obsolete parameter to run unaltered. Note that although the results will be the
same as before the parameter became obsolete, the code may run more
efficiently if the replacement parameter is used instead of the obsolete
parameter.
Obsolete IDL Features 201

202 Chapter 4: Routines with Obsolete Arguments or Keywords
Example: The GROUP keyword to the DIALOG_PICKFILE routine was
replaced by the DIALOG_PARENT keyword. Code that uses the GROUP
keyword continues to run as it always did.

2. The routine may quietly accept the parameter, but ignore its presence. This is
the case when the presence of the obsolete parameter does not change the
result returned by the routine. For example, parameter that affected attributes
only available on certain platforms may simply be ignored on other platforms.
Code using obsolete parameter of this type can run unaltered.

Example: The MACTYPE keyword to the OPEN routine changed an attribute
of files on pre-OS X Macintosh filesystems that has no corollary on other
filesystems. IDL simply ignores the presence of this keyword.

3. The routine may generate an error. This is the case when the presence of the
obsolete parameter changes the result returned by the routine. For example,
parameter that affected the returned data in some way that is no longer
supported must now be removed from IDL code before it will run.

Example: The DTOGFLOAT keyword to the BYTEORDER routine
converted data to a format only supported under VMS. The underlying
mechanism used is not available in other operating systems, and IDL will
generate an error if such a conversion is specified in the call to BYTEORDER.

In all cases, if IDL code containing calls to obsolete parameter compiles and runs
without error, the results are the same as they would have been before the parameter
was made obsolete.
Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 203
BYTEORDER

The following keywords to the BYTEORDER procedure are obsolete.

VMS-Only Keywords

DTOGFLOAT

Set this keyword to convert native (IEEE) double-precision floating-point format to
VAX G float format. Note that IDL does not support the VAX G float format via any
other mechanism.

GFLOATTOD

Set this keyword to convert VAX G float format to native (IEEE) double-precision
floating-point format. Note that IDL does not support the VAX G float format via any
other mechanism.
Obsolete IDL Features BYTEORDER

204 Chapter 4: Routines with Obsolete Arguments or Keywords
CALL_EXTERNAL

The following keywords to the CALL_EXTERNAL function are obsolete.

Keywords

DEFAULT

This keyword is ignored on non-VMS platforms. Under VMS, it is a string containing
the default device, directory, file name, and file type information for the file that
contains the sharable image.

PORTABLE

Under VMS, causes CALL_EXTERNAL to use the IDL Portable calling convention
for passing arguments to the called function instead of the default VMS LIB$CALLG
convention. Under other operating systems, only the portable convention is available,
so this keyword is quietly ignored.

If you are using the IDL Portable calling convention, the AUTO_GLUE or
WRITE_WRAPPER keywords are available to simplify the task of matching the form
in which IDL passes the arguments to the interface of your target function.

VAX_FLOAT (VMS Only)

If specified, all data passed to the called function is first converted to VAX F (single)
or D (double) floating point formats. On return, any data passed by reference is
converted back to the IEEE format used by IDL. This feature allows you to call code
compiled to work with earlier versions of IDL, which used the old VAX formats.

The default setting for this keyword is FALSE, unless IDL was started with the
VAX_FLOAT startup option, in which case the default is TRUE. See “Command
Line Options” in Chapter 4 of Using IDL for details on this qualifier. You can change
this setting at runtime using the VAX_FLOAT function.
CALL_EXTERNAL Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 205
DEVICE

The following keywords to the DEVICE procedure are obsolete.

Keywords

DEPTH

(LJ)

The DEPTH keyword specifies the number of significant bits in a pixel. The LJ250
can support between 1 and 4 significant bits (known also as planes). The number of
available colors is related to the number of significant planes by the equation:

Colors = 2#planes

Therefore, the LJ250 can support 2, 4, 8, or 16 separate colors on a single page of
output. The default is to use a single plane, producing monochrome output.

Since IDL is based around 8-bit pixels, it is necessary to define which bits in a 8-bit
pixel are used by the LJ250 driver, and which are ignored. When using a depth of 1
(monochrome), dithering techniques are used to render images. In this case, all 8 bits
are used. If more than a single plane is used, the least significant n bits of a 8-bit pixel
are used, where n is the selected depth. For example, using a depth of 4, pixel values
of 15, 31, and 47 are all considered to have the value 15 because all three values have
the same binary representation in their 4 least significant digits.

When the depth is changed, the standard color map given in Table 7-5 of the
LJ250/LJ252 Companion Color Printer Programmer Reference Manual is
automatically loaded. Therefore, color maps should be loaded with TVLCT after
changing the depth.

FONT

(WIN, X)

This keyword is now obsolete and has been replaced by the SET_FONT keyword.
Code that uses the FONT keyword will continue to function as before, but we suggest
that all new code use SET_FONT.
Obsolete IDL Features DEVICE

206 Chapter 4: Routines with Obsolete Arguments or Keywords
DIALOG_PICKFILE

The following keyword to the DIALOG_PICKFILE routine is obsolete.

Keywords

GROUP

This keyword was replaced by the DIALOG_PARENT keyword.
DIALOG_PICKFILE Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 207
DOC_LIBRARY

The following keywords to the DOC_LIBRARY procedure are obsolete.

VMS Keywords

FILE

If this keyword is set, the output is left in the file userlib.doc, in the current
directory.

PATH

A string that describes an optional directory/library search path. This keyword uses
the same format and semantics as !PATH. If omitted, !PATH is used.

OUTPUTS

If this keyword is set, documentation is sent to the standard output unless the PRINT
keyword is set.
Obsolete IDL Features DOC_LIBRARY

208 Chapter 4: Routines with Obsolete Arguments or Keywords
EXTRACT_SLICE

The following keywords to the EXTRACT_SLICE procedure are obsolete.

CUBIC

Set this keyword to use cubic interpolation. The default is to use tri-linear
interpolation. If the SAMPLE keyword is set, then the CUBIC keyword is ignored.
EXTRACT_SLICE Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 209
HELP

The following keywords to the HELP procedure are obsolete.

ALL_KEYS

Set this keyword to show current function-key definitions as set by DEFINE_KEY. If
no arguments are supplied, information on all function keys is displayed. If
arguments are provided, they must be scalar strings containing the names of function
keys, and information on the specified keys is given. Under UNIX, this keyword is
different from KEYS because every key is displayed, no matter what its current
programming. Setting ALL_KEYS is equivalent to setting both KEYS and FULL.
Under Windows, every key is always displayed; setting KEYS produces the same
result as setting ALL_KEYS.

CALLS

Set this keyword to a named variable in which to store the procedure call stack. Each
string element contains the name of the program module, source file name, and line
number. Array element zero contains the information about the caller of HELP,
element one contains information about its caller, etc. This keyword is useful for
programs that require traceback information.
Obsolete IDL Features HELP

210 Chapter 4: Routines with Obsolete Arguments or Keywords
IDLgrMPEG::Save

The following keywords to the IDLgrMPEG::Save procedure method are obsolete.

Keywords

CREATOR_TYPE

Set this keyword to a four character string representing the creator string to be used
when writing this file on a Macintosh. This property is ignored if the current platform
is not a Macintosh. The default is TVOD (Apple Movie Player application).
IDLgrMPEG::Save Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 211
IDLgrVolume::Init

The following keywords to the IDLgrVolume::Init procedure method are obsolete.

Keywords

CUTTING_PLANES (Get, Set)

Set this keyword to a floating-point array with dimensions (4, n) specifying the
coefficients of n cutting planes. The cutting plane coefficients are in the form {{nx,
ny, nz, D}, ...} where (nx)X+(ny)Y+(nz)Z+ D > 0, and (X, Y, Z) are the voxel
coordinates. To clear the cutting planes, set this property to any scalar value (e.g.
CUTTING_PLANES = 0). By default, no cutting planes are defined.
Obsolete IDL Features IDLgrVolume::Init

212 Chapter 4: Routines with Obsolete Arguments or Keywords
IDLITSYS_CREATETOOL

The following keywords to the IDLITSYS_CREATETOOL function are obsolete.

Keywords

PANEL_LOCATION

Set this keyword to an integer value to control where a user interface panel should be
displayed. Possible values are:

0 position the panel above the iTool window

1 position the panel below the iTool window

2 position the panel to the left of the iTool window.

3 position the panel to the right of the iTool window (this is the default).
IDLITSYS_CREATETOOL Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 213
IDLitTool::RegisterOperation

The following keyword to the IDLitOperation::RegisterOperation procedure method
is obsolete.

Keywords

DISABLE

Set this keyword to indicate that the menu item associated with this operation should
appear disabled (insensitive) when initially created.

Note
This keyword is only a hint to the Tool, and may be ignored if a non-standard user
interface is being used.
Obsolete IDL Features IDLitTool::RegisterOperation

214 Chapter 4: Routines with Obsolete Arguments or Keywords
IDLitVisualization::Add

The following keyword to the IDLitVisualization::Add procedure method is obsolete.

Keywords

GROUP

Set this keyword to indicate that the added object is to be considered part of the group
that is rooted at this visualization. By default, the added objects are not considered to
be part of the group.
IDLitVisualization::Add Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 215
IDLitVisualization::GetCenterRotation

The following keyword to the IDLitVisualization::GetCenterRotation procedure
method is obsolete.

Keywords

DATA

Set this keyword to indicate that the ranges should be computed for the full data sets
of the contents of this visualization. By default (if the keyword is not set), the ranges
are computed for the displayed portions of the data sets.
Obsolete IDL Features IDLitVisualization::GetCenterRotation

216 Chapter 4: Routines with Obsolete Arguments or Keywords
IDLitVisualization::GetProperty

The following keyword to the IDLitVisualization::GetProperty procedure method is
obsolete.

Keywords

GROUP_PARENT (Get)

A reference to the IDLitVisualization object that serves as the group parent for this
visualization.
IDLitVisualization::GetProperty Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 217
IVECTOR

The following keyword to the IVECTOR procedure method is obsolete.

Keywords

MARK_POINTS (Set)

Set this keyword to mark all missing points with dots. Missing points are given by
either non-finite data values (e.g. NaN) or by points which lie outside of the
MIN_VALUE or MAX_VALUE range.
Obsolete IDL Features IVECTOR

218 Chapter 4: Routines with Obsolete Arguments or Keywords
IVOLUME

The following keyword to the IVOLUME procedure method is obsolete.

Keywords

CUTTING_PLANES (Get, Set)

Set this keyword to a floating-point array with dimensions (4, n) specifying the
coefficients of n cutting planes. The cutting plane coefficients are in the form {{nx,
ny, nz, D}, ...} where (nx)X+(ny)Y+(nz)Z+ D > 0, and (X, Y, Z) are the voxel
coordinates. To clear the cutting planes, set this property to any scalar value (e.g.
CUTTING_PLANES = 0). By default, no cutting planes are defined.
IVOLUME Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 219
LABEL_REGION

The following keyword to the LABEL_REGION function is obsolete.

Keywords

EIGHT

This keyword is now obsolete. It has been replaced by the ALL_NEIGHBORS
keyword (because this routine now handles N-dimensional data).
Obsolete IDL Features LABEL_REGION

220 Chapter 4: Routines with Obsolete Arguments or Keywords
LINFIT

The following keyword to the LINFIT function is obsolete.

Keywords

SDEV

This keyword has been replaced by the MEASURE_ERRORS keyword.
LINFIT Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 221
LINKIMAGE

The following keywords to the LINKIMAGE procedure are obsolete.

Keywords

DEFAULT

This keyword is ignored on non-VMS platforms. Under VMS, it is a string containing
the default device, directory, file name, and file type information for the file that
contains the sharable image. See “VMS LINKIMAGE and
LIB$FIND_IMAGE_SYMBOL” on page 1281 for additional information.
Obsolete IDL Features LINKIMAGE

222 Chapter 4: Routines with Obsolete Arguments or Keywords
LIVE_PRINT

The following keywords to the LIVE_PRINT procedure are obsolete.

Keywords

SETUP

(Macintosh users only) Set this keyword to have a printer setup dialog appear. This
keyword allows the user to setup the page for printing.
LIVE_PRINT Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 223
LM_FIT

The following keyword to the LM_FIT function is obsolete.

Keywords

WEIGHTS

This keyword has been replaced by the MEASURE_ERRORS keyword. Code that
uses the WEIGHTS keyword will continue to work as before, but new code should
use the MEASURE_ERRORS keyword. Note that the definition of the
MEASURE_ERRORS keyword is not the same as the WEIGHTS keyword. Using
the WEIGHTS keyword, SQRT(1/WEIGHTS[i]) represents the measurement error
for each point Y[i]. Using the MEASURE_ERRORS keyword, the measurement
error for each point is represented as simply MEASURE_ERRORS[i].
Obsolete IDL Features LM_FIT

224 Chapter 4: Routines with Obsolete Arguments or Keywords
MAKE_DLL

The following keywords to the MAKE_DLL procedure are obsolete.

VMS-Only Keywords

This keyword is for VMS platforms only, and is ignored on all other platforms.

VAX_FLOAT

If set, specifies the sharable library to be compiled for VAX F (single) or D (double)
floating point formats. The default is to use the IEEE format used by IDL.
MAKE_DLL Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 225
MESSAGE

The following keyword to the MESSAGE procedure is obsolete.

Keywords

TRACEBACK

This keyword is obsolete and is included for compatibility with existing code only.
Traceback information is provided by default.
Obsolete IDL Features MESSAGE

226 Chapter 4: Routines with Obsolete Arguments or Keywords
ONLINE_HELP

The following keywords to the three ONLINE_HELP procedures are obsolete.

HTML_HELP

Set this keyword to a non-zero value to indicate that the file specified by the BOOK
keyword should be viewed with the HTML Help viewer. Explicitly set this keyword
equal to zero to indicate that the file should be viewed with the traditional Windows
help viewer.

Note
Normally, ONLINE_HELP can properly determine which viewer to use based on
the name of the file, so use of the HTML_HELP keyword is rarely necessary.

FOLD_CASE

This keyword is only available on UNIX platforms.

Normally, the string given by the Value argument is folded to upper case before being
handed to the IDL help viewer for display. Explicitly set FOLD_CASE=0 to indicate
that the string should be handed to the help viewer without modification.

PAGE

This keyword is only available on UNIX platforms.

Set this keyword equal to a page number. Acrobat will open the specified page in the
specified PDF file.

SUPPRESS_PLUGIN_ERRORS

Under Unix, if the IDL-Acrobat plug-in is not available for your current platform,
ONLINE_HELP will issue warning messages explaining that it is unable to position
the document, and that the user will need to manually navigate to the desired
information once the Acrobat reader application is running. Set this keyword to
prevent these warnings from being issued. On non-Unix platforms, this keyword is
quietly ignored.

TOPICS

This keyword is only available on Windows platforms.

Set this keyword to display the Index dialog for the specified help file.
ONLINE_HELP Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 227
OPEN

The following keywords to the three OPEN procedures are obsolete.

Macintosh-Only Keywords

MACCREATOR

Use this keyword to specify a four-character scalar string identifying the Macintosh
file creator code of the file being created. For example, set

MACCREATOR = 'MSWD'

to create a file with the creator code MSWD. The default creator code is MIDL.

MACTYPE

Use this keyword to specify a four-character scalar string identifying the Macintosh
file type of the file being created. For example, set

MACTYPE = 'PICT'

to create a file of type PICT. The default file type is TEXT.

UNIX-Only Keywords

The previous keyword NOSTDIO is now obsolete. It has been renamed RAWIO to
reflect the fact that stdio may or may not actually be used. All references to
NOSTDIO should be changed to be RAWIO, but NOSTDIO will still be accepted as a
synonym for RAWIO.

NOSTDIO

Set this keyword to disable all use of the standard UNIX I/O for the file, in favor of
direct calls to the operating system. This allows direct access to devices, such as tape
drives, that are difficult or impossible to use effectively through the standard I/O.
Using this keyword has the following implications:

• No formatted or associated (ASSOC) I/O is allowed on the file. Only READU
and WRITEU are allowed.

• Normally, attempting to read more data than is available from a file causes the
unfilled space to be set to zero and an error to be issued. This does not happen
with files opened with NOSTDIO. When using NOSTDIO, the programmer
Obsolete IDL Features OPEN

228 Chapter 4: Routines with Obsolete Arguments or Keywords
must check the transfer count, either via the TRANSFER_COUNT keywords
to READU and WRITEU, or the FSTAT function.

• The EOF and POINT_LUN functions cannot be used with a file opened with
NOSTDIO.

• Each call to READU or WRITEU maps directly to UNIX read(2) and write(2)
system calls. The programmer must read the UNIX system documentation for
these calls and documentation on the target device to determine if there are any
special rules for I/O to that device. For example, the size of data that can be
transferred to many cartridge tape drives is often forced to be a multiple of 512
bytes.

VMS-Only Keywords

BLOCK

Set this keyword to process the file using RMS block mode. In this mode, most RMS
processing is bypassed and IDL reads and writes to the file in disk block units. Such
files can only be accessed via unformatted I/O commands. Block mode files are
treated as an uninterpreted stream of bytes in a manner similar to UNIX stream files.

For best performance, by default IDL uses RMS block mode for fixed length record
files. However, when the SHARED keyword is present, IDL uses standard RMS
mode. Do not specify both BLOCK and SHARED.

This keyword is ignored when used with stream files.

Note
With some controller/disk combinations, RMS does not allow transfer of an odd
number of bytes.

DEFAULT

A scalar string that provides a default file specification from which missing parts of
the File argument are taken. For example, to make .LOG be the default file extension
when opening a new file, use the command:

OPENW, 'DATA', DEFAULT='.LOG'

This statement will open the file DATA.LOG.
OPEN Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 229
EXTENDSIZE

File extension is a relatively slow operation, and it is desirable to minimize the
number of times it is done. In order to avoid the unacceptable performance that would
result from extending a file a single block at a time, VMS extends its size by a default
number of blocks in an attempt to trade a small amount of wasted disk space for
better performance. The EXTENDSIZE keyword overrides the default, and specifies
the number of disk blocks by which the file should be extended. This keyword is
often used in conjunction with the INITIALSIZE and TRUNCATE_ON_CLOSE
keywords.

FIXED

Set this keyword to indicate that the file has fixed-length records. The Record_Length
argument is required when opening new, fixed-length files.

FORTRAN

Set this keyword to use FORTRAN-style carriage control when creating a new file.
The first byte of each record controls the formatting.

INITIALSIZE

The initial size of the file allocation in blocks. This keyword is often used in
conjunction with the EXTENDSIZE and TRUNCATE_ON_CLOSE keywords.

KEYED

Set this keyword to indicate that the file has indexed organization. Indexed files are
discussed in “VMS-Specific Information” in Chapter 8 of Application Programming.

LIST

Set this keyword to specify carriage-return carriage control when creating a new file.
If no carriage-control keyword is specified, LIST is the default.

NONE

Set this keyword to specify explicit carriage control when creating a new file. When
using explicit carriage control, VMS does not add any carriage control information to
the file, and the user must explicitly add any desired carriage control to the data being
written to the file.
Obsolete IDL Features OPEN

230 Chapter 4: Routines with Obsolete Arguments or Keywords
PRINT

Set this keyword to send the file to SYS$PRINT, the default system printer, when it is
closed.

SEGMENTED

Set this keyword to indicate that the file has VMS FORTRAN-style segmented
records. Segmented records are a method by which FORTRAN allows logical records
to exist with record sizes that exceed the maximum possible physical record sizes
supported by VMS. Segmented record files are useful primarily for passing data
between FORTRAN and IDL programs.

SHARED

Set this keyword to allow other processes read and write access to the file in parallel
with IDL. If SHARED is not set, read-only files are opened for read sharing and
read/write files are not shared. The SHARED keyword cannot be used with
STREAM files.

Warning
It is not a good idea to allow shared write access to files open in RMS block mode.
In block mode, VMS cannot perform the usual record locking that prevents file
corruption. It is therefore possible for multiple writers to corrupt a block mode file.
This warning also applies to fixed-length record disk files, which are also processed
in block mode. When using SHARED, do not specify either BLOCK or
UDF_BLOCK.

STREAM

Set this keyword to open the file in stream mode using the Standard C Library (stdio).

SUBMIT

Set this keyword to submit the file to SYS$BATCH, the default system batch queue,
when it is closed.

SUPERSEDE

Set this keyword to allow an existing file to be superseded by a new file of the same
name, type, and version.
OPEN Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 231
TRUNCATE_ON_CLOSE

Set this keyword to free any unused disk space allocated to the file when the file is
closed. This keyword can be used to get rid of excess allocations caused by the
EXTENDSIZE and INITIALSIZE keywords. If the SHARED keyword is set, or the
file is open for read-only access, TRUNCATE_ON_CLOSE has no effect.

UDF_BLOCK

Set this keyword to create a file similar to those created with the BLOCK keyword
except that new files are created with the RMS undefined record type. Files created in
this way can only be accessed by IDL in block mode, and cannot be processed by
many VMS utilities. Do not specify both UDF_BLOCK and SHARED.

VARIABLE

Set this keyword to indicate that the file has variable-length records. If the
Record_Length argument is present, it specifies the maximum record size. Otherwise,
the only limit is that imposed by RMS (32767 bytes). If no file organization is
specified, variable-length records are the default.

Warning
VMS variable length records have a 2-byte record-length descriptor at the
beginning of each record. Because the FSTAT function returns the length of the data
file including the record descriptors, reading a file with VMS variable length
records into a byte array of the size returned by FSTAT will result in an RMS EOF
error.

Windows-Only Keywords

The Windows-Only keywords BINARY and NOAUTOMODE are now obsolete.
Input/Output on Windows is now handled indentically to Unix, and does not require
you to be concerned about the difference between “text” and “binary” modes. These
keywords are still accepted for backwards compatibility, but are ignored.

BINARY

Set this keyword to treat opened files as binary files. When writing text to a binary
file, CR/LF pairs are written as LF only. Note that setting the BINARY keyword
alone does not ensure that a routine that writes to the file will not change the mode to
text.
Obsolete IDL Features OPEN

232 Chapter 4: Routines with Obsolete Arguments or Keywords
NOAUTOMODE

Set this keyword to prevent IDL routines such as PRINTF from automatically
changing the mode from binary to text, or vice versa.
OPEN Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 233
POLY_FIT

The following arguments to POLY_FIT are obsolete.

Arguments

Yfit

A named variable that will contain the vector of calculated Y values. These values
have an error of plus or minus Yband.

Yband

A named variable that will contain the error estimate for each point.

Sigma

A named variable that will contain the standard deviation in Y units.

Corrm

A named variable that will contain the correlation matrix of the coefficients.
Obsolete IDL Features POLY_FIT

234 Chapter 4: Routines with Obsolete Arguments or Keywords
PRINT/PRINTF

The following keywords to the two PRINT procedures are obsolete.

VMS Keywords

REWRITE

When writing data to a file with indexed organization, set the REWRITE keyword to
specify that the data should update the contents of the most recently input record
instead of creating a new record.
PRINT/PRINTF Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 235
READ_TIFF

The following keywords to the READ_TIFF function are obsolete.

Keywords

ORDER

Set this keyword to a named variable that will contain the order value from the TIFF
file. This value is returned as 0 for images written bottom to top, and 1 for images
written top to bottom. If an order value does not appear in the TIFF file, an order of 1
is returned.

The ORDER keyword can return any of the following additional values (depending
on the source of the TIFF file):

Reference: Aldus TIFF 6.0 spec (TIFF version 42).

UNSIGNED

This keyword is now obsolete because older versions of IDL did not support the
unsigned 16-bit integer data type. Set this keyword to return TIFF files containing
unsigned 16-bit integers as signed 32-bit longword arrays. If not set, return an
unsigned 16-bit integer for these files. This keyword has no effect if the input file
does not contain 16-bit integers.

Rows Columns

1 top to bottom, left to right

2 top to bottom, right to left

3 bottom to top, right to left

4 bottom to top, left to right

5 top to bottom, left to right

6 top to bottom, right to left

7 bottom to top, right to left

8 bottom to top, left to right

Table 4-1: Values for the ORDER keyword
Obsolete IDL Features READ_TIFF

236 Chapter 4: Routines with Obsolete Arguments or Keywords
READ/READF

The following keywords to the READ procedures are obsolete.

VMS Keywords

Note also that the obsolete VMS-only routine READ_KEY has been replaced by the
keywords below.

KEY_ID

The index key to be used (primary = 0, first alternate key = 1, etc...) when accessing
data from a file with indexed organization. If this keyword is omitted, the primary
key is used.

KEY_MATCH

The relation to be used when matching the supplied key with key field values (EQ =
0, GE = 1, GT = 2) when accessing data from a file with indexed organization. If this
keyword is omitted, the equality relation (0) is used.

KEY_VALUE

The value of a key to be found when accessing data from a file with indexed
organization. This value must match the key definition that is determined when the
file was created in terms of type and size—no conversions are performed. If this
keyword is omitted, the next sequential record is used.
READ/READF Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 237
READU

The following keywords to the READU procedure are obsolete.

VMS-Only Keywords

Note
The obsolete VMS routines FORRD, and FORRD_KEY have been replaced by the
READU command used with the following keywords.

KEY_ID

The index key to be used (primary = 0, first alternate key = 1, etc...) when accessing
data from a file with indexed organization. If this keyword is omitted, the primary
key is used.

KEY_MATCH

The relation to be used when matching the supplied key with key field values (EQ =
0, GE = 1, GT = 2) when accessing data from a file with indexed organization. If this
keyword is omitted, the equality relation (0) is used.

KEY_VALUE

The value of a key to be found when accessing data from a file with indexed
organization. This value must match the key definition that is determined when the
file was created in terms of type and size—no conversions are performed. If this
keyword is omitted, the previous key value is used.
Obsolete IDL Features READU

238 Chapter 4: Routines with Obsolete Arguments or Keywords
REGRESS

The following arguments and keywords to REGRESS are obsolete.

Arguments

Weights

An Npoints-element vector of weights for each equation. For instrumental (Gaussian)
weighting, set Weightsi = 1.0/standard_deviation(Yi)

2. For statistical (Poisson)
weighting, set Weightsi = 1.0/Yi. For no weighting, set Weightsi = 1.0, and set the
RELATIVE_WEIGHT keyword.

Yfit

A named variable that will contain an Npoints-elements vector of calculated values of
Y.

Const

A named variable that will contain the constant term.

Sigma

A named variable that will contain the vector of standard deviations for the returned
coefficients.

Ftest

A named variable that will contain the value of F for test of fit.

R

A named variable that will contain the vector of linear correlation coefficients.

Rmul

A named variable that will contain the multiple linear correlation coefficient.

Chisq

A named variable that will contain a reduced, weighted, chi-squared.
REGRESS Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 239
Status

A named variable that iwll contain the status of the internal array inversion
computation.

Keywords

RELATIVE_WEIGHT

If this keyword is set, the input weights (the W vector) are assumed to be relative
values, and not based on known uncertainties in the Y vector. Set this keyword in the
case of no weighting.
Obsolete IDL Features REGRESS

240 Chapter 4: Routines with Obsolete Arguments or Keywords
SAVE

The following keywords to the SAVE procedure are obsolete.

Keywords

XDR

This keyword is obsolete and will be quietly ignored (there is no need to remove uses
of the XDR keyword from existing code). IDL always generates XDR format files,
although it will continue to read VAX format SAVE files generated by old versions of
VMS IDL.
SAVE Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 241
SPAWN

The following keywords to the SPAWN procedure are obsolete.

Keywords

FORCE

Set this keyword to override buffered file output in IDL and force the file to be closed
no matter what errors occur in the process. If it is not possible to properly flush this
data when a file close is requested, an error is normally issued and the file remains
open. An example of this might be that your disk does not have room to write the
remaining data. This default behavior prevents data from being lost, but the FORCE
keyword overrides this behavior.

Macintosh-Only Keywords

MACCREATOR

Use this keyword to specify a four-character scalar string containing the Macintosh
file creator code of the application to be used to open the specified files. In no files
were specified, the application is launched without any files.

VMS-Only Keywords

NOCLISYM

If this keyword is set, the spawned subprocess does not inherit command language
interpreter symbols from its parent process. You can specify this keyword to prevent
commands redefined by symbol assignments from affecting the spawned commands,
or to speed process startup.

NOLOGNAM

If this keyword is set, the spawned subprocess does not inherit process logical names
from its parent process. You can specify this keyword to prevent commands
redefined by logical name assignments from affecting the spawned commands, or to
speed process startup.
Obsolete IDL Features SPAWN

242 Chapter 4: Routines with Obsolete Arguments or Keywords
NOTIFY

If this keyword is set, a message is broadcast to SYS$OUTPUT when the child
process completes or aborts. NOTIFY has no effect unless NOWAIT is set.
SPAWN Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 243
SVDFIT

The following keywords to SVDFIT are obsolete.

Keywords

WEIGHTS

Set this keyword equal to a vector of weights for Yi. This vector should be the same
length as X and Y. The error for each term is weighted by WEIGHTSi when
computing the fit.
Obsolete IDL Features SVDFIT

244 Chapter 4: Routines with Obsolete Arguments or Keywords
WIDGET_BASE

The following keywords to the WIDGET_BASE function are obsolete.

Keywords

APP_MBAR

Set this keyword to a named variable that defines a widget application’s menubar. On
the Macintosh, the menubar defined by APP_MBAR becomes the system menubar
(the menubar at the top of the Macintosh screen). On Motif platforms and under
Microsoft Windows, the APP_MBAR is treated in exactly the same fashion as the
menubar created with the MBAR keyword. See “MBAR” on page 2115 for details on
creating menubars.

Warning
You cannot specify both an APP_MBAR and an MBAR for the same top-level base
widget. Doing so will cause an error.

To apply actions triggered by menu items to widgets other than the base that includes
the menubar, use the KBRD_FOCUS_EVENTS keyword to keep track of which
widget has (or last had) the keyboard focus.
WIDGET_BASE Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 245
WIDGET_CONTROL

The following keywords to the WIDGET_CONTROL function are obsolete.

Keywords

CANCEL_BUTTON

This keyword applies to widgets created with the WIDGET_BASE function using
the MODAL keyword.

Set this keyword equal to the widget ID of a button widget that will be the Cancel
button on a modal base widget.

On Motif and Windows platforms, selecting Close from the system menu (generally
located at the upper left of the base widget) generates a button event for the Cancel
button.

DEFAULT_BUTTON

This keyword applies to widgets created with the WIDGET_BASE function using
the MODAL keyword.

Set this keyword equal to the widget ID of a button widget that will be the default
button on a modal base widget. The default button is highlighted by the window
system.
Obsolete IDL Features WIDGET_CONTROL

246 Chapter 4: Routines with Obsolete Arguments or Keywords
WIDGET_TREE

The following keywords to the WIDGET_TREE function are obsolete.

Keywords

TOP

Set this keyword to cause the tree node being created to be inserted as the parent
node’s top entry. By default, new nodes are inserted as the parent node’s bottom
entry.

This keyword is only valid if the Parent of the tree widget is another tree widget.
WIDGET_TREE Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 247
WRITE_TIFF

The following features of the WRITE_TIFF procedure are obsolete.

Arguments

ORDER

This argument should be 0 if the image is stored from bottom to top (the default). For
images stored from top to bottom, this argument should be 1.

Warning
Not all TIFF readers honor the value of the Order argument. IDL writes the value
into the file, but many known readers ignore this value. In such cases, we
recommend that you convert the image to top to bottom order with the REVERSE
function and then set Order to 1.
Obsolete IDL Features WRITE_TIFF

248 Chapter 4: Routines with Obsolete Arguments or Keywords
WRITEU

The following keywords to the WRITEU procedure are obsolete.

VMS-Only Keywords

Note
The obsolete FORWRT routine has been replaced by WRITEU.

REWRITE

When writing data to a file with indexed organization, setting the REWRITE
keyword specifies that the data should update the contents of the most recently input
record instead of creating a new record.
WRITEU Obsolete IDL Features

Chapter 4: Routines with Obsolete Arguments or Keywords 249
XMANAGER

The following keywords to the XMANAGER procedure are obsolete.

BACKGROUND

This keyword is obsolete and is included in XMANAGER for compatibility with
existing code only. Its functionality has been replaced by the TIMER keyword to the
WIDGET_CONTROL procedure.

MODAL

This keyword is obsolete and is included in XMANAGER for compatibility with
existing code only. Its functionality has been replaced by the MODAL keyword to the
WIDGET_BASE procedure.

When this keyword is set, the widget that is being registered traps all events and
desensitizes all the other widgets. It is useful when input from the user is necessary to
continue (i.e., “blocking” dialog boxes). Once the modal widget dies, the others are
resensitized and the normal event processing continues.
Obsolete IDL Features XMANAGER

250 Chapter 4: Routines with Obsolete Arguments or Keywords
XMANAGER Obsolete IDL Features

Chapter 5

Obsoleted Graphics
Devices
This chapter contains documentation for graphics devices that are no longer
supported by IDL. If you attempt to set IDL’s graphics device to be one of the
devices listed in this chapter via the SET_PLOT procedure, IDL will generate an
error like

% Graphics device not available: device

For information on keywords to the DEVICE procedure that have become obsolete
along with these graphics devices, see the DEVICE section of Chapter 4, “Routines
with Obsolete Arguments or Keywords”.
Obsolete IDL Features 251

252 Chapter 5: Obsoleted Graphics Devices
The LJ Device

Device Keywords Accepted by the LJ Device:

CLOSE_FILE, DEPTH, FILENAME, FLOYD, INCHES, LANDSCAPE,
ORDERED, PIXELS, PORTRAIT, RESOLUTION, SET_CHARACTER_SIZE,
THRESHOLD, XOFFSET, XSIZE, YOFFSET, YSIZE.

The LJ250 and LJ252 are color printers sold by Digital Equipment Corporation
(DEC). To direct graphics output to a picture description file compatible with these
printers, issue the command:

SET_PLOT, 'LJ'

This causes IDL to use the LJ driver for producing graphical output. To actually print
the generated graphics, send the file to the printer using the normal printing facilities
supplied by the operating system. Once the LJ driver is enabled via SET_PLOT, the
DEVICE procedure is used to control its actions, as described below. The default
settings for the LJ driver are given in the following table. Use the HELP, /DEVICE
command to view the current font, file, and other options currently set for LJ output.

Feature Value

File idl.lj

Mode Portrait

Dither method Floyd-Steinberg

Resolution 180 dpi

Number of planes 1 (monochrome)

Horizontal offset 1/2 in.

Vertical offset 1 in.

Width 7 in.

Height 5 in.

Table 5-1: Default LJ Driver Settings
The LJ Device Obsolete IDL Features

Chapter 5: Obsoleted Graphics Devices 253
LJ Driver Strengths

The LJ250 produces color graphics at a low cost. It is capable of producing good
quality monochrome output, and is also good at color vector graphics and simple
color imaging using a small number of predefined solid colors.

LJ Driver Limitations

The LJ250 is intended to be used as a low cost printer for business color graphics.
Although it can be used to print color images, it is limited in its ability to produce
satisfactory images of the sort commonly encountered in science and engineering.
These limitations make it a poor choice for such work.

• Although color is specified via the usual RGB triples using the TVLCT
procedure, the LJ250 is only capable of generating a fixed set of colors. The
number of possible colors depends on the resolution in use. When producing
180 dpi graphics, only the colors given in the following table are possible. In
90 dpi mode, 256 colors are available.

If a color is specified that the printer cannot produce, it substitutes the closest
color it can. However, the results of such substitutions can give unexpected
results. The fixed set of possible colors means that the LOADCT procedure is
of limited use with the LJ250. It also means that it is difficult to produce
satisfactory grayscale images.

Color Red Value Green Value Blue Value

Black 10 10 10

Yellow 227 212 33

Magenta 135 13 64

Cyan 5 56 163

Red 135 20 36

Green 8 66 56

Blue 10 10 74

White 229 224 217

Table 5-2: LJ250 Colors Available at 180 dpi
Obsolete IDL Features The LJ Device

254 Chapter 5: Obsoleted Graphics Devices
• The number of simultaneous colors possible on an output page is limited.
Although images are specified in 8-bit bytes, the number of significant bits
used ranges from 1 to 4 (as specified via the DEPTH keyword to the DEVICE
procedure), allowing from 2 to 16 colors. Coupled with the above limitation on
the colors that are possible, it is difficult to produce high quality image output.

LJ Suggestions

The following suggestions are intended to help you get the most out of the LJ250,
taking its limitations into account:

• Use monochrome output when possible. This results in considerably smaller
output files, and provides most of the abilities the LJ250 handles well. When
producing monochrome output, the LJ250 driver dithers images. This can
often produce more satisfying grayscale output than is possible using the
printer in color mode.

• The table under “LJ Driver Limitations” above gives the RGB values to use
when specifying colors at 180 dpi. To make more colors available, use 90 dpi
resolution. The RGB values for the possible colors at 90 dpi are given in Table
7-6 of the LJ250/LJ252 Companion Color Printer Programmer Reference
Manual. You can cause the printer to display the complete 256 color palette as
follows: With the power off, press and hold the READY and DEC/PCL
switches while momentarily pressing the power switch. Wait approximately 2
seconds and release the READY and DEC/PCL switches. The printer will take
a few minutes to print all 256 colors. The output fits on a single page.

Use the table in the programmers manual with this display to select the colors
to use. Note that the RGB values in the programmers manual are scaled from 1
to 100, while IDL scales such values from 0 to 255. Therefore, multiply the
values obtained from the manual by 2.55 to properly scale them for use in IDL.

• Unlike most devices, IDL does not initialize the LJ250 color map to a
grayscale ramp because the printer cannot produce a satisfactory grayscale
image. Instead, the default palettes given in Table 7-5 of the LJ250/LJ252
Companion Color Printer Programmer Reference Manual are used. If you
modify the color map, the LJLCT procedure can be used to reset the color table
to these defaults. LJLCT examines the !D.N_COLORS system variable to
determine the number of output planes in use, then loads the appropriate
default color map.

• When producing images, stick to images with small amounts of detail and
large sections of uniform color. Complicated images do not reproduce well on
this printer.
The LJ Device Obsolete IDL Features

Chapter 5: Obsoleted Graphics Devices 255
The Macintosh Device

Device Keywords Accepted by the MAC Device:

BYPASS_TRANSLATION, COPY, CURSOR_ORIGINAL,
CURSOR_STANDARD, DECOMPOSED, FLOYD, GET_CURRENT_FONT,
GET_FONTNAMES, GET_FONTNUM, GET_GRAPHICS_FUNCTION,
GET_SCREEN_SIZE, GET_WINDOW_POSITION, ORDERED,
PSEUDO_COLOR, RETAIN, SET_CHARACTER_SIZE, SET_FONT,
SET_GRAPHICS_FUNCTION, THRESHOLD, TRANSLATION, TRUE_COLOR

The Macintosh version of IDL uses the “MAC” device by default. This device is
similar to The X Windows Device. The “MAC” device is only available in IDL for
Macintosh.

To set plotting to the Macintosh device, use the command:

SET_PLOT, 'MAC'
Obsolete IDL Features The Macintosh Device

256 Chapter 5: Obsoleted Graphics Devices
The Macintosh Device Obsolete IDL Features

Chapter 6

Obsolete Remote
Procedure Calls
Note
Remote Procedure Calls are still included in IDL. The RPC API described here (the
API included with IDL version 4.0) has been replaced with a new API. See the
External Development Guide for details on the RPC API included with IDL version
5.0 and later.

Remote Procedure Calls (RPCs) allow one process (the client process) to have
another process (the server process) execute a procedure call just as if the caller
process had executed the procedure call in its own address space. Since the client and
server are separate processes, they can reside on the same machine or on different
machines. RPC libraries allow the creation of network applications without having to
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A library
of C language routines is included to handle communication between client programs
and the IDL server. Note that remote procedure calls are supported only on
UNIX platforms.
Obsolete IDL Features 257

258 Chapter 6: Obsolete Remote Procedure Calls
The current implementation allows IDL to be run as an RPC server and your own
program to be run as a client. IDL commands can be sent from your application to the
IDL server, where they are executed. Variable structures can be defined in the client
program and then sent to the IDL server for creation as IDL variables. Similarly, the
values of variables in the IDL server session can be retrieved into the client process.
Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 259
Using IDL as an RPC Server

The IDL RPC Directory

All of the files related to using IDL’s RPC capabilities are found in the rpc
subdirectory of the external subdirectory of the main IDL directory. The main IDL
directory is referred to here as idldir.

Running IDL in Server Mode

To use IDL as an RPC server, run IDL in server mode by using the -server
command line option. This option can be invoked one of two ways:

idl -server process_id

or

idl -server=server_number process_id

where server_number is the hexadecimal server ID number (between 0x20000000
and 0x3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idl -server=20500000

If a server ID number is not supplied, IDL uses the default, IDL_DEFAULT_ID,
defined in the file idldir/external/rpc/rpc_idl.h. This value is originally set to
0x2010CAFE.

The process_id argument is an optional argument that specifies the process ID of a
UNIX process that should be contacted when IDL has finished running in interactive
mode. If the IDL rpc server is placed in interactive mode and a process ID has been
supplied on the command line, IDL sends the UNIX signal SIGUSR1 to the specified
process. This signal allows the client program to know when it can continue to
communicate with the rpc server.

Creating the IDL RPC Library

The machine that runs the client program must have its own version of the IDL RPC
library. The make file for this library is contained in the directory
idldir/external/rpc. If the machine that runs the client program is not licensed to
run IDL, simply copy the contents of the IDL rpc directory to an appropriate
location on the client machine.
Obsolete IDL Features Using IDL as an RPC Server

260 Chapter 6: Obsolete Remote Procedure Calls
To build the IDL RPC library, copy the IDL rpc directory to a new directory, change
to that directory, and enter the make command:

cp -R idldir/external/rpc newrpcdir
cd newrpcdir
make

The created library is contained in the file newrpcdir/rpcidl.a. The functions
contained in the library are described in “The IDL RPC Library” on page 261

Linking your Client Program

Your client program must include the file idldir/external/rpc/rpc_idl.h.

You must also link the application that communicates with IDL with the IDL RPC
library. For example, to compile and link a program with the IDL RPC library, you
might enter:

cc -c rpcclient.c
cc -o rpcclient.o idldir/external/rpc/rpcidl.a

where rpcclient.c is the name of your program. Note that your actual command lines
and flag settings may be different than the ones shown above, depending upon your C
compiler. The Makefile contains details on modifications for various systems.
Using IDL as an RPC Server Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 261
The IDL RPC Library

The IDL RPC library contains several C language interface functions that facilitate
communication between your application and IDL. There are functions to register
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are
described below.
Obsolete IDL Features The IDL RPC Library

262 Chapter 6: Obsolete Remote Procedure Calls
free_idl_variable

Syntax

void free_idl_var(varinfo_t* var);

Description

This function frees all dynamic memory associated with the given variable. Attempts
to free a static variable are silently ignored. (See “Notes on Variable Creation and
Memory Management” on page 286)

Parameters

var

The address of the varinfo_t structure that contains the information about the variable
to be freed.

Return Value

None
free_idl_variable Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 263
get_idl_variable

Syntax

int get_idl_variable(CLIENT* client, char* name, varinfo_t* var,
int typecode)

Description

Call this function to retrieve the value of an IDL variable in the IDL session referred
to by client. Any scalar or array variable type can be retrieved. Variables can be
retrieved only from the main program level.

Note that it is not possible to get the value of an IDL structure. To retrieve values
from an IDL structure, “decompose” the structure into regular variables in IDL, then
use this function to get the values of those individual variables.

It is not possible to get the value of IDL system variables directly. To retrieve the
value of an IDL system variable, first copy it to a regular IDL variable. The value of
the regular variable can then be retrieved with get_idl_variable. For example:

varinfo_t pt;/* Declare variable pt */
send_idl_command(client, "X = !P.T");
get_idl_variable(client, "X", &pt, 0);

Parameters

client

A pointer to the CLIENT structure that corresponds to the desired IDL session.

name

A null terminated string that contains the name of the IDL variable to be retrieved.
Only the first MAXIDLEN characters of this string are used. MAXIDLEN is defined in
the file idldir/external/rpc/rpc_idl.h.

var

The address of a varinfo_t structure in which to store the returned variable
information. Upon return, the Name field of the var structure contains the name of
the variable as found in IDL. If the name supplied is an illegal IDL variable name, the
Name field is set to <ILLEGAL_NAME>. If the variable is a structure or associated
variable, the Name field is set to <BAD-VAR-TYPE>.
Obsolete IDL Features get_idl_variable

264 Chapter 6: Obsolete Remote Procedure Calls
typecode

If you want IDL to typecast a variable (i.e., guarantee the value to be of a particular
type) before it is transported, set typecode to one of the following values (defined in
the file export.h):

IDL_TYP_BYTE, IDL_TYP_INT, IDL_TYP_LONG, IDL_TYP_FLOAT,
IDL_TYP_DOUBLE, IDL_TYP_STRING, IDL_TYP_COMPLEX, IDL_TYP_DCOMPLEX

For example, the command:

get_idl_variable(client, "x", &xv, IDL_TYP_LONG)

guarantees that the value in x is returned as a 32-bit integer.

If typecode is 0, the variable is transferred with whatever data type it has in the
server. Typecasting only affects the variables in the client – the server side is not
affected.

Return Value

This function returns a status value that denotes the success or failure of this function
as described below.

-1 Failure: bad arguments supplied (e.g., name or var is NULL).

0 RPC mechanism failed (an error message may also be printed).

1 Success

-2 Illegal variable name (e.g., “213xyz”, “#a”, “!DEVICE”)

-3 Variable not transportable (e.g., the variable is a structure or associated
variable)
get_idl_variable Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 265
idl_server_interactive

Syntax

int idl_server_interactive(CLIENT*client)

Description

Call this function to cause the IDL server to become an interactive IDL session. It is
likely that this command will time out. Some alternative mechanism for determining
when the server is finished should be implemented. See the example server.c in
the idldir/examples/rpc directory.

Parameters

client

A CLIENT structure that corresponds to the desired IDL session.

Return Value

This function returns TRUE if the interactive IDL session did not time out. FALSE is
returned if the session times out or otherwise fails.
Obsolete IDL Features idl_server_interactive

266 Chapter 6: Obsolete Remote Procedure Calls
kill_server

Syntax

int kill_server(CLIENT*client)

Description

Call this function to kill the IDL RPC server.

Parameters

client

The pointer to a CLIENT structure registered with the server to be killed.

Return Value

This function returns TRUE if the server was successfully killed. FALSE is returned
otherwise.
kill_server Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 267
register_idl_client

Syntax

CLIENT* register_idl_client(long server_id, char* hostname,
struct timeval* timeout)

Description

Call this function to register your program as a client of an IDL server. Note that a
program can be the client of a number of different servers at the same time and a
single server can have multiple clients.

Parameters

server_id

The ID number of the IDL server that the program is to be registered with. If this
value is 0, the default server ID (0x2010CAFE) is used.

hostname

The name of the machine where the IDL server is running. If this value is NULL or
"", the default, localhost, is used.

timeout

A pointer to the timeout value for all communication with IDL servers. If this value is
NULL or 0, the default timeout, 60 seconds, is used.

Return Value

A pointer to the new CLIENT structure is returned. This function returns NULL if it
is unsuccessful.
Obsolete IDL Features register_idl_client

268 Chapter 6: Obsolete Remote Procedure Calls
send_idl_command

Syntax

int send_idl_command(CLIENT* client, char* command);

Description

Call this function to send an IDL command to the IDL server referred to by client.
The command is executed just as if it had been entered from the IDL command line.

This function cannot be used to send multi-line commands. If the first part of a multi-
line command is sent, for example:

send_idl_command(client, "FOR I=1,5 DO $");

IDL spawns an interactive session and may hang. In any case, subsequent commands
are not executed.

Parameters

client

A pointer to the CLIENT structure that corresponds to the desired IDL session.

command

A null-terminated string with no more than MAX_STRING_LEN characters.
MAX_STRING_LEN is defined in the file idldir/external/rpc/rpc_idl.h.

Return Value

This function returns a status value that denotes success or failure as described below.

• -1 = RPC communication failure (an error message is also printed).

• 0 = Command is NULL.

• 1 = Success.

For all other errors, the error number is returned. This number could be passed as an
argument to STRMESSAGE();.
send_idl_command Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 269
set_idl_timeout

Syntax

int set_idl_timeout(struct timeval* timeout)

Description

Call this function to replace the current timeout used by the RPC mechanism with the
given timeout.

Parameters

timeout

A pointer to the new timeout value to be used. This parameter has no default.

Return Value

This function returns TRUE if the timeout was replaced. FALSE is returned if the
timeout value was NULL or zero.
Obsolete IDL Features set_idl_timeout

270 Chapter 6: Obsolete Remote Procedure Calls
set_idl_variable

Syntax

int set_idl_variable(CLIENT* client, varinfo_t* var);

Description

Call this function to assign a value to an IDL variable in the IDL session referred to
by client. The address var points to a varinfo_t structure that contains
information about the variable to be set. The “helper” functions can be used to build
var. (See “The varinfo_t Structure” on page 274) Any scalar or array variable type
can be set. Variables can be set only in the main IDL program level.

Note that it is not possible to set the value of an IDL structure. To set values in an
IDL structure, set the individual elements of the structure to scalar IDL variables,
then use the send_idl_command function to create the structure in IDL.

It is not possible to set the value of IDL system variables directly. To set the value of
an IDL system variable, first set the value of a regular IDL variable. The value of the
regular variable can then be assigned to the system variable. For example:

set_idl_variable(client, &newvar); /* newvar describes the */
 /* IDL variable "NEW" */
send_idl_command(client, "!P.T = NEW");

Parameters

client

A pointer to the CLIENT structure that corresponds to the desired IDL session.

var

The address of the varinfo_t structure that contains information about the variable
to be set.

Return Value

This function returns a status value that denotes the success or failure of this function
as described below.

• -1 = Failure: bad arguments supplied (e.g., var is NULL).
set_idl_variable Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 271
• 0 = RPC mechanism failed (an error message is also printed).

• 1 = Success
Obsolete IDL Features set_idl_variable

272 Chapter 6: Obsolete Remote Procedure Calls
set_rpc_verbosity

Syntax

void set_rpc_verbosity(verbosity)

Description

This function controls the printing of error messages by RPC library routines. If
verbosity is TRUE, error messages will be printed by the various RPC routines to
explain what failed. If verbosity is FALSE, return codes continue to indicate success
or failure, but no error messages are printed.

Parameters

verbosity

An int specifying TRUE or FALSE as explained above.

Return Value

None
set_rpc_verbosity Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 273
unregister_idl_client

Syntax

void unregister_idl_client(CLIENT* client)

Description

Call this function to release the resources associated with the given CLIENT
structure. The operating system automatically releases the resources associated with
all CLIENT structures when your program exits. This function does not affect the
IDL server.

Parameters

client

The pointer to the CLIENT structure to be unregistered.

Return Value

None
Obsolete IDL Features unregister_idl_client

274 Chapter 6: Obsolete Remote Procedure Calls
The varinfo_t Structure

The varinfo_t structure is used to pass variables to and from the IDL server.

The varinfo_t structure is defined in the idldir/external/rpc/rpc_idl.h file.
The structure is:

typedef struct _VARINFO {
char Name[MAXIDLEN+1];
IDL_VPTR Variable;
IDL_LONG Length;
} varinfo_t;

Variable Creation Functions

A number of functions are provided to help build varinfo_t structures. These
functions are contained in the file idldir/external/rpc/helper.c.

The variable creation functions are described below. Unless otherwise noted, all of
the following functions return TRUE if variable creation is successful and FALSE
otherwise. When passing a varinfo_t structure pointer, if the Variable field is
NULL, the variable creation functions attempt to allocate that field.
The varinfo_t Structure Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 275
v_make_byte

Syntax

int v_make_byte(varinfo_t* var_struct, char* var_name,
unsigned value)

Description

Create an IDL byte variable with the given name and value.
Obsolete IDL Features v_make_byte

276 Chapter 6: Obsolete Remote Procedure Calls
v_make_complex

Syntax

int v_make_complex(varinfo_t* var_struct, char* var_name,
double real_value, double imag_value)

Description

Create an IDL complex variable.
v_make_complex Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 277
v_make_dcomplex

Syntax

int v_make_dcomplex(varinfo_t* var_struct, char* var_name,
double real_value, double imag_value)

Description

Create an IDL double-precision complex variable.
Obsolete IDL Features v_make_dcomplex

278 Chapter 6: Obsolete Remote Procedure Calls
v_make_double

Syntax

int v_make_double(varinfo_t* var_struct, char* var_name,
double value)

Description

Create an IDL double-precision, floating-point variable.
v_make_double Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 279
v_make_float

Syntax

int v_make_float(varinfo_t* var_struct, char* var_name,
double value)

Description

Create an IDL single-precision, floating-point variable.
Obsolete IDL Features v_make_float

280 Chapter 6: Obsolete Remote Procedure Calls
v_make_int

Syntax

int v_make_int(varinfo_t* var_struct, char* var_name, int value)

Description

Create an IDL (16-bit) integer variable.
v_make_int Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 281
v_make_long

Syntax

int v_make_long(varinfo_t* var_struct, char* var_name,
IDL_LONG value)

Description

Create an IDL long variable.
Obsolete IDL Features v_make_long

282 Chapter 6: Obsolete Remote Procedure Calls
v_make_string

Syntax

int v_make_string(varinfo_t* var_struct, char* name,
char* value)

Description

Create an IDL string variable.
v_make_string Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 283
v_fill_array

Syntax

int v_fill_array(varinfo_t* var, char* name, int type,
int ndimension, IDL_LONG dims[], UCHAR* value,
IDL_long length)

Description

Create an IDL array variable. The type argument should be one of the following
values (defined in the file export.h):

IDL_TYP_BYTE, IDL_TYP_INT, IDL_TYP_LONG, IDL_TYP_FLOAT,
IDL_TYP_DOUBLE, IDL_TYP_STRING, IDL_TYP_COMPLEX, IDL_TYP_DCOMPLEX

This function allocates var->Variable->value.arr.

If value is NULL then var->Variable->value.arr->data is allocated.

The dims[] argument should have at least ndimension valid elements.

If value is supplied but length is 0, var->Length is filled with the computed size of
the array (in bytes) and value is assumed to point to at least that many bytes of
memory. If value and length are supplied, length is assumed to be the size (in
bytes) of the region of memory that value points to. (See “Notes on Variable Creation
and Memory Management” on page 286)
Obsolete IDL Features v_fill_array

284 Chapter 6: Obsolete Remote Procedure Calls
More Variable Manipulation Macros

The following macros can be used to get information from varinfo_t structures.
Like the variable creation functions, these macros are defined in the file rpc_idl.h.

All of these macros accept a single argument v of varinfo_t type.

GetArrayData(v)

This macro returns a pointer to the array data described by the varinfo_t structure.

GetArrayDimensions(v)

This macro returns the dimensions of the array described by the varinfo_t
structure. The dimensions are returned as long dimensions[].

GetArrayNumDims(v)

This macro returns the number of dimensions of the array.

GetVarByte(v)

This macro returns the value of a 1-byte, unsigned char variable.

GetVarComplex(v)

This macro returns the value (as a struct, not a pointer) of a complex variable.

GetVarDComplex(v)

This macro returns the value (as a struct, not a pointer) of a double-precision,
complex variable.

GetVarDouble(v)

This macro returns the value of a double-precision, floating-point variable.

GetVarFloat(v)

This macro returns the value of a single-precision, floating point variable.
More Variable Manipulation Macros Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 285
GetVarInt(v)

This macro returns the value of a 2-byte integer variable.

GetVarLong(v)

This macro returns the value of a 4-byte integer variable.

GetVarString(v)

This macro returns the value of a string variable (as a char*).

GetVarType(v)

This macro returns the type of the variable described by the varinfo_t structure.
The type is returned as IDL_TYP_XXX as described under the documentation for the
get_idl_variable function.

VarIsArray(v)

This macro returns non-zero if v is an array variable.
Obsolete IDL Features More Variable Manipulation Macros

286 Chapter 6: Obsolete Remote Procedure Calls
Notes on Variable Creation and Memory
Management

This section contains miscellaneous notes about variable creation.

Freeing Resources

The variable creation functions (i.e., v_make_xxx) do not free resources associated
with a variable before placing new information there. Your programs should free
resources (if there are any) associated with the varinfo_t structure being passed.

To prevent memory leakage, memory associated with a variable is freed before new
memory is allocated. You should make sure that the varinfo_t structure passed to
the get_idl_variable function contains valid information or has been cleared (to
zeroes) first. If an array of the same size, dimensions, and type is being read into the
existing array variable, no allocation is performed and the same space is re-used. For
example:

/* Assume that:
X = FLTARR(1000, 1000)
Y = FLTARR(1000, 1000)
Z = LONARR(1000, 1000)same size, different type

*/
bzero(&vinfo, sizeof(vinfo));
get_idl_variable(client, "X", &vinfo, 0); /* array allocated */
...
get_idl_variable(client, "Y", &vinfo, 0); /* memory re-used */
...
get_idl_variable(client, "Z", &vinfo, 0); /* array allocated */
free_idl_var(&vinfo);

The get_idl_variable function calls free_idl_var before doing any
allocation. So, in the example above, we only needed to free Z. X and Y were freed
when we re-used vinfo.

Creating a Statically-Allocated Array

It is possible to create a statically-allocated array for receiving information from the
server without having the overhead of memory reallocation every time information is
received.

If the Length field of the varinfo_t structure is not zero, it is assumed to be the
size of the array data. The free_idl_var function will not do anything to a variable
where length is non-zero. It is up to the programmer to do their own memory
Notes on Variable Creation and Memory Management Obsolete IDL Features

Chapter 6: Obsolete Remote Procedure Calls 287
management if this is the case. Storing a scalar in a static variable (i.e., a variable that
has a non-zero Length field) fails as does attempting to store an array that does not
fit the statically-allocated array. For example:

/* X = FLTARR(10) 40 bytes of data (10*4)
Y = LONARR(2,2,2) 32 bytes of data(2*2*2*4)
Z = BYTARR(50) 50 bytes of data
W = 12 scalar

*/
char buf[40]
varinfo_t v;
VARIABLE var;
ARRAY arr;
/* Build a static array. Fill in the minimum amount of */
/* information required. */
v.Variable = &var;
v.Length = 40;
var.type = IDL_TYP_BYTE;
var.flags = V_ARR;
var.value.arr = &arr;
arr.data = buf;
get_idl_variable(client, "X", &v, 0); /* ok */
get_idl_variable(client, "Y", &v, 0); /* ok */
get_idl_variable(client, "Z", &v, 0); /* fails — too big */
get_idl_variable(client, "W", &v, 0); /* fails — scalar */

Allocating Space for Strings

All space for strings is assumed to be obtained via malloc(3). This fact is important
only when receiving variables (using the get_idl_variable function). For
example, the following code fragment is valid:

v_make_string(&foo, "UGH", "blug");
set_idl_variable(client, &foo);

Here is an example of code that will crash your program:

v_make_string(&foo, "UGH", "blug");
set_idl_variable(me, &foo);
send_idl_command(me, "UGH='hello world'");
get_idl_variable(me, "UGH", &foo, 0);

In this case, the get_idl_variable function attempts to free the old resources
before allocating new storage. Freeing the constant blug results in an error. You
could achieve the desired result without an error by changing the first line to:

v_make_string(&foo, "UGH", strdup("blug"));
Obsolete IDL Features Notes on Variable Creation and Memory Management

288 Chapter 6: Obsolete Remote Procedure Calls
RPC Examples

A number of example files are included in the idldir/external/examples/rpc
directory. A Makefile for these examples is also included. These short C programs
demonstrate the use of the IDL RPC library.
RPC Examples Obsolete IDL Features

Chapter 7

The IDLDrawWidget
ActiveX Control
This chapter discusses the following topics:
Overview . 290
Creating an Interface and Handling Events . . .
293
Working with IDL Procedures 299
Advanced Examples 302
Copying and Printing IDL Graphics 303

XLoadCT Functionality Using Visual Basic . 307
XPalette Functionality Using Visual Basic 309
Integrating Object Graphics Using VB . . 310
Sharing a Grid Control Array with IDL . . 311
Handling Events within Visual Basic 313
Distributing Your ActiveX Application . . 315
IDL Connectivity Bridges 289

290 Chapter 7: The IDLDrawWidget ActiveX Control
Overview

Note
Although the IDLDrawWidget ActiveX control has been replaced by the newer and
more robust COM Export bridge, existing applications that include the
IDLDrawWidget will continue to function. We recommend that all new
development that would use the IDLDrawWidget control now use a custom COM
control exported using the COM export bridge.

The 32-bit version of IDL for Microsoft Windows includes an ActiveX control that
provides a powerful way to integrate all the data analysis and visualization features of
IDL with other programming languages that support ActiveX controls. (The ActiveX
control is currently not supported by 64-bit IDL for Windows.) ActiveX is a set of
technologies that enables software components to interact, regardless of the language
in which they were written. This makes it possible, for example, to design a software
interface with Microsoft Visual Basic and have IDL respond to the events it
generates. The major features of the IDL ActiveX control include the following:

• The IDL ActiveX control makes it possible to display IDL direct and object
graphics within an OLE container that supports ActiveX controls

• The IDL ActiveX control can respond to events, regardless of whether they are
generated by an external program or IDL itself

• The IDL ActiveX control greatly simplifies the process of moving data to and
from IDL and an external program

• The interface to the IDL ActiveX control appears native to the external
application

Other issues to note regarding the ActiveX control are:

• The IDL ActiveX control is intended primarily for use in applications
developed with Visual Basic 5.0 or greater. The control can be included in any
programming language designed to use ActiveX controls (e.g. Visual C++ or
Delphi). Users who intend to utilize the IDL ActiveX control in Visual C++
applications should be thoroughly familiar with Microsoft Foundation Classes
and ActiveX programming. The IDL ActiveX control uses Visual Basic-style
data types to exchange data between a Visual Basic application and IDL. A
Visual C++ programmer will need to use OLE’s VARIANT and SAFEARRAY
types. A discussion of how to use the IDL ActiveX control with these
languages is beyond the scope of this manual.
Overview IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 291
• The IDL ActiveX control does not support any non-blocking IDL widgets.
When you call a widget from an ActiveX Control, you will not have access to
the active command line and control will not pass back to the calling program
until the blocking has been removed (the widget has been dismissed). You can,
however, recreate the functionality of a widget using the given functionality.
For an example, see “XLoadCT Functionality Using Visual Basic” on
page 307.
IDL Connectivity Bridges Overview

292 Chapter 7: The IDLDrawWidget ActiveX Control
The ActiveX interface to IDL consists of a single control called IDLDrawWidget.
When this control is included in a project, it exposes the features of IDL through its
properties and methods. The IDLDrawWidget can also trigger events. The
properties and methods of the IDLDrawWidget are listed in Chapter 8,
“IDLDrawWidget Control Reference”.

In this chapter, you will be guided through a series of examples designed to
demonstrate techniques for integrating IDL with programs written in Microsoft
Visual Basic. These techniques begin with writing a simple application that shows
how IDL can respond to Visual Basic events and draw graphics in a Visual Basic
window.

A Note about Versions of the IDL ActiveX Control

Periodically, we release a new version of the IDLDrawX ActiveX control. Older
versions of the control will continue to work as they always have, but the new
versions may include new features or other enhancements.

Why Are New Versions of the Control Created?

One of the features of COM is that interfaces are immutable. That is to say that when
you create an interface, you “contractually” agree that the interface won’t change.
Changes to the way the control interacts with other components require that a new
interface, and thus a new version of the control, must be created. Since the IDL
ActiveX control is a COM object it is bound by this agreement. When we make
improvements to the ActiveX control interface by adding new methods and
properties, we release a new ActiveX control with the new interface.

What Must You Change to Take Advantage of a New Control?

If you are a Visual Basic user, you need to add the new version of the control to your
project and remove the old versions. For example, if you are upgrading to the
“IDLDrawX3 ActiveX Control Module” included with IDL version 5.6 and later,
you would add this control to your project and remove the “IDLDrawX ActiveX
Control Module” or “IDLDrawX2 ActiveX Control Module” from your project. The
source code need not change.

What About Previous ActiveX Controls?

While previous versions of the IDLDrawX control will continue to work with new
versions of IDL, they are no longer supported and will not be shipped with IDL. It is
recommended that you upgrade to the new version to take advantage of new features
and bug fixes.
Overview IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 293
Creating an Interface and Handling Events

The goal of this first example is very simple: to create a user interface in Microsoft
Visual Basic and have IDL respond to events and display an image. The following
figure shows what the finished project looks like when it runs. The Visual Basic
source code used to create the example is shown in the following figure:

As the figure shows, our first example program consists of two buttons (“Plot Data”
and “Exit”), a graphics area, and a text box. All of these elements reside on top of
what is called a form in Visual Basic parlance. (A form in Visual Basic is similar to a
top level base in IDL.) Clicking the Plot Data button causes IDL to produce the
surface plot shown. Clicking Exit causes IDL and the Visual Basic program to free
memory and exit.

Figure 7-1: A Simple Example Showing the IDLDrawWidget and
Text Returned by IDL
IDL Connectivity Bridges Creating an Interface and Handling Events

294 Chapter 7: The IDLDrawWidget ActiveX Control
Drawing the Interface

Begin building the first example by creating a new Visual Basic project, adding the
IDL ActiveX control, and drawing the interface components.

Launch Microsoft Visual Basic and create a new project.

1. Add the IDL ActiveX component to the project. Visual Basic displays a list of
all available components when you select the Components from the Project
menu.

Visual
Basic

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Private Sub Form_Load()
 n = IDLDrawWidget1.InitIDL(Form1.hWnd)
 If n <= 0 Then
 MsgBox ("IDL failed to initialize")
 End
 End If
 IDLDrawWidget1.CreateDrawWidget
 IDLDrawWidget1.SetOutputWnd (IDL_Output_Box.hWnd)
End Sub

Private Sub Plot_Button_Click()
 IDLDrawWidget1.ExecuteStr ("Z = SHIFT(DIST(40), 20, 20)")
 IDLDrawWidget1.ExecuteStr ("Z = EXP(-(Z/10)^2)")
 IDLDrawWidget1.ExecuteStr ("SURFACE, Z")
 IDLDrawWidget1.ExecuteStr ("PRINT, SIZE(Z)")
End Sub

Private Sub Exit_Button_Click()
 IDLDrawWidget1.DoExit
 End
End Sub

Table 7-1: Source code for a Simple Example
Creating an Interface and Handling Events IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 295
Select the “IDLDrawX3 ActiveX Control module” check box and close the
Components window. Visual Basic will display the IDLDrawWidget’s icon in
the toolbar.

2. Begin drawing the interface. The “Plot” and “Exit” buttons were created with
the CommandButton widget, the text box was created with the TextBox
widget, and the graphics display area was created with IDLDrawWidget.

Specifying the IDL Path and Graphics Level

Having added IDLDrawWidget to the Visual Basic project, we now have access to
IDLDrawWidget’s properties and methods. Use the IdlPath and GraphicsLevel
properties to specify the directory path of the IDL ActiveX control and to choose
between IDL’s direct and object graphics capabilities. Refer to Chapter 8,
“IDLDrawWidget Control Reference” for a complete list of the properties and
methods to IDLDrawWidget.

1. Use Visual Basic’s Properties window to select the IDLDrawWidget. All of
the IDLDrawWidget’s properties can be set using the Properties window.
Many properties can also be set within the source code. These distinctions are
noted in Chapter 8, “IDLDrawWidget Control Reference”.

Figure 7-2: List of Available Components
IDL Connectivity Bridges Creating an Interface and Handling Events

296 Chapter 7: The IDLDrawWidget ActiveX Control
2. Locate the IdlPath property and enter the directory path to your IDL
installation. If you installed IDL in its default location, this path will be:

c:\ITT\idlxx

where xx is the current IDL version.

3. Locate the GraphicsLevel property and set it equal to 1. This selects IDL’s
direct graphics. A setting of 2 selects IDL’s object graphics.

Initializing IDL

With the interface drawn and the properties of the IDLDrawWidget set, now write
some Visual Basic code to give the application behavior. By double-clicking on the
form which contains all of the interface components, Visual Basic will automatically
generate the following subroutine.

Private Sub Form_Load()
End Sub

Figure 7-3: Visual Basic Properties Window
Creating an Interface and Handling Events IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 297
Visual Basic’s Form_Load routine executes automatically when a program starts
running. This procedure can be used to initialize IDL, create the IDLDrawWidget,
and direct output from IDL to a text box. The code to accomplish these tasks will be
placed between the two statements listed above.

IDL needs to be initialized before Visual Basic can interact with the
IDLDrawWidget. This is done with the InitIDL method. InitIDL takes the hWnd
of the form containing the IDLDrawWidget as an argument and returns 1 or less
than 1, depending on whether or not IDL initialized successfully. Assuming that the
default names given to the form and the IDLDrawWidget were not changed, IDL
can be initialized with the following statement.

n = IDLDrawWidget1.InitIDL(Form1.hWnd)

A conditional statement is included to display an error message and exit the program
if IDL failed to initialize.

If n <= 0 Then
MsgBox ("IDL failed to initialize")
End

End If

Creating the Draw Widget

When a box is drawn with the “IDLDrawWidget” icon in the toolbar, an OCX frame
is created. This is a container for the IDLDrawWidget. This container is analogous
to an IDL widget base. The graphics window that will be used by IDL still must be
created. This is accomplished with the CreateDrawWidget method, as shown in the
following statement:

IDLDrawWidget1.CreateDrawWidget

Directing IDL Output to a Text Box

The example program displays any output returned by IDL in a text box created in
Visual Basic. This is accomplished with the SetOutputWnd method of the
IDLDrawWidget. The SetOutputWnd method takes the hWnd of the text box that
will contain the IDL output as an argument. The text box in the example program is
named IDL_Output_Box, hence the following statement.

IDLDrawWidget1.SetOutputWnd (IDL_Output_Box.hWnd)

Note
Although this is the last statement within the Form_Load() subroutine, it could be
placed before the call to InitIDL to get standard IDL version information printed.
IDL Connectivity Bridges Creating an Interface and Handling Events

298 Chapter 7: The IDLDrawWidget ActiveX Control
Responding to Events and Issuing IDL Commands

The easiest way to integrate IDL with Visual Basic is to let Visual Basic manage the
events and pass instructions to IDL. Recall that our example program contains two
buttons: “Plot Data” and “Exit”. When you double-click on “Plot Data”, Visual Basic
automatically creates the following subroutine:

Private Sub Plot_Button_Click()
End Sub

Visual Basic will execute any statements within this subroutine when the user clicks
“Plot Data”. Instructions are passed to IDL using the ExecuteStr method to the
IDLDrawWidget. The ExecuteStr method takes a string as an argument. This string
is passed to IDL for execution as if it were entered at the IDL command line.

The five statements which follow instruct IDL to produce the surface plot shown in
the figure above.

IDLDrawWidget1.ExecuteStr ("Z = SHIFT(DIST(40), 20, 20)")
IDLDrawWidget1.ExecuteStr ("Z = EXP(-(Z/10)^2)")
IDLDrawWidget1.ExecuteStr ("SURFACE, Z")
IDLDrawWidget1.ExecuteStr ("PRINT, SIZE(Z)")

Cleaning Up and Exiting

This project exits when the user clicks “Exit”. Exiting is a two step process. IDL is
given a chance to clean up and exit by issuing the DoExit method. The Visual Basic
program then exits with an End statement.

Private Sub Exit_Button_Click()
IDLDrawWidget1.DoExit
End

End Sub
Creating an Interface and Handling Events IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 299
Working with IDL Procedures

In this next example a project is created that uses multiple IDL procedures. Here the
same issues apply as when developing a standard IDL program with a graphical user
interface. In addition, managing memory when moving from one procedure to
another should be considered. It is important to realize that the ActiveX control
interacts with IDL at the main level. Thus, a Visual Basic program passing
instructions to IDL is identical to entering the same instructions at the IDL command
line. In this example Visual Basic is only used to create the user interface and
dispatch events. The data resides in memory controlled by IDL. IDL is used for all
data processing and display functions.

The following figure shows the user interface of the example project. The project is
part of the IDL distribution and resides in the
examples\doc\ActiveX\SecondExample directory.

The user interface consists of two IDLDrawWidget objects. The one on the left will
display an image read from a JPEG file. The window on the right displays what the
image looks like after processing. Buttons allow the user to scale the image and
perform Roberts and Sobel filtering operations on the data.

Figure 7-4: The User Interface with Two Draw Widgets
IDL Connectivity Bridges Working with IDL Procedures

300 Chapter 7: The IDLDrawWidget ActiveX Control
Creating the Interface

The interface is created as it was in the first example, by drawing the interface
components in Visual Basic. Two IDLDrawWidgets are created. Set the path
(c:\itt\idlxx where xx is the current IDL version) and graphics level properties
(type 1) of both.

Initializing IDL

Although there are two IDLDrawWidget objects, only one instance of the ActiveX
control needs to be initialized. Both of the IDLDrawWidget objects do need to be
created, however.

This is done with the two statements below:

IDLDrawWidget1.CreateDrawWidget
IDLDrawWidget2.CreateDrawWidget

Compiling the IDL Code

This example uses IDL procedures contained in a .pro file named
SecondExample.pro. This file contains IDL procedures. Before these procedures
can be called from Visual Basic, SecondExample.pro needs to be compiled.
This assumes that the .pro file resides in the same directory as the Visual Basic
project. The path method of the App object returns the directory from which the
Visual Basic application was launched. Pass this directory to IDL with the statements

WorkingDirectory = "CD, ’" + App.Path + "’"
IDLDrawWidget1.ExecuteStr (WorkingDirectory)

The .pro can then be compiled. A conditional statement is used to exit the program
if IDL was unable to locate the .pro file.

Dispatching Button Events to IDL

Because Visual Basic is used primarily for the user interface components of the
application, IDL’s procedures have been created for processing the button events in
the application. This is accomplished through the ExecuteStr method of the
Working with IDL Procedures IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 301
IDLDrawWidget, as called in the following figure; when you click “Open”, the
OpenFile procedure is defined as below.

OpenFile is a user procedure that utilizes IDL’s DIALOG_PICKFILE function to
enable the user to select a file for display within the IDLDrawWidget.

Cleaning Up and Exiting

Like the first example, this program exits when the user clicks “Exit”. An additional
call has been made to DestroyDrawWidget. This isn’t necessary when exiting
because the windowing system will destroy the widget. If you want to change the
GraphicsLevel property of the IDLDrawWidget during program execution use this
method.

Visual
Basic

1
2
3
4

Private Sub Open_Button_Click(Index As Integer)
 IDLCommand = "OpenFile, " + Str(BaseID)
 IDLDrawWidget1.ExecuteStr (IDLCommand)
End Sub

Table 7-2: User Interface of Example Project

IDL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

PRO OpenFile, TLB
WIDGET_CONTROL, TLB, GET_UVALUE = ptr
PathName = DIALOG_PICKFILE(TITLE = $

'Select a JPEG file', FILTER = '*.jpg')
IF (PathName NE '') THEN BEGIN

DEVICE, DECOMPOSED = 0
READ_JPEG, PathName, Data, ColorTable
(*(*ptr).OriginalArrayPTR) = Data
(*(*ptr).OrigColorMapPTR) = ColorTable
TVLCT, (*(*ptr).OrigColorMapPTR)
TV, (*(*ptr).OriginalArrayPTR)

ENDIF ELSE BEGIN
Result = DIALOG_MESSAGE('No JPEG file selected', /ERROR)

ENDELSE
END

Table 7-3: The Open File Procedure
IDL Connectivity Bridges Working with IDL Procedures

302 Chapter 7: The IDLDrawWidget ActiveX Control
Advanced Examples

Each of the following examples builds on the concepts that you’ve already learned in
this chapter.

Example Code
The user interface and projects for each of the examples have been created and can
be found in the distribution in the examples\doc\ActiveX\project
directory where project is the name of the example.

These examples assume that you are already familiar with the following concepts:

• Creating a new project in Visual Basic;

• Adding the IDLDrawWidget control to the VB control toolbar;

• Drawing the IDLDrawWidget on your form;

• Initializing IDL with InitIDL;

• Creating the draw widget with CreateDrawWidget;

• Executing commands with ExecuteStr;

• Using IDL .pro code to respond to auto-events within the IDLDrawWidget;

• Setting properties for the IDLDrawWidget objects.

These examples demonstrate the following:

• Copying and Printing IDL Graphics

• XLoadCT Functionality Using Visual Basic

• XPalette Functionality Using Visual Basic

• Integrating Object Graphics Using VB

• Sharing a Grid Control Array with IDL

• Handling Events within Visual Basic
Advanced Examples IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 303
Copying and Printing IDL Graphics

The VBCopyPrint example demonstrates how to use either the Windows clipboard or
object graphics to print the contents of an IDLDrawWidget window.

This example illustrates the following concepts:

• Opening an existing project in Visual Basic;

• Copying an IDL graphic to the Windows clipboard using the CopyWindow
method;

• Executing IDL user routines;

• Printing an IDL graphic.

Opening the VBCopyPrint project

Select “Existing” from the Visual Basic New Project dialog. In the IDL distribution,
change to the examples\docs\ActiveX\VBCopyPrint directory, and open the
project VBCopyPrint.vbp, as shown in the following figure.

Figure 7-5: Opening the VBCopyPrint project
IDL Connectivity Bridges Copying and Printing IDL Graphics

304 Chapter 7: The IDLDrawWidget ActiveX Control
Running the VBCopyPrint Example

Select “Start” from the Run menu to run the example. You should see the graphic
shown in the following figure.

Copying IDL Graphic to the Clipboard

To copy the graphic, click on “Copy”. The code for “Copy” uses the CopyWindow
method to copy the contents of the graphic to the Windows clipboard as shown in line
6 of the following table.

Figure 7-6: VBCopyPrint example

Visual
Basic

1
2
3
4
5
6
7
8
9
10

Private Sub cmdCopy_Click()
'Copy the direct graphics window to the clipboard
Screen.MousePointer = vbHourglass
'Erase anything currently on the clipboard
Clipboard.Clear
'Copy the draw widget to the clipboard
IDLDrawWidget1.CopyWindow
Screen.MousePointer = vbDefault
MsgBox "Window copied to clipboard."

End Sub

Table 7-4: Copy button Source Code
Copying and Printing IDL Graphics IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 305
Printing the IDL Graphic Using IDL Object Graphics

To print the graphic using IDL, click on “IDL Print”. The “IDL Print” button uses
IDL’s object graphics to print the contents of the window by creating an image object
and sending the image to a printer object through a user routine VBPrintWindow.

Executing IDL User Routines with Visual Basic

The VBCopyPrint example executes a user routine, written in IDL, to support the
printing of the IDLDrawWidget window. This is done with the ExecuteStr method,

IDL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

PRO VBPrintWindow, DrawId
.
.
.

;Get the window index of the drawable to be printed
WIDGET_CONTROL, DrawId, Get_Value=Index

.

.

.
;Create a Printer object and draw the graphic to it
oPrinter = OBJ_NEW ('IDLgrPrinter')

;Display a print dialog box
Result = DIALOG_PRINTERSETUP(oPrinter)

.

.

.
oPrinter->Draw, oView

.

.

.
END ;VBPrintWindow

Table 7-5: IDL VBPrintWindow Code
IDL Connectivity Bridges Copying and Printing IDL Graphics

306 Chapter 7: The IDLDrawWidget ActiveX Control
as shown in line 4 below, by passing a string of the routine name along with the ID of
the IDLDrawWidget.

Printing the IDL Graphic Using Visual Basic

The VBPrint command uses the Windows clipboard and Visual Basic printer
support to print the IDL Graphic, as shown in the following table.

Visual
Basic

1
2
3
4
5
6
7
8
9

Private Sub cmdPrintIDL_Click()
'Print the current drawable widget's window contents
'using IDL object graphics
Screen.MousePointer = vbHourglass
IDLDrawWidget1.ExecuteStr "VBPrintWindow," &

Str$(IDLDrawWidget1.DrawId)
Screen.MousePointer = vbDefault
MsgBox "Window sent to printer."

End Sub

Table 7-6: Print Button Source Code

Visual
Basic

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Private Sub cmdPrintVB_Click()
CommonDialog1.CancelError = True

 On Error GoTo ErrHandler
 CommonDialog1.ShowPrinter
'-- Copy the window's contents to the clipboard
 'Erase anything currently on the clipboard
 Clipboard.Clear
 IDLDrawWidget1.CopyWindow

'-- Send the picture located on the clipboard,
'to the printer

 Printer.PaintPicture Clipboard.GetData, 0, 0
 Printer.EndDoc 'Send it to the printer
Exit Sub
ErrHandler:

 Exit Sub
End Sub

Table 7-7: VBPrint Command
Copying and Printing IDL Graphics IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 307
XLoadCT Functionality Using Visual Basic

The VBLoadCT example duplicates the XLOADCT functionality using a VB
interface. The VBLoadCT.pro source code (located in the
examples\docs\ActiveX\VBLoadCt directory of the IDL installation directory)
is a functional duplicate of XLOADCT with procedure calls replacing the
xloadct_event procedure as well as IDL widgets being replaced by VB controls.
See the following figure for more information.

In addition, this example extends XLOADCT by adding the following features:

• Options menu by clicking the right mouse button on a color;

• Use of IDL syntax to create separate functions for red, blue and green;

• Ability to save user created color tables.

This example illustrates the following concepts:

• Modifying existing IDL library code for use with the IDLDrawWidget;

• IDL to Visual Basic color table conversion
IDL Connectivity Bridges XLoadCT Functionality Using Visual Basic

308 Chapter 7: The IDLDrawWidget ActiveX Control
.

Figure 7-7: VBLoadCT Example
XLoadCT Functionality Using Visual Basic IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 309
XPalette Functionality Using Visual Basic

Like VBLoadCT, VBPalette demonstrates how to duplicate IDL tool functionality
using a Visual Basic interface. The VBPalette.pro file (located in the
examples\docs\ActiveX\VBPalette directory of the IDL installation
directory) is a functional duplicate of the XPalette source with the event procedure
and IDL widgets replaced with auto-event procedures and VB controls.

This example illustrates the following concepts:

• Modifying existing IDL library code for use with the IDLDrawWidget;

• Converting an IDL event procedure to the IDLDrawWidget auto-event
procedures

.

Figure 7-8: VBPalette Example
IDL Connectivity Bridges XPalette Functionality Using Visual Basic

310 Chapter 7: The IDLDrawWidget ActiveX Control
Integrating Object Graphics Using VB

Most of the examples covered to this point have used IDL’s direct graphics sub-
system to demonstrate using the IDLDrawWidget control. The IDLDrawWidget
can also use IDL’s object graphics sub-system by changing the
IDLDrawWidget.GraphicsLevel property as demonstrated with the VBObjGraph
example in the following figure. This example illustrates the following concepts:

• Setting the GraphicsLevel property to create an object graphics window;

• Translating a graphics object using VB controls.

• Using IDLDrawWidget auto-events.

Example Code
See the files located in the examples\docs\ActiveX\VBObjGraph directory
of the IDL installation directory for example code.

Figure 7-9: VBObjGraph example
Integrating Object Graphics Using VB IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 311
Sharing a Grid Control Array with IDL

VBShare1D demonstrates sharing one dimensional data between Visual Basic and
IDL using the SetNamedArray method of the IDLDrawWidget object. The data is
presented to the user in a Visual Basic grid control enabling the user to edit the data
and see the results in real time. See the following figure.

This example illustrates the following concepts:

• Shows how to process mouse events within VB to get the data coordinates of
an IDL plot.

• Demonstrates how to convert (x,y) VB coordinates into IDL data coordinates,
to give the cursor location in data values relative to the current plot.

• Demonstrates how to use a VB grid control to edit data values that are reflected
in the IDL plot after each keystroke

.

Figure 7-10: VBShare1D
IDL Connectivity Bridges Sharing a Grid Control Array with IDL

312 Chapter 7: The IDLDrawWidget ActiveX Control
Example Code
See the files located in the examples\docs\ActiveX\VBShare1D directory of
the IDL installation directory for example code.
Sharing a Grid Control Array with IDL IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 313
Handling Events within Visual Basic

The VBPaint example uses direct graphics to create a simple drawing program. A
direct graphics window is used to respond to events within VB. Each click event will
get the (x,y) location within the window, and modify the color of the current pixel in
the image. See the following figure:.

This example illustrates the following concepts:

• Converting from a VB pixel coordinate system to the IDL coordinate system;

• Converting a VB color representation (long) into an IDL color representation
(RGB);

• Modifying an IDL RGB color table item with a color chosen/created from VB
and the Window's common color dialog;

• Processing mouse events within VB to draw into an IDL window

.

Figure 7-11: VBPaint Example
IDL Connectivity Bridges Handling Events within Visual Basic

314 Chapter 7: The IDLDrawWidget ActiveX Control
Example Code
See the files located in the examples\docs\ActiveX\VBPaint directory of
the IDL installation directory for example code.
Handling Events within Visual Basic IDL Connectivity Bridges

Chapter 7: The IDLDrawWidget ActiveX Control 315
Distributing Your ActiveX Application

For information on how to distribute an application developed with the IDL ActiveX
control, see Chapter 9, “Distributing ActiveX Applications” (Building IDL
Applications).
IDL Connectivity Bridges Distributing Your ActiveX Application

316 Chapter 7: The IDLDrawWidget ActiveX Control
Distributing Your ActiveX Application IDL Connectivity Bridges

Chapter 8

IDLDrawWidget
Control Reference
This chapter describes the following topics:
IDLDrawWidget . 318
Methods . 319
Do Methods (Runtime Only) 329
Properties . 331

Read Only Properties 335
Auto Event Properties 337
Events . 339
IDL Connectivity Bridges 317

318 Chapter 8: IDLDrawWidget Control Reference
IDLDrawWidget

Note
Although the IDLDrawWidget ActiveX control has been replaced by the newer and
more robust COM Export bridge, existing applications that include the
IDLDrawWidget will continue to function. We recommend that all new
development that would use the IDLDrawWidget control now use a custom COM
control exported using the COM export bridge.

The IDLDrawWidget is an ActiveX control that provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in C, C++, Visual
Basic, Fortran, Delphi, etc. Methods and properties of the IDLDrawWidget provide
the interface between IDL and an external application. The rest of this section
describes the following for the IDLDrawWidget:

• Methods

• Do Methods (Runtime Only)

• Properties

• Read Only Properties

• Auto Event Properties

• Events
IDLDrawWidget IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 319
Methods

In ActiveX terminology, methods are special statements that execute on behalf of an
object in a program. For example, the ExecuteStr method can be used to execute an
IDL statement, function, or procedure when the user clicks on a button in a Visual
Basic program. The syntax of a method statement is:

object.method value

where

• Object is the name of an object you want to control, for example an
IDLDrawWidget.

• Method is the name of the method you want to execute.

• Value is an optional parameter used by the method. The various methods to the
IDLDrawWidget may require zero, one, or multiple parameters.

Note
When a method returns a BOOL, the value TRUE is equal to 1 and FALSE is equal
to 0.

CopyNamedArray

This method copies an IDL array to an OLE Variant array.

Parameters

BSTR: The name of the array variable that you wish to copy.

Returns

VARIANT: Reference to the array.

Remarks

This function returns an array reference that is local to the calling function.
Attempting to use this array outside the calling function could result in runtime
errors.
IDL Connectivity Bridges Methods

320 Chapter 8: IDLDrawWidget Control Reference
CopyWindow

This method copies the contents of the IDLDrawWidget window to the Windows
clipboard.

Parameters

None.

Returns

BOOL: TRUE if successful.

CreateDrawWidget

This method creates an IDLDrawWidget in an ActiveX control frame. When you
drag and drop the IDLDrawWidget, you are creating the frame that will contain the
actual draw widget. Drawing operations to the control cannot be made until this
method is called.

Parameters

None.

Returns

LONG: The widget ID of the created draw widget or -1 in the event of an error.

DestroyDrawWidget

This method destroys the IDLDrawWidget, but not the ActiveX control frame.

Parameters

None.

Returns

None.

DoExit

This method exits the ActiveX control and frees any resources in use by IDL.
Methods IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 321
After all IDL ActiveX control use is complete, but before the EDE application exits,
you must call DoExit to allow the ActiveX control to shutdown IDL gracefully and
free any resources in use.

Parameters

None.

Returns

None.

Remarks

In spite of the name, DoExit is not one of the IDL ActiveX control auto events. Like
InitIDL, DoExit should be called once and only when you are exiting the EDE
application.

Warning
Once DoExit is called, you are not allowed to call methods or set properties within
the IDL ActiveX control from the currently running EDE application, regardless of
which IDLDrawWidget the method was called on. Attempting to do so will result in
a runtime error subsequently causing the EDE application to crash.

ExecuteStr

This method passes a string to IDL which IDL then executes.

Parameters

BSTR: A string containing the command that IDL will execute.

Returns

LONG: 0 if successful or the IDL error code if it fails.

Remarks

Most IDL commands that are executed with ExecuteStr run in the main level.

GetNamedData

This method returns the IDL data value associated with the named variable.
IDL Connectivity Bridges Methods

322 Chapter 8: IDLDrawWidget Control Reference
Parameters

BSTR: A string containing the name of an IDL variable.

Returns

VARIANT: Returns the value of the requested data. The type will be EMPTY if the
IDL variable doesn’t exist.

Remarks

The following table lists the supported IDL data types and the corresponding
VARIANT data types.

InitIDL

This method initializes IDL. IDL only needs to be initialized once for each instance
of the ActiveX control.

Parameters

LONG: InitIDL is called with the hWnd of the main window for the container
application. If this value is null, the ActiveX control uses the hWnd of the ActiveX
control frame.

IDL Type Variant Type

IDL_TYP_BYTE VT_UI1

IDL_TYP_INT VT_I2

IDL_TYP_LONG VT_I4

IDL_TYP_FLOAT VT_R4

IDL_TYP_DOUBLE VT_R8

IDL_TYP_STRING VT_BSTR

Table 8-1: Supported IDL Data Types and the Corresponding
VARIANT Data Types
Methods IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 323
Returns

LONG: Long value indicating status of IDL

If your application contains more than a single IDLDrawWidget (e.g.,
IDLDrawWidget1 and IDLDrawWidget2), the InitIDL method should only be called
on one of the objects, not both.

The IDL ActiveX control relies on IDL and must, at a minimum, have an IDL
runtime distribution to operate successfully. The IdlPath property can be set so the
control can find a valid IDL distribution (the idl.dll). If a valid distribution is not
found in either the path as set in the IdlPath property or the current directory, a dialog
will be displayed giving the user the opportunity to specify the location of his IDL
distribution. This behavior may be overridden at runtime by locating and specifying
the path to the IDL distribution prior to calling either the InitIDL or SetOutputWnd
methods.

InitIDLEx

This method initializes IDL. It is identical to the InitIDL method except that it has an
additional parameter, Flags, allowing initialization flags to be passed on to IDL. See
the description of the “InitIDL” on page 322 for details on the return value.

Parameters

LONG: InitIDL is called with the hWnd of the main window for the container
application. If this value is null, the ActiveX control uses the hWnd of the ActiveX
control frame.

Value Meaning

1 Successful

0 Failure

-1 IDL ActiveX control is
not licensed

-2 IDL is unlicensed (demo)

Table 8-2: Status of IDL
IDL Connectivity Bridges Methods

324 Chapter 8: IDLDrawWidget Control Reference
LONG: Flags. A bitmask used to specify initialization options. The allowed bit
values are:

Returns

LONG: Long value indicating status of IDL. See the description of the return value
under “InitIDL” on page 322 for details.

Print

This method prints the contents of the ActiveX control to the current default printer
for both Direct and Object Graphics windows. The Print method will print the
contents of a Direct Graphics window at screen resolution (72-96 dpi). For
information about controlling print resolution of an object graphics window, see the
BufferId property.

Note
In order to print the contents of an Object Graphics window, you must associate the
IDL graphics tree (an IDLgrView object) with the IDLgrWindow object used by the
underlying draw widget. Do this by setting the GRAPHICS_TREE property of the
IDLgrWindow object to the IDLgrView object:

;Retrieve the window object associated with the draw widget.

Flag Meaning

IDL_INIT_RUNTIME Setting this bit causes IDL to check out a runtime
license instead of the normal license. In Visual C++
applications, the #define IDL_INIT_RUNTIME
value exported in export.h can be used. For Visual
Basic applications use the actual value of this
constant, IDL_INIT_RUNTIME=4, since the defined
constant is not available.

IDL_INIT_STUDENT Setting this bit causes IDL to check out a student
license instead of the normal license. In Visual C++
applications, the #define IDL_INIT_STUDENT
value exported in export.h can be used. For Visual
Basic applications use the actual value of this
constant, IDL_INIT_STUDENT=128, since the
defined constant is not available.

Table 8-3: InitIDLEx Flags
Methods IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 325
IDLDrawWidget::ExecuteStr("Widget_Control, IDLDrawWidget, $
Get_Value =oWindow");

;Set the Graphics_Tree property to the view object.
IDLDrawWidget::ExecuteStr("oWindow->SetProperty, $

Graphics_Tree = oView");

Parameters

XOffset: The X offset to print the graphic in 0.01 of a millimeter.

YOffset: The Y offset to print the graphic in 0.01 of a millimeter.

Width: The desired width of the printed graphic in 0.01 of a millimeter.

Height: The desired height of the printed graphic in 0.01 of a millimeter.

The X offset plus the width should be less than or equal to the width of a single page.
The Y offset plus the height should be less than or equal to the height of a single
page. The origin of the offset 0,0 is in the upper left corner of a page. If these values
are set to 0, the ActiveX control will print a graphic in the upper left corner of the
page with the size of the graphic approximating the size of the image on the screen.

Returns

BOOL: TRUE if printing succeeded.

RegisterForEvents

This method causes IDLDrawWidget to pass the specified events to the application.
These events only apply if the user hasn’t set the corresponding auto event property.

Parameters

LONG: Flags that indicate which events you wish to forward to your application.
Values can be combined if multiple events are desired.

Value Meaning

0 Stop forwarding all events

1 Forward mouse move events

2 Forward mouse button events

Table 8-4: Forwarding Events
IDL Connectivity Bridges Methods

326 Chapter 8: IDLDrawWidget Control Reference
Note
Motion events may be generated continuously in response to certain operations in
IDL. As a result, if you forward mouse move events, your event handler should
check the reported position of the mouse to determine whether it has in fact moved
before doing extensive processing.

Returns

BOOL: TRUE if successful.

SetNamedArray

This method creates a named IDL array with the specified data. The data pointer is
shared with IDL and the EDE application. Thus, changes in either IDL or the EDE
will be reflected in both.

Parameters

BSTR: Name of array variable to create in IDL.

VARIANT: Array data to be shared with IDL.

BOOL: True if IDL should free a shared array when IDL releases its reference, false
if not.

Returns

WORD: 1 if successful, 0 if set failed.

Remarks

Because SetNamedArray creates an array whose data is shared between IDL and the
EDE application, IDL constructs that could change the type and/or dimensionality of
the array must be avoided, as these constructs could have the side effect of creating a
new array in IDL and thus breaking the shared link.

4 Forward view scrolled events

8 Forward expose events

Value Meaning

Table 8-4: Forwarding Events (Continued)
Methods IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 327
The array parameter of SetNamedArray must have a lifetime beyond the calling
function. Thus, in Visual Basic, it is recommended that the array be declared as
global in scope to prevent runtime errors from occurring.

Note
In order to allow data to be shared between IDL and the external environment, the
lock count on the underlying array is incremented. Some external environments,
notably later versions of Delphi, do not allow array locking to extend beyond a
single method call and will signal an error when SetNamedArray returns. If this
occurs, the data cannot be shared between IDL and the external environment using
SetNamedArray. Use the SetNamedData method to insert a copy of the array into
IDL.

The following table lists the accepted variant types and the corresponding IDL types.

SetNamedData

This method creates an IDL variable with the specified name and value. Both the
EDE and IDL maintain their own copy of the data. SetNamedData can also be used to
change the value of an existing IDL variable.

Parameters

BSTR: Name of the variable to create in IDL.

VARIANT: Data to be copied in IDL.

Variant Types IDL Types

VT_UI1 - unsigned char IDL_TYP_BYTE

VT_I1 - signed char IDL_TYP_BYTE

VT_I2 - signed short IDL_TYP_INT

VT_I4 - signed long IDL_TYP_LONG

VT_R4 - float IDL_TYP_FLOAT

VT_R8 - double IDL_TYP_DOUBLE

Table 8-5: Accepted Variant Types and the Corresponding IDL Types
IDL Connectivity Bridges Methods

328 Chapter 8: IDLDrawWidget Control Reference
Returns

WORD 1 if successful.

SetOutputWnd

This method sends output from IDL to the specified window.

Parameters

HWND: The hWnd of the edit control that will receive the output.

Returns

None.

Note
SetOutputWnd is the only method that can be called prior to a call to InitIDL.

VariableExists

This method determines if a specified variable is defined in IDL.

Parameters

BSTR: Name of variable to check.

Returns

BOOL:TRUE if variable is defined in IDL at the main level. False if the variable is
not defined.
Methods IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 329
Do Methods (Runtime Only)

Do Methods are methods that execute auto event procedures. Calling these methods
is helpful in simulating user interaction with a draw widget by forcing an auto event
to be called.

DoButtonPress

This method calls the IDL procedure specified in the OnButtonPress property.

Parameters

None.

Returns

None.

DoButtonRelease

This method calls the IDL procedure specified in the OnButtonRelease property.

Parameters

None.

Returns

None.

DoExpose

This method calls the IDL procedure specified in the OnExpose property.

Parameters

None.

Returns

None.
IDL Connectivity Bridges Do Methods (Runtime Only)

330 Chapter 8: IDLDrawWidget Control Reference
DoMotion

This method calls the IDL procedure specified in the OnMotion property.

Parameters

None.

Returns

None.
Do Methods (Runtime Only) IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 331
Properties

Properties are used to specify the various attributes of an IDLDrawWidget, such as its
color, width and height. Most properties may be set at design time by configuring the
properties sheet in Visual Basic, or at runtime by executing statements in the program
code.

The syntax for setting a property in the code is:

object.property = value

where

• object is the name of the object you want to change (e.g. IDLDrawWidgetn
where n is the number Visual Basic assigned to the IDLDrawWidget)

• property is the characteristic you want to change

• value is the new property setting

Note
All properties relating to window size and/or position are in pixel units unless
otherwise indicated.

BackColor

This property specifies the background color of the IDL widget. BackColor may be
specified at design time or runtime.

BaseName

This property names a variable that IDL will use for the pseudo base. If this property
is set, the IDLDrawWidget will create an IDL variable with this name that contains
the ID of the base widget. Because the base widget is a pseudo base, you should not
destroy it. The BaseName property can be set at design time or at runtime prior to a
call to CreateDrawWidget.

The default value is IDLDrawWidgetBase.

BufferId

The BufferId controls the type of print output you receive when printing with an
Object Graphics window (when the GraphicsLevel property is set to 2).
IDL Connectivity Bridges Properties

332 Chapter 8: IDLDrawWidget Control Reference
1. A value of -1 will cause the graphics to print using vector output. This format
is suitable for line graphs and mesh surfaces.

2. A value of 0 will cause the graphics to print at roughly two times the screen
resolution. This format is suitable for shaded surfaces or vertex colored mesh
surfaces. This is the default.

3. A value greater then 0 will be construed a s an IDLgrBuffer object reference
whose data will be used for printing. This format allows the programmer to
control the resolution of the output of the image.

For more information, see “IDLgrBuffer” (IDL Reference Guide).

Note
You must set the GRAPHICS_TREE property of the IDLgrWindow object for these
print options to work.

DrawWidgetName

Returns or sets a variable that IDL will use for the draw widget. If this property is set,
the IDLDrawWidget will create an IDL variable with this name that contains the ID
of the draw widget. The DrawWidgetName property can be set at design time, or at
runtime prior to a call to CreateDrawWidget.

The default value is IDLDrawWidget.

Enabled

Returns or sets a value that determines whether a form or control can respond to user-
generated events such as mouse events.

The default value is TRUE.

GraphicsLevel (Runtime/Design time)

This property specifies the graphics level of the draw widget. Legal values are 1 or 2.
If you set GraphicsLevel=1 and call the CreateDrawWidget method, the procedure
will create an IDL direct graphics window. GraphicsLevel=2 results in an IDL object
graphics window. The GraphicsLevel property can be set at design time or at runtime
prior to a call to CreateDrawWidget.

The default value is 1.
Properties IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 333
IdlPath

This property specifies the fully qualified path to the IDL.DLL. The IdlPath property
can be set at design time or at runtime prior to a call to InitIDL or SetOutputWnd.

The default value is NULL.

Renderer

This property specifies either the software or hardware renderer for object graphics
windows is to be used. It has no effect if the GraphicsLevel property is set to 1. Valid
values are:

By default, the setting in your IDL preferences is used.

Retain (Runtime/Design time)

This property sets the retain mode of the IDLDrawWidget: 0, 1, or 2. The retain mode
specifies how IDL should handle backing store for the draw widget. Retain=0
specifies no backing store. Retain=1 requests that the server or window system
provide backing store. Retain=2 specifies that IDL provide backing store directly.
The Retain property can be set at design time or at runtime prior to a call to
CreateDrawWidget.

The default value is 1.

Visible (Runtime/Design time)

Shows or hides the IDLDrawWidget. When Visible is TRUE, the IDLDrawWidget is
shown; when FALSE, the IDLDrawWidget is hidden. Hiding the IDLDrawWidget is
useful when the control is used as an interface to IDL and no graphics are intended
for display.

The default value is TRUE.

0 Platform native OpenGL

1 IDL’s software
implementation
IDL Connectivity Bridges Properties

334 Chapter 8: IDLDrawWidget Control Reference
Xsize (Design time)

Virtual width of IDLDrawWidget. If this value is greater than the Xviewport value,
scroll bars will be added.

Ysize (Design time)

Virtual height of IDLDrawWidget. If this value is greater than the Yviewport value,
scroll bars will be added.
Properties IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 335
Read Only Properties

BaseId (Runtime)

Widget ID of the pseudo base. The BaseId property is not valid until a call to
CreateDrawWidget has been made.

DrawId (Runtime)

Widget ID of the created draw widget. The DrawId property is not valid until a call to
CreateDrawWidget has been made.

hWnd (Runtime)

Window handle of the ActiveX control. The hWnd property is not valid until a call to
CreateDrawWidget has been made.

LastIdlError (Runtime)

A string that contains the last IDL error message. This string will not change if the
ExecuteStr method is called and an error does not occur.

Scroll

True if the widget will contain scroll bars.

The default value is FALSE.

Xoffset

Set at design time when the control is dropped or moved. Represents the x offset of
the draw widget within the parent application.

Xviewport

Set at design time when the control is dropped or moved. Represents the visible width
of the draw widget. If scroll bars are present, Xviewport will include the width of the
scroll bars.
IDL Connectivity Bridges Read Only Properties

336 Chapter 8: IDLDrawWidget Control Reference
Yoffset

Set at design time when the control is dropped or moved. Represents the y offset of
the draw widget within the parent application.

Yviewport

Set at design time when the control is dropped or moved. Represents the visible
height of the draw widget. If scroll bars are present, Yviewport will include the
height of the scroll bars.
Read Only Properties IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 337
Auto Event Properties

Auto events are IDL procedures that are called automatically by the control in
response to certain events.

OnButtonPress

An IDL procedure that will be called when a mouse button is pressed. The procedure
must be in the form:

pro button_press, drawId, button, xPos, yPos

The default value is NULL.

OnButtonRelease

An IDL procedure that will be called when a mouse button is released. The procedure
must be in the form:

pro button_release, drawId, button, xPos, yPos

The default value is NULL.

OnDblClick

An IDL procedure that will be called when a mouse button is double clicked within
the draw widget. The procedure must be in the form:

pro button_dblclick, drawId, button, xPos, yPos

The following table describes each parameter of the syntax:

Parameter Description

button Describes which mouse button has been clicked. The valid values
are:

• 1 — Left mouse button.

• 2 — Middle mouse button.

• 4 — Right mouse button.

Table 8-6: OnDblClick Parameters
IDL Connectivity Bridges Auto Event Properties

338 Chapter 8: IDLDrawWidget Control Reference
The default value is NULL.

OnExpose

An IDL procedure that will be called when an expose message is received by the
draw widget. The procedure must be in the form:

pro expose, drawId

The default value is NULL.

OnInit

An IDL procedure that will be called when a draw widget is initially created. The
procedure must be in the form:

pro init, drawId, baseId

This auto event procedure is called once when the CreateDrawWidget method is
invoked.

The default value is NULL.

OnMotion

An IDL procedure that will be called when the mouse is moved over the draw widget
while a mouse button is pressed. The procedure must be in the form:

pro motion, drawId, button, xPos, yPos

The default value is NULL.

Note
Motion events may be generated continuously in response to certain operations in
IDL. As a result, if you provide an event-handler for mouse motion events, your
event handler should check the reported position of the mouse to determine whether
it has in fact moved before doing extensive processing.

xPos The horizontal position of the mouse when the button was clicked.

yPos The vertical position of the mouse when the button was clicked.

Parameter Description

Table 8-6: OnDblClick Parameters (Continued)
Auto Event Properties IDL Connectivity Bridges

Chapter 8: IDLDrawWidget Control Reference 339
Events

Events are functions or procedures that can be handled by the EDE application on
behalf of IDLDrawWidget. If an auto event property is set, its corresponding event
will not be called; instead, the auto event procedure will be called. By disabling the
auto-events, IDLDrawWidget can respond to the following standard Visual Basic
events:

• MouseDown

• MouseMove

• MouseUp

OnViewScrolled

OnViewScrolled is an IDLDrawWidget event that notifies the container application
when the graphics window has been scrolled. This event will only be sent when the
Scroll property is TRUE.

Note
You must call RegisterForEvents passing the flags to indicate the events you want to
process. Neglecting this step will send the events to IDL for processing.
IDL Connectivity Bridges Events

340 Chapter 8: IDLDrawWidget Control Reference
Events IDL Connectivity Bridges

Chapter 9

Distributing ActiveX
Applications
This chapter describes the process of creating IDL ActiveX applications for distribution.
What Is an ActiveX Application? . 342
Limitations of Runtime Mode ActiveX Applications 343
Steps to Distribute an ActiveX Application 344
Preferences for ActiveX Applications 345
Runtime Licensing . 346
Embedded Licensing . 347
Creating an Application Distribution 349
Starting Your ActiveX Application . 350
Installing Your ActiveX Application 351
Building IDL Applications 341

342 Chapter 9: Distributing ActiveX Applications
What Is an ActiveX Application?

The IDL ActiveX control can be used to access IDL functionality in applications
written in other languages that support ActiveX, such as C++ or Visual Basic. The
process of creating IDL ActiveX control applications is covered in the External
Development Guide.

Unlike applications written entirely in IDL, the process of creating an application
distribution for a IDL ActiveX application is the same whether the application’s end
user has an IDL development license or not. This chapter describes the packaging
process for IDL ActiveX applications using any licensing mechanism.

IDL ActiveX applications are packaged for distribution in much the same way as
native IDL applications. Before beginning the process of packaging your ActiveX
application, you should be familiar with the contents of Chapter 23, “Distributing
Runtime Mode Applications”. This chapter describes the additional steps necessary
to create and distribute a IDL ActiveX application.

Licensing Options for IDL ActiveX Applications

When you have an IDL ActiveX application that you want to distribute to users who
do not already have IDL installed and licensed, you must purchase a runtime or
embedded license from ITT Visual Information Solutions. These options are
described in detail in “Runtime Licensing” on page 346 and “Embedded Licensing”
on page 347.

If your end user already has an IDL development license, you can simply package
your IDL ActiveX application as described in this chapter and distribute it without
including a license.
What Is an ActiveX Application? Building IDL Applications

Chapter 9: Distributing ActiveX Applications 343
Limitations of Runtime Mode ActiveX
Applications

IDL applications that run without an IDL development license — whether native
IDL, Callable, or ActiveX — do not have access to the IDL compiler and thus cannot
compile IDL source code from .pro files. As a result, operations that require the
compiler will not execute when a development license is not present. In addition, if
you are writing an IDL application to be distributed to users who do not have an IDL
development license, you should be aware of the restrictions described in
“Limitations of Runtime Mode ActiveX Applications” on page 343.

Note
Startup files are not executed when you launch an IDL application without a
command line. See “Understanding When Startup Files are Not Executed” (Chapter
2, IDL Interface) for details.
Building IDL Applications Limitations of Runtime Mode ActiveX Applications

344 Chapter 9: Distributing ActiveX Applications
Steps to Distribute an ActiveX Application

To create and distribute an IDL ActiveX application, do the following:

1. Create your application using an IDL development license. Test the application
using the type of license you expect your end user to have. See the External
Development Guide for information on creating IDL ActiveX applications.

2. Decide on a licensing mechanism for your application. (For an overview of
licensing mechanisms, see “Licensing Options for IDL ActiveX Applications”
on page 342.)

3. Obtain licenses for your application from ITT Visual Information Solutions.
See “Runtime Licensing” on page 346 or “Embedded Licensing” on page 347
for details.

4. Create an application distribution as described in “Creating an Application
Distribution” on page 349.

5. Create invocation and use instructions for your application. See “Starting Your
ActiveX Application” on page 350 for additional information.

6. Create an installer, if desired, and installation instructions for your application.
See “Installing Your ActiveX Application” on page 351 for additional
information.
Steps to Distribute an ActiveX Application Building IDL Applications

Chapter 9: Distributing ActiveX Applications 345
Preferences for ActiveX Applications

IDL’s preference system allows developers, administrators, and individual users to
control default values for many aspects of IDL’s environment and configuration.
Creators of runtime applications can take advantage of the preference system to
customize the environment in which a particular application runs.

See “Preferences for Runtime Applications” (Chapter 23, Application Programming)
for a discussion of using preferences in the context of a IDL runtime application.

The process of specifying preferences for an IDL ActiveX application is complicated
by the fact that users never launch IDL directly. This means that in order to specify
preference values, you must do one of the following:

• Modify the idl.pref file in the resource\pref subdirectory of the
application distribution.

• Create an idl.pref file and install it in the bin\bin.platform
subdirectory of the application distribution where platform is the platform-
specific bin directory.

Note
These two methods are only useful if you are distributing an IDL distribution to
support your application — you should not modify an existing idl.pref file in
your end user’s installed IDL distribution.

• Instruct your users to set environment variables that correspond the preferences
you need to specify, or explicitly set the variables yourself in a batch file or
Windows shortcut.
Building IDL Applications Preferences for ActiveX Applications

346 Chapter 9: Distributing ActiveX Applications
Runtime Licensing

A runtime license allows you to run an IDL application that cannot display the IDL
Workbench or IDL command line and which cannot compile .pro files. This type of
licensing offers developers who have smaller customer bases the opportunity to buy
single distribution licenses as they are needed, paying a small fee for each license.
The license is either a node-locked license tied to the specific machine on which your
application will run (which means you will need to obtain information about your
customer’s machine), or a more costly but less restricted floating license that will run
on any machine of a given platform.

When using runtime licensing, you can distribute licenses to your users in two ways:

• If you wish to distribute a licensed application to each customer, you can
perform the necessary licensing steps for each license you purchase and
distribute a ready-to-run application to each customer. This saves your
customers from having to perform the licensing themselves, but forces you to
create separate distributions for each customer.

• If you would rather create a single unlicensed distribution that you can
distribute to all your customers, you can purchase a license for each customer
and provide that license along with the information necessary for the customer
to license your application.

See “Obtaining and Installing Runtime Licenses” (Chapter 23, Application
Programming) for information on obtaining and installing runtime licenses for your
Callable IDL application.
Runtime Licensing Building IDL Applications

Chapter 9: Distributing ActiveX Applications 347
Embedded Licensing

An embedded license allows your application to run without an IDL license. It can be
distributed to multiple users and will run on any system supported by IDL. Licensing
an IDL application with an embedded license is the simplest form of licensing.

In order to create applications with embedded licenses, you must purchase a special
IDL Developer’s Kit license from ITT Visual Information Solutions. The
Developer’s Kit license gives your copy of IDL the ability to automatically embed a
license in your application’s SAVE file.

If you specify that you will be distributing an IDL ActiveX application when you
purchase your Developer’s Kit license, ITT Visual Information Solutions will
provide you with a license string and some initialization code to be embedded into
your application code before the application’s initial call to IDL.

Obtaining Your Licensing Information

Contact ITT Visual Information Solutions for your license information. You will
need to provide the following information:

• The license installation number for your embedded license. Note that this
number is different from the installation number for IDL itself.

• Your company name.

• Application title (e.g., My App).

• Name of the application executable (e.g., myapp).

• IDL interface being called (Callable IDL or ActiveX).

• Calling program language (e.g., VB, C++, C, Fortran).

You will receive a text file containing a function that IDL uses to retrieve the
licensing information.

Modifying Your Application Code

After you receive your license information, insert the initialization string into your
code prior to calling IDL. Although the licensing information you receive will be
slightly different, it will resemble the following:

' IDL ActiveX Control Application license for: myapp, My App
' License built for IDL Version 6.4
theApp.InitStringInfo("12345678abcdabcd, -
Building IDL Applications Embedded Licensing

348 Chapter 9: Distributing ActiveX Applications
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd")

Note
The InitStringInfo method must be called prior to ActiveX initialization.
Embedded Licensing Building IDL Applications

Chapter 9: Distributing ActiveX Applications 349
Creating an Application Distribution

This section discusses the process of creating an application distribution that includes
the files necessary to run IDL, allowing you to distribute your application to users
who do not already have IDL installed.

First, see “Creating an Application Distribution” on page 349 for information on
creating an IDL application distribution. If your IDL ActiveX application uses one or
more SAVE files, you may find it convenient to use the IDL Project mechanism to
create the distribution. If your application does not use a SAVE file, use the
Project → Export mechanism to create an IDL application distribution into which
you will place the executable file or files for your application. See “Using the Export
Feature without a Project (Windows Only)” (Chapter 22, Application Programming)
for details.

Once you have created an IDL application distribution, you must do the following:

1. Add your ActiveX application executables to the bin/bin.platform
subdirectory of the distribution where platform is the platform-specific bin
directory.

2. If your application uses preferences, add the bin\bin.platform\idl.pref
file or edit the resource\pref\idl.pref file to contain the correct
preference values.
Building IDL Applications Creating an Application Distribution

350 Chapter 9: Distributing ActiveX Applications
Starting Your ActiveX Application

You must provide your end users with instructions describing how to start your
application. You may choose to provide users with the name and location of your
application executable along with a launch command to execute, or (if you are using
an installer for your application) with shortcuts or Start menu items.

Give your users instructions describing how to start your application based on the
following:

To start an IDL ActiveX application if you have exported an IDL distribution using
the IDL Project interface, change directories to the
application\bin\bin.platform directory (where application is the name
of the directory that contains your exported distribution and platform is the
platform-specific bin directory) and double-click on the executable file.

Note
The executable file must reside in the bin\bin.platform subdirectory of your
exported application distribution. For your users’ convenience, you may want to
create a Windows shortcut to the executable file in another location.
Starting Your ActiveX Application Building IDL Applications

Chapter 9: Distributing ActiveX Applications 351
Installing Your ActiveX Application

Installation of your application on the end user’s machine can be performed manually
by the user, or it can be automated using an installer. There are a number of
commercial applications available to help you build installers.

In order to avoid any possible conflicts with existing versions of IDL, you should
warn your users NOT to install your application in the same directory as IDL x.x,
where IDL x.x is the version used by your application.

Note
ITT Visual Information Solutions’ Global Services group can create installation
packages for your application. Contact your ITT Visual Information Solutions sales
representative for additional information.

Installing and Registering ActiveX Files

To install an ActiveX application on the end user’s system, you must ensure that the
following steps are performed either by an installer or manually by the end user:

• The idldrawx3.ocx file from the bin\bin.platform directory (where
platform is the platform-specific bin directory) of your distribution tree
must be transferred to the windows\system32 directory.

• The idldrawx3.ocx file must be registered with Windows. This can be
accomplished using the regsvr32.exe executable. For example, your
installation script could contain the following command:

regsvr32 idldrawx3.ocx

For more information, refer to your Microsoft Windows documentation.
Building IDL Applications Installing Your ActiveX Application

352 Chapter 9: Distributing ActiveX Applications
Installing Your ActiveX Application Building IDL Applications

Chapter 10

Obsolete IDE
Preferences
Beginning with IDL version 7.0, the following IDL system preferences are no longer
supported. Most of the obsolete preferences are replaced by IDL Workbench
preferences. As a result, these values can be set within the IDL Workbench interface
via the Preferences dialog, but not from within IDL using the IDL system
preferences mechanism.

All of the obsolete IDE preferences have the prefix IDL_MDE (Motif Development
Environment) or IDL_WDE (Windows Development Environment). The table below
lists all of the obsolete IDE preferences along with the IDL Workbench equivalents, if
any. Note that although an IDE preference may have only been available for one of
the two Development Environments, the IDL Workbench equivalents are valid on all
IDL platforms.
Building IDL Applications 353

354 Chapter 10: Obsolete IDE Preferences
Obsolete IDE Preference IDL Workbench Equivalent

IDL_MDE_EDIT_BACKUP

IDL_WDE_EDIT_BACKUP

The local history of a file is maintained when you
create or modify a file. Each time you edit and
save a file, a copy of it is saved. This allows you to
replace the file with a previous state.

IDL_WDE_EDIT_[B|F]COLOR
_*

The background and foreground colors for various
categories of text are set in the Preferences dialog,
in the IDL > Syntax Coloring section.

IDL_WDE_EDIT_CHROMAC
ODE

None.

IDL_MDE_EDIT_COMPILE_O
PTION

IDL_WDE_EDIT_COMPILE_O
PTION

1. In the Preferences dialog, select
IDL > Editor.

2. Select Enable Compile on Save to
automatically compile files when you save
them.

IDL_MDE_EDIT_CWD

IDL_WDE_EDIT_CWD

To change the IDL process’ current working
directory to the directory containing the file just
opened:

1. In the Preferences dialog, select IDL >
Editor.

2. Select Change directory on file open.

3. Click OK.

IDL_WDE_EDIT_FONT The general editor font is set in the Colors and
Fonts section of the Preferences dialog.

To set the general editor font:

1. In the Preferences dialog, select General >
Appearance > Colors and Fonts.

2. Open the Basic folder and select Text Font.

3. Click Change.

4. On the Font dialog, choose the font options.

5. Click OK on both dialogs.
Building IDL Applications

Chapter 10: Obsolete IDE Preferences 355
IDL_WDE_EDIT_OPEN_ON_
DEBUG

None.

Note - When execution halts due to an error, the
file and line number at which the error occurred
are shown in the Console view as a hyperlink.
Clicking the link opens the file automatically.

IDL_MDE_EDIT_READONLY

IDL_WDE_EDIT_READONLY

1. In the Project Explorer view, right-click a file
and select Properties.

2. On the Properties dialog, select Read only.

3. Click OK.

IDL_WDE_EDIT_TAB_ENAB
LE

To determine whether a tab character or spaces are
inserted when pressing the Tab key in the IDL
editor:

1. In the Preferences dialog, select IDL >
Editor.

2. If you don’t want to use tab characters, select
Use spaces instead of tabs.

3. Click OK.

IDL_WDE_EDIT_TAB_SP_ON
_SAVE

None.

IDL_WDE_EDIT_TAB_WIDT
H

To set the number of spaces used to display a tab
character:

1. In the Preferences dialog, select IDL >
Editor.

2. Change the Displayed tab width value.

3. Click OK.

Obsolete IDE Preference IDL Workbench Equivalent
Building IDL Applications

356 Chapter 10: Obsolete IDE Preferences
IDL_MDE_EXIT_CONFIRM

IDL_WDE_EXIT_CONFIRM

To exit the Workbench, select File > Exit from the
menu bar or close the workbench with the window
close button (x). When the latter option is used a
prompt will ask if you really wish to exit the
Workbench.

To enable or disable the exit prompt:

1. Select Window > Preferences.

2. On the Preferences dialog, select General >
Startup and Shutdown.

3. Select Confirm exit when closing last
window.

4. Click OK.

IDL_WDE_INPUT_FONT To set the command line font:

1. Select Window > Preferences.

2. On the Preferences dialog, select General >
Appearance > Colors and Fonts.

3. Open the IDL folder and select Command
Line font.

4. Click Change.

5. On the Font dialog, choose the font options.

6. Click OK on both dialogs.

IDL_WDE_LOG_FONT To set the Console view font:

1. Select Window > Preferences.

2. On the Preferences dialog, select General >
Appearance > Colors and Fonts.

3. Open the Debug folder and select Console
font.

4. Click Change.

5. On the Font dialog, choose the font options.

6. Click OK on both dialogs.

Obsolete IDE Preference IDL Workbench Equivalent
Building IDL Applications

Chapter 10: Obsolete IDE Preferences 357
IDL_MDE_LOG_LINES

IDL_WDE_LOG_LINES

You cannot control the number of lines written to
the Console view, but you can set the maximum
number of characters written:

1. Select Window > Preferences.

2. On the Preferences dialog, select Run/Debug
> Console.

3. Select Limit console output.

4. Enter a Console buffer size (in characters).

5. Click OK.

IDL_MDE_LOG_TRIM

IDL_WDE_LOG_TRIM

None.

IDL_MDE_SPLASHSCREEN

IDL_WDE_SPLASHSCREEN

None.

IDL_MDE_START_DIR

IDL_WDE_START_DIR

These preferences are replaced by the
IDL_START_DIR preference.

To set the IDL_START_DIR preference, either use
the PREF_SET routine or the IDL Workbench
Prererences dialog:

1. In the Preferences dialog, select IDL.

2. Type a directory in the Initial working
directory box, or browse for a directory.

3. Click OK.

Obsolete IDE Preference IDL Workbench Equivalent
Building IDL Applications

358 Chapter 10: Obsolete IDE Preferences
Building IDL Applications

	Online Manuals
	IDL Documentation
	What's New in IDL 7.0
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Analyst Reference Guide
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Obsolete IDL Features
	Contents
	Obsolete Feature Overview
	Backwards Compatibility
	Detecting Use of Obsolete Features
	Documentation for Older Obsolete Routines

	Obsolete Routines
	DDE Routines
	DELETE_SYMBOL
	DELLOG
	DEMO_MODE
	DO_APPLE_SCRIPT
	ERRORF
	FINDFILE
	GETHELP
	GET_SYMBOL
	HANDLE_CREATE
	HANDLE_FREE
	HANDLE_INFO
	HANDLE_MOVE
	HANDLE_VALUE
	HDF_DFSD_ADDDATA
	HDF_DFSD_DIMGET
	HDF_DFSD_DIMSET
	HDF_DFSD_ENDSLICE
	HDF_DFSD_GETDATA
	HDF_DFSD_GETINFO
	HDF_DFSD_GETSLICE
	HDF_DFSD_PUTSLICE
	HDF_DFSD_READREF
	HDF_DFSD_SETINFO
	HDF_DFSD_STARTSLICE
	HDF_VD_GETNEXT
	INP, INPW, OUTP, OUTPW
	LIVE_Tools
	LIVE_CONTOUR
	LIVE_CONTROL
	LIVE_DESTROY
	LIVE_EXPORT
	LIVE_IMAGE
	LIVE_INFO
	LIVE_LINE
	LIVE_LOAD
	LIVE_OPLOT
	LIVE_PLOT
	LIVE_PRINT
	LIVE_RECT
	LIVE_STYLE
	LIVE_SURFACE
	LIVE_TEXT
	LJLCT
	MSG_CAT_CLOSE
	MSG_CAT_COMPILE
	MSG_CAT_OPEN
	ONLINE_HELP_PDF_INDEX
	PICKFILE
	POLYFITW
	REWIND
	RIEMANN
	RSTRPOS
	SET_SYMBOL
	SETLOG
	SETUP_KEYS
	SIZE Executive Command
	SKIPF
	SLICER
	STR_SEP
	TAPRD
	TAPWRT
	TIFF_DUMP
	TIFF_READ
	TIFF_WRITE
	TRNLOG
	VAX_FLOAT
	WEOF
	WIDED
	WIDGET_MESSAGE

	Obsolete Objects
	IDLffLanguageCat
	IDLffLanguageCat Properties
	IDLffLanguageCat::IsValid
	IDLffLanguageCat::Query
	IDLffLanguageCat::SetCatalog

	Routines with Obsolete Arguments or Keywords
	BYTEORDER
	CALL_EXTERNAL
	DEVICE
	DIALOG_PICKFILE
	DOC_LIBRARY
	EXTRACT_SLICE
	HELP
	IDLgrMPEG::Save
	IDLgrVolume::Init
	IDLITSYS_CREATETOOL
	IDLitTool::RegisterOperation
	IDLitVisualization::Add
	IDLitVisualization::GetCenterRotation
	IDLitVisualization::GetProperty
	IVECTOR
	IVOLUME
	LABEL_REGION
	LINFIT
	LINKIMAGE
	LIVE_PRINT
	LM_FIT
	MAKE_DLL
	MESSAGE
	ONLINE_HELP
	OPEN
	POLY_FIT
	PRINT/PRINTF
	READ_TIFF
	READ/READF
	READU
	REGRESS
	SAVE
	SPAWN
	SVDFIT
	WIDGET_BASE
	WIDGET_CONTROL
	WIDGET_TREE
	WRITE_TIFF
	WRITEU
	XMANAGER

	Obsoleted Graphics Devices
	The LJ Device
	The Macintosh Device

	Obsolete Remote Procedure Calls
	Using IDL as an RPC Server
	The IDL RPC Library
	free_idl_variable
	get_idl_variable
	idl_server_interactive
	kill_server
	register_idl_client
	send_idl_command
	set_idl_timeout
	set_idl_variable
	set_rpc_verbosity
	unregister_idl_client
	The varinfo_t Structure
	v_make_byte
	v_make_complex
	v_make_dcomplex
	v_make_double
	v_make_float
	v_make_int
	v_make_long
	v_make_string
	v_fill_array
	More Variable Manipulation Macros
	Notes on Variable Creation and Memory Management
	RPC Examples

	The IDLDrawWidget ActiveX Control
	Overview
	Creating an Interface and Handling Events
	Working with IDL Procedures
	Advanced Examples
	Copying and Printing IDL Graphics
	XLoadCT Functionality Using Visual Basic
	XPalette Functionality Using Visual Basic
	Integrating Object Graphics Using VB
	Sharing a Grid Control Array with IDL
	Handling Events within Visual Basic
	Distributing Your ActiveX Application

	IDLDrawWidget Control Reference
	IDLDrawWidget
	Methods
	Do Methods (Runtime Only)
	Properties
	Read Only Properties
	Auto Event Properties
	Events

	Distributing ActiveX Applications
	What Is an ActiveX Application?
	Limitations of Runtime Mode ActiveX Applications
	Steps to Distribute an ActiveX Application
	Preferences for ActiveX Applications
	Runtime Licensing
	Embedded Licensing
	Creating an Application Distribution
	Starting Your ActiveX Application
	Installing Your ActiveX Application

	Obsolete IDE Preferences

