Object
Programming

IDL Version 7.0

November 2007 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

1107IDL700BJ

Restricted Rights Notice

The IDL®, IDL Analyst™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures, functions, and
documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the
restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document at
any time and without notice.

Limitation of Warranty

ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information

This software and its associated documentation are subject to the controls of the Export Administration Regulations (EAR). It has
been determined that this software is classified as EAR99 under U.S. Export Control laws and regulations, and may not be re-
transferred to any destination expressy prohibited by U.S. laws and regulations. The recipient isresponsible for ensuring compliance
to all applicable U.S. Export Control laws and regulations.

Acknowledgments

ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, |ON Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.
NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.
This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has acommercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN islicensed from the United States of Americaunder U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.
FLAASH islicensed from Spectral Sciences, Inc. under a U.S. Patent Pending.

Portions of this software are copyrighted by Merge Technologies I ncorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.
IMSL isatrademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visua Numerics, Inc. All Rights Reserved.
Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents

Chapter 1
The Basics of Using ODbjects iN IDLccouiiiiiiiiiiiiiiiie e 15
Object-Oriented Programming CONCEPLSeevveerieeieeiieeieeeireesieseestesesseesreessessaeessesssenns 16
USING IDL OBJECES ...veiviiciiceiecieesie ettt st sreesne e e e nneesreens 17
(= (] 1o [o= £ TSSO 18
Acting on Objects USINg MEOASccoviviiiiiiieenec e 19
ODbjeCt MELhOO SYNLBX ...eccveeiieecieeiecsiee e et te e st e e sre e saeeseesreesreens 19
ATGUIMENES ..ttt sttt sttt e st e et e sa e e sbee e s ate e nbee e ste e sabeesnbessnbeanns 20
Modifying ODJECt PrOPEIMIEScccueccieeieiieciesee et eee e iee e e ee s esae e e s reesreesnessaeenressreens 22
Properties and the Property Sheet Interfacecocvvvvvevievie v 22
Setting Properties at INitialiZationcccoeeveeieeiiecie e s 23
Setting Properties of EXisting ODJECESccviivieieiieic e 23
Retrieving Property SEiNGSccvecieiieiieier e s see e see e e et e e e e e e e e e sreens 24
About Object Property DESCIIPLIONSccueiueieererieeieesieesieesiee e esre e see e enes 24
(DS i £0)Y/T 0o [@] = (= SR 26

Object Programming 3

Using Operations With ODJECLSccviriiriiiiirineieese s e 27
(@] o)L= oSS o 0] 011 o | S 27
Object Equality and INEQUELILYccceoveirerinirirere e e 28

ODBJECE EXAIMPIES ... ettt sttt sttt se et e e e eneeseeenesseeeesresneas 29

Chapter 2

Creating an Object Graphics Displayc.uuieviiiiiiiieiieeeeeeeeeeeiiiiines 31

Overview of Object GraphiCS CIaSSESccvieeiiiiiiciree et sre s 32
NamMiNG CONVENLIONSecoueiieeieriie e see e e e e e e e e e s te e s te e sreete e reesreereesresnnes 32

Creating an Object GraphiCS DISPlaycccccveviiiiieie e 33

Object Graphics Display HI€rarChycoocooeeiiieieeeere e 35
Components of an Object Graphics Hierarchyc.cccoovvveveciiiccecece e 36

(DS (] = 1Ko WO Y=o €= 37

TS o] YA @ o= £ 38

AVATS U= T2 0] g @ o T=ox SRS 40

File FOrmMat OBJECLSccviivi ettt e se e e s ae e b re e 44

(%0 o T g N® o= o f €= 1T 1= 46

Color and Destination OBJECLSccceeeeiiiieceeieie et aesresre s 48
A Note about Draw WIAQELScoeeieiiiecie sttt ete e e et sneesresree s 48
Indexed Color Model in Object Graphicscccveeveiiiicesese e 48
RGB Color Model in Object GraphiCsccceeieriieiiee e e e et 49

[= 1 C T @ o= £ 50
Creating Palette ODJECESoiuieciecie e st s s e e re e sre e s 50
USING Palette ODJECLS ...cviceiieeeiecie ettt st 50

S 0= e 1 YT 0T @) o] = O] Lo 51
Example Specifying RGB VAIUEScccocieieieie et 51

HOW IDL INterpretS ColOr VAIUEScocveeie et ces et e e te s e es e e steesneene e sne e 53
INdexed ColOr MOUE!coiiiiieisie s e 53
€1 @] o] g Y/ o L=, S 53

(RS 01 (= £ o @ o= ok S 55
SIMPIE PIOt EXAMPIEoeeiiiiecie ettt ae st s s e e st e s e e e reesre e 56

Controlling the Depth of OBJECtSIN @VIEW ...ocviiiciceeee e 58

Controlling ObJECt TrANSPAIENCYcceeueerierrerieeiieitesteeeeieestesesseessessesteesessessessesseessessessens 60
Opacity and TraNSPAIENCYeeecveereerireerereeeesieseeseeseeseesreesaeeseessesssessresssesssesssesssenses 61
Blending MahemMaLiCsccveveiiiicee st ere e 61
RS 10 (= T 0o O L= S 62

Contents Object Programming

Viewing and ROLALIONccccceiveiieieie et sae e sre e 63
Depth BUFfer UPdatingooeeeereiieereere s 65
Performance Tuning ObjeCt GraphiCscccvieevieie st 66
Hardware vs. Software RENAENTNGcccvveriiiciee e e e e e e sreens 66
Chapter 3
Positioning ODbJects iN @ VIEWuuciiiiiiiiiii e 69
Positioning VisualizationS iN @VIEWccceveiievieie e 70
RV T= T oo o S 70
[0 To= (oo BT TOTPRTRPRPSSN 70
Coordinate Systems and SCAlINGccceevieeriieiieieeieeree e sre e e e e e see s e e e e sreens 70
RV L= 11 oo o TSRS 71
Location and DIiMENSIONcooieieieriieieese et e e e e eeeeneeseenes 71
(01021 o TS 73
[= = I C0T =i o 1 S 73
PeErspective PrOjECHIONSccvceeieiiiieeese sttt st st 74
= 0TS 1 11 o SR 75
VIBW VOIUMIE ..ttt sttt e 77
Viewplan@ RECLANGIEoooiiie et 7
Near and Far Clipping PlaNEScccooiiiiiieieiee et s 77
Finding an Appropriate View VOIUMEccceciriieiiersir e sie s see e sseesreens 78
Converting Datato Normal COOFdiNGLESceeeeveerieiieeieie et 80
A Function for Coordinate CONVEISIONcccceeeereerereeeeeesenee e esee e see e see e e 81
Example: Centering an IMAaJEccvceeeeie ettt st nas 83
Example: Transforming aSUMfaCeccccuvicevier it 86
Zooming within an ObJECt DIiSPlaycccveveveiiiiieiese st 88
Zooming in on an Object Graphics Image Displayccccecvevveeviecceecenee e, 88
Trandating, Rotating and Scaling ObJECLSccvcieiiiiriee e 91
L2115 = 1o S 92
o) 1o TSP PRPSPTRSN 92
S o= oo SRR 93
Combining TransfOrMatioNScccceeieveieeiee et 94
Interactive 3D TransfOrMBELiONSccoueeeeririerieieie e 95
Chapter 4
Working with Image ODJECEScooiiiiiiiiiiire e 97
Overview of 1Mage ObJECLScooi ettt e e ee e 98

Object Programming Contents

DefiNing IMage PaAlEESc.ecoviicecee st 98
Configuring Common Object Propertiesocceoerereeeeeerene e 99
Creating IMage ODJECLSviiueeieie ettt st e e s eae e e re s 100
Displaying Binary Images with Object Graphicsc.ccoccerrrierieeieiene e 100
Displaying Grayscal e Images with Object Graphicscccccevvveevecesicceece, 102
Positioning Image ObJECISIN @ VIBWcoceecieviececeese et 105
Displaying Multiple Imagesin Object GraphicCsccccevevevieveeiecese e 106
Panning in Object GraphiCscccccceiiiriiei e 111
Defining Transparency in IMage ObJECEScccvvvvieeeeiesecere e 115
Transparency and IMage WarpPinNg ...ccccceccevceeierneeneeseeseesesseeesteese e eseessesssesnnes 115
Image TransparenCy EXAMPIEScccvvvieeieiesc e 115
Warping Image ODJECLSccviiiie ettt e 121
Mapping an Image Object 0Nt @ SPhErecccvvevecicec e 132
Far=o TN T T oo 136
IMAGE PYramidSc.ocueiieieee ettt st e 137
T =0 TN T =S 139
Adding Tiling to Your APPlICALIONcceeeeiiiiiii e 140
QUENYINGg REQUITED TIIES ..oiueiiie ettt et sree e sne e 141
Panning Tiled IMBOESccoeeeiiieiieee ettt ne e 142
Z00MiNg TIled IMAJES ...occveieeciecie ettt st e e eneas 143
Copying and Printing a Tiled IMageccceceiieeeieeeceee et 146
[(= oo [T T T I =SS 147
Example: JPEG2000 FIleSTOr TiliNG ...ccoviveieereiececiee et 150
Chapter 5
Working with Plots and Graphs ..o 153
(001 (01U 1 g @ o 1="ox S 154
Creating Contour OBJECESececieie ettt enresre s 154
OIS gTo @0 01 (010 | Q@] o] =" £ 154
[L1 o= £ 157
(O [gTo = (o1 A © o 1= ox =S 157
USING PlOt ODJECESoveciiecieciiceece ettt s 157
POLAN PLOLS .ttt sttt bbbt beneas 160
F N ES T o= 161
Creating AXIS ODJECES ...uviiieeieeeiese sttt ettt s re e e e nae e 161
UL g To N A=Y O o= (= 162

Contents Object Programming

LOQAINtNMIC AXES ..oeieiiiciecee sttt ettt sttt st te s teeneenaenbestesaeennas 163
Displaying Date/Time Data 0n AXiS ODJECESooveeeiiieiieeeese e 165
Displaying Date/Time Dataon aPlot Displaycccoceveveveneesese e 165
Displaying Date/Time Data on a Contour DiSplayccccveeeeereneneeceeene e 170
AXiSTitlesand TICKMark TEXEcceverireririeirenere e e 174
ReVErSE AXIS PIOING ...eeiueiiieiie et s e et e ereas 174
Y000 I o= ot £ TS 176
Creating Symbol ODJECESceciiiieecie e ens 176
UsiNg SYMDBOl ODJECLSccuveiiiiciciee sttt st s 178
A PlOtNG ROULINE ...t e et et esre e re e s ne e te e reenneenrens 180
Improvements to the OBJ PLOT ROULINEcccccveiiiieeeriiie et 181
Chapter 6
Working with Surface ODJECtSccoviiiiiiiiiiiiii 183
SUITACE ODJECES ...ttt st e et be et eseesteseeeeeeeseeeneeneeeeseeseeeneas 184
Creating SUface ODJECLScoveiriiirierirere et 184
USING SUIfaCe OBJECESveeeeeieie ettt ee e e e 185
An Interactive SUrface EXaMPIE ..o e 189
Chapter 7
Creating Volume ODJECTS ...uuuuiiiiiiiie e e e ee e 193
Creating aVolumMeE ODJECLcoirieiriririeriereriese s 194
USING VOIUME ODJECLScoceeiieeciese ettt s e st sre e enea 195
Setting Volume ObJECt AHITDULEScceeveieiiceeeeece e 196
VOIUME OPBCILY -e.eeeneeieeiteeee ettt ettt ettt st see e e s e ne s e sneeeesaesneeneens 196
VOIUME COLOF ..ttt sttt be e 197
VOIUME LIGNEING eveiieiie et e e e re e re e ere s 197
(@0 010011 1] oo S 198
B U 11 = 1 o SR 198
T aL= g o 0] = 1 o o S SSPROI 199
S 10 L= T 00 TR 0= SRS 199
Chapter 8
Polygon and Polyline ODJECESuuuiiiiiiiii e 201
About Polygon and Polyling ObJECLScccvieeiiieiicereere e 202
Creating Polygon and Polyling ODJECLSccceeiievi i 202
[0}V o 0] A I @ o 1= ox P 204

Object Programming Contents

Creating Polygon ODJECLSccuvcieie ettt ere 204

Configuring Polygon ODJECLSccciieeiiriieree ettt ee e e snee 204
TESSENAtOr ODJECLS ...vevieieiiciiceee ettt s re e nn e resre s 206
Creating Tessallator ODJECESoccveieeieeiee et e e e e se e sae e e sreesnee s 206
Using Tessellator ODJECEScveveeiieiicice e 206
[L= 1O o=t £ 207
Creating Pattern ODJECESccvviuiceee ettt 207
UL gTo [= =l 1O o] =T £ SR 207
[20)3Y/0 0 g I @ o 11 411z 1 Lo o NS 209
Polygon Mesh OptimiZationc..cceveeeeeieeieeiee e e 209
2 F e G = o =X O [1T ol T 212
Normal COMPULBLTIONScceeiieieesiee e seeseereeste e see e et sre e s sre s sreesreesaeesreesreesreenes 213
POIYIINE ODJECLS ...ttt e be e se et b e ere e seennas 214
Creating POIYIINE ODJECLSocuiiiiiee et reesne e 214
USING POIYIING OBJECEScvevicieeeecie sttt s 214
Polygon and Polyline Object EXAMPIEScccceeieeiieene et ses e 215
Chapter 9
Annotating an Object DISPlaycuuueviiiiiiieeeeeeeeeeeee e 217
Annotating Object GraphiC DiSPlaysccveeviiiiicieesece e 218
L= RO 1= o €= 219
Creating TexXt ODJECLScuvieiveecie et se b sreere s 219
UL o T = O o= £ 219
A TEXEEXAMPIE ottt r e a et eneens 222
0] 1 o= £ 223
Creating FONt ODJECESoiviieeeee et saeere s 224
Assigning aFont Object to a Text ODJECEcvevevicee e 225
Font Objects and RESOUICE USEocuveieieiieiieseeeeie ettt 226
ROI ODBJECES ..ottt ettt sttt e et et e s besbeeaeeseesbesbeebeennesrenas 227
(=0 1= 010 @ o= £ 228
Creating Legend ObJECEScvviiiieeiie e siee et esteeieesteesae s ste et sne e s e s e saesreesraesneens 228
UsiNg Legend ODJECESccocviiieeece e 228
(00 Folg o Tl @ o= £ TP 231
Creating Colorbar ODJECEScccuiiiiieeceesie e sesie e see e e see e e sreesnee s 231
Using Colorbar ODJECESccvvveieeiiiieeee e s 231
(Yo 10 o] = £ 233

Contents Object Programming

Creating Light ODJECESvceeieiece ettt e 233
Configuring Light ODJECLSccueiiceeiieceeree et s 234
Optimizing Light ODJECt USE ...c..eoieiiceceeesese e s 235
Custom Image Object ANNOLALIONScevieeiierie et s 236
Annotating Indexed Image ObJECEScccvceeieriieceeere e 236
Annotating RGB IMage ObJECLScuviiiieeiiecee e sree e seere e eesre st e e re e e reennens 240
Chapter 10
ANIMAating ODJECTES .uvuiuiiiii i e 245
Overview of ObJECt ANIMALTIONccciiiiieiecese e e sre e 246
Configuring an Animation Model ODJECEccovcieeiiee i e 248
USINg MUItIPIE MOEIS ..ottt 248
Controlling the ANIMationN RALEcoiceeiieiiesee e 250
Designing aBehavior ODJECLccocvcieieviese e 251
Factors Affecting Animation Performancecccoceciveiie e ciincen s see e 253
MUItipl€ IMAJE COPIESveeueeeeeciecierieete sttt ettt ettt st sre e saesbesaesreennas 253
Graphics Display Refresh RAEcooee et 254
Example: Interactive Cine ANIMELIONccevveieereie e 255
Chapter 11
Selecting ODJECES oo 257
Selection and Data PiCKiNgccveiiiiiiee et 258
(@ o 1= o A= =" 1o U 259
SEECHNG VIBWS .ottt se et st e r e e s resresna e 259
Sdlecting Visualization ODJECLSccevieiie i 260
SEECtING MOEIS ... s s nre s 260
A SElECION EXAMPIE ..ottt sttt et et re s 261
(= = 1 T (o P 262
A Data Picking EXAMPIEcccuiiieiiececie et ee et e e st e e re e et e e neeneas 263
Chapter 12
Displaying, Copying and Printing ObjJectsccccevvvvvvvviiviiiiiieeenn. 265
Overview of Object Graphic Destinationscccecviieieieesese e 266
LAY Lo (0T A @ o= =S 267
Creating WindowW ODJECESccviiiieie ettt sne e 267
(©0 o) g 1Y/ o [P 267
Note 0N WiINAOW SIZe LIMILScoceiiiieceeee ettt 268

Object Programming Contents

10

USING WINAOW OBJECESvoceeeiiiiciieee ettt et en e s 269
L= S 110 = T4V T [0 269
Exposing or Hiding @ WINAOWccccveieiiiiiiesese e 269
(Koo T Y7110 J= AT T o [0 269
Setting the WIindOW CUISOEc.ccvieeieieie et ste e e st e ste st saesaesreeren 270
Saving/REStONNG WINAOWSc.oeeiieiiccie ettt e e ettt s e e ene s 270
Saving Window ContentSto aFilecoveveieii i 270

Improving Window Drawing Performanceccccccveveeveesie st cee e 272
Retained Graphics and EXPOSE EVENESccccvveeveviieceeese e 272
Instancing to Improve Redraw Performanceccoovvceveevevee e 272

101 A=]] o £ S 274
Creating BUFfer ODJECLSocviiii ettt 274

(Ot T o] oT0T= 0 @] o= £ TP 275
Creating Cliphoard OhJECLSccveeiiiiieieciecie et e et re e e e re e 276

D10 @ o= £ 277
Creating Printer ODJECESoiviiiiiie e e e re e sae e et e e s saesreesraesneens 277
COlOr MO ... ettt 277
[101 = T oo L 277
Drawing to @PriNtErcvoiiiicecee e e 278
Positioning Objects Within aPagecccccveieeieeii s 279
Starting aNew Page on @aPrinter ... 283
SubMItting @PrinNter JODc.cooueiiie e 283

Bitmap and Vector GraphiC OULPULccccceeiiieiecieese et 284
Bitmap GraphiCscocueiiiiie e re s 284
VECLOr GraPRiCS ...veeuveiecieceeee e ettt st a et a e sreeneenes 285
Guidelines for Choosing Bitmap or Vector GraphiCsccccveeeceeeiieniensieesieeseeseens 286
Controlling What is Displayed in Vector GraphicCsccccoveeveevesesiesiesese e 287

Chapter 13

Creating Custom ODbjectsS iN IDLoooiiiiiiiiiiiiiiirii e 295

Creating CUSIOM ODJECESocciiieiieiie e cee s ee e esteere e e e saesste e stesneesnressessneesreesnnesneens 296

DL ODJECE OVEINVIEW ..ottt ettt sttt ettt s re e b b ere e srenas 297
ClassSeS AN INSLANCEScoeveieiriirierieeee sttt 297
7= 1= | =0 o S 297
IMBENOUS ...t sttt b ettt n e 297
(0] Y 010 0] T o o 297

Contents Object Programming

INNEMTANCE ..oviiieee e et be e 298
S 6 1 (= 10 RS PRR 298
Undocumented ODJECt CIASSESc.viuecieiieriiiieiiesiese e seeae e sre et eae e s 299
Creating an Object Class SETUCLUIEeevveriieiie et e sieeste et ee e st snee e sreeens 300
Automatic Class Structure DEfINItIONccooereieinienenireres e 301
INNEITTANCE ...ttt eseeeneeneeneesaeseeeneas 302
N T I o £SO 303
(@ o1 ol = T A = o =S 304
Dangling REFEIENCESecveiiiiciceee sttt saesre e 305
Heap Variable “Leakage” ...ttt es et neas 305
Freeing Heap VariableSccccviiiieii et 305
RSN 1= e I =ox Y 307
Creation and INItTAlIZAtIONccveiiiireriree e 307
1= o1 o RSP 309
Creating Custom Object Method ROULINESceceveiiiiiiicie e 310
Defining Method ROULINESccceeiiieiicieeriee et see et es e st e e e e sre e enens 310
The Implicit SEIf ArQUMENTocueceiee e 311
Caling Method ROULINEScocuuiieeiie ettt 312
Searching for Method ROULINEScccovviiiiicie et 313
VK=t 0o To @ V7= g g o (1 oo [314
Specifying Class Namesin Method Callsccccovveveeveiesiceeceese e 315
(O o 1= o =0 o) =S 317
Creating Composite Classes Or SUDCIASSEScccvveveerieienieceeseese st 317
Chapter 14
Advanced Rendering Using Shader Objectscccevviiiiiiiiiiicinnnn. 319
N o1 =0 [S 320
WHY USE ShAOEN'S ...ttt sttt st st sn b sre s 320
Hardware Requirements for Shadersoooeveieiieiere e 321
PN o0 1S a=To [o 0o =0 1 S 323
Vertex and Fragment Shadersoov e 324
How Shaders Enhance Performanceccocceevinineni s 326
Using Shadersin an IDL APPlICAtiONccccevviieieie e 328
Display-Only Effects of Shaderscccvciieiiiii e 329
Passing Information to a Shader Programcccccovveeceeeve s 330
UNIfOrM VarTabIES ..ottt 330

Object Programming Contents

12

ALITDULE VaIADIES ... e 332
Library of Pre-built Shader ODJECEScccceiieiiceccecse e 333
IMAgE FIlter SNAJENSoooeeieeceeee e et srens 334

Providing a Software Alternative to Shaderscccvivvieevieevesce e 335

Caching Shader RESUILSc.ecueeeiee et 335

Capturing Image Data During Shader EXECULIONcccvcveeieeneiieeeieneeeieeseesee e 335

Altering RGB LevelsUsing aShader ..o 336

Basic RGB Shader ODJECE ClaSScccceieeiieiieeieere et ses et 336

Uniform Variable for RGB VAIUEScocoviiririniiee e 337

Software Fallback for RGB Shadercccoooeiiiieieieriee e 337

Hardware Shader Program for RGB Shaderccccovveceeeveve e 339

Applying Lookup Tables Using Shaderscccvvce e 342

Basic LUT Shader ObJECt ClaSSccecveieiieiiiiieieie et 342

Uniform Variable for LUT EXample ... 343

Hardware Shader Program for LUT Shadercccoovveeeeeve e 344

Software Fallback for the LUT Shadercoooeeiiiiiieeee e 346

High PreCiSioN IMAagESocuecvieieceece sttt s 349

OpenGL Conversion of Image Datato Texture Datacccceceeeeeecereesiiesieeseeseens 349

Examples of Handling High-Precision IMagescccoceeveveveceececie s 351

Filter Chain SNAOErSc.ooiii e e 355

Basic Filter Chain Shader Object Classcccveeveiiieciesese e 355

Uniform Variables for Filter Chain EXampleccccoevieevienence e 357

Hardware Shader Program for Filter Chain EXamplec.ccccoovvvevevevicccneecieenn, 357

Software Fallback for the Filter Chain Shaderccocoeoieiiiiiiiee e 357
VEIEX SNAOEYS ...ttt sttt b ettt eene s 359

Attribute and Uniform Variablesfor Vertex Shaderccoovvovvieiiveneicee e, 359

Hardware Shader Program for Vertex Shaderccoovecveeeveve e 360
(Yo g1 T g0 =0 (= £ 363

IDL Lightsand the OpenGL Light Tableccccveovieviieiiee e 363

Adding Lighting and Shading t0 @ SUIaceccccevevieveevcnee e 365

Uniform and Attribute Variables for Lighting Shadercccoovvvveveveviccieeciene, 366

Hardware Shader Program for Lighting Shadercccovvicivin e 366
MUILI-EEXTUIE SNAOENS ...ttt 369

Uniform Variables and Multi-Texture Shadersccceoeeeeneieneenecese e 370

Manipulating Multiple Textures Using Shaderscccoceveveve e 371

Uniform Variables for Multi-texture Shaderccooeeoeieeniriie e 371

Contents Object Programming

Hardware Shader Program for Multi-texture Shaderccccooveeveveveieieecece e 372
REPOSITIONING TEXIUIESeoeieieieierie ettt s e e e e eneeseeenes 374
Rotating Earth with MUltiple TEXIUIESc.ocveveeieciceece e 375
T L0 1= PP 377

Object Programming Contents

Chapter 1

The Basics of Using
Objects in IDL

The following topics are covered in this chapter:

Object-Oriented Programming Concepts .. 16
Using IDL Objects 17
Creating Objects
Acting on Objects Using Methods

Object Programming

Modifying Object Properties 22
Destroying Objects 26
Using Operationswith Objects 27
Object Examples 29

15

16 Chapter 1: The Basics of Using Objects in IDL

Object-Oriented Programming Concepts

Traditional programming techniques make a strong distinction between routines
written in the programming language (procedures and functions in the case of IDL)
and data to be acted upon by the routines. Object-oriented programming begins to
remove this distinction by melding the two into objects that can contain both routines
and data. Object orientation provides alayer of abstraction that allows the
programmer to build robust applications from groups of reusable elements.

Beginning in version 5.0, IDL provides a set of tools for developing object-oriented
applications. IDL’s Object Graphics engine is object-oriented, and a class library of
graphics objects allows you to create applications that provide equivalent graphics
functionality regardless of your (or your users') computer platform, output devices,
etc. Asan IDL programmer, you can use IDL'straditional procedures and functions
as well as the new object features to create your own object modules. Applications
built from object modules are, in general, easier to maintain and extend than their
traditional counterparts.

This chapter describes how to create, configure and destroy inherent IDL graphic
objects. For information on how to create and use custom object that you create, see
Chapter 13, “ Creating Custom Objectsin IDL”. If you are developing a custom i Tool
or components of an iTool (such as an operation or manipulator) see the i Tool
Programming for complete details and examples.

A complete discussion of object orientation is beyond the scope of this book—if you
are new to object oriented programming, consult one of the many references on
object oriented program that are available.

Object-Oriented Programming Concepts Object Programming

Chapter 1: The Basics of Using Objects in IDL 17

Using IDL Objects

The IDL Object Graphics system isacollection of pre-defined object classes, each of
which is designed to encapsulate a particular visua representation. Actions (such as
the modification of attributes, or data picking) may be performed on instances of
these object classes by calling corresponding pre-defined methods. These objects are
designed for building complex three-dimensional data visualizations.

For example, the IDLgrAXxis object provides an encapsulation of al of the
components associated with a graphical representation of an axis. One of the actions
that can be performed on an axis is retrieving the current value of one or more of its
attributes (such asits color, tick values, or datarange). This action may be performed
viathe IDLgrAXxis::GetProperty method. See “ Graphic Objects—Visualization” in
the functional category “ Object Class Library” (IDL Quick Reference) for acomplete
listing of these types of abjects.

Object Graphics should be thought of as a collection of building blocks. In order to
display something on the screen, the user selects the appropriate set of blocks and
puts them together so that as a group they provide a visual result. In this respect,
Object Graphics are quite different than Direct Graphics. A singleline of codeis
unlikely to produce a complete visualization. Furthermore, a basic understanding of
the IDL object system isrequired (for instance, how to create an object, how to call a
method, how to destroy an object, etc.). Because of the level at which these objects
are presented, Object Graphics are aimed at application programmers rather than
command line users.

Object Graphics do not interact in any way with the system variables (such as!P, !X,
1Y, and !Z). Each graphic object is intended to encapsulate all of the information
required to fully describe itself. Reliance on external structuresis not condoned. The
advantage of this approach isthat once an object is created, it will always behavein
the same way even if the system state is modified by another program, or if the object
is moved to another user’s IDL session, where the system state may have been
customized in adifferent way than the state in which the object was originally
defined.

Object Graphics are designed for building interactive three-dimensional visualization
applications. Direct manipulation tools (such as the Trackball object) are provided to
aid the application devel oper. Selection and data picking are also built in, so the
developer can spend less time working out data projection issues and more time
focusing on domain specific data analysis and visualization features. The IDL
Intelligent Tools (iTools) are good examples of currently available applications built
using Object Graphics. For more information, see the iTools User’'s Guide.
Additional examples based on Object Graphics can be found in the IDL demo.

Object Programming Using IDL Objects

18 Chapter 1: The Basics of Using Objects in IDL

Creating Objects

To create an object from the IDL object class library, use the OBJ_NEW function.
See “OBJ NEW” (IDL Reference Guide). The Init method for each class describes
the arguments and keywords available when you are creating a new object.

For example, to create a new object from the IDLgrAXis class, use the following call
to OBJ_NEW aong with the arguments and keywords accepted by the
IDLgrAXxis::Init method:

myAxis = OBJ_NEW('IDLgrAxis', DIRECTION = 1, RANGE = [0.0, 40.01)

When you create an object, it is persistent, meaning it exists in memory until you
destroy it. You use an abject reference (myaxis) to access the data associated with
the object. This object reference actually accesses an object heap variable. (See
“Object Heap Variables” on page 304 for details.)

Once an object has been created, you can access and modify it as needed. (See “The
Object Lifecycle” on page 307 for additional information.) However, you should
aways explicitly clean up object references before ending a program. See
“Destroying Objects’ on page 26 for more information.

Creating Objects Object Programming

Chapter 1: The Basics of Using Objects in IDL 19

Acting on Objects Using Methods

In order to perform an action on an object’s instance data, you must call one of the
object’s methods. In addition to their own specific methods, all object classes shipped
with IDL except for the IDL_Container class have four methods in common:
Cleanup, Init, GetProperty, and SetProperty. The Cleanup and Init methods are life-
cycle methods, and cannot be called directly except within asubclass’ Cleanup or Init
method. (See“The Object Lifecycle’ on page 307.) The GetProperty and SetProperty
methods allow you to inspect (get) or change (set) the various properties associated
with a given object. See “Modifying Object Properties’ on page 22 for details.

To call amethod, you must use the method invocation operator,-> (the hyphen
followed by the greater-than sign).

Object Method Syntax

In the IDL Reference Guide, the Syntax section of each object method shows the
proper syntax for calling the method.

Procedure Methods

IDL procedure methods have the syntax:
Obj->Procedure_Name, Argument [, Optional_Arguments]

where Obj isavalid object reference, Procedure_Name is the name of the procedure
method, Argument is arequired parameter, and Optional_Argument is an optional
parameter to the procedure method. The square brackets around optional arguments
are not used in the actual call to the procedure, they are simply used to denote the
optional nature of the arguments within this document.

Function Methods

IDL function methods have the syntax:
Result = Obj->Function_Name(Argument [, Optional _Arguments])

where Obj is avalid object reference, Result is the returned value of the function
method, Function_Name is the name of the function method, Argument isarequired
parameter, and Optional_Argument is an optional parameter. The square brackets
around optional arguments are not used in the actual call to the function, they are
simply used to denote the optional nature of the arguments within this document.

Object Programming Acting on Objects Using Methods

20 Chapter 1: The Basics of Using Objects in IDL

Note
All arguments and keywords to functions should be supplied within the parentheses
that follow the function’s name.

Arguments

The Arguments section describes each valid argument to the method.

Note
These arguments are positional parameters that must be supplied in the order
indicated by the method’s syntax.

Named Variables

Often, arguments that contain values upon return from the function or procedure
method (“ output arguments”) are described as accepting “named variables.” A named
variableis simply avalid IDL variable name. This variable does not need to be
defined before being used as an output argument. Note, however that when an
argument calls for a named variable, only a hamed variable can be used—sending an
EXPression causes an error.

Keywords

The Keywords section describes each valid keyword argument to the method.

Note
Keyword arguments are formal parameters that can be supplied in any order.

Keyword arguments are supplied to IDL methods by including the keyword name
followed by an equal sign (“=") and the value to which the keyword should be set.
Note that keywords can be abbreviated to their shortest unique length. For example,
the XSTY LE keyword can be abbreviated to X ST.

Note
In the case of Init, GetProperty and SetProperty methods, keywords often
correspond to object properties. See “Modifying Object Properties’ on page 22 for
additional discussion.

Acting on Objects Using Methods Object Programming

Chapter 1: The Basics of Using Objects in IDL 21

Setting Keywords

When the documentation for a keyword says something similar to, “ Set this keyword
to enable logarithmic plotting,” the keyword is simply a switch that turns an option
on and off. In general, setting such keywords equal to 1 (or using the/KEY WORD
syntax) causes the option to be turned on. Explicitly setting the keyword to zero (or
not including the keyword) turns the option off.

Object Programming Acting on Objects Using Methods

22 Chapter 1: The Basics of Using Objects in IDL
Modifying Object Properties

Some IDL abjects have properties associated with them — things like color, line
style, size, and so on. Properties are set or changed by supplying property-value pairs
inacall to the object class' Init or SetProperty method:

Obj->0OBJ_NEW ('ObjectClass', PROPERTY = value, ...)
or
Obj->SetProperty, PROPERTY = value, ...

where PROPERTY is the name of a property and value is the associated property
value.

Property values are retrieved by supplying property-value pairsin acall to the object
class' GetProperty method:

Obj->GetProperty, PROPERTY = variable, ...

where PROPERTY is the name of a property and variable is the name of an IDL
variable that will hold the associated property value.

Note
Property-value pairs behave in exactly the same way as Keyword-value pairs. This
means that you can set the value of a boolean property to 1 by preceding the name
of the property with a“/” character. The following are equivalent:

Obj->SetProperty, PROPERTY = 1

Obj->SetProperty, /PROPERTY

If you are familiar with IDL Direct Graphics, you will note that many of the
properties of IDL objects correspond to keywords to the Direct Graphics routines.
Unlike IDL Direct Graphics, the IDL Object Graphics system allows you to change
the value of an object’s properties without re-creating the entire object. Objects must
be redrawn, however, with a call to the destination object’s Draw method, for the
changes to become visible.

Properties and the Property Sheet Interface

In addition to being able to set and change object property values programmetically,
IDL providesaway for usersto change property values viaagraphical user interface.
The WIDGET_PROPERTY SHEET function creates a user interface that allows
users to select and change property values using the mouse and keyboard.

Modifying Object Properties Object Programming

Chapter 1: The Basics of Using Objects in IDL 23

For an object property to be displayed in a property sheet, the property must be
registered.

See “Registered Properties’ (Chapter 28, IDL Reference Guide) for additional
discussion.

Setting Properties at Initialization

Often, you will set an object’s properties when creating the object for the first time,
which is done by specifying any keywords to the object’s Init method directly in the
call of OBJ_NEW that creates the object. For example, suppose you are creating a
plot and wish to use ared line to draw the plot line. You could specify the COLOR
keyword to the IDLgrPlot::Init method directly in the call to OBJ NEW:

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata, COLOR = [255, 0, 0])

In most cases, an object’s Init method cannot be called directly. Arguments to
OBJ NEW are passed directly to the Init method when the object is created.

For some graphics objects, you can specify a keyword that has the same meaning as
an argument. In Object Graphics, the value of the keyword overrides the value set by
the argument. For example,

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata, DATAX = newXData)

The Plot object uses the datain newxData for the plot's X data.
Setting Properties of Existing Objects

After you have created an object, you can also set its properties using the object’s
SetProperty method. For example, the following two statements duplicate the single
call to OBJ_NEW shown above:

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata)
myPlot->SetProperty, COLOR = [255, 0, 0]

Note
Not all keywords available when the object is being initialized are necessarily

available via the SetProperty method. Keywords available when using an object’s
SetProperty method are noted with the word “ Set” in the table included after the
text description of the property.

Object Programming Modifying Object Properties

24 Chapter 1: The Basics of Using Objects in IDL

Retrieving Property Settings

You can retrieve the value of a particular property using an object’s GetProperty

method. The GetProperty method accepts alist of keyword-variable pairs and returns
the value of the specified propertiesin the variables specified. For example, to return
the value of the COL OR property of the plot object in our example, use the statement:

myPlot->GetProperty, COLOR = plotcolor
The value of the COLOR property isreturned in the IDL variableplotcolor.

You can retrieve the values of all of the properties associated with a graphics object
by using the ALL keyword to the object’s GetProperty method. The following

statement:
myPlot->GetProperty, ALL = allprops

returns an anonymous structure in the variable a11props; the structure contains the
values of all of the retrievable properties of the object.

Note
Not all keywords available when the object is being initialized are necessarily

available via the GetProperty method. Keywords available when using an object’s
GetProperty method are noted with the word “Get” in the table included after the
text description of the property.

About Object Property Descriptions

In the documentation for the IDL object class library, the description of each classis
followed by a section describing the properties of the class. Each property description
isfollowed by atable that looks like this:

Property Type Boolean

Name String Hide

Get: Yes Set: No Init: Yes Registered: Yes
where

* Property Type describes the property type associated with the property. If the
property is registered, the property type will be one of a number of registered
property datatypes. If the property is not registered, thisfield will describe the
generic IDL datatype of the property value.

Modifying Object Properties Object Programming

Chapter 1: The Basics of Using Objects in IDL 25

* Name String isthe default value of the Name property attribute. If the
property isregistered, thisisthe value that appears in the left-hand column
when the property is displayed in a property sheet widget. If the property isnot
registered, thisfield will contain the words not displayed.

e Get, Set, and Init describe whether the property can be specified as a keyword
to the GetProperty, SetProperty, and Init methods, respectively.

* Registered describes whether the property is registered for display in a
property sheet widget.

See Registered Property Data Types and “ Registered Properties’ (Chapter 28, IDL
Reference Guide) for additional information.

Object Programming Modifying Object Properties

26 Chapter 1: The Basics of Using Objects in IDL

Destroying Objects

Use the OBJ DESTROY procedure to destroy an object. When an object is created
using OBJ NEW, memory isreserved for the object on the heap (see “ Object Heap
Variables’ on page 304 for details). You must explicitly destroy objectsin order to
clean up the reference and the remove the data from memory. Objects are released as
with acall to OBJ_DESTROY. Internally, this calls the object’s Cleanup method (see
“Destruction” on page 309 for details).

For example, if you have created an axis object called myAxis, use the following
syntax to clean up the abject reference:

OBJ_DESTROY, myAxis
See “OBJ DESTROY” (IDL Reference Guide) for further details.

Destroying Objects Object Programming

Chapter 1: The Basics of Using Objects in IDL 27

Using Operations with Objects

Object reference variables are not directly usable by many of the operators, functions,
or procedures provided by IDL. You cannot, for example, do arithmetic on them or
plot them. You can, of course, do these things with the contents of the structures
contained in the object heap variables referred to by object references, assuming that
they contain non-object data.

There are four IDL operators that work with object reference variables: assignment,
method invocation (described in “Acting on Objects Using Methods’ on page 19),
EQ, and NE. The remaining operators (addition, subtraction, etc.) do not make any
sense for object references and are not defined.

Note
The structure dot operator (.) is allowed within methods of a class of a custom
object. See “The Implicit Self Argument” on page 311 for details.

Many non-computational functions and proceduresin IDL do work with object
references. Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It isworth
noting that the only /O allowed directly on object reference variables is default
formatted output, in which they are printed as a symbolic description of the heap
variable they refer to. Thisis merely adebugging aid for the IDL programmer—
input/output of object reference variables does not make sense in general and is not
allowed. Please note that this does not imply that I/O on the contents of non-object
instance data contained in heap variables is not alowed. Passing non-object instance
datacontained in an object heap variable to the PRINT command is asimple example
of thistype of 1/0.

You can a'so get information about an object as described in “ Returning Object Type
and Validity” on page 79.
Object Assignment

Assignment works in the expected manner—assigning an object reference to a
variable gives you another variable with the same reference. Hence, after executing
the statements:

;Define a class structure.
struct = { cname, datal:0.0 }

;Create an object.
A = OBJ_NEW('cname')

Object Programming Using Operations with Objects

28 Chapter 1: The Basics of Using Objects in IDL

;Create a second object reference.

B = A
HELP, A, B
IDL prints:
A OBJREF = <ObjHeapVarl (CNAME) >
B OBJREF = <ObjHeapVarl (CNAME) >

Note that both A and B are references to the same object heap variable.
Object Equality and Inequality

The EQ and NE operators allow you to compare object references to see if they refer
to the same object heap variable. For example:

;Define a class structure.
struct = {cname, data:0.0}

;Create an object.
A = OBJ_NEW('CNAME')

;B refers to the same object as A.
B = A

;C contains a null object reference.
C = OBJ_NEW ()

PRINT, 'A EQ B: ', A EQ B & $

PRINT, 'A NE B: ', ANE B & $

PRINT, 'AEQ C: ', AEQC & S

PRINT, 'C EQ NULL: ', C EQ OBJ_NEW() & $

PRINT, 'C NE NULL:', C NE OBJ_NEW/()
IDL prints:

A EQ B: 1

A NE B: 0

A EQ C: 0

C EQ NULL: 1

C NE NULL: O

Using Operations with Objects Object Programming

Chapter 1: The Basics of Using Objects in IDL 29

Object Examples

We have included a number of examples of object-oriented programming as part of
the IDL distribution. Many of the examples used in this volume are included —
sometimesin expanded form — inthe examples/doc/objects subdirectory of the
IDL distribution. By default, this directory is part of IDL’s path; if you have not
changed your path, you will be able to run the examples as described here. See
“1PATH” (IDL Reference Guide) for information on IDL's path.

Object Programming Object Examples

30 Chapter 1: The Basics of Using Objects in IDL

Object Examples Object Programming

Chapter 2

Creating an Object
Graphics Display

This chapter discusses creating and configuring Object Graphic displays.

Overview of Object GraphicsClasses 32
Creating an Object Graphics Display 33
Object Graphics Display Hierarchy 35
Destination Objects 37
Display Objects 38
Visualization Objects 40
FileFormat Objects 44
Color in Object Graphics 46

Object Programming

Color and Destination Objects 48
PaetteObjects ... 50
Specifying Object Color 51
How IDL Interprets Color Values 53
Rendering Objects 55
Controlling the Depth of ObjectsinaView 58
Controlling Object Transparency 60
Performance Tuning Object Graphics 66

31

32 Chapter 2: Creating an Object Graphics Display

Overview of Object Graphics Classes

The following sections provide an overview of the different types of objects included
inthe IDL Object Graphics classlibrary. In order to describe the attributes of the IDL
Object Graphics classes, we have grouped the objects into functional categories:
Display Objects, Visualization Objects, Destination Objects, and File Format
Objects.

Note
These category names are purely descriptive; for example, display objects contain
the IDLgrModel, IDLgrScene, and IDLgrView classes, but no class named display.

See “Object Graphics Display Hierarchy” on page 35 for a discussion of the object
tree, which shows the relationships between object classes.

There is some commonality among visualization object properties Following sections
provide information about common properties including color, depth-buffering (how
objects are layered in aview), and alpha-channel setting (transparency).

Naming Conventions

In general, object classes shipped with IDL have names of the form:

IDLxXXYYVY

where xx represents the broad functional grouping (gr for graphics objects, db for
database objects, and an for analysis, for example). vyyy isthe class name itself
(such as axis or surface). Object classes that are useful in more than one
functional context (container objects, for example) omit the functional grouping code
entirely (IDL_Container). All object classes shipped with IDL are prepended with the
letters IDL—we strongly suggest that you do not use this prefix when writing your
own object classes, as we will continue to add new object classes using this
convention.

The typographical convention used to describe IDL objectsis dightly different from
that used for non-object functions and procedures. Whereas non-object procedures
are presented in upper case letters, object classes and methods use mixed case. For
example, we refer to the PLOT routine, but to the IDLgrPlot object. Method names
are also presented in mixed case (IDLgrAXxis::GetProperty).

Overview of Object Graphics Classes Object Programming

Chapter 2: Creating an Object Graphics Display 33

Creating an Object Graphics Display

All Object Graphics applications require at least two basic building blocks. These
include:

« A destination object - the device (such as a window, memory buffer, file,
clipboard, or printer) to which the visualization is to be rendered.

* A view object - the viewport rectangle (within the destination) within which
the rendering is to appear (as well as how data should be projected into that
rectangle).

For example:

; Create a destination object, in this case a window:
oWindow = OBJ_NEW ('IDLgrWindow"')

; Create a viewport that fills the entire window:
oView = OBJ_NEW('IDLgrView')

; Draw the view within the window:

OWindow->Draw, oView

By themselves, awindow and a single view are not particularly enlightening, but you
will find that these two types of objects are utilized by all Object Graphics
applications. To change an attribute of an object, you do not have to create a new
instance of that object. Instead, use the SetProperty method on the original object to
modify the value of the attribute.

For example, to change the color of the view to gray:

; Set the color property of the view:
OView->SetProperty, COLOR=[60,60,60]
; Redraw:

OWindow->Draw, oView

If more than one view isto be drawn to the destination, then an additional object is
required:

e A sceneabject - a container of views

For example:

; Create a scene and add our original view to it:

OScene = OBJ_NEW('IDLgrScene’)

oScene->Add, oView

Modify our original view so that it covers

; the upper left quadrant of the window.

OView->SetProperty, LOCATION=[0.0,0.5], DIMENSIONS=[0.5,0.5], $
UNITS=3

Create and add a second red view that covers

7

7

Object Programming Creating an Object Graphics Display

34

Creating an Object Graphics Display

Chapter 2: Creating an Object Graphics Display

; the right half of the window.
OView2 = OBJ_NEW('IDLgrView'’, LOCATION=[0.5,0.0], $
DIMENSIONS=[0.5,1.0], UNITS=3,COLOR=[255,0,01])

OScene->Add, oView2
; Now draw the scene, rather than the view, to the window:

Owindow->Draw, oScene

In the examples so far, the views have been empty canvases. For data visualization
applications, these views will need some graphical content. To draw visual
representations within the views, two additional types of objects are required:

« A model object - atransformation node

* A visualization graphic object - a graphical representation of data (such as an
axis, plot line, or surface mesh). For more information, see “Visualization
Objects’ on page 40.

For example, to include atext label within aview:

; Create a model and add it to the original view:

oModel = OBJ_NEW ('IDLgrModel')

oView->Add, oModel

; Create a text object and add it to the model:

oText = OBJ_NEW('IDLgrText',6 'Hello World',6 ALIGNMENT=0.5)

oModel->Add, oText

; Redraw the scene:

OwWwindow->Draw, oScene
Notice that the scene, views, model, and text are all combined together into a self-
contained hierarchy. It isthe overall hierarchy that is drawn to the destination object.

The transformation associated with the model can be modified to impact the text it
contains. For example:

; Rotate by 90 degrees about the Z-axis:

7

oModel->Rotate, [0,0,1], 90
; Redraw:
OWindow->Draw, oScene

When the objects are no longer required, they need to be destroyed. Destination
objects must be destroyed separately, but the graphic hierarchies can be destroyed in
full by simply destroying the root of the hierarchy. For example:

OBJ_DESTROY, oWindow
OBJ_DESTRQOY, oScene

In this example, the destruction of the scene will cause the destruction of all of its
children (including the views, model, and text).

Object Programming

Chapter 2: Creating an Object Graphics Display 35

Object Graphics Display Hierarchy

An Object Graphics display can be thought of as agroup of graphics objects
organized into a hierarchy or tree. For example, a graphics object tree with four
graphics atoms (visualization objects) might be contained in three separate model
objects, which arein turn contained in two distinct view objects, both of which are
contained in one scene object, which isthe root of the graphicstree.

graphics| |graphics| |graphics graphics
atom atom atom atom
Model Model Model
View View
Scene

Figure 2-1: A Graphics Object Tree

Object Programming Object Graphics Display Hierarchy

36

Chapter 2: Creating an Object Graphics Display

Components of an Object Graphics Hierarchy

An object graphics display is commonly made up of the following components:

Destination objects — awindow, printer, clipboard or memory buffer that
contains the display. One of these abjectsisrequired for any graphicstree. For
more information, see “ Destination Objects’ on page 37. In the tree ana ogy,
one of these objectsisthe ground.

Display objects— ascene, view, or viewgroup that contains one or more
models. Each model controlsthe spatial positioning of the visualization objects
that it contains. See “Display Objects’ on page 38.

Note
IDL_Container, like aview, can act as a container for other objects. Adding

objects to a container object allows you to group disparate IDL objectsinto
single object, and allows you to easily move or destroy the objects within the
container. See “A Plotting Routine” on page 180 for an example that uses an
IDL_Container object.

Visualization objects — these low-level objects (shown as graphic atomsin
Figure 2-1) are the used to create visualizations such as plot, contour, surface,
and image displays. These objects contain data and have attributes such as
size, color, or associated color palette. Visualization objects do not have an
independent transformation matrix and do not contain other objects. See
“Visualization Objects’ on page 40 for more information.

Object Graphics Display Hierarchy Object Programming

Chapter 2: Creating an Object Graphics Display 37

Destination Objects

Destination objects are objects on which object trees can be rendered (displayed on a
screen or printed on a printer). Detailed information about destination objectsis
available in Chapter 12, “Displaying, Copying and Printing Objects”.

Destination Description
Buffer Objects of the IDLgrBuffer class represent an off-screen, in-
memory data areathat may serve as a graphics source or
destination.
Clipboard Objects of the IDLgrClipboard class send Object Graphicsto

the operating system’s native clipboard or to afilein bitmap or
vector format. See “ Clipboard Objects’” on page 275 for
examples.

Printer Objects of the IDLgrPrinter class represent a hardcopy
graphics destination. By default, printer objects represent the
default system printer; you can use the IDL routines
DIALOG_PRINTJOB and DIALOG_PRINTERSETUPto
change the printer associated with a printer object. See
“Printer Objects’ on page 277 for examples.

Window Objects of the IDLgrWindow classrepresent an on-screen area
on adisplay devicein which graphic objects can be rendered.
See “Window Objects’ on page 267 for more information.
Also see“ Saving Window Contentsto aFile” on page 270 for
information on how to save aview of displayed objectsto an
image file.

Table 2-1: Destination Objects

Note
When creating an i Tool display, there is no need to manually configure a window
object or destination objects. Thisis automatically done for you. See Chapter 3,
“Visualizations” (iTool User’s Guide) for more information.

Object Programming Destination Objects

38 Chapter 2: Creating an Object Graphics Display

Display Objects

Minimally, you must have aview object in an Object Graphics display. However, it is
likely that you will use a combination of the following display objectsin any display.
The " Object Graphics Display Hierarchy” on page 35 shows the relationship between
these objects as a tree structure.

The advantage of organizing graphic objectsinto atree structureis that by
manipul ating any of the branches of the tree, all of the sub-branches of that branch
can be atered simultaneoudly. In Figure 2-1, changes to the spatial transformation
associated with the model containing two graphics atoms will affect both of the
visualization objects. Similarly, calling awindow or printer object’s Draw method on
the scene abject will render al of the objectsin the tree to that window or printer.

Object Description

IDLgrScene A scene, or instance of the IDLgrScene class, isthe root-level
object of most graphics trees. Instances of the IDLgrScene
class have Add and Remove methods, which allow you to
include or remove IDLgrView or IDLgrViewgroup objectsina
scene. A scene object is one of the possible arguments for a
destination object’s Draw method.

It is not necessary to create a scene object if your graphicstree
contains only one view object; in that case, the view can serve
astheroot of the tree.

IDLgrViewgroup | A viewgroup, or instance of the IDLgrViewgroup class, isa
simple container object, similar to the Scene object. The
Viewgroup differs from the Scene in two ways:

1. It will not cause an erase to occur on a destination when
the destination object’s Draw method is called.

2. It can contain objects which do not have Draw methods.

Viewgroups are designed to be placed within a scene, and
therefor do not typically serve as the root-level object of a
graphics tree. However, a viewgroup object can be an
argument for a destination object’s Draw method. Instances of
the IDLgrViewgroup class have Add and Remove methods,
which alow you to include or remove objects in a viewgroup.

Table 2-2: Display Support Objects

Display Objects Object Programming

Chapter 2: Creating an Object Graphics Display 39

Object Description

IDLgrView A view, or instance of the IDLgrView class, can serve asthe
root-level object of a graphics tree. Instances of the
IDLgrView class have Add and Remove methods, which
allow you to include or remove IDLgrModel objectsin aview.
A view object is one of the possible arguments for a
destination object’s Draw method.

Every graphics tree must contain at |east one view object.
Often, it is convenient to divide the objects being rendered
into separate views, which are then contained by a viewgroup
or scene object.

IDLgrModel A model, or instance of the IDLgrModéd class, serves as
containers for individual graphic objects (plot lines, axes, text,
etc.) and for other model objects. Model objectsinclude a
three-dimensional transformation matrix that describes how
the model and all of its components are positioned in space.

Altering the model’s transformation matrix changes the
position and orientation of any objectsthe model contains. If a
model object contains another model object, the contained
model is positioned according to both its own transformation
matrix and that of its container. See Chapter 3, “Positioning
Objectsin aView” for more information.

Table 2-2: Display Support Objects (Continued)

See “Creating an Object Graphics Display” on page 33 for an example that
introduces the use of these abjects. “Rendering Objects’ on page 55 provides
additional information.

“Mapping an Image onto Elevation Data’ (Chapter 3, Image Processing in IDL)
provides an example using the display objects to support texture-mapping.

Note
When creating an i Tool display, there is no need to manually configure a window
object or destination objects. Thisis automatically done for you. See Chapter 3,
“Visualizations” (iTool User’s Guide) for more information.

Object Programming Display Objects

40 Chapter 2: Creating an Object Graphics Display

Visualization Objects

Visualization objects contain data that is designed to produce a visualization. These
graphic objects are the basic drawable elements of the IDL Object Graphics system,
and are container for other objects. Visualization objects are added to a model object,
which controls the spatial positioning of all the objects it contains. Visualization
objects combined in amodel object (using the model object’s Add method) share the
same transformation matrix and can be rotated, scaled, or translated together.

Within the category of visualization objects, there is a sub-category of attribute
objects. Attribute objects define the appearance of a visualization object, but
themselves are not drawn, and thus do not need to be added to a model object. For
example, an IDLgrFont object is associated with an IDLgrText object through the
FONT property of the text object and defines the type characteristics of the text.
Attribute objects are instances of one of the following classes: IDLgrFont,
IDLgrPalette, IDLgrPattern, or IDLgrSymbol.

Visualization Objects Object Programming

Chapter 2: Creating an Object Graphics Display 41

The following table introduces objects that are commonly see in different types of
object graphics displays. Your display need not contain these specific combinations.

Display Type Description

Plot Objects of the IDLgrPlot class are individual plot lines,
created from a user-supplied vector of dependent data values
(and, optionally, avector of independent data values). Plots do
not automatically include axes. See Chapter 5, “Working with
Plots and Graphs’ for information on plot, symbol and axis
objects. A plot display may include the following objects:

» Axis— IDLgrAxis objects show data ranges (one object
required for each axis to be rendered)

» Legend — IDLgrLegend objects annotate individual data
items or linesin avisualization. See “Legend Objects’ on
page 228.

» Colorbar — IDLgrColorbar objects annotate the data
values associated with colors used in a visualization. See
“Colorbar Objects’ on page 231.

* Symbol — IDLgrSymbol objects define a graphical
element that can be used when plotting data.

Contour Objects of the IDLgrContour class are lines representing
contour information plotted from user data. Contour displays,
like plot display, may also include legend, colorbar, or symbol
objects. See Chapter 5, “Working with Plots and Graphs”.
You can also use the following:

» Pattern — IDLgrPattern objects defines which pixels are
filled and which are left blank when a graphic object is
filled. Patterns can be applied to successive contour levels.

Table 2-3: Visualization Object Displays

Object Programming Visualization Objects

42 Chapter 2: Creating an Object Graphics Display

Display Type Description

Image Objects of the IDLgrImage class are two-dimensional arrays
of data with an associated mapping of the data values to pixel
values. See Chapter 4, “Working with Image Objects”.
Displays containing image objects my also include:

» Palette — IDL grPal ette objects define a color lookup
table that maps indices to red, green, and blue values.

* ROI — IDLgrROI objects are representations of aregion
of interest. Regions of interest are described as a set of
vertices that may be connected to generate a path or a
polygon, or may be treated as separate points. Objects of
the IDLgrROIGroup class are representations of a group
of regions of interest.

Surface Objects of the IDLgrSurface class are individual three-
dimensional surfaces, created from a user-supplied array of
datavalues. See Chapter 6, “Working with Surface Objects’.

» Light — IDLgrLight objects are light sources that
illuminate visualization objects. Light objects are not
actually rendered, but must be contained in amodel object
so that they can be positioned and transformed along with
the graphic objects they illuminate. If no light object is
included in a particular view, default lighting is supplied.

Volume Objects of the IDLgrVolume class map a three-dimensional
array of datavaluesto athree-dimensional array of voxel
colors, which, when drawn, are projected to two dimensions.
Volume displays, like surface displays, can also include lights.
See Chapter 7, “ Creating Volume Objects’.

Table 2-3: Visualization Object Displays (Continued)

Visualization Objects Object Programming

Chapter 2: Creating an Object Graphics Display 43

Display Type Description
Polygon and Polygons and polylines are low-level graphic objects that can
Polyline be displayed by themselves or with other objects. See Chapter

8, “Polygon and Polyline Objects” for more information.

Objects of the IDLgrPolygon class are individual polygons,
created from a user-supplied array of data values.

» Tessellator — IDLgrTessellator objects convert asimple
concave polygon (or asimple polygon with holes) into a
number of simple convex polygons (general triangles).
Tessd lation is useful because IDL’s polygon object
accepts only convex polygons.

Objects of the IDLgrPolyline class are individual polylines,
created from a user-supplied array of data points. Locations of
the data points supplied are connected by asingleline.

Text Objects of the IDLgrText class are text strings that can be
positioned within the rendering area. See “ Text Objects’ on
page 219.

» Font — IDLgrFont objects define the typeface, size,
weight, and style of atext object with whichiitis
associated. See “Font Objects’ on page 223.

Text objects are applicable to any of the previous displays.

Table 2-3: Visualization Object Displays (Continued)

See the “ Graphic Objects—Visualization” category of the “ Object Class Library”
(IDL Quick Reference) for an alphabetical list of visualization objects.

Note
Objects of the TrackBall class provide a simple interface to alow the user to
tranglate and rotate three-dimensional Object Graphics hierarchies displayed in an
IDL WIDGET_DRAW window using the mouse. The trackball object translates
widget events from adraw widget (created with the WIDGET _DRAW function)
into transformations that emulate a virtual trackball (for transforming object
graphicsin three dimensions). See “Interactive 3D Transformations’ on page 95
and “TrackBall” (IDL Reference Guide) for further details.

Object Programming Visualization Objects

44

Chapter 2: Creating an Object Graphics Display

File Format Objects

File format object classes provide access to data stored within files of certain types.
For example, the IDLFfFfXMLSAX and IDLffXMLDOM classes provide access to
attribute information stored in .xm1 files. The IDLffLangCat class also provides
accessto XML data. However, this object allows you to access XML data stored in
language catalog files (.cat), which can be used to support internationalization. File
format objects may or may not have a graphical element that can be displayed.

Format

Object Class Information

DICOM

Objects of the IDLffDICOM class contain the datafor one or
more images embedded in a DICOM Part 10 file. Use this
object for read-only accessto the data.

The IDLffDicomEX class represents an extended IDL
interface to DICOM format files, which includes read and
write capabilities. The IDLffDicomEx object isavailable asa
separately-purchased IDL module, and is described in
Medical Imaging in IDL.

DXF

Objects of the IDLffDXF class contain geometry,
connectivity and attributes for graphics primitives.

Note - Also see “XDXF” (IDL Reference Guide) for
information on directly displaying a.axf file.

JPEG 2000

Objects of the IDLffJPEG2000 class provide an interface to
filesin the JPEG 2000 format.

Language Catalogs

Objects of the IDLffLangCat class provide an interface to
IDL language catalog files. See Chapter 19, “Using
Language Catalogs’ (Application Programming) for usage
details and examples.

Motion JPEG2000

Objects of the IDLffMJIPEG2000 class provide away to
create and display Motion JPEG2000 animations. See
Chapter 6, “Animations’ (Using IDL) for more information.

MrSID

Objects of the IDLffMrSID class are used to query
information about and load image datafrom aMrSID (. sid)
imagefile.

File Format Objects

Table 2-4: File Format Objects

Object Programming

Chapter 2: Creating an Object Graphics Display 45

Format

Object Class Information

MPEG

Objects of the IDLgrMPEG class allow you to save an array
of image frames as an MPEG movie.

ShapeFiles

Objects of the IDLffShape class contain geometry,
connectivity and attributes for graphics primitives accessed
from ESRI Shapefiles.

VRML

Objects of the IDLgrVRML class allow you to save the
contents of an Object Graphics hierarchy asaVRML 2.0
format file.

XML

XML Parser — Objects of the IDLffXMLSAX class
represent an XML SAX level 2 parser. The XML parser
allowsyou to read an XML file and store arbitrary data from
thefilein IDL variables. See Chapter 20, “Using the XML
Parser Object Class’ (Application Programming) for further
details.

XML DOM — The Document Object Modedl (DOM)
describesthe content of XML datain the form of adocument
object, which contains other objects that describe the various
data elements of the XML document. Objects of the
IDLFFXMLDOM Classes classes represent itemsin an XML
document; the items can be modified and the XML document
fileitself written to disk using these classes. See Chapter 21,
“Using the XML DOM Object Classes’ (Application
Programming) for further details.

Table 2-4: File Format Objects (Continued)

See the “File Format Objects’ category of the “Object Class Library” (IDL Quick
Reference) for alist of file format objects.

Object Programming

File Format Objects

46

Chapter 2: Creating an Object Graphics Display

Color in Object Graphics

Color in an Object Graphics display isthe result of interaction between the color
model defined for the destination object (e.g. window or printer), the destination
object’sinherent color model, and the color assigned to any visualization objects (e.g.
plot, text or image objects) being displayed. This section explains how to specify
color when using Object Graphics and how IDL interacts with the destination devices
on which graphics are finally displayed.

Note
For general information on color systems (RGB, HSV, HLS, and CMY), and
display color schemes (Indexed and RGB) see “Color Systems’ or “Display Device
Color Schemes” (Chapter 5, Using IDL).

Object Graphics supports two color models for newly created destination objects
(such as an IDLgrwWindow): an Indexed Color Model and an RGB Color Model.
Indexed color allows you to map data values to color values using a color palette.
RGB color allows you to specify color values explicitly, using an RGB triple. See
“Indexed Color Model” on page 53 and “RGB Color Model in Object Graphics” on

page 49.

Note
For some X 11 display situations, IDL may not be able to support a color index
model destination object in object graphics. We do, however, guarantee that an
RGB color model destination will be available for all display situations.

The devices on which graphics are rendered—computer displays, printers, plotters,
frame buffers, etc.—also support one or more color models. IDL performs any
conversions necessary to support either the Indexed or RGB color model on any
physical device. That is, the color model used by IDL is entirely independent of the
color model used by the physical device. “How IDL Interprets Color Values’ on
page 53 explains how IDL’s Object System color models interact with different
device color models.

Note
You can specify the color of any graphic object using either a color index or red,
green, and blue (RGB) value, regardless of the color model used by the destination
object or the physical destination device. See* Specifying Object Color” on page 51
for details.

Color in Object Graphics Object Programming

Chapter 2: Creating an Object Graphics Display 47

The majority of graphic visualization objects have a COL OR property that can be set
to an indexed value or an RGB triple. You can set the color of any visualization
object when it isfirst created and later changeit using this property. In addition to the
COLOR property, you can also associate a palette object (an instance of the
IDLgrPalette class) with many visualization objects using the PALETTE property.

One exception is the IDLgrlmage object, which does not have a COLOR property.
Instead, you use the PALETTE property to specify arelated color table for an
indexed image, or set the INTERLEAVE property to define the arrangement of the
image channelsin aRGB image. Pal ette objects can also be associated with
destination objects. See “Palette Objects’ on page 50 for more information.

Object Programming Color in Object Graphics

48

Chapter 2: Creating an Object Graphics Display

Color and Destination Objects

Each destination object has one of the two color models associated with it (an
Indexed Color Model, and the RGB Color Model), shown in the following table.Once
adestination object has been created, you cannot change the associated color model.
You can, however, create destination objects that use different color modelsin the
same IDL session. That is, it is possible to have two window objects—one using the
Indexed color model and one using the RGB color model—on your computer screen
at the same time.

Color Model Keyword Value
INDEXED COLOR_MODEL=1
See “Indexed Color Model in Object Graphics’ on page 48.
RGB COLOR_MODEL=0 (default)
See “RGB Color Model in Object Graphics’ on page 49

Table 2-5: Destination Object Color Models

You can specify the color of any graphic object using either a color index or an RGB
value, regardless of the color model used by the destination object or the physical
destination device. The main distinction between the two color modelsliesin how
IDL manages the color lookup table (if any) of the physical destination device. See
“How IDL Interprets Color Values’ on page 53 for details.

A Note about Draw Widgets

Drawable areas created with the WIDGET_DRAW function deserve a special
mention. When a draw widget is created with the GRAPHICS LEVEL keyword set
equal to 2, the widget contains an instance of an IDLgrWindow object rather than an
IDL Direct Graphics drawable window. By default, the window object uses the RGB
color modd; to use the indexed color model, set the COLOR_MODEL keyword to
WIDGET_DRAW equal to 1 (one).

Indexed Color Model in Object Graphics

In the Indexed color model, you have control over how colors are loaded into a color
lookup table. If the Indexed Color Modél is used, a color value (or individual image
pixel) is expected to be an index into the pal ette associated with the destination
object. To load a particular color table, create a palette object, then set it as a property

Color and Destination Objects Object Programming

Chapter 2: Creating an Object Graphics Display 49

of the destination object in which the graphics are to be drawn (using the PALETTE
keyword in the SetProperty method of the destination object). If a palette is not
explicitly provided for a given destination object, agray scale ramp isloaded by
default.

When the contents of your destination object are rendered on the physical device
(that is, when you call the Draw method for the destination object), the RGB values
from the palette are either:

» passed directly through to the physical device (if it uses RGB values), or
* loaded into the physical device's lookup table (if it uses Indexed values).

Specify that a destination object should use the Indexed color model by setting the
COLOR_MODEL property of the object equal to 1 (one):

myWindow = OBJ_NEW ('IDLgrWindow', COLOR_MODEL = 1)
Specify a palette object by setting the PALETTE property equal to a palette object:
myWindow->SetProperty, PALETTE=myPalette

When you assign a color index to a visualization object that is drawn on the
destination device, the color index is used to look up an RGB value in the specified
paette. When you assign an RGB value to an object that is drawn on the destination
device, the nearest match within the destination object’s palette is found and used to
represent that color.

See “How IDL Interprets Color Values' on page 53 for information on how a color
assignment to avisualization object isinterpreted by a destination object using either
an RGB or Indexed color mode.

RGB Color Model in Object Graphics

In the RGB color model, IDL takes responsibility for filling the color lookup table on
the destination device (if necessary). When the contents of your destination object are
rendered on the physical device (that is, when you call the Draw method for the
destination object), the RGB values are either:

e passed directly through to the physical device (if it uses RGB values), or

* matched as nearly as possible with colorsloaded in the physical device's
lookup table (if it uses Indexed values).

Specify that a destination object should use the RGB color model by setting the
COLOR_MODEL property of the object equal to 0 (zero). Thisisthe default color
model value for newly created destination objects.

myWindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL = 0)

Object Programming Color and Destination Objects

50 Chapter 2: Creating an Object Graphics Display

Palette Objects

Objects of the IDLgrPalette class are used to create color |ookup tables. Color lookup
tables assign individual numerical valuesto color values; this allows you to specify
the color of agraphic object with a single number (a color index) rather than
explicitly providing thered, green, and blue color values (an RGB triple). Palettes are
most useful when you want data values to correspond to color values—that is, if you
want a data value of 200, for example, to always correspond to a single color. This
correspondence is one of the main uses of the Indexed Color Maodel.

Creating Palette Objects

Specify three vectors representing the red, green, and blue values for the palette when
you call the IDLgrPalette::Init method. The valuesin the red, green, and blue vectors
must beintegers between zero and 255, and the length of each vector must not exceed
256 elements. For example, the following statements create a pal ette object that
reverses a standard grayscale ramp palette:

rval = (gval = (bval = REVERSE (INDGEN(256))))
myPalette = OBJ_NEW('IDLgrPalette', rval, gval, bval)

Using Palette Objects
Palettes can be associated either with graphics destination objects (windows or
printers) or with individual graphic visualization objects:
myWindow->SetProperty, PALETTE=myPalette

or

myImage->SetProperty, PALETTE=myPalette

Note
Palettes associated with graphic visualization objects are only used when the
destination object uses an RGB color model; if the destination object uses an
indexed color model, the destination object’s palette is aways used.

See“IDLgrPalette::Init” (IDL Reference Guide) for details on creating palette objects
and compl ete examples.

Palette Objects Object Programming

Chapter 2: Creating an Object Graphics Display 51
Specifying Object Color

The color of most graphic objects are specified by the COLOR property of that
object. (The IDLgrImage object has a PALETTE property, not a COLOR property.
See“IDLgrPalette::Init” (IDL Reference Guide) for examples.) In IDL Object
Graphics, colors used for drawing visualization objects (such asan IDLgrText object)
aretypically represented in one of two ways:

* Indexed - acolor is an index into a palette

* RGB - acoalor is athree-element vector, [red, green, blug]. See “Color
Systems” (Chapter 5, Using IDL) for complete details.

You can set the color of an object either when the object is created or afterwards. For
example, the following statement creates a view object and setsits color value to the
RGB triple [60, 60, 60] (adark gray).

myView = OBJ_NEW('IDLgrView', COLOR = [60, 60, 60])

The following statement changes the color value of an existing axis object to the
color value specified for entry 100 in the color palette associated with the axis object.

myAxis->SetProperty, COLOR=100

The interpretation of this color depends upon the color model associated with the
destination object, described in “Color and Destination Objects’ on page 48.

Note
Remember that color palettes associated with individual graphic visualization
objects are only used when the destination object uses an RGB color model. If the
destination object uses an Indexed color model, the destination object’s paletteis
aways used.

Example Specifying RGB Values

RGB values are specified with RGB triples. An RGB triple is a three-element vector
of integer values, [r, g, b], generally ranging between 0 and 255. A value of zerois
the darkest possible value for each of the three channels—thus an RGB triple of

[0, O, O] represents black, [0, 255, O] represents bright green, and [255, 255, 255]
represents white.

For example, suppose we create a plot line with the following statements:

myWindow = OBJ_NEW ('IDLgrWindow')
myView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0, 0, 10, 10])
myModel = OBJ_NEW('IDLgrModel')

Object Programming Specifying Object Color

52 Chapter 2: Creating an Object Graphics Display

myPlot = OBJ_NEW('IDLgrPlot', FINDGEN(10), THICK = 5)
myModel->Add, myPlot

myView->Add, myModel

myWindow->Draw, myView

Notice the following aspects of the above example:

1. The newly-created window (destination) object uses an RGB color mode (the
default).

2. Thedefault color of the view object—the background against which the plot
lineis drawn—is white ([255, 255, 255]).

3. Thedefault color of the plot object (and al objects, for that matter) is black.
Try changing the colors with the following statements:

myPlot->SetProperty, COLOR
myView->SetProperty, COLOR
myWindow->Draw, myView

[150, 0, 150]
[75, 250, 75]

To destroy the window and remove the objects created from memory, use:

OBJ_DESTROY, [myWindow, myView]

Specifying Object Color Object Programming

Chapter 2: Creating an Object Graphics Display 53

How IDL Interprets Color Values

IDL determines colorsto display differently based on whether the destination object
uses an Indexed or RGB color model, and on whether the physical destination device
supports an Indexed or RGB color model.

Indexed Color Model

If the destination object uses an Indexed color model, the color displayed is
calculated from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

» If the physical device uses an Indexed color model, the specified color index is
used as an index into the physical device'slookup table. (Remember that the
physical device's color lookup table isloaded viathe PALETTE keyword to

the destination object.)

» If the physical device uses an RGB color model, the specified color index is
used as an index into the destination object’s palette. The RGB triple stored at
the index’slocation in the palette is used as the physical device's color value.

If an RGB Triple is Specified

« If the physical device uses an Indexed color model, the RGB triple is mapped
to the index of the nearest match in the device's color lookup table.

e If the physical device uses an RGB color model, the RGB tripleis passed
directly to the device.

RGB Color Model

If the destination object uses an RGB color model, the color displayed is calculated
from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

If the graphic object for which the color is being determined has a pal ette associated
with it, the RGB triple at that palette’s color index isretrieved. Otherwise, the RGB
triple at the specified index in the destination object’s palette is retrieved.

» If the physical device uses an Indexed color model, the RGB triple retrieved is
mapped to the index of the nearest match in the device's color lookup table.

Object Programming How IDL Interprets Color Values

54 Chapter 2: Creating an Object Graphics Display

» If the physical device uses an RGB color model, the RGB tripleretrieved is
passed directly to the device.

If an RGB Triple is Specified

» If the physical device uses an Indexed color model, the RGB triple is mapped
to the index of the nearest match in the device's color lookup table.

» If the physical device uses an RGB color model, the RGB tripleis passed
directly to the device.

If the RGB color model is used, the pal ette associated with a destination object does
not necessarily have a one-to-one mapping to the hardware color lookup table for the
device. For instance, the destination object may have a grayscale ramp loaded as a
palette, but the hardware color lookup table for the device may be loaded with an
even sampling of colors from the RGB color cube. When a user requests that a
graphical object be rendered in a particular color, that object will appear in the
nearest approximation to that color that the device can supply.

How IDL Interprets Color Values Object Programming

Chapter 2: Creating an Object Graphics Display 55

Rendering Objects

In Object Graphics, rendering occurs when the Draw method of a destination object
iscalled. A scene, viewgroup, or view istypically provided as the argument to this
Draw method. This argument represents the root of a graphics hierarchy. When the
destination’s Draw method is called, the graphics hierarchy istraversed, starting at
the root, then proceeding to children in the order in which they were added to their
parent.

For example, suppose we have the following hierarchy:

oWindow = OBJ_NEW ('IDLgrWindow"')
oView = OBJ_NEW ('IDLgrView')
oModel = OBJ_NEW ('IDLgrModel')
oView->Add, oModel

0XAxis = OBJ_NEW('IDLgrAxis', 0)
oModel->Add, oXAxis

OoYAxis = OBJ_NEW('IDLgrAxis', 1)
oModel->Add, oYAxis

To draw the view (and its contents) to the window, the Draw method of the window
is called with the view asits argument:

oWindow->Draw, oView

The window’s Draw method will perform any window-specific drawing setup, then
ask the view to draw itself. The view will then perform view-specific drawing (for
example, clearing a rectangular areato a color), then calls the Draw method for each
of its children (in this case, thereis only one child, amodel). The model’s Draw
method will push its transformation matrix on a stack, then step through each of its
children (in the order in which they were added) and ask them to draw themselves. In
this example, oXAxiswill be asked to draw itself first; then oYAxiswill be asked to
draw itself. Once each of the model’s children is drawn, the transformation matrix
associated with the model is popped off of the stack.

Thus, for each object in the hierarchy, drawing essentially consists of three steps:
e Perform setup drawing for this object.
e Step through list of contained children and ask them to draw themselves.
e Perform follow-up drawing actions before returning control to parent.

The order in which objects are added to the hierarchy will have an impact on when
the objects are drawn. Drawing order can be changed by using the Move method of a
scene, viewgroup, view, or model to change the position of a specific object within
the hierarchy.

Object Programming Rendering Objects

56

Chapter 2: Creating an Object Graphics Display

Thefirst time a visualization object (such as an axis, plot line, or text) isdrawn to a
given destination, a device-specific encapsulation of its visual representation is
created and stored as a cache. Subsequent draws of this visualization object to the
same destination can then be drawn very efficiently. The cache is destroyed only
when necessary (for example, when the data associated with the visualization object
changes). Graphic attribute changes (such as color changes) typically do not cause
cache destruction. To gain maximum benefit from the caches, modification of object
graphic properties should be kept to bare minimum.

Note
See “Performance Tuning Object Graphics’ on page 66 for other performance

enhancing strategies.

Simple Plot Example

The following section shows the IDL code used to create a simple object tree. While
you are free to enter the commands shown at the IDL command line, remember that
the IDL Object Graphics API is designed as a programmer’s interface, and is not as
well suited for interactive, ad hoc work at the IDL command prompt as are IDL
Direct Graphics.

The following IDL commands construct a simple plot of an array versus the integer
indices of the array. Note that no axes, title, or other annotations are included; the
commands draw only the plot lineitself. (This example is purposefully simple; itis
meant to illustrate the skeleton of a graphics tree, not to produce a useful plot.)

; Create a view 2 units high by 100 units wide

; with its origin at (0,-1):

view = OBJ_NEW('IDLgrView',6 VIEWPLANE_RECT=[0,-1,100,2])
; Create a model:

model = OBJ_NEW('IDLgrModel')

; Create a plot line of a sine wave:

plot = OBJ_NEW('IDLgrPlot', SIN(FINDGEN(100)/10))

; Create a window into which the plot line will be drawn:
window = OBJ_NEW ('IDLgrWindow')

; Add the plot line to the model object:

model->ADD, plot

; Add the model object to the view object:

view->ADD, model

; Render the contents of the view object in the window:
window->DRAW, view

Rendering Objects Object Programming

Chapter 2: Creating an Object Graphics Display 57

To destroy the window and remove the objects created from memory, use the
following commands:

; Destroy the window and the view.

; Destroying the view object destroys all
; of the objects contained in the view:
OBJ_DESTROY, [window, view]

Object Programming Rendering Objects

58

Chapter 2: Creating an Object Graphics Display

Controlling the Depth of Objects in a View

In graphics rendering, the depth buffer isan array of depth values maintained by a
graphics device, one value per pixel, to record the depth of primitives rendered at
each pixel. It isusually used to prevent the drawing of objects located behind other
objects that have already been drawn in order to generate a visually correct scene. In
IDL, smaller depth values are closer to the viewer.

Depth buffer properties provide more control over how Object Graphics primitives
are affected by the depth buffer. You can now control which primitives may be
rejected from rendering by the depth buffer, how the primitives are rejected, and
which primitives may update the depth buffer.

Control of the depth buffer is achieved through atest function or by completely
disabling the buffer. The depth test function isalogical comparison function used by
the graphics device to determineif a pixel should be drawn on the screen. This
decision is based on the depth value currently stored in the depth buffer and the depth
of the primitive at that pixel location.

Thetest function is applied to each pixel of an object. A pixel of the object isdrawn if
the object’s depth at that pixel passes the test function set for that object. If the pixel
passes the depth test, the depth buffer value for that pixel is aso updated to the
pixel’s depth value.

The possible test functions are:
e INHERIT - use the test function set for the parent model or view.
* NEVER - never passes.

* LESS- passesif the depth of the object’s pixel isless than the depth buffer’s
value.

« EQUAL - passesif the depth of the object’s pixel is equal to the depth buffer’'s
value.

 LESSOR EQUAL - passesif the depth of the object’s pixel isless than or
equal to the depth buffer’s value.

* GREATER - passes if the depth of the object’s pixel is greater than or equal to
the depth buffer’s value.

* NOT EQUAL - passesif the depth of the object’s pixel isnot equal to the
depth buffer’'s value.

Controlling the Depth of Objects in a View Object Programming

Chapter 2: Creating an Object Graphics Display 59

» GREATER OR EQUAL - passesif the depth of the object’s pixel is greater
than or equal to the depth buffer’s value.
* ALWAYS - aways passes
The IDL default is LESS. Commonly used values are LESS and LESS OR EQUAL,
which allow primitives closer to the viewer to be drawn.

Disabling the depth test function allows all primitives to be drawn on the screen

without testing their depth against the values in the depth buffer. When the depth test
is disabled, the graphics device effectively uses the painter’s algorithm to update the
screen. That is, the last item drawn at alocation is the item that remains visible. The
depth test function of ALWAY S produces the same result as disabling the depth test.

Moreover, you can disable updating the depth buffer. Disabling depth buffer writing
prevents the updating of depth information as primitives are drawn to the frame
buffer. Such primitives are unprotected in the sense that any other primitive drawn
later at that location will draw over it asif it were not there.

Most visualization objects now have the following properties related to the depth
buffer:

« DEPTH_TEST DISABLE
« DEPTH_TEST_FUNCTION
- DEPTH_WRITE_DISABLE

For more details on these properties, see each object’s property list in the IDL
Reference Guide.

Object Programming Controlling the Depth of Objects in a View

60 Chapter 2: Creating an Object Graphics Display

Controlling Object Transparency

IDL objects which support an alpha channel are:

» IDLgrAxis * |DLgrContour
e IDLgrImage » IDLgrPlot
» IDLgrPolygon » IDLgrPolyline
e IDLgrROI « |IDLgrSurface
» |IDLgrSymbol * IDLgrText

» |IDLgrVolume

Note
The transparency of an IDLgrlmage object can be defined using a band of data
defining the alpha values, and/or the ALPHA_CHANNEL property. Regardless of
which way the image transparency is defined, you also need to set
BLEND_FUNCTION property. See " Defining Transparency in Image Objects’ on
page 115 for details.

The alpha channel has many uses. One of the most important is drawing primitives
semi-trangparently, which can be used to enhance your object graphics scene. An
example might be atext label drawn semi-transparently to let other graphical details
“show through” the text label. This would alow you to use alarger text font size,
rather than using a small font size to squeeze text between detailsin a scene. Another
use for alpha channel might be to draw polygons and surfaces semi-transparently,
alowing you to see “inside’ certain objects and structures.

Some of the most important uses for semi-transparent rendering are discussed in the
following sections.

e “Opacity and Transparency” on page 61
¢ “Blending Mathematics’ on page 61

e “Rendering Order” on page 62

e “Viewing and Rotation” on page 63

¢ “Depth Buffer Updating” on page 65

Controlling Object Transparency Object Programming

Chapter 2: Creating an Object Graphics Display 61

Opacity and Transparency

Opacity describes the degree to which an object blocks the appearance of other
objects. In IDL, the value used for the ALPHA_CHANNEL propertiesin IDLgr*
objectsisameasure of the object's opacity. A value of 1.0 indicates complete opacity.
The object compl etely blocks the appearance of other objects. Conversely, an opacity
value of 0.0 indicates that the object does not block the appearance of objects at all.
Intermediate values indicate varying degrees of visibility for covered objects.

Transparency is essentially the opposite of opacity. Transparency indicates the
degree to which an object does not block the appearance of other objects. Complete
or full transparency isindicated by an opacity value of 0.0, while an object that is not
transparent at all has an opacity value of 1.0.

By default all IDLgr* graphic objectsuse an ALPHA_CHANNEL value of 1.0,
indicating full opacity (zero transparency), matching the rendering behavior before
the addition of the ALPHA_CHANNEL property. To change the opacity of the
object, simply change the this property to a value between 0.0 (zero opacity or full
transparency) and 1.0.

Blending Mathematics

Blending is the drawing of semi-transparent objects on a screen already containing
objects. During rendering, the color of the pixels belonging to the primitive being
rendered are blended with the color of the pixelsthat are already on the screen,
producing the desired blending effect. This process is accomplished on a pixel-by-
pixel basis.

IDL uses this well-established blending equation:

newColor = oldColor * (1 - alpha) + primitiveColor * alpha

An example might suppose that you want to draw ared squarein an area of the screen
that is completely green. By default, the alphavalue is 1.0, so theresult is:

[255, O, 0] = [O, 255, 0] * (1.0 - 1.0) + [255, O, O] * 1.0

The green color is removed completely and replaced by red, the expected result of
conventional non-blended rendering.

If the alphavalue is changed to equal 0.5, the result is:
[127, 127, 0] = [0, 255, 0] * (1.0-0.5) + [255, 0, 0] * 0.5

Theresulting color isthe half of the red of the polygon combined with half of the
green of the background, a pale yellow.

Object Programming Controlling Object Transparency

62 Chapter 2: Creating an Object Graphics Display

If you draw another red square in the same place with the same alpha, the red square
is blended with the now current contents of the screen:

[190, 63, 0] = [127, 127, 0] * (1.0-0.5) + [255, 0O, 0] * 0.5

Note
Large levels of semi-transparent rendering may reduce rendering performance. This
is because the graphics blending operation that is performed involves reading the
destination pixel from the frame buffer, combining it with the new color value and
then writing the result back to the frame buffer. Thisis more expensive than simply
overwriting the frame buffer contents with the new color value. The degree to
which your performance will be impacted depends heavily on the hardware and
software components of your graphics system.

Rendering Order

The colors of the pixels on the screen are important when drawing a blended
primitive. Similarly, the order in which the primitives are drawn is also very
important when drawing scenes with blended primitives.

In computer graphics, depth sorting presents a similar challenge. Without depth
sorting, a scene would have to be drawn from back to front to obtain a correct result.
IDL handles depth sorting by providing a"depth buffer" (also known as a"Z-buffer")
alowing you to draw the primitives in any order while allowing the primitives closer
to the viewer to still appear to be on top.

Thereisno similar feature for alpha-blended primitives. Be sure to draw the blended
primitives carefully so that all primitives behind a blended primitive are drawn before
the blended primitive.

If your scene consists of many primitives that are not blended and afew text labels
that are drawn with blending, it is agood ideato defer the drawing of the labels until
after everything elseisdrawn. Thiswill allow users to see through all labels and to
see the objects beneath. If a non-blended primitive is drawn on top of and after a
blended primitive, it will cover the blended primitive. If any primitiveis drawn
behind but after ablended primitive, the primitive drawn later will not appear where
the blended primitive coversit, due to depth buffering. In other words, it is not
possible to blend primitives unless all objects behind the blended primitive which are
to be blended are aready drawn.

Controlling Object Transparency Object Programming

Chapter 2: Creating an Object Graphics Display 63

Note
If you have a complex scene where many primitives are blended, it may be difficult

to determine the proper ordering.

Inter- and Intra-primitive Rendering Orders

Inter-primitive rendering order deals with the ordering of primitive objects within an
IDLgrModel. For primitives which do not intersect each other, it is straightforward to
order these in a back-to-front viewing order, particularly if your sceneisfixed so it
cannot be rotated by the user. Thisis done by arranging your primitives along the Z
direction so that the objects farthest away appear first in the IDLgrModels, which
makes them draw first.

If primitives intersect, it may be necessary to divide the object so that the back parts
of each primitive are drawn first, and then the front parts. This can be avery difficult
issue.

Intra-primitive rendering order deals with the ordering of graphical itemswithin an
IDL graphics primitive. Some primitives, such as IDLgrSurface and IDLgrPolygon
actually consist of alarge number of individual polygons. They are not all drawn at
once, and the order in which they are drawn is also important when drawing with
blending.

You can control the order in which the individual polygons are drawn in an

IDL grPolygon object by ordering the vertices or specifying the order in the
POLY GONS property. Polygons specified first in the POLY GONS list are drawn
first.

Viewing and Rotation
If you draw atypical height field with IDLgrSurface and invoke blending, the object
might look right from some viewing orientations.

For example, try the following:

XOBJVIEW, OBJ_NEW('idlgrsurface',$
BESELJ (shift (dist (40),20,20)/2,0) * 20, STYLE=2,$
ALPHA_ CHANNEL=0.5)

Object Programming Controlling Object Transparency

64 Chapter 2: Creating an Object Graphics Display

il Xobjview 10l =]

File Edit View

| | [5alels]

Figure 2-2: Viewing Alpha Channel in an Object

Notice in the previous figure that you can see-through the waves in the object to see
other waves, but only when you view the object from certain directions. From other
directions, all you see are the waves closer to you.

Solving this problem can be extremely difficult. A complete solution would generate
ascenefor every possible viewing angle, where the polygons are drawn back to front,
splitting them if necessary. There are several techniques available for accomplishing
this, one of them being the Binary Space Partition Tree, however thisis not supported
directly in IDL. If the abjects are simple, it might be possible to construct afew
scenes that give correct or passable results.

For example, if you wanted to look at a semi-transparent sphere from al angles,
creating eight models might suffice. Each of the eight models contains the polygons
sorted in back-to-front order for a viewing direction corresponding to each of the
eight octants formed by the half spaces of the three principle axes. Asthe user rotates
the scene with atrackball, the program would select the appropriate model, based on
the current viewing direction. More complex scenes may require more models.

Controlling Object Transparency Object Programming

Chapter 2: Creating an Object Graphics Display 65

Depth Buffer Updating

For any value of the ALPHA_CHANNEL property, IDL updates the depth buffer
when the primitive is drawn, unless the DEPTH_WRITE_DISABLE property is set
to avalue that disables depth buffer updates. Thus, even if you draw a completely
transparent primitive, the depth buffer is updated as if there were avisible primitive
drawn there. This means that subsequent primitives drawn behind the transparent
object are not visible. Though potentially confusing, this can also be a useful way to
hide objects in certain situations.

After drawing atransparent object, that there may be gapsin objects drawn later. For
example, suppose linesin aplot are drawn with ALPHA_CHANNEL=0
(transparent), and then symbols are drawn. Where the symbols and lines intersect,
there are gaps in the symbols. The gaps are caused by the invisible lines changing the
depth buffer, thus masking out the symbols that are drawn later. At times, the ability
to modify the depth buffer without changing the color buffer isauseful tool for clever
clipping operations. In other contexts, you may consider using invisible polygonsto
mask out entire areas. However, if the partial or entire invisibility of objects drawn
after atransparent object is unintended use one of the following options:

e Setthe DEPTH_TEST_FUNCTION=4, or disable depth testing entirely using
the DEPTH_WRITE_DISABLE property.

e Setthe HIDE property to 1 if ALPHA_CHANNEL becomes 0.

Either of these options would erase the gaps in the symbols caused by the transparent
plot lines as described in the previous situation.

Object Programming Controlling Object Transparency

66 Chapter 2: Creating an Object Graphics Display

Performance Tuning Object Graphics

The Object Graphics subsystem is designed to provide arich set of graphical
functionality that can be displayed in reasonable time. This section offers suggestions
on how to adjust your system and programs to achieve the best rendering
performance.

See the following topics for details:
e “Hardware vs. Software Rendering” on page 66
¢ “Polygon Optimization” on page 209
e “Optimizing Light Object Use” on page 235
e “Improving Window Drawing Performance” on page 272

Hardware vs. Software Rendering

The RENDERER property to the IDLgrWindow object (or associated platform-
specific preferencesin the IDL Preference system) allows you to select between the
operating system’s native (hardware) rendering system and a platform independent
(software) rendering system for IDL Object Graphics displays.

Hardware rendering allows IDL to make use of 3D graphics accelerators that support
OpenGL, if any areinstalled in the system. In general, such accelerators will provide
better rendering performance for many object graphicsdisplays. Thisistypically true
for images rendered using texture-mapped polygons (the default behavior for
IDLgrimage beginning with IDL 6.2).

The software rendering system will generally run more slowly than the hardware
rendering system. However, use of the software rendering system has afew
important advantages.

» Software rendering is available in situations where hardware rendering is not
(remote display to non-OpenGL capable X servers, for example).

* The number of expose events an IDL application will have to respond to is
much smaller when software rendering is used.

» The software rendering system is generally much faster than the hardware
rendering system for Instancing.

» Software rendering can be used to avoid bugs in third-party hardware
rendering system driver software.

Performance Tuning Object Graphics Object Programming

Chapter 2: Creating an Object Graphics Display 67

» Finally, on some displays (most notably SGI systems with 24 or fewer
bitplanes), the quality of the screen display will be better when using the
software rendering system because its design allows more bitplanes to be used.

Note
By default, IDL uses the renderer specified by the IDL_GR_WIN_RENDERER
preference (Microsoft Windows) or the IDL_GR_X_RENDERER preference
(UNIX). If your platform does not have a native OpenGL implementation, IDL uses
its own software implementation regardless of the preference value or the value of
the RENDERER property.

Object Programming Performance Tuning Object Graphics

68

Performance Tuning Object Graphics

Chapter 2: Creating an Object Graphics Display

Object Programming

Chapter 3

Positioning Objectsin a

View

The following topics are covered in this chapter:

Positioning VisualizationsinaView 70
Viewport 71
Projection........... ..., 73
EyePosition......................... 75
ViewVolume 77

Object Programming

Translating, Rotating and Scaling Objects . 91

Example: Centeringanimage 83
Example: Centeringanimage 83
Example: Transforming aSurface 86
Interactive 3D Transformations 95

69

70 Chapter 3: Positioning Objects in a View

Positioning Visualizations in a View

Unlike IDL Direct Graphics, the IDL Object Graphics system does not automatically
position and size the objects to be rendered. It is up to you, as a programmer, to
properly define how your graphic elements will be positioned when rendered.

There are three aspects to this transformation from a generic depiction of your datato
arepresentation that can be rendered to an output device (a graphics destination
object, such asawindow or printer) with the perspective, size, and location you want.

Viewport

The first aspect is the view of the graphics objects to be rendered: the size of the
viewing area (the viewport), the type of projection used, the position of the viewer's
eye asit looks at the graphics objects, and the particular view volumein three-
dimensional space that will be rendered to the viewing area. These elements of the
view of your graphics objects are, appropriately, controlled by properties of the
IDLgrView object being rendered. See “Viewport” on page 71.

Location

The second aspect of the transformation is the location and position of your graphics
objects with respect to the viewing area. Graphics objects can be translated, rotated,
or scaled by setting the appropriate properties of the IDLgrModel object that contains
them. See “ Tranglating, Rotating and Scaling Objects’ on page 91.

Note
The viewport and location of an object are independent: It is possible, for example,
to translate a graphic object so that it is no longer within the viewing areathat is
rendered in awindow or on a printer.

Coordinate Systems and Scaling

The third aspect of the transformation is the conversion between data, device, and
normalized coordinates. The IDL Object Graphics system gives you full control over
which data values are used, which are displayed, and which coordinate systems are
used. This means that you must explicitly ensure that the objects to be rendered and
the view object to which they belong use the same coordinate system and are scaled
appropriately. This chapter discusses the properties and methods used to size and
position both your viewing area and the graphics objects you wish to render. See
“Converting Datato Normal Coordinates’ on page 80.

Positioning Visualizations in a View Object Programming

Chapter 3: Positioning Objects in a View 71

Viewport

Several elements of an IDLgrView object control how objects appear when
displayed:
e “Location and Dimension” on page 71 — define the viewport within the
destination object

e “Projection” on page 73 — define either aparallel or perspective projection

« “EyePosition” on page 75 — define the distance of eye from the viewing
plane for perspective projections

e “View Volume” on page 77 — define the view volume that is projected into
the viewport

Location and Dimension

One of the first stepsin determining how graphics objects will appear when rendered
on a graphics destination object is to select the location and dimensions of the
rectangular area—the viewport—on the destination in which the rendering will be
displayed. Set the location and dimensions of the viewport using the LOCATION and
DIMENSIONS keywords to the IDLgrView::Init method when creating the view
object (or after creation using the SetProperty method).

For example, the following statement creates a view object with aviewport that is
300 pixels by 200 pixels, with its lower |eft corner located 100 pixels up from the
bottom and 100 pixels to the right of the left edge of the destination object:

myView = OBJ_NEW('IDLgrView', LOCATION=[100,100], $
DIMENSIONS=[300,200])

Object Programming Viewport

72

Viewport

Chapter 3: Positioning Objects in a View

DIMENSION][0]

Viewport

[TINOISNAWIA

LOCATION (x,y)

Origin (0,0)

Figure 3-1: Positioning a View on the Screen

Both the LOCATION and DIMENSIONS properties of the view object honor the
value of the UNITS property, which specifies the type of unitsin which
measurements are made. (Pixels are the default units, so no specification of the
UNITS keyword was necessary in the above example.)

The viewport of an existing view can be changed using the SetProperty method:
myView->SetProperty, LOCATION=[0,0], DIMENSIONS=[200,200]

changes the location of the viewport to have its lower left corner at (0, 0) and a size of
200 pixels by 200 pixels.

Note
The eyeispositioned in only one dimension (along the z-axis) and always pointsin
the —z direction.

Object Programming

Chapter 3: Positioning Objects in a View 73

Projection

When three-dimensional graphics are displayed on aflat computer screen or printed
on paper, they must be projected onto the viewing plane. A projection isaway of
converting positionsin 3D space into locations in the 2D viewing plane. IDL
supports two types of projections—parallel and perspective—for each view.

Parallel Projections

A paralel projection projects objectsin 3D space onto the 2D viewing plane along
paralel rays. The figure below shows a parallel projection; note that two objects that

are the same size but at different locations still appear to be the same size when
projected onto the viewplane.

<— +Zaxis Z=0 -Zaxis —>

Figure 3-2: In a Parallel Projection, Rays Do Not Converge at the Eye

View objects use a parallel projection by default. To explicitly set aview object to
use aparallel projection, set the PROJECTION keyword to the IDLgrView::Init
method equal to 1 (or use the SetProperty method to set the projection for an exiting
view object):

myView->SetProperty, PROJECTION = 1

Object Programming Projection

74 Chapter 3: Positioning Objects in a View

Perspective Projections

A perspective projection projects objectsin 3D space onto the 2D viewing plane
along rays that converge at the eye position. The figure below shows a perspective
projection; note that objectsthat are farther from the eye appear smaller when
projected onto the viewplane.

Bye R

€— +Zaxis Z=0 -Zazis —>

Figure 3-3: In a Perspective Projection, Rays Converge at the Eye

Set the PROJECTION keyword to the IDLgrView::Init method equal to 2 (or use the
SetProperty method to set the projection for an exiting view object) to use a
perspective projection:

myView->SetProperty, PROJECTION = 2

Projection Object Programming

Chapter 3: Positioning Objects in a View 75

Eye Position

The eye position isthe position along the z-axis from which a set of objects contained
inaview object are seen. Use the EY E keyword to the IDLgrView::Init method to
specify the distance from the eye position to the viewing plane (or use the
SetProperty method to ater the eye position of an existing view object). The eye
position must be az value larger than the z value of the near clipping plane (see “ Near
and Far Clipping Planes’ on page 77) or zero, whichever is greater. That is, the eye
must always be located at a positive z value, and must be outside the volume bounded
by the near and far clipping planes.

For example, the following moves the eye position to z = 5:
myView->SetProperty, EYE=5

Theeyeisalways positioned directly in front of the center of the viewplane rectangle.
Thatis, if the VIEWPLANE_RECT property isset equal to[-1, -1, 2, 2], the eye will
belocated at X=0, Y=0.

Changing the position of the eye has no effect when you are using a paralléel
projection. Changing the eye position when you are using a perspective projection
has a somewhat counter-intuitive affect: moving the eye closer to the near clipping
plane causes objects in the volume being rendered to appear smaller rather than
larger. To understand why this should be true, consider the following diagram.

€ +Zams Z=0 -Zamis —>

Figure 3-4: Moving the Eye Closer to the Viewplane
Causes Objects to Appear Smaller

Object Programming Eye Position

76

Eye Position

Chapter 3: Positioning Objects in a View

In a perspective projection, rays from the graphic objects in the view volume
converge at the eye position. When the eye is close to the viewing plane, the
projected rays cross the viewing plane (where rendering actually occurs) in a
relatively small area. When the eye moves farther from the viewing plane, the
projected rays become more nearly parallel and occupy alarger area on the viewing
plane when rendered.

Object Programming

Chapter 3: Positioning Objects in a View 77

View Volume

The view volume defines the three-dimensional volume in space that, once projected,
isto fit within the viewport. There are two parts to the view volume: the viewplane
rectangle and the near and far clipping planes.

Viewplane Rectangle

The viewplane rectangle defines the bounds in the X and Y directions that will be
mapped into the viewport. Objects (or portions of objects) that lie outside the
viewplane rectangle will not be rendered. The viewplane rectangle is always located
at Z=0.

Usethe VIEWPLANE_RECT keyword to the IDLgrView::Init method (or use the
SetProperty method if you have already created the view object) to set the location
and extent of the viewplane rectangle. Set the keyword equal to afour-element
floating-point vector; the first two elements specify the X and Y location of the lower
left corner of the rectangle, and the second two elements specify the width and height.
The default rectangle is located at (-1.0, -1.0) and is two units wide and two units
high ([-1.0, -1.0, 2.0, 2.0]). For example, the following command changes the
viewplane rectangle to be located at (0.0, 0.0) and to be one unit square:

myView->SetProperty, VIEWPLANE _RECT = [0.0, 0.0, 1.0, 1.0]

Note
See “Panning in Object Graphics’ on page 111 for an example that modifies the
VIEWPLANE_RECT to control what portion of an image is displayed in aview.

Near and Far Clipping Planes

The near and far clipping planes define the bounds in the Z direction that will be
mapped into the viewport. Objects (or portions of objects) that lie nearer to the eye
than the near clipping plane or farther from the eye than the far clipping plane will not
be rendered. The figure below shows near and far clipping planes.

Use the ZCLIP keyword to the IDLgrView::Init method (or use the SetProperty
method if you have already created the view object) to set the near and far clipping
planes. Set the keyword equal to atwo-element floating-point vector that defines the
positions of the two clipping planes: [near, far]. The default clipping planes are at

Object Programming View Volume

78 Chapter 3: Positioning Objects in a View

Z=10and Z=-1.0([1.0,-1.0]). For example, the following command changes the
near and far clipping planesto be located at Z = 2.0 and Z = -3.0, respectively.

myView->SetProperty, ZCLIP = [2.0, -3.0]

he B T
1 I
1 1
1 I -
| et
1 Lt 1
1 R 1
1 : 1
i { : Yoo
S 1
I TR
RO ° |
< Wy ST
N 1
Eye . | :
[R > B
g [
v B < [AR
5.0 = 58
Hefi=s o] or=y
|:v—g_] 2 ':"D
=e. ’p__..d l*uE'
=3 E =
= - =
= o =
=
- !
- o = -
€<— +Zagls Z=0 -Zaxis —>

Figure 3-5: Near and Far Clipping Planes. Object 2 is not rendered, because it
does not lie between the near and far clipping planes.

Finding an Appropriate View Volume

Finding an appropriate view volume for a given object tree is relatively simplein
theory. To find the appropriate viewplane rectangle, you must find the overall X and
Y range of the object (usually amodel or scene object) that contains the items drawn
in the object tree, accounting for any transformations of objects contained in the tree.
Similarly, to find the appropriate near and far clipping planes, you can find the Z
range of the object that contains the items drawn in the object tree. In practice,
however, finding, adding, and transforming the ranges for alarge object tree can be
complicated.

View Volume Object Programming

Chapter 3: Positioning Objects in a View 79

Example Code
Two routines contained in the IDL distribution provide an example of how the view
volume can be computed in many cases. These routines are defined in the files
set_view.pro and get_bounds.pro, located in the
examples/doc/utilities subdirectory of the IDL distribution. Run these
example procedures by entering set_view Of get_bounds at the IDL command
prompt or view the filesin an IDL Editor window by entering .EDIT
set_view.pro Of .EDIT get_bounds.pro.

The SET_VIEW procedure accepts as arguments the object references of aview
object and a destination object, computes an appropriate view volume for the view
object, and setsthe VIEWPLANE_RECT property of the view object accordingly.
The SET_VIEW procedure callsthe GET_BOUNDS procedure to compute the X, Y,
and Z ranges of the objects contained in the view object.

The SET_VIEW and GET_BOUNDS routines are used in the examplesin this
volume, and are available for your use when creating and displaying object
hierarchies. They are, however, example code, and are not truly generic in the
situations they address. When you encounter a situation for which these routines do
not produce the desired result, we encourage you to copy and alter the code to suit
your own needs.

Inspect the SET_VIEW. PRO and GET_BOUNDS . PRO files for further details.

Object Programming View Volume

javascript:doIDL("set_view")
javascript:doIDL("get_bounds")
javascript:doIDL(".edit set_view.pro")
javascript:doIDL(".edit set_view.pro")
javascript:doIDL(".edit get_bounds.pro")

80 Chapter 3: Positioning Objects in a View

Converting Data to Normal Coordinates

Most transformations are handled by the transformation matrix of amodel object. For
convenience, however, visualization objects may also have asimplified
transformation applied to them. Coordinate transformations applied to individual
graphic visualization objects allow you to change only the trandation (position) and
scale; thisis useful when converting from one coordinate system to another.

For example, you may build your view object using normalized coordinates, so that
values range between zero and one. If you create a graphic object—a surface object,
say—nbased on the range of data values, you would need to convert your surface
object (built with a data coordinate system) to match the view object (built with a
normal coordinate system). To do this, use the [XY Z]COORD_CONYV keywordsto
the graphic object in question. The [XY Z]COORD_CONV keywords take astheir
argument atwo-element vector that specifies the translation and scale factor for each
dimension.

Suppose you have a surface object whose data is specified in arange from [0, O,
ZMin] to [xMax, yMax, zMax]. If you wanted to work with this surface asif it werein
anormalized [-1, -1, —1] to [1, 1, 1] space, you could use the following coordinate
conversions:

; Create some data:

myZdata = DIST(60)

; Use SIZE to determine size of each dimension of myZdata:
sz = SIZE(myZdata)

; Create a scale factor for the X dimension:

xs = 2.0/ (sz[1]-1)

; Create a scale factor for the Y dimension:

ys = 2.0/ (sz[2]-1)

; Create a scale factor for the Z dimension:

zs = 2.0/MAX (myZdata)

Now, use the [XYZ]COORD_CONV keywordsto the IDLgrSurface::Init method to
tranglate the surface by minus one unit in each direction, and to scale the surface by
the scale factors:

mySurface = OBJ_NEW('IDLgrSurface', myZdata, $
XCOORD_CONV [-1, xs], YCOORD_CONV = [-1, ys], $
ZCOORD_CONV [-1, zs])

Remember that using the [XYZ]COORD_CONV keywordsissimply a
convenience—the above example could also have been written as follows:

; Create some data:
myZdata = DIST(60)
; Use SIZE to determine the size of each dimension of myZdata:

Converting Data to Normal Coordinates Object Programming

Chapter 3: Positioning Objects in a View 81

sz = SIZE (myZdata)

; Create a scale factor for the X dimension:
xs = 2.0/ (sz(1)-1)

; Create a scale factor for the Y dimension:
ys = 2.0/ (sz(2)-1)

; Create a scale factor for the Z dimension:
zs = 2.0/ (MAX (myZdata)

; Create a model object:

myModel = OBJ_NEW('IDLgrModel')

; Apply scale factors:

myModel->Scale, xs, Vs, Zs

; Translate:

myModel->Translate, -1, -1, -1

; Create surface object:

mySurface = OBJ_NEW('IDLgrSurface', myZdata)
; Add surface object to model object:
myModel->Add, mySurface

A Function for Coordinate Conversion

Often, it is convenient to convert minimum and maximum data values so that they fit
in the range from 0.0 to 1.0 (that is, so they are normalized). Rather than adding the
code to make this coordinate conversion to your code in each placeit isrequired, you
may wish to define a coordinate conversion function.

For example, the following function definition accepts a two-element array
representing minimum and maximum values returned by the XY ZRANGE keyword
to the GetProperty method, and returns two-element array of scaling parameters
suitable for the XYZCOORD_CONYV keywords:

FUNCTION NORM_COORD, range
scale = [-range[0]/(range[l]-range[0]), 1/(rangel[l]-range[0])]
RETURN, scale

END

If you define afunction likethisin your code, you can then call it whenever you need
to scale your data ranges into normalized coordinates. The following statements
create a plot object from the variable data, retrieve the values of the X and Y ranges
for the plot, and the use the XY COORD_CONV keywordsto the SetProperty method
and the NORM_COORD function to set the coordinate conversion.

plot = OBJ_NEW('IDLgrPlot', data)

plot->GetProperty, XRANGE=xr, YRANGE=yr

plot->SetProperty, XCOORD_CONV=NORM_COORD(xr), $
YCOORD_ CONV=NORM_COORD (yr)

Object Programming Converting Data to Normal Coordinates

82 Chapter 3: Positioning Objects in a View

Example Code
The function NORM_COORD is defined in the file norm_coord.pro in the
examples/doc/utilities subdirectory of the IDL distribution. Run this
example procedure by entering norm_coord at the IDL command prompt or view
thefilein an IDL Editor window by entering . EDIT norm_coord.pro.

Converting Data to Normal Coordinates Object Programming

javascript:doIDL("norm_coord")
javascript:doIDL(".edit norm_coord.pro")

Chapter 3: Positioning Objects in a View 83

Example: Centering an Image

The following example steps through the process of creating an image object and
provides two options for centering it within awindow.

The first method establishes a viewplane rectangle within a view object. Theimage
object is added to amodel object. The model object isthen trand ated to the center of
the window object.

The second method does not establish a viewplane rectangle. Instead coordinate
conversions are calculated and applied to the image object to center it within the
model. This method works within the normalized coordinate system of the model.

You can also position an image in aview using the LOCATION property of the
image object. For additional information and examples, see “ Positioning Image
Objectsin aView” on page 105.

This example uses the image from the wor1delv.dat file found in the
examples/data directory.

PRO CenteringAnImage

; Determine path to file.
worldelvFile = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

; Initialize image parameters.
worldelvSize = [360, 360]
worldelvImage = BYTARR(worldelvSize[0], worldelvSize[l], /NOZERO)

; Open file, read in image, and close file.
OPENR, unit, worldelvFile, /GET_LUN

READU, unit, worldelvImage

FREE_LUN, unit

; Initialize window parameters.
windowSize = [400, 460]
windowMargin = (windowSize - worldelvSize) /2

; First Method: Defining the Viewplane and
; Translating the Model.

Object Programming Example: Centering an Image

84

7

7

Chapter 3: Positioning Objects in a View

Initialize objects required for an Object Graphics
display.

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = windowSize, $
TITLE = 'World Elevation: First Method')

oView = OBJ_NEW('IDLgrView',6 $

VIEWPLANE_RECT = [0., 0., windowSizel)

oModel = OBJ_NEW ('IDLgrModel')

7

i

Initialize palette with STD GAMMA-II color table and
use it to initialize the image object.

oPalette = OBJ_NEW('IDLgrPalette')
oPalette->LOADCT, 5
oImage = OBJ_NEW('IDLgrImage', worldelvImage, PALETTE = oPalette)

7
7

7

Add image to model, which is added to view. Model
is translated to center the image within the window.
Then view is displayed in window.

oModel->Add, oImage

oView->Add, oModel

oModel->Translate, windowMargin[0], windowMargin[1l], O.
oWindow->Draw, oView

7

Clean-up object references.

OBJ_DESTROY, [oView, oPalette]

7

7

Second Method: Using Coordinate Conversions.

Initialize objects required for an Object Graphics
display.

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = windowSize, $
TITLE = 'World Elevation: Second Method')

oView = OBJ_NEW ('IDLgrView')
oModel = OBJ_NEW ('IDLgrModel')

7

i

Initialize palette with STD GAMMA-II color table and
use it to initialize the image object.

oPalette = OBJ_NEW('IDLgrPalette')
oPalette->LOADCT, 5
oImage = OBJ_NEW('IDLgrImage', worldelvImage, $

7

PALETTE = oPalette)

Obtain initial coordinate conversions of image object.

oImage->GetProperty, XCOORD_CONV = xConv, $

YCOORD_CONV = yConv, XRANGE = xRange, YRANGE = yRange

Example: Centering an Image Object Programming

Chapter 3: Positioning Objects in a View 85

; Output initial coordinate conversions.
PRINT, 'Initial xConv: ', xConv
PRINT, 'Initial yConv: ', yConv

; Applying margins to coordinate conversions.

xTranslation = (2.*FLOAT (windowMargin([0]) /windowSize[0]) - 1.
xScale = (-2.*xTranslation) /worldelvSize[O0]

xConv = [xTranslation, xScalel

yTranslation = (2.*FLOAT(windowMargin[1l])/windowSize[1l]) - 1.
yScale = (-2.*yTranslation) /worldelvSize[1l]

yConv = [yTranslation, yScale]

; Output resulting coordinate conversions.
PRINT, 'Resulting xConv: ', xConv
PRINT, 'Resulting yConv: ', yConv

; Apply resulting conversions to the image object.
oImage->SetProperty, XCOORD_CONV = xConv, $
YCOORD_CONV = yConv

; Add image to model, which is added to view. Display
; the view in the window.

oModel->Add, oImage

oView->Add, oModel

oWindow->Draw, oView

; Cleanup object references.
OBJ_DESTROY, [oView, oPalette]

END

Object Programming Example: Centering an Image

86 Chapter 3: Positioning Objects in a View

Example: Transforming a Surface

The following example steps through the process of creating a surface object and all
of the supporting objects necessary to display it.

Example Code
Theprocedurefiletest_surface.pro, located inthe examples/doc/objects
subdirectory of the IDL distribution, contains this example's code. Run this
example procedure by entering test_surface at the IDL command prompt or
view thefilein an IDL Editor window by entering .EDIT test_surface.pro.

When creating this procedure, we allow the user to specify keywords that will return
object references to the view, model, surface, and window objects. This allows usto
mani pul ate the objects directly from the IDL command line after the procedure has
been run.

Play with the example to learn how object transformations work and interact. Try the
following commands at the IDL prompt to observe what they do:

First, compile test_surface.pro
.RUN test_surface.pro

Now, execute the procedure. The variables you supply viathe SURFACE, MODEL,
VIEW, and WINDOW keyword will contain object references you can manipulate
from the command line:

test_surface, VIEW=myview, MODEL=mymodel, $
SURFACE=mysurf, WINDOW=mywin

Thiswill create awindow object and display the surface. Now try the following to
tranglate the object to the right:

mymodel->Translate, 0.2, 0, O

The model transformation changes as soon as you issue this command. The window
object, however, will not be updated to reflect the new position until you issue a
Draw command:

mywin->Draw, myview
Try arotation in the y direction:

mymodel->Rotate, [0,1,0], 45
mywin->Draw, myview

Repeat the commands several times and observe what happens.

Example: Transforming a Surface Object Programming

javascript:doIDL("test_surface")
javascript:doIDL(".edit test_surface.pro")

Chapter 3: Positioning Objects in a View 87

Try some of the following. Remember to issue a Draw command after each changein
order to see what you have done.

mymodel->Scale, 0.5,
mymodel->Scale, 1, O.
mymodel->Scale, 1, 2, 1

mymodel->Rotate, [0,0,1], 45
mysurf->SetProperty, COLOR = [0, 255, 0]
myview->SetProperty, PROJECTION = 2, EYE = 2
myview->SetProperty, EYE = 1.1
myview->SetProperty, EYE = 6

Object Programming Example: Transforming a Surface

88 Chapter 3: Positioning Objects in a View

Zooming within an Object Display

Enlarging a specific section of an image is known as zooming. How zooming is
performed within IDL depends on the graphics system. In Direct Graphics, you can
use the ZOOM procedure to zoom in on a specific section of an image. If you are
working with RGB images, you can use the ZOOM _24 procedure.

In Object Graphics, the VIEWPLANE_RECT keyword is used to change the view
object. Using this method, the entire image is still contained within the image object,
while the view is changed to only show specific areas of the image object. See the
following section for more information.

Zooming in on an Object Graphics Image Display

The following example imports a grayscale image from the convec . dat binary file.
This grayscale image shows the convection of the Earth’s mantle. Theimage contains
byte data values and is 248 pixels by 248 pixels. The VIEWPLANE_RECT keyword
to the view object is updated to zoom in on the lower left corner of the image.

Example Code
See zooming_object.pro inthe examples/doc/objects subdirectory of the
IDL instalation directory for code that duplicates this example. Run this example
procedure by entering zooming_object at the IDL command prompt or view the
filein an IDL Editor window by entering . EDIT zooming_object.pro.

1. Determine the path to the convec.dat file:

file = FILEPATH('convec.dat',6 $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [248, 248]
3. Import the image from thefile:

image = READ_BINARY (file, DATA_DIMS = imageSize)
4. Initiaize the display objects:

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $

TITLE = 'A Grayscale Image')
oView = OBJ_NEW('IDLgrView',6 $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW ('IDLgrModel"')

Zooming within an Object Display Object Programming

javascript:doIDL("zooming_object")
javascript:doIDL(".edit zooming_object.pro")

Chapter 3: Positioning Objects in a View 89

5.

6.

Initialize the image object:
oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)

Add the image object to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the resulting grayscale image display.

Figure 3-6: A Grayscale Image in Object Graphics

Initialize another window:

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, TITLE = 'Zoomed Image')

Change the view to enlarge the lower left quarter of the image:

oView -> SetProperty, $
VIEWPLANE_RECT = [0., 0., imageSize/2]

The view object still contains the entire image object, but the region displayed
by the view (the viewplane rectangle) is reduced in size by half in both
directions. Since the window object remains the same size, the view region is
enlarged to fit it to the window.

9. Display the updated view in the new window:

oWindow -> Draw, oView

Object Programming Zooming within an Object Display

90 Chapter 3: Positioning Objects in a View

The following figure shows the resulting zoomed image.

Figure 3-7: Enlarged Image Area in Object Graphics

10. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTROY on the view object.

OBJ_DESTROY, oView

Zooming within an Object Display Object Programming

Chapter 3: Positioning Objects in a View 91

Translating, Rotating and Scaling Objects

An IDLgrModel object is a container for any visualization objects that are to be
rotated, translated, or scaled. Each IDLgrModel object has a transformation property
(set viathe TRANSFORM keyword to the IDLgrModel::1nit or SetProperty method),
which isa4 x 4 floating-point matrix. For a general discussion of transformation
matrices and three-dimensional graphics, see “Coordinates of 3-D Graphics’
(Chapter 5, Using IDL).

Note
A model object’s transformation matrix is akin to the transformation matrix used by
IDL Direct Graphics and stored in the IP.T system variable field. Transformation
matrices associated with amodel object do not use the value of !PT, however, and
are not affected by the T3D procedure used in Direct Graphics.

By default, amodel object’s transformation matrix is set equal to a 4-by-4 identity
matrix:

1.0 0.0 0.0 0.0
0.01.00.000
0.00.01.000
0.0000.010

Figure 3-8:
You can change the transformation matrix of amodel object directly, using the
TRANSFORM keyword to the IDLgrModel::Init or SetProperty method:

myModel = OBJ_NEW ('IDLgrModel', TRANSFORM = tmatrix)

where tmatrix is a4-by-4 transformation matrix. Alternatively, you can use the
Trandate, Rotate, and Scale methods to the IDLgrModel object to alter the model’s
transformation matrix.

Object Programming Translating, Rotating and Scaling Objects

92 Chapter 3: Positioning Objects in a View

Translation

The IDLgrModédl:: Trans ate method takes three arguments specifying the amount to
translate the model object and its contents in the X, Y, and Z directions. For example,
to translate a model and its contents by 1 unit in the X-direction, you could use the
following statements:

dx =1 & dy = 0 & dz =0
myModel->Translate, dx, dy, dz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define translation values:
dx =1 & dy = 0 & dz =0
; Get existing transformation matrix:
myModel->GetProperty, TRANSFORM = oldT
; Provide a transformation matrix that performs the translation:
transT = [[1.0, 0.0, 0.0, dx], S
[0.0, 1.0, 0.0, dyl, $
[0.0, 0.0, 1.0, dzl, $
[0.0, 0.0, 0.0, 1.011]
; Multiply the existing transformation matrix by
; the matrix that performs the translation:
newT = oldT # transT
; Apply the new transformation matrix to the model object:
myModel->SetProperty, TRANSFORM = newT

Rotation

The IDLgrModdl::Rotate method takes two arguments specifying the axis about
which to rotate and the number of degrees to rotate the model object and its contents.
For example, to rotate amodel and its contents by 90 degrees around the y-axis, you
could use the following statements:

axis = [0,1,0] & angle = 90
myModel->Rotate, axis, angle

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define rotation values:

axis = [0,1,0] & angle = 90

; Get existing transformation matrix:
myModel->GetProperty, TRANSFORM = oldT
; Define sine and cosine of angle:
cosa = COS(!DTOR*angle)

sina = SIN(!DTOR*angle)

Translating, Rotating and Scaling Objects Object Programming

Chapter 3: Positioning Objects in a View 93

; Provide a transformation matrix that performs the rotation:

rotT = [[cosa, 0.0, sina, 0.0], S
[0.0, 1.0, 0.0, 0.0], S
[-sina, 0.0, cosa, 0.01, S

[0.0, 0.0, 0.0, 1.0]1]
; Multiply the existing transformation matrix
; by the matrix that performs the rotation.
newT = oldT # rotT
; Apply the new transformation matrix to the model object:
myModel->SetProperty, TRANSFORM = newT

Scaling

The IDLgrModel::Scale method takes three arguments specifying the amount to scale
the model object and its contentsin the X, y, and z directions. For example, to scale a
model and its contents by 2 unitsin the y direction, you could use the following
statements:

sx =1 & sy = 2 & sz =1
myModel->Scale, sx, sy, sz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define scaling values:
sx =1 & sy = 2 & sz =1
; Get existing transformation matrix:
myModel->GetProperty, TRANSFORM = oldT
; Provide a transformation matrix that performs the scaling:
scaleT = [[sx, 0.0, 0.0, 0.01, S
[0.0, sy, 0.0, 0.01, S
[0.0, 0.0, sz, 0.01, S
[0.0, 0.0, 0.0, 1.011]
; Multiply the existing transformation matrix
; by the matrix that performs the scaling.
newT = oldT # scaleT
; Apply the new transformation matrix to the model object:
myModel->SetProperty, TRANSFORM = newT

Object Programming Translating, Rotating and Scaling Objects

94 Chapter 3: Positioning Objects in a View

Combining Transformations

Note that model transformations are cumulative. That is, amodel object contained in
another model is subject to both its own transformation and to that of its container.
All transformation matrices that apply to agiven model object are multiplied together
when the object is rendered. For example, consider amodel that contains another
model:

modell = OBJ_NEW ('IDLgrModel', TRANSFORM
model2 = OBJ_NEW ('IDLgrModel', TRANSFORM
model2->Add, modell

The model 1 abject is now subject to both its own transformation matrix (transi)
and to that of its container (trans2). Theresult isthat when mode11 isrendered, it
will be rendered with atransformation matrix = trans1 # trans?2.

transl)
trans?)

Translating, Rotating and Scaling Objects Object Programming

Chapter 3: Positioning Objects in a View 95

Interactive 3D Transformations

To create truly interactive object graphics, you must allow the user to transform the
position or orientation of objects using the mouse. One way to do thisisto provide a
virtual trackball that lets the user manipulate objects interactively on the screen.

Note
TheiTools provide extensive interactivity for all types of object datadisplayed in
an iTool. Thisinteractivity is automatically available when suitable datais
displayed in an iTool. See the iTool User’s Guide for complete details.

The procedurefile trackball__define.pro, foundinthe 1ib directory of the
IDL distribution, contains the object definition procedure for avirtual trackball
object. Thistrackball object is used in several of the examples presented in this
volume, and is also used by other example and demonstration code included with
IDL. The trackball object has three methods: Init, Update, and Reset. These methods
alow you to retrieve mouse movement events and alter your model transformations
accordingly.

The trackball object behaves as if there were an invisible trackball, centered at a
position you specify, overlaid on a draw widget. The widget application’s event
handler uses the widget event information to update both the trackball’s state and the
model transformation of the objects displayed in the draw widget's window object.
When the user clicks and drags in the draw widget, objects in the draw widget rotate
asif the user were manipulating them with a physical trackball.

See “TrackBall” (IDL Reference Guide) for details on creating and using trackball
objects. Several of the other example fileslocated in the examples/doc/objects
subdirectory of the IDL distribution include trackball objects, and may be studied for
further insight into the mechanics of transforming object hierarchies based on user
input.

Note
The XOBJVIEW procedureis a utility used to quickly and easily view and
manipulate IDL Object Graphics on screen. Pre-built functionality allows you to
select, rotate, pan and zoom objects contained within the model (s) passed to the
procedure. See “XOBJVIEW” (IDL Reference Guide) for details.

Object Programming Interactive 3D Transformations

96

Interactive 3D Transformations

Chapter 3: Positioning Objects in a View

Object Programming

Chapter 4

Working with Image

Objects

The following topics are covered in this chapter:

Overview of ImageObjects 98
Creating ImageObjects 100
Positioning Image ObjectsinaView 105
Panning in Object Graphics............ 111

Defining Transparency in Image Objects . 115

Object Programming

Warping Image Objects
Mapping an Image Object onto a Sphere .
ImageTiling
Adding Tiling to Your Application
Example: JPEG2000 Filesfor Tiling

132
136
140
150

97

98 Chapter 4: Working with Image Objects

Overview of Image Objects

An object of the IDLgrImage class (see “IDLgrImage”’ (IDL Reference Guide))
represents a two-dimensional array of pixel values, rendered on the planez=0. The
image object stores image data using the byte data type, and can take any of the
following forms:

e Anarray with dimensions [n, m]. Each pixel isinterpreted as an index into a
palette, or as an explicit gray scale value (if the GREY SCALE keyword is set).

e Anarray withdimensions[2, n, m] or [n, 2, m] or [n, m, 2]. Each pixel consists
of agray scale value and an associated alpha channel value (alphais used for
transparency effects).

e Anarray withdimensions[3, n, m] or [n, 3, m] or [n, m, 3]. Each pixel consists
of an RGB triple.

e Anarray withdimensions[4, n, m] or [n, 4, m] or [n, m, 4]. Each pixel consists
of an RGB triple and an associated alpha channel value.

Theindex or RGB triple for each pixel isinterpreted according to the color model set
for the destination object in which it isto be drawn. The Alpha channel, if present,
determines the transparency of the pixel.

Note
The position of the color bandsin an RGB image array is know as interleaving. See
“RGB Image Interleaving” (Chapter 5, Using IDL) for details. The INTERLEAVE
property of the image object describes this arrangement.

Defining Image Palettes

If your image array contains indexed color data (that is, if it isan m-by-n array), you
can specify a palette object to control the conversion between the image data and the
palette used by an RGB-mode destination object. (See “How IDL Interprets Color
Vaues’ on page 53 for a discussion of the interaction between indexed color objects
and RGB color destinations.) Set the PALETTE property of the image object equal to
an instance of an IDLgrPal ette object:

myimage->SetProperty, PALETTE = mypalette

To specify that an image be drawn in greyscale mode rather than through an existing
color palette, set the GREY SCALE property equal to 1 (one). The GREY SCALE
property isonly used if the image datais a single channel (an m-by-n array).

Overview of Image Objects Object Programming

Chapter 4: Working with Image Objects 99

Note
A 2-by-m-by-n array is considered to be a greyscale image with an Alpha channel.
An image containing indexed color data cannot have an alpha channel.

For examples, see “ Displaying Indexed Images with Object Graphics’ in the
Examples section of “IDLgrPalette’ (IDL Reference Guide).

Configuring Common Object Properties

IDLgrlmage properties alow you to configure how image objects are displayed. You
can alter the transparency (using the ALPHA_CHANNEL keyword), or the color
(using the PALETTE keyword for indexed images, or the INTERLEAVE keyword
for RGB images). You may want to fit one image to another using warping or create
atexture map by mapping an image onto a geometric shape. See the following
sections for more information.

* “Creating Image Objects’ on page 100 provides examples and resources for
creating image objects containing a variety of data

« “Positioning Image Objectsin aView” on page 105

« “Defining Transparency in Image Objects’ on page 115
e “Warping Image Objects’ on page 121

e “Mapping an Image Object onto a Sphere” on page 132

If you want to display very large images, you can do so with imagetiling. See*“Image
Tiling” on page 136 for information.

Object Programming Overview of Image Objects

100 Chapter 4: Working with Image Objects

Creating Image Objects

To create an image object, supply an array of pixel values to the IDLgrlmage::Init
method. If the image has more than one channel, be sureto set the INTERLEAVE
property of the image object to the appropriate value. (See“ RGB Image I nterleaving”
(Chapter 5, Using IDL) for details and an example showing how to determine the
interleaving within an image array.) See “IDLgrImage” (IDL Reference Guide) for
details on object properties and methods.

Note
IDLgrImage does not treat NaN data as missing. If the image dataincludes NaNs, it
is recommended that the BY TSCL function be used to appropriately handle those
values. For example:

oImage->SetProperty, DATA = BYTSCL (myData, /NaN, MIN=0,
MAX=255)

In Object Graphics, binary, grayscale, indexed, and RGB images are contained in
image objects. For display, the image object is contained within an object hierarchy,
which includes amodel object and a view object. The view object is then drawn to a
window object. Some types of images must be scaled with the BY TSCL function

prior to display.
For more information, refer to the following examples:
e “Displaying Binary Images with Object Graphics’ below
« “Displaying Grayscale Images with Object Graphics’ on page 102

« “Displaying Indexed Images with Object Graphics’ in the Examples section of
“IDLgrPaette” (IDL Reference Guide).

* “RGB Image Interleaving” (Chapter 5, Using IDL)
Displaying Binary Images with Object Graphics

Binary images are composed of pixels having one of two values, usually zero or one.
With most color tables, pixels having values of zero and one are displayed with
amost the same col or, such as with the default grayscale color table. Thus, a binary
imageis usually scaled to display the zeros as black and the ones as white.

The following example imports a binary image of the world from the
continent_mask.dat binary file. Inthisimage, the oceans are zeros (black) and
the continents are ones (white). Thistype of image can be used to mask out (omit)

Creating Image Objects Object Programming

Chapter 4: Working with Image Objects 101

data over the oceans. The image contains byte data values and is 360 pixels by 360
pixels.

Example Code
Seedisplaybinaryimage_object.pro inthe examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering displaybinaryimage at the IDL
command prompt or view the filein an IDL Editor window by entering .EDIT
displaybinaryimage.pro.

1. Determinethe path to the continent_mask.dat file:

file = FILEPATH('continent_mask.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [360, 360]
3. Use READ_BINARY to import the image from the file:

image = READ_BINARY (file, DATA_DIMS = imageSize)
4. Initialize the display objects:

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $

TITLE = 'A Binary Image, Not Scaled')
oView = OBJ_NEW('IDLgrView',6 $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW ('IDLgrModel"')
5. Initialize the image object:
oImage = OBJ_NEW('IDLgrImage', image)

6. Add theimage object to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The resulting window should be al black (blank). The binary image contains
zeros and ones, which are ailmost the same color (black). A binary image
should be scaled prior to displaying in order to show the ones as white.

7. Initialize another window:

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $

Object Programming Creating Image Objects

javascript:doIDL("displaybinaryimage")
javascript:doIDL(".edit displaybinaryimage.pro")
javascript:doIDL(".edit displaybinaryimage.pro")

102 Chapter 4: Working with Image Objects

TITLE = 'A Binary Image, Scaled')
8. Update the image object with a scaled version of the image:
oImage -> SetProperty, DATA = BYTSCL (image)
9. Display the view in the window:

oWindow -> Draw, oView

The following figure shows the results of scaling this display.

Figure 4-1: Binary Image in Object Graphics

10. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTROY on the view object.

OBJ_DESTROY, oView

Displaying Grayscale Images with Object Graphics

Since grayscale images are composed of pixels of varying intensities, they are best
displayed with color tables that progress linearly from black to white. IDL provides

several such pre-defined color tables, but the default grayscale color tableisgeneraly
suitable.

Creating Image Objects Object Programming

Chapter 4: Working with Image Objects 103

The following example imports a grayscale image from the convec . dat binary file.
This grayscale image shows the convection of the Earth’s mantle. Theimage contains
byte data values and is 248 pixels by 248 pixels. Since the datatype is byte, this
image does not need to be scaled before display. If the datawas of any type other than
byte and the data values were not within the range of 0 up to 255, the display would
need to scale the image in order to show its intensities. Complete the following steps
for adetailed description of the process.

Example Code
Seedisplaygrayscaleimage_object.pro inthe examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering displaygrayscaleimage at the IDL
command prompt or view the filein an IDL Editor window by entering .EDIT
displaygrayscaleimage.pro.

1. Determine the path to the convec.dat file:

file = FILEPATH('convec.dat',6 $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:
imageSize = [248, 248]
3. Using READ_BINARY, import the image from thefile:
image = READ_BINARY (file, DATA_DIMS = imageSize)
4. Initialize the display objects:

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $

TITLE = 'A Grayscale Image')
oView = OBJ_NEW('IDLgrView',6 $
VIEWPLANE_RECT = [0., 0., imageSizel])

oModel = OBJ_NEW ('IDLgrModel"')
5. Initialize the image object:
oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)

6. Add theimage object to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

Object Programming Creating Image Objects

javascript:doIDL("displaygrayscaleimage")
javascript:doIDL(".edit displaygrayscaleimage.pro")
javascript:doIDL(".edit displaygrayscaleimage.pro")

104 Chapter 4: Working with Image Objects

The following figure shows the resulting grayscale image display.

Figure 4-2: Grayscale Image in Object Graphics

7. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTROY on the view object.

OBJ_DESTROY, oView

Creating Image Objects Object Programming

Chapter 4: Working with Image Objects 105

Positioning Image Objects in a View

By default, IDLgrImage objects are drawn at Z=0 and are positioned and sized with
respect to two points:

[LOCATION(O), LOCATION(1l), O]

pl
2 [LOCATION(0O) + DIMENSION(0O), LOCATION(1l) + DIMENSION(1), O7.

p
where LOCATION and DIMENSION are properties of the image object. These two
points are transformed in three dimensions, and then projected onto the screen to
form the opposite corners of a 2-D rectangle resulting in screen space points
designated aspl' andp2':

[[p1'(0], p1'[11]1, [[p2'[0], p1'[1]],
[[p2'[0], p2'[1]1]1, [[pl'[0], p2'[1]]]
The image datais drawn on the display as a 2-D image within this 2-D rectangle
whose sides are parallel to the screen sides. The image datais scaled in two
dimensions (not rotated) to fit into this projected rectangle and then drawn with Z
buffering disabled.

To draw an image with the current full 3D transformation (the same way other
objects such as polygons are transformed), set the IDLgrimage
TRANSFORM_MODE property to 1. See the IDLgrimage TRANSFORM_MODE
property in the IDL Reference Guide for details.

Objectsare drawn to adestination device in the order that they are added (viathe Add
method) to the model, view, or scene that contains them. By default, image objects do
not take into account the depth locations of other objects that may be included in the
view object unless you enable depth testing (see “DEPTH_TEST_DISABLE" (IDL
Reference Guide) for details).

This means that objects that are drawn to the destination object (window or printer)
after theimage is drawn will appear to bein front of the image, even if they are
located behind the image object. And this also means that objects drawn after the
image is drawn will appear to be in front of the image even if they are located behind
the image. Since the image is drawn by default with depth testing disabled, you can
think of the image primitive as ‘painting’ the image onto the screen without regard
for other objects that might already have been drawn there.

This behavior can be changed by enabling depth testing to make the image primitive
behave like other primitives such as polygons when they are drawn with depth testing
enabled.

Object Programming Positioning Image Objects in a View

106 Chapter 4: Working with Image Objects

The following example uses the LOCATION keyword to control image position. For
information on other ways to define the position of an image object in aview, see
“Example: Centering an Image” on page 83.

Displaying Multiple Images in Object Graphics

The following example imports an RGB image from the rose . 5pg imagefile. This
RGB image is a close-up photograph of ared rose and is pixel interleaved. This
example extracts the three color channels of thisimage, and displays them as
graysca e images in various locations within the same window. Complete the
following steps for a detailed description of the process.

Example Code
Seedisplaymultiples_object.pro intheexamples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering displaymultiples_object at the IDL
command prompt or view thefilein an IDL Editor window by entering .EDIT
displaymultiples_object.pro.

1. Determinethe pathtothe rose. jpg file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'l)

2. Use QUERY_IMAGE to query the file to determine image parameters:
queryStatus = QUERY_TIMAGE (file, imageInfo)

3. Set theimage size parameter from the query information:
imageSize = imageInfo.dimensions

4. Use READ_IMAGE to import the image from thefile:
image = READ_IMAGE (file)

5. Extract the channels (as images) from the pixel interleaved RGB image:

redChannel = REFORM(image[0, *, *])
greenChannel = REFORM(image([l, *, *])
blueChannel = REFORM(image[2, *, *])

The LOCATION keyword to the Init method of the image object can be used
to position an image within awindow. The LOCATION keyword uses data
coordinates, which are the same as device coordinates for images. Before
initializing the image objects, you should initialize the display objects. The
following steps display multiple images horizontally, vertically, and
diagonally.

Positioning Image Objects in a View Object Programming

javascript:doIDL("displaymultiples_object")
javascript:doIDL(".edit displaymultiples_object.pro")
javascript:doIDL(".edit displaymultiples_object.pro")

Chapter 4: Working with Image Objects 107

6. Initialize the display objects:

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize*[3, 1], $

TITLE = 'The Channels of an RGB Image')
oView = OBJ_NEW('IDLgrView',6 $
VIEWPLANE_RECT = [0., 0., imageSizel*[0, 0, 3, 11)

oModel = OBJ_NEW ('IDLgrModel"')

7. Now initialize the image objects and arrange them with the LOCATION
keyword, see IDLgrImage for more information:

oRedChannel = OBJ_NEW('IDLgrImage', redChannel)
oGreenChannel = OBJ_NEW('IDLgrImage', greenChannel, $

LOCATION = [imageSize[0], 01)
oBlueChannel = OBJ_NEW('IDLgrImage', blueChannel, $
LOCATION = [2*imageSize[0], 0])

8. Add theimage objectsto the model, which is added to the view, then display
the view in the window:

oModel -> Add, oRedChannel
oModel -> Add, oGreenChannel
oModel -> Add, oBlueChannel
oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the resulting grayscale images.

Figure 4-3: Horizontal Display of RGB Channels in Object Graphics

These images can be displayed vertically in another window by first
initializing another window and then updating the view and images with
different location information.

Object Programming Positioning Image Objects in a View

108 Chapter 4: Working with Image Objects

9. Initialize another window object:

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize*[1l, 3], $
TITLE = 'The Channels of an RGB Image')

10. Change the view from horizontal to vertical:

oView -> SetProperty, $
VIEWPLANE_RECT = [0., 0., imageSizel*[0, 0, 1, 3]

11. Change the locations of the channels:

oGreenChannel -> SetProperty, LOCATION = [0, imageSize[l]]
oBlueChannel -> SetProperty, LOCATION = [0, 2*imageSize[l]]

12. Display the updated view within the new window:
oWindow -> Draw, oView

The following figure shows the resulting grayscale images.

Figure 4-4: Vertical Display of RGB Channels in Object Graphics

Positioning Image Objects in a View Object Programming

Chapter 4: Working with Image Objects 109

These images can a so be displayed diagonally in another window by first
initializing the other window and then updating the view and images with
different location information. The LOCATION can aso be used to create a
display overlapping images. When overlapping images in Object Graphics,
you must remember the last image added to the model will be in front of the
previous images.

13. Initialize another window object:

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize*[2, 2], $
TITLE = 'The Channels of an RGB Image')

14. Change the view to prepare for adiagonal display:

oView -> SetProperty, $
VIEWPLANE_RECT = [0., 0., imageSizel*[0, 0, 2, 2]

15. Change the locations of the channels:

oGreenChannel -> SetProperty, $

LOCATION = [imageSize[0]/2, imageSize[l]/2]
oBlueChannel -> SetProperty, $
LOCATION = [imageSize[0], imageSize[l]]

16. Display the updated view within the new window:
oWindow -> Draw, oView

The following figure shows the resulting grayscale images.

Figure 4-5: Diagonal Display of RGB Channels in Object Graphics

Object Programming Positioning Image Objects in a View

110 Chapter 4: Working with Image Objects

17. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTROY on the view object.

OBJ_DESTROY, oView

Positioning Image Objects in a View Object Programming

Chapter 4: Working with Image Objects 111

Panning in Object Graphics

In Object Graphics, the VIEWPLANE_RECT keyword is used to change the view
object. The entireimageis ill contained within the image object, but the view is
changed to pan over specific areas of the image object.

The following example imports a grayscale image from the nyny . dat binary file.
Thisgrayscaleimageis an aerial view of New York City. The image contains byte
datavalues and is 768 pixels by 512 pixels. The VIEWPLANE_RECT keyword to
the view object is updated to zoom in on the lower left corner of the image. Then the
VIEWPLANE_RECT keyword is used to pan over the bottom edge of the image.
Complete the following steps for a detailed description of the process.

Example Code
Seepanning_object.pro inthe examples/doc/objects subdirectory of the
IDL instalation directory for code that duplicates this example. Run the example
procedure by entering panning_object at the IDL command prompt or view the
filein an IDL Editor window by entering . EDIT panning_object.pro.

1. Determinethe path to the nyny . dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [768, 512]
3. Import the image from thefile:

image = READ_BINARY (file, DATA_DIMS = imageSize)
4. Resizethislargeimageto entirely display it on the screen:

imageSize = [256, 256]
image = CONGRID(image, imageSize[0], imageSizel[l])

5. Initidize the display objects:

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $

TITLE = 'A Grayscale Image')
oView = OBJ_NEW('IDLgrView',6 $
VIEWPLANE_RECT = [0., 0., imageSizel])

oModel = OBJ_NEW ('IDLgrModel"')
6. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)

Object Programming Panning in Object Graphics

javascript:doIDL("panning_object")
javascript:doIDL(".edit panning_object.pro")

112 Chapter 4: Working with Image Objects

7. Add theimage object to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the resulting grayscale image display.

Figure 4-6: A Grayscale Image Of New York in Object Graphics

8. Initialize another window:

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, TITLE = 'Panning Enlarged Image')

9. Change the view to zoom into the lower left quarter of the image:

viewplane = [0., 0., imageSize/2]
oView -> SetProperty, $
VIEWPLANE_RECT = [0., 0., imageSize/2]

The view object still contains the entire image object, but the region displayed
by the view (the viewplane rectangle) is reduced in size by half in both
directions. Since the window object remains the same size, the view region is
enlarged to fit it to the window.

10. Display the updated view in the new window:

oWindow -> Draw, oView

Panning in Object Graphics Object Programming

Chapter 4: Working with Image Objects 113

The following figure shows the resulting enlarged image area.

Figure 4-7: Enlarged Image Area of New York in Object Graphics

11. Pan the view from the left side of the image to the right side of the image:

FOR i = 0, ((imageSize[0]/2) - 1) DO BEGIN & $
viewplane = viewplane + [1., 0., 0., 0.] & $
oView -> SetProperty, VIEWPLANE_RECT = viewplane & $
oWindow -> Draw, oView & $

ENDFOR

Note
The & after BEGIN and the s allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO
loop in placedin an IDL program as shown in Panning_Object.pro in
the examples/doc/objects subdirectory of the IDL installation directory.

Object Programming Panning in Object Graphics

114 Chapter 4: Working with Image Objects

The following figure shows the resulting enlarged image area panned to the
right side.

Figure 4-8: Enlarged New York Image Area Panned to the Right in Object
Graphics

12. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Panning in Object Graphics Object Programming

Chapter 4: Working with Image Objects 115

Defining Transparency in Image Objects

In Object Graphics, atransparent image can be created by adding an alpha channel to
the image array or by setting the ALPHA_CHANNEL property. The alphachannel is
used to define the level of transparency in an image object. If you have an image
containing both alpha channel dataand a value for the ALPHA_CHANNEL
property, the alpha values are combined by multiplying each image pixel aphavaue
by the ALPHA_CHANNEL property value.

If your image data includes an apha channel, or if you set the ALPHA_CHANNEL
property, use the BLEND_FUNCTION property of the image object to control how
the a pha channel values will be interpreted. (See BLEND_FUNCTION property of
IDLgrimage for details on how the blending is calculated.) Thisis known as apha
blending. For example, setting BLEND_FUNCTION = [3, 4] creates an imagein
which you can see through the foreground image to the background to the extent
defined by the alpha channel values of the foreground image.

Transparency and Image Warping

Creating atransparent image is useful in the warping process when you want to
overlay atransparency of the warped image onto the reference image (theimagein
which Xo, Yo control points were selected). See “ Warping Image Objects’ on

page 121 for an exampl e that uses transparent image objects.

For background information on warping images and selecting control points, see
“Overview of Warping Images’ (Chapter 5, Image Processing in IDL).
Image Transparency Examples

See the following topics for examples of creating transparent image objects:

« “Example: Applying a Transparent Image Overlay” on page 116 — layerstwo
medical scan images of the brain. The opacity of the top imageis controlled
using the IDLgrimage ALPHA_CHANNEL property.

e “Example: Cumulative AlphaBlending” on page 118 — adds an a phachannel
to an RGB image, masks out values, and then usesthe ALPHA_CHANNEL
property to control the image transparency.

Object Programming Defining Transparency in Image Objects

116 Chapter 4: Working with Image Objects

Example: Applying a Transparent Image Overlay

The following example readsin two medical images, a computed tomography (CT)
file that contains structural information, and a PET (paositron emission tomography)
file that contains metabolic data. A color tableis applied to the PET file, and the
transparency is set using the ALPHA_CHANNEL property. The PET image object is
then overlaid on top of the base CT image. Thisis done by adding the transparent
PET image to the model after (and therefore displayed in front of) the base CT image.

Example Code
See alphaimage_obj_doc.pro inthe examples/doc/objects subdirectory
of the IDL installation directory for code that duplicates this example. Run the
example procedure by entering alphaimage_obj_doc a the IDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
alphaimage_obj_doc.pro.

To replicate this example, create anew .pro file and complete the following steps:
1. Load CT and PET images and get the image dimensions.

file_pt = FILEPATH('head_pt.dcm', $

SUBDIRECTORY=['examples', 'data'l)
file_ct = FILEPATH('head_ct.dcm', $
SUBDIRECTORY=['examples', 'data'l)

img_pt = READ_DICOM(file_pt)
img_ct = READ_DICOM(file_ct)
dims_ct SIZE(img_ct, /DIMENSIONS)
dims_pt SIZE (img_pt, /DIMENSIONS)

2. Check for dimension equality and resize if different.

IF dims_pt[0] NE dims_ct[0] THEN BEGIN
x = dims_ct[0] /dims_pt[0]
img_pt = REBIN(img _pt, dims_pt[0]*x, dims_pt[l]*x)
dims_pt = x*dims_pt
If dims_pt[0] NE dims_ct[0] THEN BEGIN
status = DIALOG_MESSAGE ('Incompatible images', /ERROR)
ENDIF
ENDIF

3. Changethe datato byte type before creating the base CT image.

img_ct = BYTSCL(img_ct)
oImageCT = OBJ_NEW('IDLgrImage', img_ct)

4. Create display objects and display the CT image.

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN=2, $
DIMENSIONS=[dims_ct[0], dims_ct([1]], TITLE='CT Image')

Defining Transparency in Image Objects Object Programming

javascript:doIDL("alphaimage_obj_doc")
javascript:doIDL(".edit alphaimage_obj_doc.pro")
javascript:doIDL(".edit alphaimage_obj_doc.pro")

Chapter 4: Working with Image Objects 117

oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0., 0., $
dims_ct[0], dims_ct[1]1])

oModel = OBJ_NEW ('IDLgrModel"')

oModel->Add, oImageCT

oView->Add, oModel

oWindow->Draw, oView

5. Create apalette object and load the red-temperature table.

oPalette = OBJ_NEW('IDLgrPalette')
oPalette->Loadct, 3

6. Change the data type to byte and create the PET image object. Set the
BLEND_FUNCTION and ALPHA_CHANNEL properties to support image
transparency.

img_pt = BYTSCL (img_pt)
oImagePT = OBJ_NEW('IDLgrImage',6 img_pt, $

PALETTE=oPalette, BLEND_FUNCTION=[3,4]1, $
ALPHA_CHANNEL=0.50)

7. Create a second window, add the semi-transparent image to the model
containing the original image and display the overlay.

oWindow2 = OBJ_NEW ('IDLgrWindow', RETAIN=2, $
DIMENSIONS=[dims_pt[0], dims_pt[11]1, $
LOCATION=[dims_ct[0]+10, 0], TITLE='CT/PET Transparency')

oModel -> Add, oImagePT

oWindow2 -> Draw, oView

8. Clean-up object references.
OBJ_DESTROY, [oView, oImageCT, oImagePT]

The results of this example are shown in the following figure.

Figure 4-9: CT Image (Left) and CT with Semi-transparent PET Overlay (Right)

Object Programming Defining Transparency in Image Objects

118 Chapter 4: Working with Image Objects

Example: Cumulative Alpha Blending

The following example shows the additive effects of displaying an image object with
apha channel dataand an image with an ALPHA_CHANNEL property setting. In
this example, the alpha channel is used to mask out values, and the
ALPHA_CHANNEL property is used to control the object transparency. However, it
is easy to maodify the code and investigate the relationship between setting image
transparency using the alpha channel dataand ALPHA_CHANNEL property. For
example, defining 50% transparency for each results in 25% opacity overall.

Thetwo initial images are displayed in the following figure. The black portion of the
land classification image (left) will be removed and this image will then be overlaid
on top of the map image.

Figure 4-10: Original Land and Map Images

Example Code
See alphacomposite_image_doc.pro inthe examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering alphacomposite_image at the IDL
command prompt or view the filein an IDL Editor window by entering .EDIT
.EDIT alphacomposite_image.pro.

To replicate this example, create anew . pro file complete the following steps:
1. Open the politica map, the base image.

mapFile = FILEPATH('afrpolitsm.png', $
SUBDIRECTORY = ['examples', 'data'])
mapImg = READ_PNG (mapFile, mapR, mapG, mapB)

Defining Transparency in Image Objects Object Programming

javascript:doIDL("alphacomposite_doc")
javascript:doIDL(".edit alphacomposite_image.pro")
javascript:doIDL(".edit alphacomposite_image.pro")

Chapter 4: Working with Image Objects 119

2. Assign the color table of the map image to a pal ette object.
mapPalette = OBJ_NEW('IDLgrPalette', mapR, mapG, mapB)
3. Create an image object containing the map data.

oMapImg = OBJ_NEW('IDLgrImage',6 mapIlmg, $
DIMENSIONS=[600, 600], PALETTE=mapPalette)

4. Open the land cover characteristicsimage.

landFile = FILEPATH('africavlc.png', $
SUBDIRECTORY = ['examples', 'data'l)

landImg = READ_PNG (landFile, landR, landG, landB)

landImgDims = SIZE(landImg, /DIMENSIONS)

5. To mask out the black values of the land classification image, create a4
channel array for the red, green, blue, and alpha data.

alphalLand = BYTARR(4, landImgDims([0], landImgDims[1],$
/NOZERO)

6. Get thered, green and blue values used by the image and assign them to the
first three channels of the alphaimage array.

alphaLand[0, *, *] = landR[landImg]
alphaLand[1l, *, *] landG[landImg]
alphalLand[2, *, *] = landB[landImg]

7. Mask out the black pixelswith avalue of 0. Multiply the mask value by 255
for complete opacity. You could set thisto a value between 0 (completely
transparent) and 255 (opaque) to control the transparency. Any value set here
will be combined with any value set for the ALPHA_CHANNEL property on
the image object.

mask = (landImg GT O0)
alphalLand [3, *, *] = mask*255B

8. Create the semi-transparent image object. ALPHA_CHANNEL values can
range from 0.0 (transparent) to 1.0 (opague). The image will appear semi-
transparent when the BLEND_FUNCTION property is set to [3,4].

oAlphaLand = OBJ_NEW('IDLgrImage',6 alphaLand, $
DIMENSIONS=[600, 600], BLEND_FUNCTION=[3,4], $
ALPHA_ CHANNEL=0.35)

9. Create the display objects.

oWindow = OBJ_NEW ('IDLgrWindow', $

DIMENSIONS=[600, 600], RETAIN=2, $

TITLE='Overlay of Land Cover Transparency')
viewRect = [0, 0, 600, 600]
oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=viewRect)

Object Programming Defining Transparency in Image Objects

120 Chapter 4: Working with Image Objects

oModel = OBJ_NEW ('IDLgrModel')
10. Add the semi-transparent image to the model after the base image.

oModel->Add, oMapImg
oModel->Add, oAlphalLand
oView->Add, oModel
oWindow->Draw, oView

11. Clean up objects.
OBJ_DESTROY, [oView, oMapImg, oAlphalLand, mapPalette]

The results appear in the following figure.

i b
E Py)

£
g i

y ; .t ¢
Dyt Hgon Byt o,
I i \

T ¥ SR e e Abaja LT :
conn i g .

4 " Of = sofgoms 3 o

donrerla ”'53"“ gt) 3 hadif, T g CENTRAL AFRICAN
g, 8, AN HEFUBLIC

R e, Y temon sangus

coNso o |
4 RLF. 0 uingan KA
“ﬂm

aAmoN onap EASIN 4

DEM. REF. faaect
tezavilleg /. OF THE CONGO

» i N
o Kinshass Fonemg E g7 3,,,,,%
3 bahery Sy TANZANIA W Dar e

.‘*uunda 7 4 salaam

b - ﬂmmu Them 7
1 ANGOLA - L w Lilong .H cuaae |
[ubargs } FAMBLA b, deNacalh
ik j : e . Jptienyre 7
A MOZAMEIQUE

A

|

!

-3

Maputa

Figure 4-11: Land Image (35% Opaque) Overlaid the Map Image

Note
You can use control pointsto warp the images and properly align the transparent
image over the map image. See “Warping Image Objects’ on page 121 for details.

Defining Transparency in Image Objects Object Programming

Chapter 4: Working with Image Objects 121
Warping Image Objects

Object Graphics allows precise control over the color palettes used to display image
objects. By initializing a palette object, both the reference image object and the
transparent, warped image object can be displayed using individual color palettes.

The following example warps an African land-cover characteristicsimageto a
political map of the continent. After displaying the images and selecting control
points in each image using the XROI utility, the resulting warped image is altered to
include an apha channel, enabling transparency. Image objects are then created and
displayed in an IDL Object Graphics display. Complete the following steps for a
detailed description of the process.

Example Code
See transparentwarping_object.pro inthe examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering transparentwarping_object at the
IDL command prompt or view thefilein an IDL Editor window by entering . EDIT
transparentwarping object.pro.

Note
For background information on warping images and selecting control points, see
“Overview of Warping Images’ (Chapter 5, Image Processing in IDL).

1. Select the political map image. Thisis the reference image to which the land
cover image will be warped:

mapFile= FILEPATH('afrpolitsm.png', $
Subdirectory = ['examples', 'data'l)

2. Use READ_PNG routineto read in the file. Specify mapR, mapG, mapB to
read in the image's associated color table:

mapImg = READ_PNG (mapFile, mapR, mapG, mapB)

3. Using IDLgrPalette::Init, assign the image’s color table to a pal ette object,
which will be applied to an image object in alater step:

mapPalette = OBJ_NEW('IDLgrPalette', mapR, mapG, mapB)
4, Select and open the land cover input image, which will be warped to the map:

landFile = FILEPATH('africavlc.png', $
Subdirectory = ['examples',6 'data'])
landImg = READ_PNG (landFile, landR, landG, landB)

Object Programming Warping Image Objects

javascript:doIDL("transparentwarping_object")
javascript:doIDL(".edit transparentwarping_object.pro")
javascript:doIDL(".edit transparentwarping_object.pro")

122 Chapter 4: Working with Image Objects

Selecting Control Points for Image Object Warping

This section describes using the XROI utility to select corresponding control points
in the two images. The arrays of control pointsin the input image, (Xi, Vi), will be
mapped to the array of points selected in the reference image, (Xo, Yo).

Note
The Xi and Yi vectors and the Xo and Yo vectors must be the same length, meaning
that you must select the same number of control pointsin the reference image as
you select in the input image. The control points must also be selected in the same
order since the point Xil, Yi1 will be warped to Xo1, Yol.

The following figure shows the points to be selected in the input image.

CP7 CPs8 CP9 CP10
(Xi7, yi7) (xi8, yi8) (x9i, yi9) (xi10, yi10)

? (Xi11, yit1)

(%16, yi6) : G _ CP12

ea e oy /{xi12,yi12)

CP5 chis
(xi5, yi5) (xi13, yi13)
CP4
(x4, yid)
Ty CP14
(xi3, yi3) (xi14, yi14)
CP2 '
(xi2, yi2) \
CP1 “._.CP186 P15
(xit, yit1) (xi16, yi16) 8'15,3*'151

Figure 4-12: Selecting Control Points in the Input Image

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 123

Reasonably precise warping of the land classification image to the political map
requires selecting numerous control points because of the irregularity of the
continent’s border. Select the control points in the land classification image as
described in the following steps.

1. Load theimage and its associated color table into the XROI utility, specifying
the REGIONS_OUT keyword to save the region defined by the control points
in the landROI out object:

XROI, landImg, landR, landG, landB, $
REGIONS_OUT = landROIout, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar shown in the
following figure. Position the crosshairs symbol over CP1, shown in the
previous figure, and click the left mouse button. Repeat this action for each
successive control point. After selecting the sixteenth control point, position
the crosshairs over the first point selected and click the right mouse button to
close the region. Your display should appear similar to the following figure.

Object Programming Warping Image Objects

124 Chapter 4: Working with Image Objects

Draw Polygon

&1 Rai M
File Edit

FIREREME

w 479 w 406 z 0 [Dutside]

Figure 4-13: Selecting Control Points Using XROI

Note
It is of no concern that portions of the continent lie outside the polygonal

boundary. The EXTRAPOLATE keyword to WARP_TRI enables warping of
the image areas lying outside of the boundary of control points. However,
images requiring more aggressive warp models may not have good results
outside of the extent of the control points when WARP_TRI is used with the
/EXTRAPOLATE keyword.

2. Closethe XROI window and assign the landROI out object data to the Xi and
Yi control point vectors:

landROIout -> GetProperty, DATA = landROIdata
Xi = landROIdatal[O0, *]
Yi = landROIdatall, *]

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 125

The following figure displays the corresponding control points to be selected
in the reference image of the political map. These control points will make up
the Xo and Yo arrays required by the IDL warping routines.

CP 7 cPg CPO CP 10
(xo7, yoT7) {xo8B, yo8) {x09, yo9) {x010, yo10)

.f_‘.,qi'/‘r‘;::-;l' 4 CP 11
Je (xo11, yoii)
T . ALGERIA
CP 6 d .
{)(QG yC}G] 'M:.;:;ﬁ'.\nu CP 12
= (xo12, yoi12)
o ;
CP5. % x
xob, yob) " CP13
{x05, yob)
(x013, yo13)
CP 4
(xo4, yod)
CP 3
(xo3, yo3)

P 2 (xo14, yo14)
(xo2, yo2)

CP 15
(xol1, yo1) {(x018, yo186) {xo15, yo15)

Figure 4-14: Control Points to be Selected in the Reference Image

3. Load theimage of the political map and its associated color table into the
XROI utility, specifying the REGIONS_OUT keyword to save the selected
region in the mapROI out object:

XROI, mapImg, mapR, mapG, mapB, $
REGIONS_OUT=mapROIout, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar. Position the
crosshairs symbol over CP1, shown in the previous figure, and click the left

Object Programming Warping Image Objects

126 Chapter 4: Working with Image Objects

mouse button. Repeat this action for each successive control point. After
selecting the sixteenth control point, position the crosshairs over the first point
selected and click the right mouse button to close the region. Your display
should appear similar to the following figure.

ALGERIA

.....
~al

xxxxx

Figure 4-15: Selecting Control Points Using XROI

4. Closethe XROI window and assignh the mapROIl out object data to the Xo and
Yo control point vectors:

mapROIout -> GetProperty, DATA=mapROIdata
Xo = mapROIdatal0, *]
Yo = mapROIdatall, *]

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 127

Warping and Displaying a Transparent Image Object

The following section describes warping the land cover image to the political map
and creating image objects. The resulting warped image will then be made into a
transparency by creating an alpha channel for the image. Finally, the transparent
object will be displayed as an overlay to the origina political map.

1. Warp theinput image, landimg, onto the reference image using WARP_TRI.
Thisfunction usestheirregular grid of the reference image, defined by Xo, Yo,
as abasisfor triangulation, defining the surfaces associated with (Xo, Yo, Xi)
and (Xo, Yo, YI). Each pixel in theinput image is then transferred to the
appropriate position in the resulting output image as designated by
interpolation. Using the WARP_TRI syntax,

Result = WARP_TRI(Xo, Yo, Xi, Yi, Image
[, OUTPUT_SIZE=vector]|[, /QUINTIC] [, /EXTRAPOLATE])

set the OUTPUT_SIZE equal to the reference image dimensions since this
image forms the basis of the warped, output image. Use the EXTRAPOLATE
keyword to display the portions of the image which fall outside of the
boundary of selected control points:

warpImg = WARP_TRI (Xo, Yo, Xi, Yi, landImg, $
OUTPUT_SIZE=[600, 600], /EXTRAPOLATE)

2. While not required, you can quickly check the precision of thewarp in aDirect
Graphics display before proceeding with creating a transparency by entering
the following lines:

DEVICE, DECOMPOSED = 0

TVLCT, landR, landG, landB

WINDOW, 3, XSIZE = 600, YSIZE = 600, $
TITLE = 'Image Warped with WARP_TRI'

TV, warplmg

Precise control point selection results in accurate warping. If thereislittle
distortion, asin the following figure, control pointswere successfully selected
in nearly corresponding positions in both images.

Object Programming Warping Image Objects

128 Chapter 4: Working with Image Objects

Figure 4-16: Resulting Warped Image

3. A transparent image object must be a grayscale or an RGB (24-bit) image
containing an apha channel. The apha channel controls the transparency of
the pixels. See IDLgrImage::Init for more information.

The following lines convert the warped image and its associated color table
into a RGB image containing four channels (red, green, blue, and alpha). First,
get the dimensions of the warped image and then use BY TARR to create
alphawarp, a 4-channel by xdim by ydim array, where (xdim, ydim) are the
dimensions of the warped image:

warpImgDims = SIZE (warpImg, /Dimensions)
alphaWarp = BYTARR (4, warpImgDims[0], warpImgDims[1l],$
/NOZERO)

4. Loadthered, green and blue channels of the warped land characteristicsimage
into the first three channels of the alphaWarp array:

alphaWarp[0, *, *] = landR[warpImg]
alphaWarp[l, *, *] landG[warpImg]
alphaWarpl[2, *, *] landB[warpImg]

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 129

5. Define the transparency of the alpha channel. Firgt, create an array, masking
out the black background of the warped image (where pixel values equal 0) by
retaining only pixelswith values greater than O:

mask = (warpImg GT 0)

Apply the resulting mask to the a pha channel, the fourth channel of the array.
This channel creates a 50% transparency of the pixels of the first three
channels (red, green, blue) of the alphaWarp by multiplying the mask by 1288
(byte). Alphachannel vaues range from 0 (completely transparent) to 255
(completely opaque):

alphaWarp [3, *, *] = mask*128B

Note
You can set the transparency of an entire image. To set the transparency of
all pixels at 50% in this example, your could replace the two previous steps
with the following two lines:

mask = BYTARR(s[O0], s[1]) + 128
alphawarp [3, *, *] = mask

6. Initialize the transparent image object using IDLgrimage::Init. Specify the
BLEND_FUNCTION property of the image object to control how the alpha
channel isinterpreted. Setting the BLEND_FUNCTION to[3, 4] alowsyou to
see through the foreground image to the background. The foreground opacity
is defined by the alpha channel value, specified in the previous step:

oAlphaWarp = OBJ_NEW('IDLgrImage',6 alphaWarp, $
DIMENSIONS = [600, 600], BLEND_FUNCTION = [3, 4])

7. Initialize the reference image object, applying the palette created earlier:

oMapImg = OBJ_NEW('IDLgrImage', maplImg, $
DIMENSIONS = [600,600], PALETTE = mapPalette)

8. Using IDLgrWindow::Init, initialize a window object in which to display the
images:

oWindow = OBJ_NEW ('IDLgrWindow', DIMENSIONS = [600, 6001, S
RETAIN = 2, TITLE = 'Overlay of Land Cover Transparency')

Object Programming Warping Image Objects

130

0.

10.

11.

Chapter 4: Working with Image Objects

Create aview object using IDLgrView::Init. The VIEWPLANE _RECT
keyword controls the image display in the Object Graphics window. First
create an array, viewRect, which specifies the x-placement, y-placement, width,
and height of the view surface. The values 0, 0 place the (0, O) coordinate of
viewing surface in the lower-left corner of the Object Graphics window:

viewRect = [0, 0, 600, 600]
oView = OBJ_NEW ('IDLgrView', VIEWPLANE_RECT = viewRect)

Using IDLgrModel::Init, initialize amodel object to which the images will be
applied. Add the base image and the transparent al pha image to the model:

oModel = OBJ_NEW ('IDLgrModel')
oModel -> Add, oMapImg
oModel -> Add, oAlphaWarp

Note
Image objects appear in the Object Graphics window in the order in which
they are added to the model. If atransparent object is added to the model
before an opaque object, it will not be visible.

Add the model, containing the images, to the view and draw the view in the
window:

oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the warped image transparency overlaid onto the
original reference image, the political map.

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 131

Figure 4-17: Object Graphics Display of the Political Map with a Transparent
Land Cover Overlay

12. Use OBJ DESTROY to clean up unneeded object references including the
region objects:

OBJ_DESTROY, [oView, oMapImg, oAlphaWarp, $
mapPalette, landROIout, mapROIout]

Object Programming Warping Image Objects

132 Chapter 4: Working with Image Objects

Mapping an Image Object onto a Sphere

This example maps an image containing world elevation data onto the surface of a
sphere and displays the result using the XOBJVIEW utility. This utility automatically
creates the window object and the view object. Therefore, this example creates an
object based on IDLgrModel that contains the sphere, the image and the image
palette, as shown in the conceptual representation in the following figure.

4— oModel - an IDLgrModel object
containing the sphere, image, and
palette

oPolygon - an object defining the sphere,
containing the image and palette

olmage - an object containing the image
oPalette - an object defining the color table

Figure 4-18: Conceptualization of XOBJVIEW Object Graphics Example

Note
For an example that maps a satellite image onto Digital Elevation Model data, see
“Mapping an Image onto Elevation Data’ (Chapter 3, Image Processing in IDL).

Complete the following steps for a detailed description of the process.

Example Code
Seemaponsphere_object.pro inthe examples/doc/objects subdirectory
of the IDL installation directory for code that duplicates this example. Run the
example procedure by entering maponsphere_object a the IDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
maponsphere_object.pro.

1. Select the world elevation image. Define the array, read in the data and close
thefile.

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'l)

Mapping an Image Object onto a Sphere Object Programming

javascript:doIDL("maponsphere_object")
javascript:doIDL(".edit maponsphere_object.pro")
javascript:doIDL(".edit maponsphere_object.pro")

Chapter 4: Working with Image Objects 133

image = READ_BINARY (file, DATA_DIMS = [360, 360])

2. Usethe MESH_OBJ procedureto create a sphere onto which theimage will be

mapped. The following invocation of MESH_OBJ uses a value of 4, which
represents a spherical mesh:

MESH_OBJ, 4, vertices, polygons, REPLICATE(0.25, 101, 101)

When the MESH_OBJ procedure compl etes, the vertices and polygons
variables contain the mesh vertices and polygonal mesh connectivity
information, respectively. Although our image is 360 by 360, we can texture
map the image to a mesh that has fewer vertices. IDL interpolates the image
data across the mesh, retaining all the image detail between polygon vertices.
The number of mesh vertices determines how close to perfectly round the
sphere will be. Fewer vertices produce a sphere with larger facets, while more
vertices make a sphere with smaller facets and more closely approximates a
perfect sphere. A large number of mesh verticeswill increase the time required
to draw the sphere. In this example, MESH_OBJ produces a 101 by 101 array
of verticesthat are located in a sphere shape with aradius of 0.25.

Initialize the display objects. In this example, it is necessary to define a model
object that will contain the sphere, the image and the color table palette. Using
the syntax, oNewObject = OBJ_NEW('Class_Name'), create the model,
palette and image objects:

oModel = OBJ_NEW ('IDLgrModel"')

oPalette = OBJ_NEW('IDLgrPalette')

oPalette -> LOADCT, 33

oPalette -> SetRGB, 255, 255, 255, 255

oImage = OBJ_NEW('IDLgrImage', image, PALETTE = oPalette)

The previous lines initialize the oPalette object with the color table and then
set the final index value of the red, green and blue bands to 255 (white) in
order to use white (instead of black) to designate the highest areas of elevation.
The pa ette object is created before the image object so that the palette can be
applied when initializing the image object. For more information, see
IDLgrModé::Init, IDLgrPalette::Init and IDLgrimage::Init.

Create texture coordinates that define how the texture map is applied to the
mesh. A texture coordinate is associated with each vertex in the mesh. The
value of the texture coordinate at a vertex determines what part of the texture
will be mapped to the mesh at that vertex. Texture coordinates run from 0.0 to
1.0 across atexture, so atexture coordinate of [0.5, 0.5] at avertex specifies
that the image pixel at the exact center of the image is mapped to the mesh at
that vertex.

Object Programming Mapping an Image Object onto a Sphere

134

Chapter 4: Working with Image Objects

In this example, we want to do a simple linear mapping of the texture around
the sphere, so we create a convenience vector that describes the mapping in
each of the texture’s x- and y-directions, and then create these texture
coordinates:

vector = FINDGEN(101)/100.

texure_coordinates = FLTARR(2, 101, 101)
texure_coordinates([0, *, *] = vector # REPLICATE(1., 101)
texure_coordinates[l, *, *] = REPLICATE(l., 101) # vector

The code above copies the convenience vector through the array in each
direction.

Enter the following line to initialize a polygon object with the image and
geometry data using the IDLgrPolygon::Init function. Set sHADTING = 1 for
gouraud (smoother) shading. Set the paTa keyword equa to the sphere defined
with the MESH_OBJfunction. Set coLor to draw a white sphere onto which
the image will be mapped. Set TEXTURE_COORD equal to the texture
coordinates created in the previous steps. Assign the image object to the
polygon object using the TEXTURE_MAP keyword and force bilinear
interpolation:

oPolygons = OBJ_NEW('IDLgrPolygon', SHADING = 1, $
DATA = vertices, POLYGONS = polygons, $
COLOR = [255, 255, 2551, S
TEXTURE_COORD = texure_coordinates, $
TEXTURE_MAP = oImage, /TEXTURE_INTERP)

Note
When mapping an image onto an IDLgrPolygon object, you must specify
both TEXTURE_MAP and TEXTURE_COORD keywords.

Add the polygon containing the image and the pal ette to the model object:
oModel -> ADD, oPolygons
Rotate the model -90° along the x-axis and y-axis.

oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], -90

Display the results using XOBJVIEW, an interactive utility allowing you to
rotate and resize objects:

XOBJVIEW, oModel, /BLOCK

Mapping an Image Object onto a Sphere Object Programming

Chapter 4: Working with Image Objects 135

&l Xobjview M= E3
File Edit “iew

(] o] [#[A]

Figure 4-19: Magnified View of World Elevation Object

After displaying the object, you can rotate the sphere by clicking in the display
window and dragging your mouse. Select the magnify button and click near
the middle of the sphere. Drag your mouse away from the center of the display
to magnify the image or toward the center of the display to shrink the image.
Select the left-most button on the XOBJVIEW toolbar to reset the display. The

previous figure shows a rotated and magnified view of the world elevation
object.

9. After closing the XOBJVIEW display, remove unneeded object references:

OBJ_DESTROY, [oModel, oImage, oPalette]

Object Programming Mapping an Image Object onto a Sphere

136

Chapter 4: Working with Image Objects

Image Tiling

Image Tiling

The IDLgrImage object supportstiling, which lets you display images that are too
largeto beread entirely into memory. For example, some satellite images can be over
agigabytein size, which isimpossible to fit into memory and display as a single unit
on atypical computer. However, it can be displayed by segmenting it into smaller,
more manageable image tiles.

When tiling is enabled for an IDLgrlmage object, the image isinitialy created
without any data. The image pixels are only loaded when a tile section comesinto
view through panning. Also, you can create an image pyramid to support level-of-
detail (LOD) rendering for large images. This changes the resolution of an image
when you zoom in or out within an image display. As you zoom out, successively
smaller, less detailed images can be displayed. This quickly provides afull view of
the larger image, lets you choose an area of interest, and zoom in on that area. Asyou
zoom in, progressively detailed image layers can be loaded. The IDLgrImage object
is aware of the LOD required and will communicate that to the application when the
application requests the tile visibility information. See the following sections for
more tiling information:

e “Image Pyramids’ on page 137 and “Image Tiles’ on page 139
e “Adding Tiling to Your Application” on page 140
« “Example: JPEG2000 Filesfor Tiling” on page 150

Object Programming

Chapter 4: Working with Image Objects 137

Image Pyramids

The use of image tiling and image pyramids supports the display of high-resolution
images with ahigh level of performance. An image pyramid consists of a base image
and a series of successively smaller sub-images, each at half the resolution of the
previous image. The following figure shows the base image and successively smaller
sub-images. The sub-images corresponds to lower resolution levels.

Figure 4-20: Image Pyramid

Creating Image Pyramids

You have two optionsif your image file does not already contain an image pyramid:

e Create an IDLffJPEG2000 object from your image data. You can define the
number of levels, the size of thetiles and other properties when you create the
image. Thetiles and image levels are then automatically created for you.

e Create theimage pyramid manually by creating a series of images, each with
half the resolution of the previousimage. You can use Gaussian or Laplacian
filtering in combination with the subsampling if desired.

Object Programming Image Tiling

138 Chapter 4: Working with Image Objects

For example, taking a 4096 by 4096 base image (level 0), you could create the
pyramid as follows:

Level Resolution
0 4096 by 4096 pixels
1 2048 by 2048 pixels
2 1024 by 1024 pixels

Table 4-1: Sample Resolutions of Image Pyramid Levels

Theresolution of level n+1 should be half that of level n. If level nisnot
wholly divisible by two, then level n+1 should be rounded down as shown in
the following table.

Level and Resolution Comment
Level 0: 20105 by 20005 Base image. Divide by 2.
Level 1: 10052 by 10002 Rounded down 20005/2 to 10002
Level 2: 5026 by 5001 Divided Level 1 by 2.
Level 3: 2513 by 2500 Rounded down 5001/2 to 2500

Table 4-2: Rounding Down Resolutions of Image Pyramid Levels

Note
See “Zooming Tiled Images’ on page 143 for information on which IDLgrlmage
properties are typically set to take full advantage of an image pyramid, and for
information on how to calculate exactly how many image levels you need based on
the image and tile size.

Image Tiling Object Programming

Chapter 4: Working with Image Objects 139

Image Tiles

Tiling an image segments it into a number of smaller rectangular areas called tiles. If
you are using a JFJEG2000 image, thetile size is defined in theimage, and you should
use this value when creating the IDLgrImage object. If you are creating your own
image pyramid, which does not have an inherent tile size defined, it is recommended
that you accept the default tile size of the IDLgrimage object (1024 by 1024 pixels).

The size of the drawing area, thetile size, and theimage level al play apart in the
display of atiled image. With alarge, full-resolution image, only a portion of it
appearsin the view, so only a subset of the image tiles are displayed. In the following
figure, the full-resolution, level 0 image is shown on the left. Only two of the 1024 by
1024 tiles are loaded to support what is shown in the 800 by 800 pixel drawing area,

indicated by the dotted box.
3500
-4 >
1024 1024 1024 428
1750
1024 726
875
b B b I b I
	! I	
I ! I		
	:	:
L_____Jl L_____JI L_____JI
Level 0 Levell Level 2

Figure 4-21: Dotted Box Showing Size of Drawing Area and Visible Tiles

If you zoom out to a zoom level of 50% or less, IDL can show thelevel 1 image
(which is half the resolution of the level 0 image). Only asingletileisrequired to fill
the drawing area. If you reduce the zoom level by another 50%, the level 2 image can
be displayed, and the entire image is visible in the drawing area.

Object Programming Image Tiling

140 Chapter 4: Working with Image Objects

Adding Tiling to Your Application

Largeimage tiling results from the interaction between an DL grlmage object, an
IDLgrView object, and a destination object (IDLgrWindow, |DLgrClipboard,
IDLgrBuffer, or IDLgrPrinter). The destination and view objects are key in
determining what data the image object should contain. Each destination object has a
QueryRequiredTiles method that determines the visible data based on the view and
zoom level, and returns information about the visible image tiles. This information
and image data are then passed to the image object SetTileData method. Initially,
however, an image that supports tiling does not contain data.

To create an image that supports tiling, you must minimally set two |DLgrlmage
object properties:

e TILING = 1 enablestiling

e TILED_IMAGE_DIMENSIONS = [width, height] in pixelsisthe size of the
image
You can also define how tiles from image levels in an image pyramid are accessed
usingthe TILE_LEVEL_MODE mode property. Set it to 1 (automatic mode) to have
IDL automatically request the proper tile level based on the zoom level. Thisisuseful
when you have an image pyramid and want to use lower resolution images when
zooming out.

Note
You should not set TILE LEVEL _MODE to automatic unless you have an image
pyramid. Otherwise IDL will request non-existent |ower-resolution data.

Thedefault TILE_LEVEL MODE vaueis zero (manua mode), meaning your
application must specify which level should be used (where
TILE_CURRENT_LEVEL definesthat tile level). QueryRequiredTiles will always
request tiles at this level and the image will always render using thislevel. Thisis
useful if you will be panning the image without zooming. If your application does
allow zooming, it is best to create an image pyramid so that you can take advantage
of the memory savings afforded by displaying lower resolution images when the view
is zoomed out.

Even after you have set the necessary image properties that enable tiling, the image
still does not contain data. If you attempt to draw the image at this point, it will be the
color of the TILE_COLOR property. You must call the QueryRequiredTiles method
on the destination object (awindow, printer, buffer, or clipboard object) to determine
what portion of the image needs to be drawn.

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 141

Note
The following sections provide general information and code examples using tiling
elementsin IDL. For a complete, working example, see* Example: JPEG2000 Files
for Tiling” on page 150.

Querying Required Tiles

The QueryRequiredTiles method requires references to a view object and an image
object. It returns an array of structures (one for each required tile) that contains
information about the tile data needed to fill the view. Once thisinformation has been
passed to the IDLgrimage object SetTileData method, call the destination object’s
Draw method to display the tiled image data.

For example, suppose your application displays a region of alarge image (20,000 by
20,000 pixels at full resolution, where one image pixel maps to one screen pixel).
Your application window is 800 by 800 pixels, which means that only this much of
the imageisvisible at any one time. To enable tiling in thisinstance, create the
IDLgrwWindow object and then create the IDLgrlmage object that supportstiling as
follows:

oImage = OBJ_NEW('IDLgrImage', TILING=1, $

TILED_IMAGE_DIMENSIONS=[20000,20000], $
TILE_LEVEL_MODE=0)

Setting TILING=1 denotes thisimage will contain tile data, and
TILED_IMAGE_DIMENSIONS defines the size of the full resolution image. The
TILE_LEVEL_MODE=0 indicates manual level control (by default, the full
resolution, level 0 imageis always displayed). Not setting the TILE_DIMENSIONS
acceptsthe default tile size, 1024 by 1024 pixels.

Initialize the IDLgrView object so the lower-left corner of the image is displayed.
WherewindowbDims = [800, 8001, configure the viewplane rectangle as follows:
oView = OBJ_NEW('IDLgrView', VIEWPLANE RECT=[0,0,$
windowDims [0] ,windowDims[1]])
Create alDLgrModel object and add the image. After you add this model to the view,

you can call QueryRequiredTiles to determine which tiles are visible in the view and
need data as follows:

RegTiles = oWindow->QueryRequiredTiles (oView, oImage, $
COUNT=nTiles)

ReqTiles isannTiles element array of named structures describing the tiles
required. See “I1DLgrWindow::QueryRequiredTiles” (IDL Reference Guide) for
information on the fields in this structure. The destination objects that support tiling

Object Programming Adding Tiling to Your Application

142 Chapter 4: Working with Image Objects

share this method and named structure. Your application will need to iterate through
this array, extracting the tile data from the image data and passing it to
IDLgrImage::SetTileData.

For aTIFF image (largeimage. tif), you can usethe READ_TIFF routine’'s
SUB_RECT keyword to extract the tile data from the image as follows;

FOR 1 = 0, nTiles - 1 DO BEGIN
SubRect = [ReqgTiles[i].X, ReqgTiles[il].Y, S
RegTiles[i] .wWidth, ReqTiles[i] .Height]
TileData = READ_TIFF('largeimage.tif', SUB_RECT=SubRect)
TileData = BYTSCL(TileData, MIN=0, MAX=1024)
oImage->SetTileData, RegTiles[i], TileData
ENDFOR

For a JPEG2000 image (oJpP2Fi1e) with the same subRect variable as that defined
in the previous example, you can use the IDLffJPEG2000::GetData method’s
REGION keyword to extract the data as follows:

; Load the data.
TileData = oJP2File->GetData (REGION=SubRect)
oImage->SetTileData, RegTiles[i], TileData

When the destination object’s Draw method is called, the display will contain the
correct portion of the image since the data associated with the visible tiles has been
loaded.

Note
You do not need to pass only asingletile to SetTileData. You can pass arow of
tiles or load tiles without a prior call to QueryRequiredTiles (tile caching). See
“Preloading Tiles” on page 147 for details.

Panning Tiled Images

To pan an image, you can query and assign the tile data without regard for image
level as shown in the previous section, “Querying Required Tiles” on page 141.
Panning is accomplished by changing the x and y elements of the view object’s
VIEWPLANE_RECT property, where [X, y, width, height] describe the visible view
area. After changing the VIEWPLANE_RECT, call the window object’s
QueryRequiredTiles method to determine if new datais required. If so, load the data
as before. The following code shows an example of modifying the viewplane for
panning:

oView->GetProperty, VIEWPLANE_RECT=vp

; Panning. This is done by changing the position of the

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 143

; VIEWPLANE_RECT (vp) which is described by [x,y,width,height]
; where x and y are the lower-left corner. How far to move it
; 1s computed from the distance of the mouse from the center of
; the window (xDelta,yDelta) and the 'zoom factor',

(vp[2] / windowDims[0]), which is the viewplane
; width divided by the window x dimension. The farther
; the cursor is from the center of the window, the faster the
; vView pans.
factor = (vp[2] / windowDims[0])
vp[0] += xDelta * factor
vp[l] += yDelta * factor
(*pState) .oView->SetProperty, VIEWPLANE_RECT=vp

See “Example: JPEG2000 Files for Tiling” on page 150 for information on where to
locate the full tiling example.

Zooming Tiled Images

Aswith panning, you can use the view object’s VIEWPLANE_RECT to zoom (by
changing the width and height elements). However, care must be taken when
zooming out as many tiles of high-resolution data may need to be loaded, which
could exhaust the tile cache. It is best to enable zooming for very large images only
when you have an image pyramid of lower resolution images.

When you zoom out to view more of animage, multipleimage pixels are mapped to a
single pixel on the screen. When dealing with large tiled images, you can take
advantage of this situation by displaying a series of lower resolution images (an
image pyramid), which uses memory more efficiently. Thereis no need to use the full
resolution image. For example, say you have an image that is 20,000 by 20,000 pixels
and over 300 MB. Without an image pyramid, if you zoom out so that the entire
imageisvisiblein an 800 by 800 pixel view, the entire image (381 MB) will be
loaded into memory. While this might be possible, it isn't efficient. With an image
pyramid, you could easily display alower resolution image that fit the window size.
Thisimage would likely be lessthan one MB in size, would easily fit into memory,
and would still be of a sufficient resolution for identifying general areas of interest.

Note
Unless the image file format automatically includes an image pyramid (such as
JPEG2000 files), you will need to either create a JPEG2000 file that contains your
image data or create an image pyramid manually. See “Image Pyramids’ on
page 137 for details.

Object Programming Adding Tiling to Your Application

144 Chapter 4: Working with Image Objects

Thefollowing code shows how to modify the viewplane rectangle associated with the
view object to support zooming:

; Zooming. This is done by changing the position and dimensions
; of the VIEWPLANE_RECT (vp), is described by [x,y,width,height]
; where x and y are the lower-left corner. When zooming in, a
; smaller portion of the total image is displayed in the viewplane
; rectangle, which is reflected in smaller vp width and height
; values. The rectangle size is computed from:
; factor - the vp width divided by the window x dimension.
; delta - yDelta (the absolute vertical change from the

; center of the image times the factor. The

; further the mouse cursor is from the center,

; the faster the zoom.

; aspect - the window y dimension divided by the x dimension.
factor = (vp[2] / windowDims[0])
delta = yDelta * factor

aspect = float (windowDims[1]) / windowDims[0]
vp[0] += delta/2

vpl[l] += delta * aspect /2

vpl[2] -= delta

vp[3] -= delta * aspect

oView->SetProperty, VIEWPLANE_RECT=vp

zoom = windowDims[0] / vp[2]

See “Example: JPEG2000 Files for Tiling” on page 150 for information on where to
locate the full tiling example. See “Using Image LEVEL When Zooming” on
page 145 for information on how to request tile data based on zoom level.

Calculating the Number of Image Pyramid Levels

When you have an image pyramid, you will want to set the IDLgrimage
TILE_LEVEL_MODE property to 1 (automatic). Doing so causes
TILE_NUM_LEVELSto automatically calculate the number of levels needed unless
you set adifferent value. IDL requestslevelsupto TILE NUM_LEVELS- 1. This
property is based on the original (level 0) image size and the tile size such that the
lowest resolution image is just slightly smaller than the tile size. See
“TILE_NUM_LEVELS’ (IDL Reference Guide) for an example.

To figure out how many levels are needed, create an image object with dimensions
equal to the dimensions of your image, the tile mode to automatic, and tiling equal to
1. For example, for the 20,000 by 20,000 image, with the default tile size (1024 by
1024 pixels), create an image object as follows:

oImage = OBJ_NEW('IDLgrImage', $

TILED_IMAGE_DIMENSIONS=[20000,20000], $
TILING=1, TILE_LEVEL_MODE=1)

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 145

Here TILE_ LEVEL MODE isset to 1 (automatic) so the level requested by the
destination object’s QueryRequiredTiles method is calculated automatically from the
view information. Return the number of levels that are needed in an image pyramid
asfollows:

oImage->GetProperty, TILE_NUM LEVELS=nLevels

ThenLevels variable contains the number of levelsIDL will request. You will need
nLevels - 1 levelsinyour pyramid sincelevel O isthe full resolution image.

Using Image LEVEL When Zooming

In an application that has an image pyramid and supports zooming, you will use
information returned by QueryRequiredTilesto load different resolution image tiles.
Asin the basic query example (“ Querying Required Tiles” on page 141), create and
initialize the view so the lower-left corner of the image isinitially displayed:

oView = OBJ_NEW('IDLgrView',6 VIEWPLANE_RECT=[0, 0, 800, 800])

Again, create an IDLgrModel, and add the image. Once the model has been added to
the view (not shown), call QueryRequiredTiles to determine which tiles are visible
and need data.

RegTiles = oWindow->QueryRequiredTiles (oView, oImage, $
COUNT=nTiles)

Rather than reading from the original, full-resolution image, determine which image
to use based on the LEVEL field of the returned structure contained in ReqgTiles. If
you have created an image pyramid for TIFF images, consider using the following
naming scheme to return the correct resolution image based on the LEVEL field:

filenames = strarr(6)

filenames[0] = 'largeimage.tif' ; Full-resolution image
filenames[1l] = 'largeimagel.tif' ; Half-resolution image
filenames[2] = 'largeimage2.tif' ; Quarter-resolution image
filenames[3] = 'largeimage3.tif' ; Eighth-resolution image
filenames[4] = 'largeimaged.tif' ; 1/16-resolution image
filenames[5] = 'largeimage5.tif' ; 1/32-resolution image

You can then request the correct image level (1evel) and set tile data as follows:

FOR i = 0, nTiles - 1 DO BEGIN
SubRect = [ReqgTiles[i].X, ReqTiles[il].Y, S
RegTiles[i] .Width, ReqTiles[i] .Height]
level = ReqTiles[i].Level
TileData = READ _TIFF(filenames|[Level], SUB_RECT=SubRect)
TileData = BYTSCL(TileData, MIN=0, MAX=1024)
oImage->SetTileData, ReqTiles[i], TileData
ENDFOR

Object Programming Adding Tiling to Your Application

146 Chapter 4: Working with Image Objects

For a JPEG2000 image (ogP2File), you can use the IDLffJPEG2000::GetData
method's DISCARD_LEVELS keyword to return the correct image level asfollows:

FOR i = 0, nTiles - 1 DO BEGIN
SubRect = [ReqgTiles[i].x, ReqgTiles[i].y, $
RegTiles[i] .width, ReqTiles[i] .height]

; Convert to JPEG2000 canvas coords.
level = ReqTiles[i].level

Scale = ISHFT (1, level)

SubRect = SubRect * Scale

; Load the data.
TileData = oJP2File->GetData (REGION=SubRect, $
DISCARD_LEVELS=level, ORDER=1)
oImage->SetTileData, ReqTiles[i], TileData
ENDFOR

Animage that supports TILE_LEVEL MODE=1 (automatic) can be panned and
zoomed using VIEWPLANE_RECT and the above QueryRequiredTiles and
SetTileData combination. This determines tile visibility and loads the appropriate
data. Astheimageiszoomed out, lower resolution data will be automatically
requested to ensure physical memory does not run out.

Note
See “Example: JPEG2000 Files for Tiling” on page 150 for the complete
JPEG2000 tiling example.

Copying and Printing a Tiled Image

The IDLgrClipboard and IDLgrPrinter objects have a QueryRequiredTiles method
just like IDLgrWindow. Return the visible tiles using QueryRequiredTiles, set the
data on the image object, and use the Draw method of the printer or clipboard object
to output the portion of thetilesthat arevisiblein the view. Thisis all that isrequired
for aclipboard object. For a printer object, you need to take the view dimensionsinto
account when printing. The following code excerpt shows this for the object,
oPrinter:

; Set the dimensions of the view so the aspect ratio is
; correct when printed.

windowAspect = FLOAT (windowDims[0]) / windowDims[1])
oPrinter->GetProperty, DIMENSIONS = pageSize
pageSize[l] = pageSize[0] / windowAspect
oView->SetProperty, DIMENSIONS=pageSize

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 147

Call QueryRequiredTiles on the printer object and set the tile data using SetTileData
on the image object (as described in “Querying Required Tiles’ on page 141). Itis
then simple to print the output:

;...PRINT!...
oPrinter->Draw, oView, VECTOR=0
oPrinter->NewDocument
Note
Clipboard and printer vector output (VECTOR=1) is not supported for tiled images.

An examplein the IDL distribution provides working examples of copying and
printing atiled image. See “Example: JPEG2000 Filesfor Tiling” on page 150 for
information on where to locate the full tiling example.

Preloading Tiles

You can load more tiles of data than what are currently visiblein aview in acouple
of ways.

e Passarow of tile datato SetTileData based on aninitial query (see“Loading a
Row of Tiles’ on page 147 below)

* Passdatato SetTileData without a query (see “Caching Non-Visible Tiles” on
page 148)

Loading a Row of Tiles

SetTileData can accept more than asingle tile's worth of datain one call. In some
cases, it can be more efficient to read an entire row of tiles rather than extract single
tiles from that row. In general, raw binary image formats (such as TIFF) that are not
stored on disk in a blocked manner can be tiled more efficiently by passing rows of
data. Thefollowing code shows how to load entire scanlines at once when using these
image formats.

Asin the example shown in “ Querying Required Tiles’ on page 141, which creates
view and image objects, call the destination object’s QueryRequiredTiles method to
determine what tile dataisinitialy visible in the viewport as follows:

; Return structure information for visible tiles.
RegTiles = oWindow->QueryRequiredTiles (oView, oImage, $
COUNT=nTiles)

; While there are tiles, determine the width of the information to
; be requested by dividing the width of the original image by the
; current level.

WHILE (nTiles gt 0) DO BEGIN

Object Programming Adding Tiling to Your Application

148 Chapter 4: Working with Image Objects

TileInfo = ReqgTiles[0]
level = TileInfo.Level
width = imageDims[0] / (2 ~ level)

; Set the area to be read (equal to image width) to the SubRect
; variable.
SubRect = [0, TileInfo.Y, width, TileInfo.Height]

; Insert code here to read the tile data, passing SubRect to the
; correct data access procedure for your file type.

7

; Update the tile structure.
TileInfo.X = 0L
TileInfo.Width = width

; Set the row of tile data to the image.
oImage->SetTileData, TileInfo, TileData

RegTiles = oWindow->QueryRequiredTiles (oView, oImage, $
COUNT=nTiles)
ENDWHILE

SubRect is set such that the entire width of the imageis read at the requested level
for the given vertical position and height. The tile structure is updated to reflect the
fact that the information being passed to SetTileData starts at x=0 and is the entire
width of theimage. Notice that rather than iterate through the entire ReqTi les array
the code calls QueryRequiredTiles again after calling SetTileData since the
remaining tilesin the array can now be loaded.

Caching Non-Visible Tiles

You do not need to call QueryRequiredTiles before passing data to the SetTileData
method. The QueryRequiredTiles call just limits the requested data to those tiles that
arevisiblein the view. Setting tile data without first requesting it has a couple of
important uses. loading an entire level and predictive tile caching.

When an application starts, it can automatically load an entire level of low-resolution
tile data. If higher resolution datais requested but not currently available, the lower
resolution tiles are used. For example, if level 3 tile data has been loaded, but you
attempt to zoom in so that the level 0 datais needed, level 3 datawill continue to be
displayed until the higher resolution data can be loaded. Thisresultsin ablurred or
blocky version of theimage, which can still be used until the required level has been
loaded.

To load an entire level (assumed to be level 3, 2500 by 2500 pixelsin this example),
you first need to request that level of datafrom your image pyramid. How you access

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 149

this data depends on the file type. For example, if you have created a series of TIFF
files, access the image data using the file name:

TileData = READ_TIFF('largeimage3.tif')

If you have created a JPEG2000 image, access the image data using the GetData
method where level should be set to the level of data you want to return (e.g., 3):

TileData = oJP2File->GetData (DISCARD_ LEVELS=level)

Create atile structure that encompasses the entire level and pass the datato
SetTileData:

tile = { IDLIMAGETILE, X:0, Y:0, Width:2500, Height:2500, $
Level:3, Dest:oWindow }
oImage->SetTileData, tile, TileData

The second use for preloading tiles is predictivetile loading. For example, if the user
is panning right, but tiles to the right of the view that are not yet visible, these tiles
can be preloaded if there is any idle time. Then when the view reaches those tiles,
there will be no interruption as the tiles have already been loaded.

Object Programming Adding Tiling to Your Application

150 Chapter 4: Working with Image Objects

Example: JPEG2000 Files for Tiling

Thetiling example provided in the IDL distribution takes a 5000 by 5000 pixel JPEG
file containing an aerial photograph of Chicago’s O’ Hare International Airport and

creates a JPEG2000 file from the data. Thisfile type provides inherent support for
imagetiles.

Example Code
Seetilingjp2_doc.pro intheexamples/doc/objects subdirectory of the
IDL installation directory for the tiling application code. Run the example

procedure by entering tilingjp2_doc at the IDL command prompt or view the
fileinan IDL Editor window by entering .EDIT tilingjp2_doc.pro.

Note

Thefirst time you run this application, it generates the JPEG2000 file. This might
take a noticeable amount of time, depending on your system speed. However, once
the JPEG2000 image is created, this file will be used instead of being recreated.

Example: JPEG2000 Files for Tiling Object Programming

javascript:doIDL("tilingjp2_doc")
javascript:doIDL(".edit tilingjp2_doc.pro")

Chapter 4: Working with Image Objects 151

The following figure shows the O’ Hare image. When the application opens, the view
is positioned in the upper-left corner of the full-resolution image.

Figure 4-22: O’Hare Image

Object Programming Example: JPEG2000 Files for Tiling

152 Chapter 4: Working with Image Objects

Example: JPEG2000 Files for Tiling Object Programming

Chapter 5
Working with Plots and
Graphs

This chapter describes the use of contour, polygon, polyline, and plot objects to create plots and
graphs. The following topics are covered in this chapter:

Contour Objectso... 154 Symbol Objects 176
PlotObjects ..., 157 A PlottingRoutine 180
AxisObjects 161

Object Programming 153

154 Chapter 5: Working with Plots and Graphs

Contour Objects

Contour objects create a set of contour lines from data stored in arectangular array or
in a set of unstructured points. Contour objects can consist either of lines or of filled

regions.
Creating Contour Objects

To create a contour object, provide a vector or two-dimensional array containing the
values to be contoured to the IDLgrContour::Init method. For example, the following
statement creates a contour from atwo-dimensional array returned by the IDL DIST
function:

mycontour = OBJ_NEW ('IDLgrContour', DIST(20))

See“IDLgrContour” (IDL Reference Guide) for details on creating contour objects.

Using Contour Objects

Contour objects have a number of properties that determine how they are rendered.
See “IDLgrContour Properties” (IDL Reference Guide) for a complete listing. The
following code displays the contour object created above in the X-Y plane.

Note
In order to display the contour as on the plane (rather than as a three-dimensional

image), you must set the PLANAR property of the contour object equal to one and
explicitly set the GEOMZ property equal to zero.

mywindow = OBJ_NEW ('IDLgrWindow')

myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,19,19]1)

mymodel = OBJ_NEW('IDLgrModel')

data = DIST(20)

mycontour = OBJ_NEW('IDLgrContour', data, COLOR=[100,150,200], $
C_LINESTYLE=[0,2,4], /PLANAR, GEOMZ=0, C_VALUE=INDGEN(20))

myview->Add, mymodel

mymodel->Add, mycontour
mywindow->Draw, myview

Contour Objects Object Programming

Chapter 5: Working with Plots and Graphs 155

Thisresultsin the following figure.

Figure 5-1: Contour Object

Object Programming Contour Objects

156 Chapter 5: Working with Plots and Graphs

A more complex example using a contour object is shown in the contour demo. To
start the demos, type demo at the IDL command prompt. Both the terrain elevation
and vehicle tire data sets are displayed using the contour object.

Figure 5-2: Complex Contour Object

Contour Objects Object Programming

Chapter 5: Working with Plots and Graphs 157

Plot Objects

Plot objects maps a set of abscissa valuesto a set of ordinate values and creates a
polyline connecting the points. Note that plot objects do not automatically create axes
for the plot lines they create.

Creating Plot Objects

Create aplot line by providing a vector of Y values, and, optionally, a vector of X
values. If no X values are provided, the Y values are plotted against the element
indices of the Y vector.

The following statement creates a plot object plotting the values[2, 9, 4, 4, 6, 2, §]
against their own indices:

myplot = OBJ_NEW('IDLgrPlot', [2,9,4,4,6,2,8])
The following statements plot the same data versus a series of primes:

datay [2,9,4,4,6,2,8]
datax [0,1,2,5,7,11,13]
myplot = OBJ_NEW('IDLgrPlot', datax, datay)

See“IDLgrPlot” (IDL Reference Guide) for details on creating plot objects.

Using Plot Objects

9
1

Plot objects can be configured to draw regular X vs. Y, histogram, or polar plots. Set
the HISTOGRAM property to create a histogram plot, or the POLAR property to
create apolar plot. The following example uses the same data set to create a standard
plot, a histogram plot, and a standard plot using a boxcar filter. All three plots are
displayed in the same view.

mywindow = OBJ_NEW('IDLgrWindow')

myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[-10,-10,20,201])

mymodel = OBJ_NEW('IDLgrModel')

X
Y

(FINDGEN (21) / 10.0 - 1.0) * 10.0

[3.0, -2.0, 0.5, 4.5, 3.0, 9.5, 9.0, 4.0, 1.0, -8.0, s

-6.5, -7.0, -2.0, 5.0, -1.0, -2.0, -6.0, 3.0, 5.5, 2.5, -3.0]
myplotl = OBJ_NEW('IDLgrPlot', x, vy, COLOR=[120, 120, 120])
myplot2 = OBJ_NEW('IDLgrPlot', x, y, /HISTOGRAM, LINESTYLE=4)

y2 = SMOOTH(y, 5)

myplot3 = OBJ_NEW('IDLgrPlot', x, y2, LINESTYLE=2)

myview->Add, mymodel

Object Programming Plot Objects

158 Chapter 5: Working with Plots and Graphs

mymodel->Add, myplotl
mymodel->Add, myplot2
mymodel->Add, myplot3
mywindow->Draw, myview

A
I
SV
L
[
L N I A
: :;N! \‘\l :“\E A
(. \\ I T
b \ | N i -
/ \ I :]
) { ' ._1// I A
\p } I =N ! "
L 1h ':"J, I'\'T :\
. 1|
} \ 7 i)
) b
“ ﬂ A
[— +
C ?“L!'
A

Figure 5-3: Plot Object

Minimum and Maximum Values

You can control the minimum and maximum values of data plotted by a plot object.
Set the MAX_VALUE property of the plot object to disregard data values higher than
aspecified value. Set the MIN_VALUE property to disregard data values lower than
aspecified value. Floating-point Not-a-Number (NaN) values are also treated as
missing data and are not plotted.

For example, the following statement changes the minimum and maximum values of
the histogram plot, and re-draws the view object:

myplot2->SetProperty, MAX VALUE=8, MIN_VALUE=2
mywindow->Draw, myview

Plot Objects Object Programming

Chapter 5: Working with Plots and Graphs 159

Using Plotting Symbols

Set the SYMBOL property of aplot object equal to the object reference of a symbol
object to display that symbol at each data point. For example, to use atriangle symbol
at each data point, create the following symbol object, set the plot object’'s SY MBOL

property, and re-draw:

mySymbol = OBJ_NEW ('IDLgrSymbol',
myplotl->SetProperty, SYMBOL=mySymbol

mywindow->Draw, myview

5, SIZE=[.3,.31])

Figure 5-4: Plotting Symbols

Averaging Points
Use the NSUM property of the plot object to average the values of a group of data
points before plotting. If there are m data points, M/NSUM data points are plotted.

For example, the following statement causes IDL to average pairs of data points

when plotting the line for the histogram plot.

Plot Objects

Object Programming

160 Chapter 5: Working with Plots and Graphs

myplot2->SetProperty, NSUM=2
mywindow->Draw, myview

Polar Plots

To create apolar plot, provide a vector of radius values, avector of theta values, and
set the POLAR property to a nonzero value. The following example creates asimple
polar plot:

mywindow = OBJ_NEW ('IDLgrWindow')

myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[-100,-100,200,2001])
mymodel = OBJ_NEW('IDLgrModel')

r = FINDGEN(100)

theta = r/5

mypolarplot = OBJ_NEW('IDLgrPlot', r, theta, /POLAR)

myview->Add, mymodel

mymodel->Add, mypolarplot

mywindow->Draw, myview

Figure 5-5: Polar Plot

Plot Objects Object Programming

Chapter 5: Working with Plots and Graphs 161

Axis Objects

AXis objects provide a visual notation of data valuesin two- and three-dimensional
plots and graphs. Each axisis represented by an individual axis object; that is, if you
have aplotin X and Y, you will need to create an x-axis object and a y-axis object.

Note
AXis objects do not take their range values from data values or other objects, asyou
might expect if you are familiar with IDL Direct Graphics. Instead, axis objects
have a default range of 0.0 to 1.0; you must explicitly set the range of values
covered by the axis object using the RANGE property.

Creating Axis Objects

To create an axis object, specify an integer argument to the IDLgrAXxis::Init method
when calling OBJ_NEW. Specify 0 (zero) to create an x-axis object, 1 (one) to create
ay-axis object, or 2 to create a z-axis object:

xaxis
yvaxis
zaxis

OBJ_NEW (' IDLgrAxis', 0)
OBJ_NEW (' IDLgrAxis', 1)
OBJ_NEW (' IDLgrAxis', 2)

The various keywords to the Init method allow you to control the number of major
and minor ticks, thetick length and direction, the datarange, and other attributes. For
example, to create an x-axis object whose data range is between -5 and 5, with the
tick marks below the axis line, use the following command:

xaxis = OBJ_NEW('IDLgrAxis', 0, RANGE=[-5.0, 5.0], TICKDIR=1)
To suppress minor tick marks:
xaxis->SetProperty, MINOR=0

See“IDLgrAXis’ (IDL Reference Guide) for details on creating axis objects.

Object Programming Axis Objects

162

Axis Objects

Chapter 5: Working with Plots and Graphs

Using Axis Objects

Suppose you wish to create an X-Y plot of some data and wish to include both x- and
y-axes.

Example Code
Thefollowing example codeisincluded in a procedurefile named obj_axis.pro,
located in the examples/doc/objects subdirectory of the IDL distribution. Run
the example procedure by entering obj_axis at the IDL command prompt or view
thefilein an IDL Editor window by entering .EDIT obj_axis.pro.

First, we create some data to plot, the plot object, and the axis objects:

data = FINDGEN(100)

myplot = OBJ_NEW('IDLgrPlot', data)
xaxis OBJ_NEW ('IDLgrAxis', 0)
yvaxis OBJ_NEW ('IDLgrAxis', 1)

Next, we retrieve the datarange from the plot object and set the x- and y-axis objects
RANGE properly so that the axes will match the data when displayed:

myplot->GetProperty, XRANGE=xr, YRANGE=yr
xaxis->SetProperty, RANGE=xr
yvaxis->SetProperty, RANGE=yr

By default, major tickmarks are 0.2 data unitsin length. Since the datarangein this
example is 0 to 99, we set the tick length to 2% of the data range instead:

xtl 0.02 * (xr[l1l] - xxr[0])
vtl 0.02 * (yr[l] - yr[0])
xaxis->SetProperty, TICKLEN=xtl
yvaxis->SetProperty, TICKLEN=ytl

Create model and view objects to contain the object tree, and a window object to
display it:

mymodel = OBJ_NEW('IDLgrModel')

myview = OBJ_NEW ('IDLgrView')

mywindow = OBJ_NEW ('IDLgrWindow')

mymodel->Add, myplot

mymodel->Add, xaxis

mymodel->Add, yaxis

myview->Add, mymodel

Usethe SET_VIEW procedure to add an appropriate viewplane rectangle to the view
object. (See “Finding an Appropriate View Volume” on page 78 for information on
SET_VIEW).

SET_VIEW, myview, mywindow

Object Programming

javascript:doIDL("obj_axis")
javascript:doIDL(".edit obj_axis.pro")

Chapter 5: Working with Plots and Graphs 163

Now, display the plot:

mywindow->Draw, myview

100"

80

60

20 |

20

%0 20 40 60 80 100

Figure 5-6: Axis Object
Logarithmic Axes

Creating a plot of logarithmic datarequires that you create alogarithmic axis aswell.
The example referenced here first creates alinear plot, then takes alogarithm of the
same data and creates a log-linear plot.

Example Code
The example code for logarithmic axes is included in a procedure file named
obj_logaxis.pro, located in the examples/doc/objects subdirectory of the
IDL distribution. Run the example procedure by entering obj_logaxis at the IDL
command prompt or view thefilein an IDL Editor window by entering .EDIT
obj_logaxis.pro.

Object Programming Axis Objects

javascript:doIDL("obj_logaxis")
javascript:doIDL(".edit obj_logaxis.pro")
javascript:doIDL(".edit obj_logaxis.pro")

164 Chapter 5: Working with Plots and Graphs

When you run this example, notice that you need to position your mouse cursor at the

IDL command prompt and hit you Enter key to step through the program and arrive at
the following output.

1000

[] IIIII||

100

Logarithmic Y Axis

10 0 10 20 30 40 50
Linear X Axis

Figure 5-7: Logarithmic Axes

Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 165

Displaying Date/Time Data on Axis Objects

Dates and times are among the many types of information that numerical datacan
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data). For information on Julian dates and times, the Precision of
Date/Time data, and information on how to generate Date/Time data, see “Date/Time
Data’ (Chapter 13, Application Programming).

You can display date/time data on plots, contours, and surfaces through the tick
settings of the date/time axis. Date/time data can be displayed on any axis (x, y or z).
The date/time datais stored as Julian dates, but the LABEL_DATE routine and axis
keywords allow you to display this data as calendar dates. The following examples
show how to display one-dimensional and two-dimensional date/time data

» “Displaying Date/Time Dataon a Plot Display” below
« “Displaying Date/Time Data on a Contour Display” on page 170

Displaying Date/Time Data on a Plot Display

Date/time data usually comes from measuring data values at specific times. For
example, the displacement (in inches) of an object might be recorded at every second
for 37 seconds after the initial recording of 59 minutes and 30 seconds after 2 o'clock
pm (14 hundred hours) on the 30th day of March in the year 2000 as follows

number_samples = 37
date_time = TIMEGEN (number_samples, UNITS = 'Seconds', $
START = JULDAY (3, 30, 2000, 14, 59, 30))

displacement = SIN(10.*!DTOR*FINDGEN (number_samples))
Normally, this type of data would be imported into IDL from a data file. However,
this section is designed specifically to show how to display date/time data, not how to
import data from afile; therefore, the data for this example is created with the above
IDL commands.

Before displaying this one-dimensional datawith the IDLgrPlot object, the format of
the date/time values is specified through the LABEL_DATE routine:

date_label = LABEL_DATE (DATE_FORMAT = ['%I:%S'])

where %l represents minutes and %S represents seconds.

Object Programming Displaying Date/Time Data on Axis Objects

166

Chapter 5: Working with Plots and Graphs

Before applying the results from LABEL_DATE, we must first create (initialize) our

display objects:

oPlotWindow = OBJ_NEW ('IDLgrWindow',

DIMENSIONS = [800,

oPlotView = OBJ_NEW('IDLgrView',
oPlotModel = OBJ_NEW('IDLgrModel')
oPlot = OBJ_NEW('IDLgrPlot"',

/DOUBLE)

date_time,

$

displacement, $

The oPlotModel object will contain the IDLgrPlot and IDLgrAXxis objects. The
oPlotView object contains the oPlotModel object with the DOUBLE keyword. The
DOUBLE keyword is set for the oPlotView and oPlot objects because the date/time

datais made up of double-precision floating-point values.

Although the date/time part of the data will actually be contained and displayed
through the IDLgrAXxis object, the oPlot object is created first to provide a display

region for the axes:

oPlot->GetProperty, XRANGE

xs = NORM_COORD (xr)

xs[0] = xs[0] - 0.5
vs = NORM_COORD (yr)
ys[0] = ys[0] - 0.5

oPlot->SetProperty, XCOORD_CONV = Xs,

YCOORD_CONV = ys

The NORM_COORD routine is used to create a normalized (0 to 1) display
coordinate system. This coordinate system will also apply to the IDLgrAXxis objects:

; X-axis title.

oTextXAxis = OBJ_NEW('IDLgrText',

; X-axis (date/time axis).

oPlotXAxis = OBJ_NEW('IDLgrAxis',
XCOORD_CONV = xs, YCOORD_CONV = ys,

LOCATION = [xr[0],

TICKLEN = (0.02*(yr[1l]
TICKFORMAT = ['LABEL_DATE'],
TICKUNITS = ['Time'])

; Y-axis title.

oTextYAxis = OBJ_NEW('IDLgrText',

; Y-axis.

oPlotYAxis = OBJ_NEW('IDLgrAxis',

XCOORD_CONV = xs, YCOORD_CONV = ys,
TICKDIR = O,
- xr[0])))

LOCATION = [xr[O0],

TICKLEN = (0.02*(xr[1]

; Plot title.

oPlotText = OBJ_NEW('IDLgrText',
LOCATIONS = [(xr[0]
(yr[1] + (0.02*(yr[0]

Displaying Date/Time Data on Axis Objects

- yr[01)),
TICKINTERVAL

'Displacement

(seconds) ')

/EXACT, RANGE = xr, $
TITLE = oTextXAxis, $

$

(inches) ")

/EXACT, RANGE = yr, $
TITLE = oTextYAxis, $

'Measured Signal', $
+ xr[l])/2.,
+ yrl(l1)))1,

Object Programming

Chapter 5: Working with Plots and Graphs 167

XCOORD_CONV = xs, YCOORD_CONV = ys, $
ALIGNMENT = 0.5)

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the X-
axis as a date/time axis.

These objects are now added to the oPlotModel object and this model is added to the
oPlotView object:

oPlotModel->Add, oPlot
oPlotModel->Add, oPlotXAxis
oPlotModel->Add, oPlotYAxis
oPlotModel->Add, oPlotText
oPlotView->Add, oPlotModel

Now the oPlotView object, which contains all of these objects, can be viewed in the
oPlotWindow object:

oPlotWindow->Draw, oPlotView

The Draw method to the oPlotWindow object produces the following results:

Measured Signal

1.0

Displacement (inches)

PRI T T TR T S S A T NS R S N S S | P IR
5335 59:40 5345 59:50 59:55 00:00 00:05
Time (seconds)

Figure 5-8: Displaying Date/Time data with IDLgrPlot

The above display shows the progression of the date/time variable, but it does not
include all of the date/time data we generated with the TIMEGEN routine. This data
aso includes hour, month, day, and year information. IDL can display this
information with additional levels to the date/time axis. You can control the number
of levelsto draw and the units used at each level with the TICKUNITS keyword. You

Object Programming Displaying Date/Time Data on Axis Objects

168

Chapter 5: Working with Plots and Graphs

can specify the formatting for these levels by changing the DATE_FORMAT
keyword setting to the LABEL_DATE routine:

date_label = LABEL_DATE (DATE_FORMAT = $
['$I:%S', '$H', '%D %M, %Y'])
where %H represents hours, %D represents days, %M represents months, and %Y
represents years. Notice DATE_FORMAT is specified with a three-element vector.
Date/time data can be displayed on an axis with three levels. The format of these
levels are specified through this vector.

In this example, the first level (closest to the axis) will contain minute and second
values separated by a colon (%l :%S). The second level (just below thefirst level) will
contain the hour values (%H). The third level (the final level farthest from the axis)
will contain the day and month values separated by a space and year value separated
from the day and month values by a comma (%D %M, %Y). For more information,
see LABEL_DATE in the IDL Reference Guide.

Besides the above change to the LABEL _DATE routine, we must also change the
settings of the IDLgrAXxis properties to specify amultiple level axis:

oPlotXAxis->SetProperty, $
TICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
TICKUNITS = ['Time', 'Hour', 'Day']

Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 169

The TICKFORMAT is now set to a string array containing an element for each level
of the axis. The TICKUNITS keyword is set to note the unit of each level. These
property settings produce the following results:

Measured Signal

1.0

Displacement (inches)
=) =)
o 3

&
P

10l

PRI T T TR T S S A T NS R S N S S | P IR
59:35 59:40 59:45 59:50 59:55 00:00 00:05
15

Mar 30, 2000
Time (seconds)

Figure 5-9: Displaying Three Levels of Date/Time data with IDLgrPlot

Notice the three levels of the X-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

To maintain IDL's memory, the object references for oPlotView, oTextX Axis, and
oTextYAXis should be destroyed. Therefore, after the display is drawn, the
OBJ DESTROY routine should be called:

OBJ_DESTROY, [oPlotView, oTextXAxis, oTextYAxis]

The display will remain until closed, but the object references are now freed from
IDL’s memory.

Object Programming Displaying Date/Time Data on Axis Objects

170 Chapter 5: Working with Plots and Graphs

Displaying Date/Time Data on a Contour Display

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of asingle circle on a sphere recorded at every second for 37 seconds
after theinitial recording of 59 minutes and 30 seconds after 2 o’ clock pm (14
hundred hours) on the 30th day of March in the year 2000:

number_samples = 37

date_time = TIMEGEN (number_samples, UNITS = 'Seconds', $
START = JULDAY (3, 30, 2000, 14, 59, 30))

angle = 10.*FINDGEN (number_samples)

temperature = BYTSCL(SIN(10.*!DTOR* $
FINDGEN (number_samples)) # COS(!DTOR*angle))

Aswith the one-dimensional case, the format of the date/time valuesis specified
through the LABEL _DATE routine as follows:

date_label = LABEL_DATE (DATE_FORMAT = $
['$I:%S', 'SH', '%D %M, %Y'])

where %l represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

Thefirst level (closest to the axis) will contain minute and second values separated
by acolon (%Il :%S). The second level (just below the first level) will contain the hour
values(%H). The third level (the final level farthest from the axis) will contain the
day and month values separated by a space and year value separated from the day and
month values by a comma (%D %M, %Y).

Since the final contour display will befilled, we should define a color palette:

oContourPalette = OBJ_NEW('IDLgrPalette')
oContourPalette->LoadCT, 5

Asin the one-dimensional example, the display must be initialized:

oContourWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [800, 600])

oContourView = OBJ_NEW('IDLgrView', /DOUBLE)

oContourModel = OBJ_NEW ('IDLgrModel')

oContour = OBJ_NEW('IDLgrContour', temperature, $
GEOMX = angle, GEOMY = date_time, GEOMZ = 0., $
/PLANAR, /FILL, PALETTE = oContourPalette, $
/DOUBLE_GEOM, C_VALUE = BYTSCL(INDGEN(8)), $
C_COLOR = BYTSCL (INDGEN(8)))

; Applying contour lines over the original contour display.

oContourLines = OBJ_NEW('IDLgrContour', temperature, $
GEOMX = angle, GEOMY = date_time, GEOMZ = 0.001, $
/PLANAR, /DOUBLE_GEOM, C_VALUE = BYTSCL (INDGEN(8)))

Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 171

The oContourModel object will contain the IDLgrContour and IDLgrAXis objects.
The oContourView object contains the oContourModd with the DOUBLE keyword.
The DOUBLE and DOUBLE_GEOM keywords are set for the oContourView and
oContour objects because date/time data is made up of double-precision floating-
point values.

Although the date/time part of the data will actually be contained and displayed
through the IDLgrAXis object, the oContour object is created first to provide a
display region for the axes:

oContour->GetProperty, XRANGE = xr, YRANGE = yr, ZRange = zr
xs = NORM_COORD (xr)

xs[0] = xs[0] - 0.5
vs = NORM_COORD (yr)
ys[0] = ys[0] - 0.5

oContour->SetProperty, XCOORD_CONV = xs, YCOORD_CONV = ys
oContourLines->SetProperty, XCOORD_CONV = xXs, YCOORD_CONV = ys

The oContourLines object is created to display contour lines over the filled contours.
Note these lines have a GEOMZ difference of 0.001 from thefilled contours. This
differenceis provided to display the lines over the filled contours and not in the same
view plane. The NORM_COORD routine is used to create a normalized (0 to 1)
display coordinate system. This coordinate system will also apply to the IDLgrAXxis

objects:
; X-axis title.
oTextXAxis = OBJ_NEW('IDLgrText', 'Angle (degrees)')
; X-axis.

oContourXAxis = OBJ_NEW('IDLgrAxis', 0, /EXACT, RANGE = xr, $
XCOORD_CONV = xs, YCOORD_CONV vs, TITLE = oTextXAxis, $
0.001], TICKDIR = 0, S

LOCATION = [xr[0], yr[0], zr[O] +
TICKLEN = (0.02*(yr[1l] - yr[0])))
; Y-axis title.
oTextYAxis = OBJ_NEW('IDLgrText',6 'Time (seconds)')

; Y-axis (date/time axis).
oContourYAxis = OBJ_NEW('IDLgrAxis', 1, /EXACT, RANGE = yr, $
XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextYAxis, $

LOCATION = [xr[0], yr[0], zr[0] + 0.001], TICKDIR = 0, $
TICKLEN = (0.02*(xr[1l] - xr[0])), $

TICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
TICKUNITS = ['Time', 'Hour', 'Day']l, $

TICKLAYOUT = 2)
oContourText = OBJ_NEW('IDLgrText',6 $

'Measured Temperature (degrees Celsius)', $
LOCATIONS = [(xr[0] + xr[l])/2., $
(yr{ll + (0.02*(yr[0] + yr[11)))]l, $

XCOORD_CONV = xs, YCOORD_CONV = ys, $
ALIGNMENT = 0.5)

Object Programming Displaying Date/Time Data on Axis Objects

172

Chapter 5: Working with Plots and Graphs

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the Y-
axis as a date/time axis, which containsthree levels related to the formats presented
in the call to the LABEL_DATE routine. This example also contains the
TICKLAYOUT keyword. By default, this keyword is set to 0, which provides the
date/time layout shown in the plot example. In this example, TICKLAYOUT is set to
2, which rotates and boxes the tick labels.

These objects are now added to the oContourModel object and this model is added to
the oContourView object:

oContourModel->Add, oContour
oContourModel->Add, oContourLines
oContourModel->Add, oContourXAxis
oContourModel->Add, oContourYAxis
oContourModel->Add, oContourText
oContourView->Add, oContourModel

Now the oContourView object, which contains all of these objects, can be viewed in
the oContourWindow object:

oContourWindow->Draw, oContourView

The Draw method to oContourWindow produces the following results:

Measured Temperature (degrees Celsius)

o

15

Mar 30, 2000

Time (seconds)

(N

0 100 200 300
Angle {degrees)

Figure 5-10: Displaying Date/Time data with IDLgrContour

Notice the three levels of the Y-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 173

To maintain IDL's memory, the object references for oContourView,
oContourPalette, oTextX Axis, and oTextYAXis should be destroyed. Therefore, after
the display is drawn, the OBJ DESTROY routine should be called:

OBJ_DESTROY, [oContourView, oContourPalette, $
oTextXAxils, oTextYAxis]

The display will remain until closed, but the object references are now freed from
IDL's memory.

Object Programming Displaying Date/Time Data on Axis Objects

174 Chapter 5: Working with Plots and Graphs

Axis Titles and Tickmark Text

You can supply an axistitle for an axis by setting the TITLE property equal to the
object reference of an IDLgrText object. Text objects connected to axis objects via
the TITLE property are automatically centered under or next to the axis they belong
with.

Note
Titles and tickmark text inherit the color specified for the IDLgrAXis object itself,
even if the COLOR property is specified for the IDLgrText object specified, unless
the USE_TEXT_COLOR property for the axis is nonzero.

By default, major tick marks are labelled with the data values. You can supply a set of
tickmark text values by setting the TICKTEXT property equal to either asingle
instance of an IDLgrText object containing a vector of text strings or to a vector of
IDLgrText objects, each of which contains a single text string.

Note
Make sure that you have the same number of tick label strings as there are major
tick marks for the axis.

Reverse Axis Plotting

IDL aso allowsyou to plot datain Object Graphics by reversing the order of axistick
values. Thisis known as reverse axis plotting.

When using Object Graphics, each core object is a building block. Any number of
building blocks may be combined together in a hierarchical tree to create an overall
scene. Anindividual object is not aware of the other objects in the hierarchy;
therefore, the designer of the hierarchy must control all interactions between the
objects. For example, to properly display areverse axis plot in Object Graphics, the
designer must appropriately set the properties on the X axis, the Y axis, and the plot
line, each of which contribute to the overall displayed results.

Example Code
You can run this example by entering EX_REVERSE_PLOT at the IDL command
line. You can view the source for this example, ex_reverse_plot.pro, inthe
examples/doc/objects directory. Run the example procedure by entering
ex_reverse_plot at the |IDL command prompt or view thefilein an IDL Editor
window by entering .EDIT ex_reverse_plot.pro.

Axis Titles and Tickmark Text Object Programming

javascript:doIDL("ex_reverse_plot")
javascript:doIDL(".edit ex_reverse_plot.pro")

Chapter 5: Working with Plots and Graphs 175

The following figure demonstrates how you can reverse the order of axistick values
using Object Graphics.

40 |
60 |

80 |

902070 60 80 100

Figure 5-11: Reverse Axis Plotting Example

Object Programming Axis Titles and Tickmark Text

176 Chapter 5: Working with Plots and Graphs

Symbol Objects

Objects of the IDLgrSymbol class are used to display individual data points, either in
an IDLgrPlot object or an IDLgrPolyline object. You can create symbol objects that
display one of seven pre-defined symbols, any visualization object, or any model
object.

Creating Symbol Objects

Specify the type of symbol to use when you call the IDLgrSymbol::Init method.
To Use a Pre-defined Symbol
Specify one of the following values for the symbol type:

Plus sign (the default)
Asterisk
Period

Diamond

Triangle

Square
X

N ol B~ WO N|

For example, to create a symbol object using ared triangle for the symbol, use the
following statement:

mySymbol = OBJ_NEW('IDLgrSymbol', 5, COLOR=[255,0,0])
To Use a Graphic Object as a Symbol

You can use an visualization object or amodel object as a symbol. For best results,
create an object that fills the domain between —1 and 1 in all directions. For example,
the following statements create a polygon object in the shape of a pentagon and
define a symbol object to use the polygon:

pentagon=0BJ_NEW (' IDLgrPolygon', [-0.8,0.0,0.8,0.4,-0.4]1, $
[0.2,0.8,0.2,-0.8,-0.8], COLOR=[0,0,2551])
mySymbol = OBJ_NEW('IDLgrSymbol', pentagon)

Symbol Objects Object Programming

Chapter 5: Working with Plots and Graphs 177

Note that we create the pentagon to fit in the plane between —1 and 1 in both the X
and Y directions. We could also have created the pentagon to fit in a unit square and
then scaled it to fit the domain between —1 and 1.

For example:

pentagon=0BJ_NEW ('IDLgrPolygon', [0.1,0.5,0.9,0.7,0.3], S
[0.6,0.9,0.6,0.1,0.1], COLOR=[0,0,255])

symModel = OBJ_NEW ('IDLgrModel')

symModel->Add, pentagon

symModel->Scale, 2, 2, 1

symModel->Translate, -1, -1, 0

mySymbol = OBJ_NEW('IDLgrSymbol', symModel)

Note
We create the symbol object to use the model object rather than the polygon object.

Using amodel object as a symbol allows you to apply transformations to the
symbol even after it has been created.

Setting Size

By default, symbols extend one unit to each side of the data point they represent. Set
the SIZE property of the symbol object to a two-element vector that describes the
scaling factor in X and Y to apply to the symbol to change the size of the symbols that
are rendered. For example, to scale a symbol so that it extends one tenth of a unit to
each side of the data point, use the statement:

mySymbol->SetProperty, SIZE=[0.1, 0.1]
Setting Color

If you are using a pre-defined symbol, you can set its color using the COLOR
property of the symbol object. If you are using a graphic object as a symboal, the
symbol’s color is determined by the color of the graphic object and the setting of the
COLOR property of the symbol object itself isignored. For example, the following
statements create a symbol object that uses a red triangle:

mySymbol = OBJ_NEW('IDLgrSymbol', 5, COLOR=[255,0,0])

See“IDLgrSymbol” (IDL Reference Guide) for details on creating symbol objects.

Object Programming Symbol Objects

178

Chapter 5: Working with Plots and Graphs

Using Symbol Objects

To use asymbol, set the SYMBOL property of an IDLgrPlot or IDLgrPolyline object
equal to the symbol object reference:

myPlot->SetProperty, SYMBOL=mySymbol

Suppose you wish to create a symbol object using the pentagon we created above.
Suppose also that you wish to be able to use the pentagon code in more than one
instance, and would like to be able to make changes to the pentagon object’s color,
size, and orientation. You might create a procedure to define a pentagon object
contained in amodel object, and return the object references.

Example Code
Seefilepenta.pro, located in the examples/doc/objects subdirectory of the
IDL distribution to view the source code for this example. Run the example
procedure by entering penta at the IDL command prompt or view thefilein an
IDL Editor window by entering .EDIT penta.pro.

Once you have compiled the penta procedure, call it with the SYMBOL and MODEL
keywords set equal to named variables that will contain the object references of the
model and polygon objects:

PENTA, SYMBOL=sym, MODEL=symmodel
Next, create a symbol object using the pentagon:

mySymbol = OBJ_NEW('IDLgrSymbol', symmodel)
Now, create a plot object using the pentagon as the plot symbol:

myPlot = OBJ_NEW('IDLgrPlot', FINDGEN(10), SYMBOL=mySymbol)
Next, display the plot:

myView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,10,10]1)
myModel = OBJ_NEW ('IDLgrModel')

myView->Add, myModel

myModel->Add, myPlot

myWindow = OBJ_NEW ('IDLgrWindow')

myWindow->Draw, myView

Note that the plotting symbols are larger than you might wish. Try making them
smaller:

mySymbol->SetProperty, SIZE=[0.2,0.2]
myWindow->Draw, myView

Symbol Objects Object Programming

javascript:doIDL("penta")
javascript:doIDL(".edit penta.pro")

Chapter 5: Working with Plots and Graphs 179

Or, create the following procedure to spin the pentagons around the z-axis (enter
.RUN at the command prompt, followed by these statements):

PRO SPIN, model, view, window, steps

FOR i = 0, steps do begin
model->Rotate, [0,0,1]1, 10
window->Draw, view

END

END

After compiling the SPIN procedure, call it from the command line and watch the
pentagons spin:

SPIN, symmodel, myView, myWindow, 100

Whileit isunlikely that you will wish to create spinning plot symbols, this example
demonstrates one of the key advantages of IDL Object Graphics over IDL Direct
Graphics—once created, graphics objects can be easily manipulated in avariety of
ways without the need to recreate the entire graph or image after each change.

Object Programming Symbol Objects

180 Chapter 5: Working with Plots and Graphs

A Plotting Routine

This section devel ops a plotting routine that uses many of the object graphics features
discussed here and in previous chapters.

Example Code
The code for this exampleis contained in the file obj_plot.pro, located in the
examples/doc/objects subdirectory of the IDL distribution. Run the example
procedure by entering obj_plot at the DL command prompt or view thefilein an
IDL Editor window by entering .EDIT obj_plot.pro.

The OBJ_PLOT routine will create awindow object, and display withinit aview of a
single model object, which will contain a plot object, x- and y-axis objects, and an x-
axistitle object. It will use the Times Roman font for the axistitle.

In creating the procedure, we allow the user to specify the data to be plotted, and we
define keyword variables which can return the object references for the view, model,
window, axis, and plot objects. This allows the user to manipulate the object tree after
it has been created. We also specify the_ EXTRA keyword, which allows the user to
include other keyword parametersin the call. OBJ_PLOT itself passes any extra
keyword parameters only to the plot object, but a more complex program could pass
keyword parameters to any of the objects created. The following lines begin the
procedure.

Note
See “A Function for Coordinate Conversion” on page 81 for a discussion of the
NORM_COORD function used in this example. Also, SET_VIEW isdiscussed in
“Finding an Appropriate View Volume” on page 78. (Thefilesset_view.pro and
norm_coord.pro areincluded in the examples/doc/utilities subdirectory
of the IDL distribution. NORM_COORD is also defined in the obj_plot.pro
file)

Now, the OBJ_PLOT routine can be called with only the data parameter, if you
choose. For example, the statement

OBJ_PLOT, FINDGEN(10)

creates and displays the object hierarchy with asimple plot line. However, if you do
not retrieve the window, view, and other object references via the keywords, there is
no way you can interactively modify the plot.

A Plotting Routine Object Programming

javascript:doIDL("obj_plot")
javascript:doIDL(".edit obj_plot.pro")

Chapter 5: Working with Plots and Graphs 181

A better way to call OBJ PLOT would be:

OBJ_PLOT, FINDGEN(10), WINDOW=win, VIEW=view, PLOT=plot,
CONTAINER=cont

This statement creates the same object hierarchy, but returns the object references for
the window, view, and plot objectsin named variables. Having access the object
references alows you to do things like change the color of the plot:

plot->SetProperty, COLOR=[255,255,255]
window->Draw, view

enlarge the viewplane rectangle by 10 percent:

view->GetProperty, VIEWPLANE_RECT=vr
vr2 = [vr[0]-(vr[0]*0.1), vr[l]-(vr[1]1*0.1), $
vr[2]+(vr[2]1*%0.1), vr[2]+(vr[2]1*0.1)]
view->SetProperty, VIEWPLANE_RECT = vr2
window->Draw, view
or just cleanit up:
OBJ_DESTRQOY, cont

Note that when using the OBJ_DESTROQOY procedure, any object added to the
specified object (using the Add method) are also destroyed, recursively. We use a
container object to collect all of the objects, including attribute objects and text object
that are not explicitly added to the object tree, which allows you to destroy the entire
collection with asingle call to OBJ_DESTROY.

Improvements to the OBJ_PLOT Routine
A number of improvements to the OBJ_PLQOT routine are left as exercises for the
programmer:

» Provide error checking on the input arguments.

» Provide away to set properties of the axis and text objects when calling
obj_plot.

e Provideagraphical user interface to using IDL widgets.

* Do the object cleanup (destroying the objects created by obj_plot) when the
user isfinished with the routine. (Thisis easily accomplished if the routine has
awidget interface.)

* Provide away to retrieve data values once the data has been plotted, using the
mouse to select data points.

Object Programming A Plotting Routine

182 Chapter 5: Working with Plots and Graphs

A Plotting Routine Object Programming

Chapter 6
Working with Surface
Objects

This chapter describes the use of surface and light objects. The following topics are covered in this
chapter:

SurfaceObjects 184 AnInteractive Surface Example........ 189

Object Programming 183

184 Chapter 6: Working with Surface Objects

Surface Objects

Surface objects create a representation of functions of two variables. Surfaces are
presented as three-dimensional objectsin three-dimensional space, and thus are good
candidates for interactive rotation, and scaling. Examplesin this chapter discuss
interactive manipulation of surface objects.

Note
Also see “Mapping an Image onto Elevation Data” (Chapter 3, Image Processing in
IDL) for additional examples using the surface object.

Creating Surface Objects

To create a surface object, provide atwo-dimensional array of surface values (Z
values) to the IDLgrSurface::Init method. Optionally, you can supply two vectors or
arrays X and Y that specify the locationsin the XY plane of the Z values provided. If
X andY are not provided, the surface is generated as afunction of the array indices of
each element of the Z array.

For example, the following statements create a surface object from the two-
dimensional array created by the IDL command DIST, as a function of the Z data
array indices:

zdata = DIST(40)
mysurf = OBJ_NEW('IDLgrSurface', zdata)

Surface Objects Object Programming

Chapter 6: Working with Surface Objects 185

Figure 6-1: Surface Object

Similarly, if xdata and ydata are either 40-element vectors or 40x40 element arrays
specifying the X and Y values which, when evaluated by some function, result in the
zdata array, you would create the surface object with the following statement:

mysurf = OBJ_NEW('IDLgrSurface', =zdata, xdata, ydata)

See“IDLgrSurface” (IDL Reference Guide) for details on creating surface objects.

Using Surface Objects

Surface objects have numerous properties controlling how they are rendered. You
can set these properties when creating the surface object, or use the SetProperty
method to the surface object to change these properties after creation.

Style

Set the STY LE property to an integer value that controls how the surfaceis rendered.
Set the STY LE property equal to one of the following integer values:

0= Display asingle pixel for each data point.
1 = Display the surface as awire mesh. (Thisisthe default.)
2 = Display the surface as a solid.

Object Programming Surface Objects

186

Chapter 6: Working with Surface Objects

3 = Display the surface using only lines drawn parallel to the x-axis.

4 = Display the surface using only lines drawn parallel to the y-axis.

5 = Digplay awire mesh lego-type surface (similar to a histogram plot).
6 = Display a solid lego-type surface (similar to a histogram plot).

For example, the following statement changes the surface object to display the
surface as a wire mesh, with the lines drawn in blue:

mysurf->SetProperty, STYLE=1l, COLOR=[0,0,255]
The following statement draws the surface as a solid lego-type surface in green:

mysurf->SetProperty, STYLE=6, COLOR=[0,255,0]

Vertex Colors

You can supply avector of vertex colors viathe VERT_COL ORS property. The
colorsin the vector will be applied to each vertex in turn. If there are more vertices
than colors supplied for the VERT_COL ORS property, IDL will cycle through the
colors. For example, the following statements color each vertex and connecting line
one of four colors:

vcolors =[[0,100,200],[200,150,200], [150,200,2501, [250,0,1001]
mysurf->SetProperty, STYLE=1l, VERT_ COLORS=vcolors

Shading

IDL provides two types of shading for surfaces. In Flat shading, the color of the first
vertex in the surface is used to define the color for the entire surface. The color has a
constant intensity. In Gouraud shading, the colors along each line are interpol ated
between vertex colors, and then along scanlines from each of the edge intensities.

Note
By default, only ambient lighting is provided for surfaces. If you do not supply a
light source for your object hierarchy, solid surface objects will appear flat with
either Flat or Gouraud shading. See “Light Objects’ on page 233 for details on
creating and using light objects.

Set the SHADING property of the surface object equal to 0 (zero) to use flat shading
(thisisthe default), or equal to 1 (one) to use Gouraud shading. In the above example
using vertex colors, adding the following statement:

mysurf->SetProperty, STYLE=2, SHADING=1

Surface Objects Object Programming

Chapter 6: Working with Surface Objects 187

creates a surface in which the color values are interpol ated between the vertex colors.

Figure 6-2: Surface Object Shading

Skirts

You can draw a skirt around the bottom edge of your surface object by setting the
SHOW_SKIRT property of the surface object to 1. The skirt extends from the edge of
the surface to a Z value specified by the SKIRT property. For example, the following
statements draw the surface in wire mesh mode, with a skirt extending from the
bottom of the surface to the value z=0.1:

mysurf->SetProperty, STYLE=1l, /SHOW_SKIRT, SKIRT=0.1

Hidden Line Removal

Set the HIDDEN_LINES property to the surface object equal to one to remove lines
that are behind the visible parts of the surface from the rendering. By default, hidden
lines are drawn. The following statement alters the surface to remove the hidden
lines:

mysurf->SetProperty, /HIDDEN_LINES

Warning
Hidden line removal can be time-consuming.

Object Programming Surface Objects

188 Chapter 6: Working with Surface Objects

Figure 6-3: Surface Object Hidden Lines

Texture Mapping

You can map an image onto a surface object by specifying an 1pLgrImage object to
the TEXTURE_MAP property. The TEXTURE_COORD property defines how
individual data points within the image data are mapped to the surface’s vertices. If
the TEXTURE_COORD property is not specified, the surface object will map the
texture onto the entire data space (the region between 0.0 and 1.0 in normalized
coordinates). See Chapter 3, “Mapping an Image onto Geometry” (Image Processing
in IDL) for examples.

Surface Objects Object Programming

Chapter 6: Working with Surface Objects 189

An Interactive Surface Example

With alittle programming, we can create an application that allows the user to
display a surface object and transform its model tree interactively using the mouse.

Example Code
Example codeislocated in surf_track.pro inthe examples/doc/objects
subdirectory of the IDL distribution. Run the example procedure by entering
surf_track at theIDL command prompt or view thefilein an IDL Editor window
by entering .EDIT surf_track.pro.

This example uses IDL widgets to create a graphical user interface to an object tree.
The SURF_TRACK procedure creates a surface object from user-specified data (or
from default data, if none is specified), and places the surface object in an IDL draw
widget. The SURF_TRACK interface alows the user to specify several attributes of
the object hierarchy via pull-down menus. Finally, the SURF_TRACK procedure
uses the exampl e trackball object (see “Interactive 3D Transformations’ on page 95
for details) to allow the user to rotate the surface in three dimensions.

Call the SURF_TRACK procedure without an argument to use the default surface (a
Bessdl function) or with atwo-dimensional array as its argument:

; Make up some data:
zdata = DIST(40)
SURF_TRACK, zdata

Object Programming An Interactive Surface Example

javascript:doIDL("surf_track")
javascript:doIDL(".edit surf_track.pro")

190 Chapter 6: Working with Surface Objects

We encourage you to inspect the code in surf_track.pro for hints on how to
create awidget application around a draw widget that uses Object Graphics. Note
especially that the SURF_TRACK procedure is well-behaved when it exits,
destroying all of the objectsit creates so as not to tie up memory with leftover objects
for which object references are no longer available.

Figure 6-4: STYLE=3 (Ruled xz), HIDDEN_LINES=1 (hidden lines removed)

Figure 6-5: SHADING=1 (Gouraud), STYLE=2 (Solid)

An Interactive Surface Example Object Programming

Chapter 6: Working with Surface Objects 191

Figure 6-6: SKIRT=-0.402645

Object Programming An Interactive Surface Example

192 Chapter 6: Working with Surface Objects

An Interactive Surface Example Object Programming

Chapter 7
Creating Volume
Objects

This chapter describes the process of creating and displaying volume objects. The following topics
are covered in this chapter:

CreatingaVolume Object 194 Setting Volume Object Attributes.. 196

Object Programming 193

194 Chapter 7: Creating Volume Objects

Creating a Volume Object

A volume object contains athree dimensional data array of voxel values and a set of
rendering attributes. The voxel array is mapped to colors and opacity values through
a set of lookup tables in the volume object. Severa rendering methods are provided
to draw the volume to a destination.

To create a volume object, create athree dimensional array of voxels and pass them
to the IDLgrVolume::Init method. Voxel arrays must be of BY TE type. For example,
the following will create a simple volume data set and create a volume object which

usesit;
data = BYTARR(64,64,64, /NOZERO)
FOR i=0,63 DO datal*,i,0:1i] = i*2
data[5:15, 5:15, 5:55] = 128
data[45:55, 45:55, 5:15] = 255

myvolume = OBJ_NEW('IDLgrVolume', data)

The volume contains a shaded prism along with two brighter cubes (one located
within the prism).

See “IDLgrVolume’ (IDL Reference Guide) for details on creating volume objects.

Example Code
The example code discussed in the following sectionsis contained in the procedure
file obj_vol.pro, located in the examples/doc/objects subdirectory of the
IDL distribution. Run the example procedure by entering .EDIT obj_vol at the
IDL command prompt or view the filein an IDL Editor window by entering
obj_vol.pro. The procedure file stops after each operation (roughly
corresponding to each section below) and requests that you press return before
continuing.

Creating a Volume Object Object Programming

javascript:doIDL("obj_vol")
javascript:doIDL(".edit obj_vol.pro")

Chapter 7: Creating Volume Objects 195

Using Volume Objects

A volume object has spatial dimensions equal to the size of the dataiin the volume. In
the example, the volume object occupies the range 0-63 in the x-, y-, and z-axes. To
make the volume easier to manipulate, we use the XCOORD_CONYV,

Y COORD_CONV, and ZCOORD_CONYV properties of the volume abject to center
the volume at 0,0,0 and scaleit to fit in aunit cube.

Figure 7-1: Volume Object

Object Programming Creating a Volume Object

196 Chapter 7: Creating Volume Objects

Setting Volume Object Attributes

Volume objects have numerous properties controlling how they are rendered. These
properties can be set when the object is created or set using the SetProperty method.

Example Code
The example code discussed in the following sectionsis contained in the procedure
file obj_vol.pro, located in the examples/doc/objects subdirectory of the
IDL distribution. Run the example procedure by entering obj_vol at the IDL
command prompt or view the filein an IDL Editor window by entering .EDIT
obj_vol.pro. The procedure file stops after each operation (roughly
corresponding to each section below) and requests that you press return before
continuing.

Volume Opacity

The opacity table controls the transparency of a given voxel value. Manipulation of
the opacity table is critical to improving the quality of arendering. The following
figure reflect the sample code, which makes the prism transparent and the cubes
opaque, alowing the cube within the prism to be seen. Thisis done by setting the
OPACITY_TABLEO array to low values for the prism and high values for the cubes.

Setting Volume Object Attributes Object Programming

javascript:doIDL("obj_vol")
javascript:doIDL(".edit obj_vol.pro")
javascript:doIDL(".edit obj_vol.pro")

Chapter 7: Creating Volume Objects 197

Figure 7-2: Volume Object Opacity

Volume Color

Each voxel value can be assigned an individual color aswell. This color mapping can
be changed by changing the RGB_TABLEO property. To further highlight the cubes,
we change their colors to blue and red, as shown in the example code,
obj_vol.pro, located in the examples/doc/objects subdirectory of the IDL
distribution.

Volume Lighting

Adding lights enhances the edges of volumes. Gradients within the volume are used
to approximate a surface normal for each voxel, and the lightsin the current view are
then applied. The gradient shading is enabled by setting the LIGHTING_MODEL
property equal to one. The ambient volume color is selected by setting the
AMBIENT property of the volume object to a color value. Setting the TWO_SIDED
property allows both sides of avoxel to be lighted. See obj_vol.pro inthe
examples/doc/objects subdirectory of the IDL distribution for an example of
using alight source.

Object Programming Setting Volume Object Attributes

198 Chapter 7: Creating Volume Objects

Note
Only DIRECTIONAL light sources are honored by the volume object. Because
normals must be computed for all voxelsin alighted view, enabling light sources
increases the rendering time.

See “Light Objects’ on page 233 for more details on creating and using light objects.
Compositing

The volume object supports a number of methods for blending the projected voxels
together to form an image. By default, Alphablending is used. (In Alphablending,
each voxel occludes voxels behind it according to the opacity of the voxel in front).
Another common compositing technique is the maximum intensity projection (MIP).
Set the volume object to use MIP compositing by setting the
COMPOSITE_FUNCTION property equal to one as shown in obj_vol.pro,
located in the examples/doc/objects subdirectory of the IDL distribution. See
“IDLgrVolume Properties’ (IDL Reference Guide) for other options.

ZBuffering

When combining a volume with other geometry in the Object Graphics system,
volume objects should in general be drawn last to ensure they intersect the other
(solid) objects properly. To increase rendering speed, the intersection operation is
disabled by default. To enable the intersection calculations, set the ZBUFFER
property of the volume object equal to one.

Additionally, volume objects allow for control over the rendering of invisible
(opacity equals zero) voxels. By default, the zbuffer will be updated for such voxels
(even though no change is made in the image color). This writing to the zbuffer by
transparent voxels be disabled by setting the ZERO_OPACITY _SKIP property.

These properties are set near the beginning of the obj_vol.pro file, located in the
examples/doc/objects subdirectory of the IDL distribution.

Note
In volumes with large numbers of voxelswith their opacity set to zero, enabling
ZERO_OPACITY _SKIP can improve rendering performance.

Setting Volume Object Attributes Object Programming

Chapter 7: Creating Volume Objects 199

Interpolation

By default, when rendering a volume object, values between the voxels are estimated
using nearest neighbor sampling. When higher quality rendering is desired, trilinear
interpolation can be selected instead by setting the INTERPOL ATE property equal to
one.

myvolume->SetProperty, INTERPOLATE=1

Note
Trilinear interpolation will cause the rendering to take considerably longer than

nearest neighbor interpolation. See“Interpolation Methods” (Chapter 5, Using IDL)
for more information on interpolation.

Rendering speed

Rendering speed can be improved by reducing the quality of the rendering. Use the
RENDER_STEP property to control this speed/quality trade-off. The vaue of the
RENDER_STEP property specifies a step size in the screen dimensions which is
used to skip voxels during the rendering process. Larger values yield faster rendering
times, but lower final image quality. For example, to render only half as many voxels
in the screen Z dimension, use the following statement:

myvolume->SetProperty, RENDER_STEP=[1,1,2]

A more complex example using a volume object is shown in the volume visualization
demo. To start the demos, type demo at the IDL command prompt.

Figure 7-3: Volume Object Rendering

Object Programming Setting Volume Object Attributes

200 Chapter 7: Creating Volume Objects

Setting Volume Object Attributes Object Programming

Chapter 8

Polygon and Polyline

Objects

This chapter describes the use of polygon, polyline objects. The following topics are covered in

this chapter:

About Polygon and Polyline Objects 202
Polygon Objects. 204
Tessellator Objects 206
Pattern Objects 207

Object Programming

Polygon Optimization
PolylineObjects 214
Polygon and Polyline Object Examples .. 215

201

202 Chapter 8: Polygon and Polyline Objects

About Polygon and Polyline Objects

Polygon and Polyline objects are both defined by set of vertices that share rendering
attributes. This chapter introduces how to create and configure polygon and polyline
objects.

Creating Polygon and Polyline Objects

You can define the shape of a polygon or polyline object by either setting vertex data
directly (by passing a 2-by-n or a 3-by-n array to the DATA property), or by passing a
descriptive array to the IDLgrPolygon POLY GONS property or the IDLgrPolyline
POLY LINES property. This section describes the later method, which uses a
connectivity array to define the shape of an IDLgrPolygon or IDLgrPolyline object.

Note
The following description of the connectivity array applies to polygons and
polylines with the exception that for a polyline mesh, vertex data includes color, but
not normals or texture coordinates.

A polygon description is anumeric list of the form: [n, ig, iy, ..., in.1], wherenis the
number of vertices that define the polygon, and ig..i,..; are indices into a polygon
vertex list. For example, thelist [5, 0, 1, 2, 3, 4] describes a polygon with 5 vertices
comprised of thefirst 5 verticesin the vertex list.

The polygon description list, also known as a connectivity array, allows an individual
object to contain more than one polygon. The polygons can be independent and
distinct, sharing no vertices amongst the polygons. Alternatively, the connectivity
array can describe a mesh, where vertices are shared by a number of polygons,
usually triangles or quads, in the mesh. In the case of a mesh, the vertex information,
including normals, colors, and texture coordinates, is also shared by the polygons
composing the mesh. See “Polygon Mesh Optimization” on page 209 for more
information.

A polygon description list may contain “skipped” polygon descriptions by replacing
a description with zeroes. This may be more convenient than building a new array.
For example, if we have a polygon description list containing three triangles:

[3, 14, 90, 21, 3, 4, 5, 34, 3, 6, 1, 2]
we can skip drawing the middle triangle by setting the array to:
[3, 14, 90, 21, 0, 0, 0, 0, 3, 6, 1, 2]

About Polygon and Polyline Objects Object Programming

Chapter 8: Polygon and Polyline Objects 203

The same effect can be achieved by:
twoList = [threeList[0:3], threeList[8:111]]

A polygon description list can also be terminated early by putting a-1inthearray in
the position after the last polygon to be drawn.

[3, 14, %90, 21, 3, 4, 5, 34, -1, 6, 1, 2]

The-1 at index 8 effectively makesthisalist of two polygon descriptions. Entries
after the -1 are ignored.

See “Polygon Objects’ on page 204 and “ Polyline Objects’ on page 214 for more
information about configuring these object.

Object Programming About Polygon and Polyline Objects

204

Chapter 8: Polygon and Polyline Objects

Polygon Objects

Polygon objects represent one or more filled polygons that share a given set of
vertices and rendering attributes. All polygons must be simple (the edges of the
polygon should not intersect) and convex (the shape of the polygon should not have
any indentations). Concave polygons can be converted into convex polygons using
the helper object IDLgrTessellator. See “ Tessellator Objects’ on page 206 for more
on tessellator objects.

Creating Polygon Objects

To create a polygon abject, provide atwo- or three-dimensional array (or two or three
vectors) containing the locations of the polygon’s vertices to the IDLgrPolygon::Init

method. For example, the following statement creates a square with sides one unit in
length, with the lower |eft corner at the origin:

mypolygon = OBJ_NEW('IDLgrPolygon', [[0,0], [O0,1]1, [1,11, [1,011)

Setting vertex data upon initialization is the same as using the DATA property. You
can also use the POLY GONS property to define the object shape as described in
“Creating Polygon and Polyline Objects’ on page 202.

See “IDLgrPolygon” (IDL Reference Guide) for complete reference information.

Configuring Polygon Objects

Polygon objects have numerous properties controlling how they are rendered. You
can set these properties when creating the polygon object, or use the SetProperty
method to the polygon object to change these properties after creation.

Style

Set the STY LE property to an integer value that controls how the polygon isrendered.
Set the STY LE property equal to O (zero) to render only the vertices. The following
statement changes the polygon to display only the vertex points, in blue:

mypolygon->SetProperty, STYLE=0, COLOR=[0,0,255]

Set the STY LE property equal to 1 (one) to render the vertices and lines connecting
them. The following statement draws the polygon’s outline in green:

mypolygon->SetProperty, STYLE=1l, COLOR=[0,255,0,]

The default setting for the STY LE property is 2, which producesafilled polygon. The
following statement draws the filled polygon in red:

Polygon Objects Object Programming

Chapter 8: Polygon and Polyline Objects 205

mypolygon->SetProperty, STYLE=2, COLOR=[255,0,0]

Vertex Colors

You can supply avector of vertex colors viathe VERT_COL ORS property. The
colorsin the vector will be applied to each vertex in turn. If there are more vertices
than colors supplied for the VERT_COL ORS property, IDL will cycle through the
colors. For example, the following statements color each vertex and connecting line
one of four colors:

vcolors =[[0,100,200]1,[200,150,200],[150,200,250]1,[250,0,10011]
mypolygon->SetProperty, STYLE=1, VERT_COLORS=vcolors

Fill Patterns

Asdemonstrated in “Pattern Objects’ on page 207, you can fill a polygon with a
pattern contained in an IDLgrPattern object. Set the FILL_PATTERN property equal
to the object reference of the pattern object. If you have created a pattern object called
mypattern, the following statement uses that pattern as the polygon’sfill pattern:

mypolygon->SetProperty, STYLE=2, FILL_PATTERN=mypattern

Shading

IDL provides two types of shading for filled objects. In Flat shading, the color of the
first vertex in each polygon is used to define the color for the entire polygon. The
polygon color has a constant intensity. In Gouraud shading, the colors along each line
are interpolated between vertex colors, and then along scanlines from each of the
edge intensities.

Set the SHADING property of the polygon object equal to 0 (zero) to use flat shading
(thisisthe default), or equal to 1 (one) to use Gouraud shading. In the above example
using vertex colors, adding the following statement:

mypolygon->SetProperty, STYLE=2, SHADING=1
creates a polygon fill in which the color values are interpol ated between the vertex
colors.

Texture Mapping

You can map an image onto a polygon object by specifying an IDLgrlmage object to
the TEXTURE_MAP property. The TEXTURE_COORD property defines how
individua data points within the image data are mapped to the polygon’s vertices.
Note that you must specify both TEXTURE_MAP and TEXTURE_COORD to
enable texture mapping.

Object Programming Polygon Objects

206 Chapter 8: Polygon and Polyline Objects

Tessellator Objects

The IDLgrTessellator classis ahelper class that converts a simple concave polygon
(or asimple polygon with holes) into a number of simple convex polygons (general
triangles). A polygon issimpleif it includes no duplicate vertices, if the edges
intersect only at vertices, and exactly two edges meet at any vertex.

Tessellation is useful because the IDLgrPolygon object accepts only convex

polygons. Using the IDLgrTessellator object, you can convert a concave polygon into
agroup of convex polygons.

Creating Tessellator Objects

The IDLgrTessellator::Init method takes no arguments. Use the following statement
to create atessellator object:

myTess = OBJ_NEW ('IDLgrTessellator')

See “IDLgrTessellator” (IDL Reference Guide) for details on creating tessellator
objects.

Using Tessellator Objects

Theobj_tess.pro procedure creates a concave polygon, attemptsto draw it, and
then tessellates the polygon and re-draws. Finally, the procedure demonstrates adding
aholeto a polygon. (You will be prompted to press Return after each step is

displayed.) You can also inspect the source code in the obj_tess.pro file for hints
on using the tessdllator object.

Example Code
The procedure file obj_tess.pro, located in the examples/doc/objects
subdirectory of the IDL distribution, provides an example using the
IDLgrTessellator object. Run the exampl e procedure by entering obj_tess at the

IDL command prompt or view thefilein an IDL Editor window by entering . EDIT
obj_tess.pro.

Tessellator Objects Object Programming

javascript:doIDL("obj_vol")
javascript:doIDL(".edit obj_tess.pro")
javascript:doIDL(".edit obj_tess.pro")

Chapter 8: Polygon and Polyline Objects 207

Pattern Objects

Objects of the IDLgrPattern class are used to fill objects of the IDLgrPolygon class.
Pattern objects can create a solid fill (the default), alinefill (with control over the
orientation, spacing, and thickness of the lines used), or a pattern fill (using abyte
pattern you specify). Pattern objects do not have a color of their own; patterns take
their color from the COLOR property of the polygon they fill.

Creating Pattern Objects

Specify afill-pattern style when you call the IDLgrPattern::Init method. Set the
argument to the Init method equal to zero to create asolid fill, equal to oneto create a
line pattern, or equal to two to use abitmap byte array asthefill pattern. For example,
the following statement creates a pattern object with a solid fill:

myPattern = OBJ_NEW('IDLgrPattern', O0)

The following statement creates a pattern object with lines ten pixels apart, 5 pixels
wide, at an angle of 30 degrees:

myPattern = OBJ_NEW('IDLgrPattern', 1, SPACING=10, THICK=5, $
ORIENTATION=30)

To create a pattern fill, specify a 32-by-4 byte array viathe PATTERN property of
the pattern object. The byte array you specify will betiled over the area of the
polygon to befilled. For example, the following statements create a pattern fill with a
random speckle. The first statement creates a 32-by-4 byte array with random values
ranging between 0 and 255. The second statement creates the pattern object.

pattern = BYTE (RANDOMN (seed, 32, 4)*255)
myPattern = OBJ_NEW ('IDLgrPattern', 2, PATTERN=pattern)

See “IDLgrPattern” (IDL Reference Guide) for details on creating pattern objects.
Using Pattern Objects

To fill a polygon with the pattern specified by a pattern object, set the
FILL_PATTERN property equal to the pattern object reference:

myPolygon->SetProperty, FILL_PATTERN = myPattern

The following statements create a triangle and fills it with the random speckle
pattern:

pattern = BYTE (RANDOMN (seed, 32, 4)*255)
myPattern = OBJ_NEW ('IDLgrPattern', 2, PATTERN=pattern)
myView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,10,1017)

Object Programming Pattern Objects

208 Chapter 8: Polygon and Polyline Objects

myModel = OBJ_NEW ('IDLgrModel')

myPolygon = OBJ_NEW('IDLgrPolygon', [4, 7, 31, [8, 6, 31,$
color=[255,0,255], fill_pattern=myPattern)

myView->Add, myModel

myModel->Add, myPolygon

myWindow = OBJ_NEW ('IDLgrWindow')

myWindow->Draw, myView

Pattern Objects Object Programming

Chapter 8: Polygon and Polyline Objects 209

Polygon Optimization

Polygon object can be used in awide variety of graphic displays. Consider consulting
the following topics for information on improving the performance of polygon
creation and rendering:

e “Polygon Mesh Optimization” on page 209 — describes how to optimize
polygon meshes associated with a polygon through the POLY GON keyword

» “Back-face Culling” on page 212 — lets you skip rendering the unseen side of
closed polygons

* “Normal Computations’ on page 213 — uses normalsthat can be computed by
COMPUTE_MESH_NORMAL Sinstead of the expensive generation of
default normals each time a polygon is drawn

Polygon Mesh Optimization

IDL grPolygon objects consist of a set of vertices and, optionally—viathe

POLY GON keyword—a connectivity array describing how those vertices are to be
connected to form one or more polygons. Internally, IDL can identify three special
types of polygona meshes that may be represented very efficiently and therefore
displayed substantially faster than individually described polygons. These special
mesh types are characterized by repetitive patternsin the connectivity of the vertices.
In performance terms, it isto your advantage to utilize this optimization whenever
possible by appropriately preparing the connectivity list according to the rules
described for the corresponding type of mesh. The special mesh types are as follows:

e “Quad Strips’ on page 210
e “Triangle Fans’ on page 211
e “Triangle Strips’ on page 211

Object Programming Polygon Optimization

210 Chapter 8: Polygon and Polyline Objects

Quad Strips

A quad strip is a connected set of four-sided polygons. To take advantage of
accelerated quad strips, the connectivity should be set up so that the first and last
vertex for one quad are the same as the second and third of the previous quad. Seethe

figure below.
0 1 2 3
4 5 6 7
8 9 10 11

Figure 8-1: Quad Strip Mesh

For example, to use a quad strip optimization for the polygons shown above, the
connectivity for the vertices should be as follows:

verts = [v0, vl1, v2, v3, v4, v5, v6, v7, v8, v9, v10 ,vl1l]
oPoly = OBJ_NEW(IDLgrPolygon, verts, $
POLYGON=[4, 0, 1, 5, 4, $
4, 1, 2 ,6, 5, $
4, 2, 3, 7, 6, $
4, 4, 5, 9, 8, $
4, 5, 6, 10, 9, $
4, 6, 7, 11, 101)

An dternate connectivity list that still uses quad strip optimization can also be used
as in the following example, which orients each quad in the opposite direction of the

first example.
oPoly = OBJ_NEW ('IDLgrPolygon', verts, $
POLYGON=[4, 4, 5, 1, 0, S
4, 5, 6, 2, 1, S
4, 6, 7, 3, 2, $
4, 8, 9, 5, 4, $
4, 9, 10, 6, 5,$
4, 10, 11, 7, 61)

Polygon Optimization Object Programming

Chapter 8: Polygon and Polyline Objects 211

Triangle Fans

A trianglefan isaset of connected triangles that all share acommon vertex. To take
advantage of accelerated triangle fans, the connectivity should be set up so that the
first vertex in every triangle is the common vertex, and the second vertex isthe same
asthe last vertex of the previous triangle, as shown below.

Figure 8-2: Triangle Fan Mesh (left) and Triangle Strip Mesh (right)

For example, to use atriangle fan optimization for the polygons shown in the left side
of the figure, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5]
oPoly = OBJ_NEW (IDLgrPolygon, verts, $
POLYGON=[3, 0, 1, 2, $
3, 0, 2, 3, S
3, 0, 3, 4, s
3, 0, 4, 5])

Triangle Strips

A triangle strip is a set of connected triangles, each of which share two vertices with
the previoustriangle. To take advantage of accelerated triangle strips, the
connectivity should be set up so that the first two verticesin every triangle must have
been in the previous triangle and ordered in the same direction (counter-clockwise or
clockwise) and the final vertex must be new, as shown in the right side of the
previous figure.

Object Programming Polygon Optimization

212

Chapter 8: Polygon and Polyline Objects

For example, to use the triangle strip optimization for the polygons shown in the
right-hand figure, the connectivity for the vertices should be as follows:

verts = [v0, vl1, v2, v3, v4, v5]
oPoly = OBJ_NEW(IDLgrPolygon, verts, $
POLYGON=[3, 0, 1, 2, $
3, 2,1, 3, s
3, 2, 3, 4, s
3, 4, 3, 51)

No limits are imposed on the number of meshes or types of meshes within any given
polygon object. A single POLY GON keyword value might contain any combination
of quad strips, triangle strips, triangle fans, or non-specialized polygons.

Asthe length of the strips or fans grows, and as the percentage of vertex connections
that are optimized by the rules described above increases, the performance upgrade
becomes more perceptible. The optimizations are aresult of minimizing the time
required to perform vertex transforms. If the drawing of the polygons are otherwise
limited by fill-rate (as might occur on some systems if texture-mapping is being
applied, for instance), these optimizations may not be of significant benefit. In any
case, performance will not be hindered in any way by utilizing these specialized
meshes, so it is suggested that they be applied whenever possible.

Note
The IDLgrSurface object always takes advantage of the quad mesh optimization
automatically without programmer intervention.

Back-face Culling

For polygonal meshes that describe a closed shape (for example, a sphere), it is often
wasteful to spend any time rendering the polygons whose normal vector faces away
from the eye because it is known that the polygons whose normal s face toward the
eye will obscure those back-facing polygons. Therefore, for efficiency, it may be
beneficial to employ back-face culling, which is simply the process of choosing to
skip the rasterization of any polygons whose normal vector faces away from the eye.

On an IDLgrPolygon object, set the REJECT property to avalue of 1 to enable
back-face culling.

Polygon Optimization Object Programming

Chapter 8: Polygon and Polyline Objects 213

Normal Computations

For IDLgrPolygon objects, normal vectors are computed by default at each vertex by
averaging the normals of the polygons that share that vertex. These normals are then
used to compute illumination intensities across the surface of the polygon.
Computing default normals is a computationally expensive operation. Each time the
polygon is drawn, this computation will be repeated if the polygon has changed
significantly enough to warrant anew internal cache (for example, if the
connectivity, vertices, shading, or style have changed). In some cases, the normals do
not actually change as other modifications are made. In these cases, the expense of
default normal computation can be bypassed if the user provides the normals
explicitly (viathe NORMALS keyword). These normals can be computed by using
the COMPUTE_MESH _NORMALS routine in the IDL Reference Guide. The
resulting normals, if passed in viathe NORMALS keyword of the IDLgrPolygon
object, will be reused every time the polygon is drawn (without further computation)
until they are replaced explicitly by the user.

Object Programming Polygon Optimization

214 Chapter 8: Polygon and Polyline Objects

Polyline Objects

Polyline objects lines connect a series of pointsin two- or three-dimensional space.
Creating Polyline Objects

To create a polyline object, provide a2-by-n or 3-by-n array (or two or three vectors)
containing the locations of the polyline's constituent pointsto the IDLgrPolyline::Init
method. For example, the following statement creates aline from the origin, to the
point X=1,Y =2, thentothepoint X=4,Y=3:

mypolyline = OBJ_NEW('IDLgrPolyline', [[0,0]1, [1,2], [4,311)

Setting vertex data upon initialization is the same as using the DATA property. You
can also use the POLY LINES property to define the object shape as described in
“Creating Polygon and Polyline Objects’ on page 202.

See “IDLgrPolyling” (IDL Reference Guide) for complete reference information.
Using Polyline Objects

Polyline objects have numerous properties controlling how they are rendered. You
can set these properties when creating the polyline object, or use the SetProperty
method to the polyline object to change these properties after creation.

Symbols

You can specify asymbol to render at each point in the polyling's path by setting the
SYMBOL property to the object reference of an IDLgrSymbol object (or to an array
of IDLgrSymbol objects). See“ Symbol Objects’ on page 176 for details.

Shading and Vertex Coloring

Polyline object can be shaded or their vertex points colored in the same manner as
polygon objects. See “ Shading” and “Vertex Colors” in “ Configuring Polygon
Objects’ on page 204 for details.

Polyline Objects Object Programming

Chapter 8: Polygon and Polyline Objects 215

Polygon and Polyline Object Examples

These abjects can be used as underlying structures for other objects (such as when
texture-mapping an image onto a polygon), or can create an independent
3-dimensional visualization of data as shown in the following examples:

e “Mapping an Image Object onto a Sphere” on page 132
e “Creating a Surface Mesh of an ROl Group” (Image Processing in IDL)

Polylines and polygons can also be used in plotting to represent plot data or support
the display of plot data as shown in the following examples:

 “DENDROGRAM" (IDL Reference Guide) contains an example that uses an
IDLgrPolyline

e “Custom Image Object Annotations’ on page 236 uses polylines and polygons
to construct a custom legend col orbar

Object Programming Polygon and Polyline Object Examples

216 Chapter 8: Polygon and Polyline Objects

Polygon and Polyline Object Examples Object Programming

Chapter 9

Annotating an Object

Display

The following topics are covered in this chapter:

Annotating Object Graphic Displays. 218
TextObjectso viii i 219
FontObjects.coivunt.. 223
ROIObjectscoiin. 227

Object Programming

LegendObjects..................... 228
Colorbar Objects 231
LightObjects 233
Custom Image Object Annotations 236

217

218 Chapter 9: Annotating an Object Display
Annotating Object Graphic Displays

Additional objects can be added to the main subjects of an object graphic display
(such as a plot, surface, image or volume) to provide explanatory notes or otherwise
enhance the information displayed. The objects discussed in this chapter are typically
used to further illustrate characteristics of the main subjects of a display. For
example, text objects can add descriptive titles, legend objects can distinguish plot
data, and light objects can reveal characteristics of surfaces or volumes.

Annotating Object Graphic Displays Object Programming

Chapter 9: Annotating an Object Display 219

Text Objects

Text objects contain string values that are drawn to the destination object at alocation
you specify. You have control over the font used (viaan IDLgrFont object), the angle
of the text basaline, and the vertical direction of the text.

Creating Text Objects

To create atext object, specify astring or an array of stringsto the IDLgrText::Init
method when calling OBJ_NEW.

mytext = OBJ_NEW('IDLgrText', 'A Text String')
or

mytextarr = OBJ_NEW('IDLgrText', $
['First String', 'Second String', 'Third String'])

See“IDLgrText” (IDL Reference Guide) for details on creating text objects.

Using Text Objects

Creating text annotations in their simplest form—two-dimensional text displayed at a
given location—involves only specifying the text, and the location. For example, to
display the words Text String in awindow in the default font, the following
statements suffice:

mywindow = OBJ_NEW ('IDLgrWindow', DIMENSIONS=[400,400])

myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,10,1017)

mymodel = OBJ_NEW ('IDLgrModel')

mytext = OBJ_NEW('IDLgrText',6 'Text String', LOCATION=[4,4], $
COLOR=[50,100,150])

myview->Add, mymodel

mymodel->Add, mytext

mywindow->Draw, myview

Thetext is drawn at the specified location, with the baseline parallel to the x-axis.
Location and Alignment

Specifying a location via the LOCATION property picks a point in space where the
text object will be placed. By default, text objects are aligned with their lower |eft
edge located at the point specified by the LOCATION property.

You can change the horizontal position of the text object with respect to the point
specified by LOCATION by changing the ALIGNMENT property to afloating-point

Object Programming Text Objects

220

Text Objects

Chapter 9: Annotating an Object Display

value between 0.0 and 1.0. The default value (0.0) aligns and left-justifies text at the
location specified. Setting ALIGNMENT to 1.0 right-justifies the text; setting it to
0.5 centers the text above the point specified. The vertical position with respect to
location can aso be set using the VERTICAL_ALIGNMENT property. The default
value (0.0) bottom-justifies the text at the given location. A vertical alignment of 1.0
top-justifies the text.

3D Text and Text “On the Glass”

Text objects, like all graphics atoms, are located and oriented in three-dimensional
space. (We often ignore the third dimension when making simple plots and graphs—
in these cases we simply use the default z value of zero.) With text objects, however,
thereis an option to project text on the glass.

Projecting text on the glass ensures that it is displayed asif it were in flat, two-
dimensional space no matter what its true orientation in three-dimensional space may
be. In cases where text objects may be rotated at arbitrary angles, projecting on the
glass ensures that the text will be readable.

To project text on the glass, set the ONGLASS property of the text object to avalue
other than zero.

rOj eCted D T

ONGLASS Text

Figure 9-1: 3D Text and Text “On the Glass”

Object Programming

Chapter 9: Annotating an Object Display 221

Baseline

Thetext baseline can be altered from its default orientation (parallel to the x-axis) by
setting the text object’'s BASELINE property to atwo- or three-element array. The
new baseline will be oriented parallel to aline drawn between the origin and the
coordinates specified. For example, the following statement makes the text baseline
paralel to aline drawn between the points [0, O] and [1, 2]:

mytext->SetProperty, BASELINE=[1,2]

@
S

@
&
>
9
S
9

o

§
N
K
g

Figure 9-2: Baseline

The following statement makes the baseline parallel to aline drawn between the
origin and a point located at [2, 1, 3]:
mytext->SetProperty, BASELINE=[2,1,3]

Notice that the orientation of the baseline is only an orientation; changing value of
the BASEL INE property does not change the location of the text object.

Object Programming Text Objects

222 Chapter 9: Annotating an Object Display

Upward Direction

In addition to the baseline orientation, you can control the upward direction of the
text object. (The upward direction is the direction defined by a vector pointing from
the origin to the point specified.) The upward direction defines the plane on which
text is drawn; by specifying a baseline and an upward direction, you define the plane.

Note
The upward direction does not specify aslant angle. That is, even if you specify a
direction that is not perpendicular to the baseline for the upward direction, the text
will still be perpendicular to the baseline. All that mattersis the plane defined by the
baseline and upward direction.

For example, in the default situation, the baselineis oriented parallel to the x-axis,
and the upward direction is parallel to the y-axis, pointing in the positive y direction.

Warning
If the baseline and upward direction are coincident—that is, if they do not define a
plane on which to draw the text—IDL generates an error message.

Fonts

The type style and size of the characters displayed in atext object are controlled by
the FONT property. Set the FONT property equal to the object reference of an
IDLgrFont object to use that font’s properties for the text object. If no font object is
specified, IDL uses the default font (12 point Helvetica regular).

Font objects are discussed in “Font Objects’ on page 223.
A Text Example

The rot_text.pro example creates asimpletext string, rotatesit around the y- and
z-axes using the BASEL INE and UPDIR properties, and displays severd different
fonts. Also see“ Object Graphics Embedded Formatting Examples’ on page 225.

Example Code
The procedure rot_text .pro isincluded in the examples/doc/objects
subdirectory of the IDL distribution. Run the example procedure by entering
rot_text at the DL command prompt or view thefilein an IDL Editor window
by entering .EDIT rot_text.pro.

Text Objects Object Programming

javascript:doIDL("rot_text")
javascript:doIDL(".edit rot_text.pro")

Chapter 9: Annotating an Object Display 223

Font Objects

Font objects allow you to specify the type style and size used when rendering objects
of the IDLgrText class. You can use either TrueType outline fonts or IDL's built-in
Hershey vector fonts. IDL’s default font is 12 point Helvetica regular.

Each destination object includes a GetFontnames method, which returnsthe list of
available fonts that can be used in IDLgrFont objects. This method will only return
the names of the available TrueType fonts. Hershey vector fonts will not be returned
as they are constant—see Appendix H, “Fonts” (IDL Reference Guide) for more
information. To return all of the TrueType fonts that can be displayed in awindow
object (owindow), use the following code:

fontname=oWindow->GetFontnames ("*")

PRINT, fontname
See the destination object’s GetFontnames method for information on how to return
fonts that match specific characteristics.

TrueType Fonts

IDL provides five TrueType outline fonts for use in font objects: Courier, Helvetica,
Monospace Symbol, Symbol, and Times. Your system may support additional
TrueType fonts —use them in the same way as those supplied by IDL.

A string containing the font name and modifiers defines the characteristics of afont
object, as described in “ Creating Font Objects’ on page 224. The TrueType fonts
provided by IDL support the following modifiers:

Font Modifier
Courier bold, italic
Helvetica bold, italic
M onospace Symbol none
Symbol none
Times bold, italic

Table 9-1: TrueType Font Modifiers

Object Programming Font Objects

224

Font Objects

Chapter 9: Annotating an Object Display

Hershey Fonts

IDL supplies a set of vector fonts designed by Dr. A.J. Hershey. See “About Hershey
Vector Fonts” (Appendix H, IDL Reference Guide) for information on Hershey fonts.

Creating Font Objects

Fonts used by font objects are specified in a string constant constructed from afont
name and one or more optional modifiers. When you create a font object, assign the
font name string to the NAME property or useit asthe IDLgrFont::Init Fontname
argument. See the following sections for an introduction to creating and configuring
font objects. See“IDLgrFont” (IDL Reference Guide) for all available options when
creating font objects.

Specifying a TrueType Font

Thefont name isthe name by which your computer system knows the font (Times for
the Times Roman font, for example). Modifiers specify the weight, angle, and other
attributes of the font (bold specifies aweight, italic an angle). The font name string
looks like this:

' fontname*weight*angle*other_modifiers'

where other_modifiers can be any other font property supported by a given font, such
asasdlant. For example, the font name string for Helvetica bold italicis:

'helvetica*bold*italic"
The font name string for Times Roman Regular is:
"times'

While the font name must come first in the font name string, the order in which the
modifiers are specified is not important. The following statement creates afont object
using a bold version of the Times Roman font, with a size of 20 points by replacing
the Fontname argument with ' times*bold":

myFont = OBJ_NEW ('IDLgrFont', 'times*bold', SIZE=20)

See “TrueType Fonts” on page 223 for alist of supported modifiers.

Specifying a Hershey Vector Font

To create afont object using a vector Hershey font, use a string of the format
Hershey* fontnum Where fontnum isthe Hershey font’s index number. The
following statement creates afont object using the Duplex Roman Hershey font, with
asize of 14 points:

Object Programming

Chapter 9: Annotating an Object Display 225

myHersheyFont = OBJ_NEW('IDLgrFont', NAME='hershey*5', SIZE=14)

See “Hershey Vector Font Samples’ (Appendix H, IDL Reference Guide) for
descriptions of the Hershey fonts shipped with IDL.

Assigning a Font Object to a Text Object

To use afont object, use the FONT keyword to the IDLgrText::Init method (or
change the text object’s font via the SetProperty method):

myText = OBJ_NEW('IDLgrText', 'Ay, Carumba', FONT = myFont)
or

myText->SetProperty, STRING='Angstrom symbol: ' + STRING("305B), $
FONT=myHersheyFont

This last example prints the Angstrom symbol by specifying an octal code. See “1SO
Latin 1 Encoding” (Appendix H, IDL Reference Guide) for details.

If no font object is specified, IDL uses the default font—212 point Helvetica.
Object Graphics Embedded Formatting Examples

Embedded formatting commands are in-line commands that allow you to position

text and change fonts within a single line of text. The following examples use both

the positioning commands and the font selection commands. All avail able embedded

formatting commands are listed in “ Embedded Formatting Commands” (Appendix

H, IDL Reference Guide).

Tip
Set the ENABLE_FORMATTING property on the IDLgrText object to use
formatting commands in Object Graphics.

For example, the following lines of code produce the same output as the Direct
Graphics example output shown in “Formatting Command Examples’ (Appendix H,
IDL Reference Guide). This example applies embedded formatting commands that
control text positioning.

oText = OBJ_NEW('IDLgrText', /ENABLE_FORMATTING)
oText->SetProperty, STRING='!LLower!S!EExponent!R!IIndex' + $
"IN Normal!S!EExp!R!IInd!N!S!U Up' + $
' IR!D Down!N!S!A Above!R!B Below'
XOBJVIEW, oText

You can aso change what fonts are used within the text string. For example, you can
use the special math symbols available in the Hershey vector font character set (Font
9). When you use the IM formatting command, this applies the font change to the

Object Programming Font Objects

226 Chapter 9: Annotating an Object Display

single character immediately following the !M. Subsequent characters return to the
preceding font. The following example produces the same equation as that shown in
“A Complex Equation” (Appendix H, IDL Reference Guide).

; String to produce equation:
SS = '"!6F(s) = (2!4p)'e-1/2!n 'mi!s!al!e!m' + STRING("44B) +$
"Irib!i ' + '-!m' + STRING("44B) + $
"InF(x)e !e-12!4p!3xs!ndx’
myHersheyFont = OBJ_NEW('IDLgrFont', NAME='hershey*5', SIZE=24)
otext = OBJ_NEW('IDLgrText', /ENABLE_FORMATTING)

oText->SetProperty, STRING=ss, FONT=myHersheyFont
XOBJVIEW, oText

The font abject in this example must use a Hershey font to create the desired results.
If no font is specified, the default 12 point Helvetica (not a vector font) is used, and
the formatting commands create a different result. See “ Changing Fonts within a
String” (Appendix H, IDL Reference Guide), which defines how formatting
commands are applied to Hershey vector and TrueType fonts.

See “Text Objects’ on page 219 for details on creating Text objects.

Font Objects and Resource Use

Because font objects are relatively complex, each font object uses arelatively large

amount of system resources. As aresult, it is better to re-use an existing font object
than to create a second identical font object.

Font Objects Object Programming

Chapter 9: Annotating an Object Display 227

ROI Objects

A region of interest (ROI) is an area of an image defined for further analysis or
processing. ROIs can be defined programmatically and interactively. The XROI
utility letsyou interactively define single or multiple regions from an image using the
mouse. The utility displays defined ROIs and can output ROI data to specified ROI
objects. Any ROI object, whether defined programmatically or interactively, can
undergo further processing as an analysis-oriented | DL anROI object, or can be used
for display as an IDLgrROI object.

See “Regions of Interest” under the functional category, “Image Processing” (IDL
Quick Reference) for alist or ROI creation and manipulation routines. Also see
“Working with Regions of Interest (ROIS)” (Image Processing in IDL) for extensive
examples.

Object Programming ROI Objects

228 Chapter 9: Annotating an Object Display

Legend Objects

L egend objects provide a simple interface for displaying legends. The legend itself
consists of a (filled and/or framed) box around one or more legend items (arranged in
asingle column) and an optional title string. Each legend item consists of aglyph
patch positioned to the left of atext string. The glyph patch is drawn in a square
which is afraction of the legend label font height.

Creating Legend Objects

To create alegend object, you must provide an array of item names, along with arrays
of symboals, line styles, or objects, along with arrays of attributes (such as color or
thickness) for the items. The following simple example creates a legend object with
two items. Thefirst item (Cows) is represented by the predefined symbol number
four (adiamond), and the second item (Weasels) is represented by aline-filled box.

itemNameArr = [’'Cows’, ’'Weasels’]

mytitle = OBJ_NEW(’'IDLgrText’, ’'My Legend’)

mysymbol = OBJ_NEW (’IDLgrSymbol’, 4)

mypattern = OBJ_NEW (’'IDLgrPattern’, 1)

myLegend = OBJ_NEW('IDLgrLegend’, itemNameArr, TITLE=mytitle, $
ITEM_TYPE=[0,1], ITEM_OBJECT=[mysymbol, mypattern], $
/SHOW_OUTLINE)

See“IDLgrLegend” (IDL Reference Guide) for details on creating legend objects.
See the next section for amore detailed explanation of the elements of the legend.

Using Legend Objects

The legend object allows you to define the annotations that correspond to the array of
strings used as legend names in a variety of ways. The length of the argument string
array is used to determine the number of items to be displayed. Each item is defined
by taking one element from theITEM_NAME, ITEM_TYPE, ITEM_LINESTYLE,
ITEM_THICK, ITEM_COLOR, and ITEM_OBJECT vectors, if they are defined. If
the number of items (as defined by the argument array or the ITEM_NAME array)
exceeds any of the attribute vectors, the attribute defaults will be used for any
additional items.

Specify alist of item names either via the argument to IDLgrLegend::Init, or viathe
ITEM_NAME property. The length of this array determines the size of the legend.

Usethe ITEM_TY PE property to define whether an element in the legend is
represented by aline (with an optional plotting symbol) or by afilled or unfilled box.

Legend Objects Object Programming

Chapter 9: Annotating an Object Display 229

There should be one element of the ITEM_TY PE array per element in the input array
or ITEM_NAME array.

Usethe ITEM_LINESTYLE and ITEM_THICK properties to define the style and
thickness of lines used as legend items. These arrays are ignored for elementsthat are
not lines. Use the ITEM_COLOR property to specify the color of each legend
element independently.

Usethe ITEM_OBJECT property to specify that a graphic object be used as an
annotation.

Dimensions

Until the legend is drawn to the destination object, the [XY Z]RANGE properties will
be zero. Because you must know the size of the legend object in order to scale it
properly for your window, you must use the ComputeDimensi ons method on the
legend object to get the data dimensions of the legend prior to adraw operation.

The following example builds and displays a three-element legend.

; Create a window, view, and model:
mywindow = OBJ_NEW ('IDLgrWindow')
myview = OBJ_NEW('IDLgrView')
mymodel = OBJ_NEW ('IDLgrModel')
myview->Add, mymodel

; Create the legend with two items:

itemNameArr = ['Original Data', 'Histogram Plot', $
'Boxcar-filtered (Width=5) ']
mytitle = OBJ_NEW('IDLgrText', 'Plot Legend')

mysymbol = OBJ_NEW('IDLgrSymbol', 5, SIZE=[0.3, 0.3])

myLegend = OBJ_NEW('IDLgrLegend',6 itemNameArr, TITLE=mytitle, $
BORDER_GAP=0.8, GAP=0.5, $
ITEM_TYPE=[0,1], ITEM_LINESTYLE=[0,4,2]1, $
ITEM_OBJECT=[mysymbol, OBJ_NEW(), OBJ_NEW()], $
GLYPH_WIDTH=2.0, /SHOW_OUTLINE)

; Add the legend to the model:

mymodel->Add, mylegend

; Center the legend in the window.

; Note that you must use the ComputeDimensions method

; to get the dimensions of the legend.

dims = mylegend->ComputeDimensions (mywindow)

mymodel->Translate, -(dims[0]/2.), -(dims[1]/2.), O

; Draw the legend:

mywindow->Draw, myview

Object Programming Legend Objects

230 Chapter 9: Annotating an Object Display

Plot Legend
—&— QCriginal Data

-- — Histogram Plot
— — Boxcar Filtered (Width=>5)

Figure 9-3: Legend Object

Legend Objects Object Programming

Chapter 9: Annotating an Object Display 231
Colorbar Objects

The IDLgrColorbar object consists of acolor-ramp with an optional framing box and
annotation axis. The object can be horizontal or vertical.

Creating Colorbar Objects

To create a colorbar object, you must provide a set of red, green, and blue valuesto
be displayed in the bar. Axis values are determined from the number of elementsin
the color arrays unless otherwise specified viathe TICKVALUES property. The
following creates a colorbar one tenth of the window dimension wide by four-tenths
of the window dimension high, with ared-green-blue color ramp:

mytitle = OBJ_NEW('IDLgrText', 'My Colorbar')
barDims = [0.1, 0.4]
redValues = BINDGEN (256)

greenValues = redValues

bluevValues = REVERSE (redvValues)

mycolorbar = OBJ_NEW(’'IDLgrColorbar’, redvValues, $
greenValues, blueValues, TITLE=mytitle, $
DIMENSIONS=barDims, /SHOW_AXIS, /SHOW_OUTLINE)

See“IDLgrColorbar” (IDL Reference Guide) for details on creating colorbar objects.
See the next section for amore detailed explanation of the elements of the legend.

Using Colorbar Objects

The colorbar object allows you to define the size, colors, and various annotations.

Dimensions

Until the legend is drawn to the destination object, the [XY Z]RANGE properties will
be zero. Because you must know the size of the legend object in order to scale it
properly for your window, you must use the ComputeDimensi ons method on the
legend object to get the data dimensions of the legend prior to adraw operation.

The following example builds and displays the colorbar described above:

; Create a window, view, and model:

mywindow = OBJ_NEW ('IDLgrWindow')

myview = OBJ_NEW('IDLgrView')

mymodel = OBJ_NEW ('IDLgrModel')
myview->Add, mymodel

; Create the colorbar. Make the bar one tenth of

; the window size horizontally and four tenths of

; the window size vertically. Show the axis values (using the

Object Programming Colorbar Objects

232

Chapter 9: Annotating an Object Display

; default axis annotations) and draw an outline around the bar.

mytitle = OBJ_NEW('IDLgrText', 'My Colorbar')

barDims = [0.1, 0.4]

redValues = BINDGEN (256)

greenValues = redValues

bluevValues = REVERSE (redvValues)

mycolorbar OBJ_NEW ('IDLgrColorbar', redvalues, $
greenValues, blueValues, TITLE=mytitle, $
DIMENSIONS=barDims, /SHOW_AXIS, /SHOW_OUTLINE)

mymodel->Add, mycolorbar

; Center the colorbar in the window.

; Note that you must use the ComputeDimensions method to

; get the dimensions of the colorbar.

barPlusTextDims = mycolorbar->ComputeDimensions (mywindow)

mymodel->Translate, -barDims[0]+ (barPlusTextDims([0]/2.), $
-barDims[1]+ (barPlusTextDims[1]/2.), O

; Draw the colorbar:

mywindow->Draw, myview

My Colorbar
—~ PN
O UIOO
OCOO0OO0OO0O0

Figure 9-4: Colorbar Object

For more examples of IDLgrColorbar use, see “Displaying Indexed I mages with
Object Graphics’ in the Examples section of “IDLgrPalette::Init” (IDL Reference
Guide).

Also see “Custom Image Object Annotations’ on page 236 for information on
configuring a colorbar legend using IDLgrPolygon, IDLgrPolyline and IDLgrText
objects.

Colorbar Objects Object Programming

Chapter 9: Annotating an Object Display 233

Light Objects

Objects of the IDLgrLight class represent sources of illumination for graphic objects.
Although light objects are not rendered themselves, they are part of the model tree
and thus can be transformed along with the graphic objects they illuminate.

If no light sources are specified for a given model, a default ambient light sourceis
supplied. This allows you to display many objects without explicitly creating alight
source. The use of only ambient light becomes problematic, however, when solid
surfaces and other objects constructed from polygons are displayed. With only
ambient lighting, all solid surfaces appear flat—in fact, they appear to be single two-
dimensional polygons rather than objects in three-dimensional space.

Note
Graphic objects do not automatically cast shadows onto other objects.

Creating Light Objects

There are no argumentsto the IDLgrLight::Init method. Keywords to the Init method
alow you to control a number of properties of the light object, including the
attenuation, color, cone angle (area of coverage), direction, focus, intensity, location,
and type of light.

The following statement creates a default light object. The default light object isa
white positional light, located at the origin.

mylight = OBJ_NEW ('IDLgrLight')

There are four types of light objects available. Set the TY PE property of the light
object to one of the following integer values.

e 0= Ambient light. An ambient light is a universal light source, which has no
direction or position. An ambient light illuminates every surface in the scene
equally, which means that no edges are made visible by contrast. Ambient
lights control the overall brightness and color of the entire scene. If no valueis
specified for the TY PE property, an ambient light is created.

* 1= Positional light. A positional light supplies divergent light rays, and will
make the edges of surfaces visible by contrast if properly positioned. A
positional light source can be located anywhere in the scene.

« 2=Directiona light. A directional light supplies parallel light rays. The effect
isthat of apositional light source located at an infinite distance from scene.

Object Programming Light Objects

234

Chapter 9: Annotating an Object Display

e 3= Spot light. A spot light illuminates only a specific area defined by the
light’s position, direction, and the cone angle, or angle which the spotlight
covers.

See“IDLgrLight” (IDL Reference Guide) for details on creating light objects.

Configuring Light Objects

In addition to the type of light source, you can control several other properties of a
light object. The following example creates a solid surface object and displaysit first

with only ambient lighting, then adds various light objects to the scene.

Note
The SET_VIEW function isdiscussed in “ Finding an Appropriate View Volume”
on page 78.

Light Objects

Begin by creating some data, the surface object, and supporting objects:

zdata = DIST(40)

mywindow = OBJ_NEW ('IDLgrWindow')

myview = OBJ_NEW('IDLgrView')

mymodel = OBJ_NEW (' IDLgrMODEL")

mysurf = OBJ_NEW('IDLgrSurface', zdata, STYLE=2)

; Create the object hierarchy:
myview->Add, mymodel
mymodel->Add, mysurf

; Retrieve the X, Y, and Z ranges from the surface object:
mysurf->GetProperty, XRANGE=xr, YRANGE=yr, ZRANGE=zr

; Convert x, y, and z ranges to normalized coordinates.

xnorm = [-xr[0]/(xr[l]-xxr([0]), 1/(xxr[l]l-xr[0])]
ynorm = [-yr[0]/(yr[l]-yr[0]), 1/(yr[ll-yr[0])]
znorm = [-zr[0]/(zr[1l]-zx[0]), 1/(zxr[l]l-zr[O])]

mysurf->SETPROPERTY, XCOORD_CONV=xnorm, $
YCOORD_CONV=ynorm, ZCOORD_CONV=znorm

; Rotate the surface to a convenient orientation:
mymodel->Rotate, [1,0,0], -90
mymodel->Rotate, [0,1,0], 30
mymodel->Rotate, [1,0,0], 30

; Use the SET_VIEW routine to set an appropriate viewplane
; rectangle and zclip region for the view:

Object Programming

Chapter 9: Annotating an Object Display 235

SET_VIEW, myview, mywindow

; Draw the contents of the view:

mywindow->Draw, myview
Once the surface abject is drawn, we see that there is no definition or apparent three-
dimensional shape to the surface. If we add a positional light one unit in the Z
direction above the XY origin, however, details appear:

mylight = OBJ_NEW('IDLgrLight', TYPE=1, LOCATION=[0,0,1])
mymodel->Add, mylight
mywindow->Draw, myview

We can continue to alter the lighting characteristics by changing the properties of the

existing light or by adding more light objects. (You can have up to eight lightsin a
given view object.) We can change the color:

mylight->SetProperty, COLOR=[200,0,200]
mywindow->Draw, myview

We can change the intensity of the light:

mylight->SetProperty, INTENSITY=0.7
mywindow->Draw, myview
Note
Also see “Volume Lighting” on page 197 for volume object specific lighting
information.

Optimizing Light Object Use

Lighting computations are generally set up to compute the light intensity based on the
normal vector for the polygon. If the polygon normal faces away from the eye, the
lighting model will likely determine that the light intensity for that polygon is zero.
When the polygonal mesh being rendered is a closed surface, thisis not a problem
because the back-facing polygons will always be obscured. However, when the
polygon mesh represents an open shape (for which back-facing polygons may be
visible), the dark appearance of these polygons may hinder the user’s perception of
the overall shape. In such a case, two-sided lighting can be useful. Two-sided lighting
isthe process of reversing the normalsfor all back-facing polygons before computing
the light intensities for that polygon.

In IDL’s Object Graphics, two-sided lighting is enabled by default. When the
additional lighting calculation is not required, one-sided lighting can be used to
improve rendering performance. On an IDLgrModel object, set the LIGHTING
property to avalue of 1 to enable one-sided lighting.

Object Programming Light Objects

236 Chapter 9: Annotating an Object Display

Custom Image Object Annotations

Many images are annotated to explain certain features or highlight specific details.
Color annotations are more noticeable than plain black or white annotations. This
section includes the following examples:

« “Annotating Indexed Image Objects’
* “Annotating RGB Image Objects’ on page 240

Annotating Indexed Image Objects

When using Object Graphics, the original color table does not need to be modified.
The color table (palette) pertains only to the image object not the window, view,
model, polygon, or text objects. Color annotations are usually applied to label each
color level within the image or to allow color comparisons. This section shows how
to label each color level on an indexed image in Object Graphics. Asan example, an
image of average world temperature isimported from the wor1dtmp . png file. This
file does not contain a color table associated with thisimage, so a pre-defined color
table will be applied. Thistable provides the colors for the polygons and text used to
make a colorbar for thisimage. Each polygon uses the color of each level in thetable.
The text represents the average temperature (in Celsius) of each level. Complete the
following steps for a detailed description of the process.

Example Code
See applycolorbar_indexed_object.pro inthe examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering applycolorbar_indexed_object at
the IDL command prompt or view the filein an IDL Editor window by entering
.EDIT applycolorbar_indexed_object.pro.

1. Determinethe path to theworldtmp.png file:

worldtmpFile = FILEPATH('worldtmp.png', $
SUBDIRECTORY = ['examples', 'demo', 'demodata'])

2. Import the image from the wor1dtmp.png fileinto IDL:
worldtmpImage = READ_PNG (worldtmpFile)

3. Determine the size of the imported image:
worldtmpSize = SIZE(worldtmpImage, /DIMENSIONS)

4. Initialize the display objects necessary for an Object Graphics display:

Custom Image Object Annotations Object Programming

javascript:doIDL("applycolorbar_indexed_object")
javascript:doIDL(".edit applycolorbar_indexed_object.pro")

Chapter 9: Annotating an Object Display 237

oWindow = OBJ_NEW ('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [worldtmpSize[0], worldtmpSize[l]], $
TITLE = 'Average World Temperature (in Celsius) ')

oView = OBJ_NEW('IDLgrView',6 $
VIEWPLANE_RECT = [0, 0, worldtmpSize[O0], $
worldtmpSize[1]])

oModel = OBJ_NEW ('IDLgrModel')

5. Initialize the palette object, load the Rainbow18 color table into the palette,
and then apply the palette to an image object:
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LoadCT, 38
oImage = OBJ_NEW('IDLgrImage', worldtmpImage, $
PALETTE = oPalette)
6. Add theimage to the model, then add the model to the view, and finally draw
the view in the window:
oModel -> Add, oImage

oView -> Add, oModel
oWindow -> Draw, oView

Thefollowing figureis displayed.

Figure 9-5: Temperature Image and Rainbow18 Color Table (Object Graphics)

Before applying the color polygons and text of each level, you must first
initialize their color values and their locations. The Rainbow18 color table has

Object Programming Custom Image Object Annotations

238

Chapter 9: Annotating an Object Display

only 18 different color levels, but still has 256 elements. You can use the
INDGEN routine to make an array of 18 elements ranging from 0to 17 in
value, where each element contains the index of that element. Then you can
use the BY TSCL routine to scale these values to range from 0 to 255. The
resulting array containsthe initial color value (from 0 to 255) of the associated
range (from O to 17, equalling 18 elements).

Initialize the color level parameter:
fillColor = BYTSCL (INDGEN (18))

Initialize the average temperature of each level, which directly depends on the
initial color value of each range. Temperatureislinearly scaled to range from
-60 to 40 Celsius. You can convert the resulting temperature value to a string
variable to be used as text:

temperature = STRTRIM(FIX(((20.*fillColor)/51.) - 60), 2)

Note
When thefillColor variable in the previous statement is multiplied by the
floating-point value of 20 (denoted by the decimal after the number), the
elements of the array are converted from byte values to floating-point values.
These elements are then converted to integer values with the FIX routine so
the decimal part will not be displayed. The STRTRIM routine converts the
integer values to string values to be displayed as text. The second argument
to STRTRIM isset to 2 to note the leading and trailing black values should be
trimmed away when the integer values are converted to string values.

With the polygon color and text now defined, you can determine their
locations. You can use a polygon object to draw each polygon and text objects
to display each element of text. The processis repetitive from level to level, so
aFOR/DO loop is used to display the entire colorbar. Since each polygon and
text is drawn individually within the loop, you only need to determine the
location of asingle polygon and an array of offsets for each step in the loop.
The following two steps describe this process.

Initialize the polygon and the text location parameters. Each polygon is 35
pixelsin width and 18 pixelsin height. The offset will move the y-location 18
pixels every time a new polygon is displayed:

x = [5., 40., 40., 5.,

5.1
v [5., 5., 23., 23., 5.]
offset = 18.*FINDGEN(19) +

+ 5.
5.

10. Initialize the polygon and text objects:

Custom Image Object Annotations Object Programming

Chapter 9: Annotating an Object Display

oPolygon = OBJARR(18)

oText = OBJARR(18)

FOR i1 = 0, (N_ELEMENTS (oPolygon)

OBJ_NEW ('IDLgrPolygon', x, $
COLOR = fillColor[i], S

oPolygon[i]

v + offset[i],
PALETTE = oPalette)
OBJ_NEW ('IDLgrText', temperaturel[i], $

[x[0] + 3., yv[0] + offset[i] + 3.1, $
COLOR = 255* (fillColor([i]
PALETTE = oPalette)

oText[1] =

LOCATIONS =

ENDFOR

Note

239

- 1) DO BEGIN & $

LT 255), $

The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO
loop in placed in an IDL program as shown in
ApplyColorbar_Indexed_Object.pro inthe
examples/doc/objects subdirectory of the IDL installation.

11. Add the polygons and text to the model, then add the model to the view, and

finally redraw the view in the window:

oModel -> Add, oPolygon
oModel -> Add, oText
oWindow -> Draw, oView

The following figure displays the colorbar annotation applied to the image.

Object Programming

Custom Image Object Annotations

240 Chapter 9: Annotating an Object Display

40

Figure 9-6: Temperature Image and Colorbar (Object Graphics

12. Clean up object references. When working with objects always remember to
clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTROY on the view and the palette
objects:

OBJ_DESTROY, [oView, oPalette]

Annotating RGB Image Objects

When using Object Graphics, colors can be defined just by the values of their red,
green, and blue components. In this example, a color spectrum of additive and
subtractive primary colorswill be drawn on an RGB image for comparison with the
colorsin that image. The glowing_gas. jpg file (which is provided by the Hubble
Heritage Team, made up of AURA, STScl, and NASA) contains an RGB image of an
expanding shell of glowing gas surrounding a hot, massive star in our Milky Way
Galaxy. Thisimage contains all the colors of this spectrum. Complete the following
steps for a detailed description of the process.

Example Code
See applycolorbar_rgb_object.pro intheexamples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.

Custom Image Object Annotations Object Programming

Chapter 9: Annotating an Object Display 241

Run the example procedure by entering applycolorbar_rgb_object atthelDL
command prompt or view the filein an IDL Editor window by entering .EDIT
applycolorbar_rgb_object.pro.

1. Determinethe pathto the glowing_gas.jpg file

cosmicFile = FILEPATH('glowing_gas.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Import theimage from the glowing_gas.jpg fileinto IDL:
READ_JPEG, cosmicFile, cosmicImage

3. Determinethe size of theimported image. The image contained within thisfile
is pixel-interleaved (the color information is contained within the first
dimension). You can use the SIZE routine to determine the other dimensions
of thisimage:

cosmicSize = SIZE(cosmicImage, /DIMENSIONS)
4. Initialize the display objects required for an Object Graphics display:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = [cosmicSize[l], cosmicSize[2]], $
TITLE = 'glowing_gas.Jjpeg')

oView = OBJ_NEW('IDLgrView',6 $
VIEWPLANE_RECT = [0., 0., cosmicSize[l], S

cosmicSize[2]])
oModel = OBJ_NEW ('IDLgrModel"')

5. Initialize theimage object. The INTERLEAVE keyword is set to 0 because the
RGB image is pixel-interleaved:
oImage = OBJ_NEW('IDLgrImage', cosmicImage, $

INTERLEAVE = 0, DIMENSIONS = [cosmicSize[l], $
cosmicSize[2]])

6. Add theimage to the model, then add the model to the view, and finally draw
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The following image contains all of the colors of the additive and subtractive
primary spectrum. A colorbar annotation can be added to compare the colors
of that spectrum and the colors within the image. The color of each box is
defined in the following array.

Object Programming Custom Image Object Annotations

javascript:doIDL("applycolorbar_rgb_object")
javascript:doIDL(".edit applycolorbar_rgb_object.pro")
javascript:doIDL(".edit applycolorbar_rgb_object.pro")

242 Chapter 9: Annotating an Object Display

Figure 9-7: Cosmic RGB Image (Object Graphics)

You can use the following to determine the color and location parameters for
each polygon.

7. Initialize the color parameters:

fillColor = [[O0, 0, 01, $
[255, 0, 0], $; red
[255, 255, 0], $; yellow
[0, 255, 01, $;
[0, 255, 255], $; cyan
[0, 0, 2551, $; Dblue
[255, 0, 255], $; magenta
[255, 255, 255]] ; white

; black

green

8. After defining the polygon colors, you can determine their locations. Initiaize
polygon location parameters:

X [5., 25., 25., 5., 5.1
Y [5., 5., 25., 25., 5.1 + 5.
offset = 20.*FINDGEN(9) + 5.

The x and y variables pertain to the x and y locations (in pixel units) of each
box of color. The offset maintains the spacing (in pixel units) of each box.
Since the image is made up of mostly a black background, the x border of the
colorbar is aso determined to draw a white border around the polygons.

Custom Image Object Annotations Object Programming

Chapter 9: Annotating an Object Display 243

9. Initialize location of colorbar border:

x_border = [x[0] + offset[0], x[1l] + offset[7], $
x[2] + offset[7], x[3] + offset[0], x[4] + offset[0]]

They border is aready defined by they variable.

These parameters are used when initializing the polygon and polyline objects
These abjects will be used draw the boxes of the color spectrum and the
colorbar border. Each polygon is 20 pixels wide and 20 pixels high. The offset
will move the y-location 20 pixels every time a new polygon is displayed.

10. Initialize the polygon objects. The processis repetitive from level to level, so a
FOR/DO loop will be used to display the entire colorbar. Since each polygonis
drawn individually within the loop, you only need to determine the location of
asingle polygon and an array of offsets for each step in the loop:

oPolygon = OBJARR(8)

FOR i = 0, (N_ELEMENTS(oPolygon) - 1) DO oPolygon[i] = $
OBJ_NEW ('IDLgrPolygon', x + offset[i], v, $
COLOR = fillColor[*, il)

11. The colorbar border is produced with a polyline object. This polyline object
requires a z variable to define it dightly above the polygons and image. The z
variableis required to place the polyline in front of the polygons. Initiaize the
polyline (border) object:

z = [0.001, 0.001, 0.001, 0.001, 0.001]

oPolyline = OBJ_NEW('IDLgrPolyline', x_border, vy, z, $
COLOR = [255, 255, 2551])

12. The polygon and polyline objects can now be added to the model and then
displayed (re-drawn) in the window. Add the polygons and polyline to the
model, then add the model to the view, and finally redraw the view in the
window:

oModel -> Add, oPolygon
oModel -> Add, oPolyline
oWindow -> Draw, oView

The following figure shows the colorbar annotation applied to the image.

Object Programming Custom Image Object Annotations

244 Chapter 9: Annotating an Object Display

Figure 9-8: Specified Colors on an RGB Image (Object Graphics)

13. Clean up object references. When working with objects always remember to
clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTROY on the view object:

OBJ_DESTROY, oView

Custom Image Object Annotations Object Programming

Chapter 10

Animating Objects

The following topics are covered in this chapter:

Overview of Object Animation 246 Designing aBehavior Object 251
Controlling the Animation Rate 250 Factors Affecting Animation Performance 253
Configuring an Animation Model Object . 248 Example: Interactive Cine Animation ... 255

Object Programming 245

246 Chapter 10: Animating Objects

Overview of Object Animation

The animation functionality in IDL lets you draw a series of imagesin rapid
succession, the speed of which has no limit other than that of system capabilities and
graphics hardware. You can easily control the rate and order of the image display, or
synchronize several displays. You can also display overlaysthat contain other types
of information (such as text, ROIs, or contours) that are either specific to the
currently displayed image or common to all displayed images. In addition to images,
other objects such as surface and volume abjects can also be animated.

The key to thisflexibility is due to the fact that animation capabilities are provided in
part by an IDLgrModel object, to which you can add any combination of graphic
objects. As shown in the following figure, the object hierarchy for animation is very
similar to astandard window-scene-view-model hierarchy of atypical display. When
the animation model is used in conjunction with an IDLitWindow and a custom
behavior object, the animation display possibilities are nearly limitless.

(IDLitWindow)

Custom
“Behavior”

(Custom class
supporting Window
Ewrent Obserer
Interface)

Model supports “Active

Position” rendering (IPLgrodel)

Currently
Selected
Iodel

‘ Image | | Image ‘ ‘ ECI |

Figure 10-1: Object Interaction in Animation Support

Overview of Object Animation Object Programming

Chapter 10: Animating Objects 247

While the graphics tree of an animation display is very similar to a standard display,
it isimportant to note the differences. Animation relies on an IDLitWindow (not
IDLgrWindow), which has a built-in timer mechanism, and an IDLgrM odel object
that has an awareness of “Active Position” rendering. Thereis also a user-defined
object that determines how the contents in the animation model are modified. This
behavior object can incorporate any action, but it will commonly iterate through a
series of images or transform amodel object in response to a timer signal received
from the window. See the following topics for more information on adding animation
functionality to a program or application:

e “Configuring an Animation Model Object” on page 248 — describes how
IDLgrModel properties enable animation

e “Controlling the Animation Rate” on page 250 — describes how to
incorporate behavior objects, and how to set IDLgrwindow methods and
parametersto start, stop, and control the rate of an animation

* “Designing aBehavior Object” on page 251 — describes the most important
elements of a behavior object, and provides access to two working animation
examples (asimple Cine loop, and atimer-based surface rotation)

For an example that incorporates animation elements into a widget application that
lets you interactively control the playback of a series of image frames, see “ Example:
Interactive Cine Animation” on page 255.

Note
For information on how scene contents, image sizes, and display refresh rates
influence animation performance, see “ Factors Affecting Animation Performance”
on page 253.

Object Programming Overview of Object Animation

248 Chapter 10: Animating Objects

Configuring an Animation Model Object

An|DLgrModel object that supports animation acts as a container for any number of
objects. However, instead of displaying all objects when the model is drawn, a model
object that supports animation lets you instruct the object to draw only one of the
objectsin its container. For example, this allowsyou to display a succession of single
images from a series of images that has been added to the animation model.

To create amodel object that supports animation, set the RENDER_METHOD
property valueto 1 to display single objects from the model collection. Use the
ACTIVE_POSITION property of the model, a zero-based index into the model
collection, to define what object to display. The default RENDER_METHOD value
(0), draws all objectsin amodd. If your animation model contains a single object
(e.g., when you are rotating a surface), you do not need to set the
RENDER_METHOD property.

The index of the item to draw does not automatically increment when the model is
drawn, so redrawing the scene graph always draws the same content. This maintains
the window contents when the window is refreshed or resized. Therefore, the model
object must be explicitly told which item to draw. The logic that determines which
item to draw isleft to the application and is typically encapsulated in a user-defined
behavior class. See“Designing a Behavior Object” on page 251 for more
information.

Using Multiple Models

It is suggested that you create a main-level display model (that rendersin the
traditional all-object fashion) in addition to the animation model (that sets the
RENDER_METHOD property). Thiscompartmentalization provides more flexibility
in terms of display content. For example, suppose you have a Cine display. The main-
level display model could contain atext object that is displayed on all image frames.
If you did not have the main-level model, the text would only appear as part of the
Cine, according to its position in the animation model.

If you are adding more than just images to an animation model (e.g., you want a
contour or ROI overlaying an image), then you can create additional sub-models.
These are useful when each frame of an animation is a composite of several

Configuring an Animation Model Object Object Programming

Chapter 10: Animating Objects 249

individual, data-specific objects. The following figure provides asimpleillustration
of apossible model hierarchy in animation.

Model supports “Active
Position” rendering

(IDLarModely

‘ Image ‘ ‘ Image | ‘ ROI ‘

Figure 10-2: Possible Model Object Hierarchy in an Animation Display

Typically, images can be added directly to a model object. However, if your
application provides away to interactively change the properties of theimages (e.g.,
by filtering or modifying the color table), you should add the images to an object
collection. You can then pass a pointer to this object array, and access the images
when needed. Thisis significantly easier than accessing the image data from the
animation modd. The following short segment of code shows such an image
collection, oImageCol1, and the animation model, oAnimationModel:

; Access the image data.

head = READ_BINARY(FILEPATH('head.dat',K $
SUBDIRECTORY=['examples', 'data']l), $
DATA_DIMS=[80,100, 57])

; Initialize an object array with dimensions equal to the
; number of images in the series.
oImageColl = OBJARR(57)

; Create the image objects, add each to the image collection and
; the animation model.
FOR i=0, 56 DO BEGIN
oImageColl[i] = OBJ_NEW('IDLgrImage', head[*,*,1],
PALETTE=oPalette, /INTERP)
oAnimationModel->Add, oImageColl[i]
ENDFOR

Object Programming Configuring an Animation Model Object

250 Chapter 10: Animating Objects

Controlling the Animation Rate

A custom behavior object typically controls the display of objectsin a model that
supports animation. However, it isthe IDLitWindow object that controls the timing
of the animation, and natifies the behavior object that it istime to initiate an action.
To define what behaviors are initiated when atimer event occurs, add one or more
behavior objects to the AddwWindowEventObserver method observer list.

To enable timer events for awindow, you need to use the SetEventMask method.
This effectively letsyou to turn on or turn off an animation by enabling or disabling a
window’s ability to respond to timer events. (Use the GetEventMask method to
determine which events are enabled in a window.)

The SetTimerInterval method determines the animation rate. Use the
SetTimerInterval method to set a value that specifies how many seconds pass before
the next timer event occurs. In the following sample code, oAnimBehavior isthe
custom behavior object, oanimationModel isthe model that containsthe
animation, and owin isan IDLitWindow object.

; Create a custom animation object and initialize it with
; the animation model. Add the new object to the list

; of window observers and set the display rate (10 frames
; per second) .

oAnimBehavior = OBJ_NEW('MyAnimation', oAnimationModel)
oWin->AddwWindowEventObserver, oAnimBehavior
oWin->SetTimerInterval, 0.1

; Play the animation.
oWin->SetEventMask, /TIMER_EVENTS

To turn off an animation, set TIMER_EVENTS equal to 0.

The SetTimerlnterval method interval value determines how often an IDLitWindow
object calls the OnTimer method for the behavior objects in the observer list.
Therefore, each animation behavior object must implement the OnTimer method. See
“Designing a Behavior Object” on page 251 for more information.

Controlling the Animation Rate Object Programming

Chapter 10: Animating Objects 251

Designing a Behavior Object

A behavior object is an instance of a custom class that controls the display of the
object(s) contained in amodel object that supports animation. This behavior object
determines what action to take in response to atimer event. When atimer event
occurs, the window object calls the OnTimer method of each window observer (each
behavior object) that implementsit. The following figure shows the interaction
between the window and a behavior object.

(IDLitWindow)

Custom
“Beharior”
object

(Customeclass
supporting Window
Ewent Observer
Interface)

Moadel supports “Active
Pasition” rendering

Active
Ivlodel

(IDLgrModely

Figure 10-3: Interaction Between Window, Behavior Object, and Animation
Model

In the example of a Cine, the behavior abject’s OnTimer method tells the model
object which model or graphic to display the next time the scene is drawn. The
behavior object completes its action by signaling the window object to draw the
scene with the updated model. The system is quiescent until the next timer interval
expires, at which point the process begins again. In widget applications, widget
events and other application processing may occur during the quiet time.

The OnTimer method of the behavior object need not be complex. The following
simple OnTimer method of the user-defined behavior object, MyAnimation, Simply

iterates through the frames in an image series. The OnTimer method parameter
specifies the IDLitWindow object in which the timer event occurred.

Object Programming Designing a Behavior Object

252

Chapter 10: Animating Objects

PRO MyAnimation::OnTimer, oWin

; Add one to the current frame number.
self.currentFrame++

; Iterate through the image frames. Define the frame to display

; by setting the ACTIVE_POSTION property on the model.

IF self.currentFrame GE self.oAnimationModel->Count () THEN $
self.currentFrame = 0

self.oAnimationModel->SetProperty, $
ACTIVE_POSITION=self.currentFrame

; Draw the scene.
oWin->Draw

END

Example Code
For the simple Cine animation example, see animation_image_doc.pro inthe
examples/doc/objects subdirectory of the IDL installation directory. Run the
example procedure by entering animation_image_doc at the IDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
animation_image_doc.pro. Thisexample shows asimple animationin a
window that continues until the window is closed.

More than one behavior object can be associated with awindow, which lets you
create synchronous animations. The window triggers all behaviors associated with it
by calling all observersthat are interested in OnTimer notifications. Also, a behavior
can be programmed to perform any arbitrary operation. It is not limited to cycling
through a series of images. For example, it could alter atransform in a model object
to implement atime-based rotation.

Example Code
For a simple surface rotation animation example, see
animation_surface_doc.pro inthe examples/doc/objects subdirectory
of the IDL installation directory. Run the example procedure by entering
animation_surface_doc at the|DL command prompt or view thefileinan IDL
Editor window by entering . EDIT animation_surface_doc.pro.

Designing a Behavior Object Object Programming

javascript:doIDL("animation_image_doc")
javascript:doIDL(".edit animation_image_doc.pro")
javascript:doIDL(".edit animation_image_doc.pro")
javascript:doIDL("animation_surface_doc")
javascript:doIDL(".edit animation_surface_doc.pro")

Chapter 10: Animating Objects 253

Factors Affecting Animation Performance

Animation performance depends on alarge number of factorsthat include the amount
of graphic content in each frame and the capabilities of the hardware. You adjust the
animation rate by setting the timer interval value of the IDLitWindow object. When
the timer interval expires, IDL callsthe OnTimer method of the behavior objects that
are observing the window. If the hardware can draw the entire scene graph within the
requested timer interval, IDL waits until the timer interval expires before calling the
OnTimer methods again, in order to produce the requested animation rate. If IDL was
performing another operation or computation when the timer interval began, it
returns to that task after drawing the scene and until the timeinterval expires again. If
IDL cannot draw the entire scene graph before the timer interval expires, it finishes
drawing the scene graph and immediately moves on to the next frame by calling the
OnTimer method again, as long as the window timer is running. Any excess timer
expirations are discarded so they do not “pile up” behind the animation. Therefore,
you may experience a“maximum possible frame rate” that depends on the graphic
content and the capabilities of the machine you are using.

Scene graphs that contain alarge amount of graphical information and/or render
sowly can reduce the maximum achievable frame rate. Very large polygona meshes
and volumes are examples of graphical content that will reduce animation
performance.

Multiple Image Copies

If you are animating avery large amount of image data, the maximum frame rate may
also be reduced if the total amount of image data exceeds the space available on the
video card and system memory. IDL attempts to optimize image rendering by
keeping image data in the video card memory and in system memory as video card
memory is exhausted. If the image memory requirements exceed the amount of space
available in “fast” memory, (video and system memory), the system may move
image data out to “slow” memory (paging space). This can reduce image animation
performance as older images need to be swapped back into video memory when they
need to be displayed again. If this occurs, consider using a single IDLgrlmage object
in your animation and replace the image data in the image object with image datafor
the next frame in the OnTimer method. This reduces the total number of copies of
image data stored in memory at once and still provides good performance. It is best to
put al your image datainto |DLgrlmage objects when the images al fit into memory
and thereisarequirement to rapidly animate all theimagesin aloop. If al theimages
do not fit into memory or if rapid access to all the imagesis not necessary, it may be
better to use asingle IDLgrlmage object.

Object Programming Factors Affecting Animation Performance

254 Chapter 10: Animating Objects

Graphics Display Refresh Rate

Maximum frame rates may also be restricted by the refresh rate of your graphics
display deviceif the screen refresh rate is tied to applications. This can prevent the
application from exceeding the refresh rate of the display device, whichisoftenin the
range of 60-120 frames per second. If you find that you cannot create an animation
faster than the refresh rate, ook for a setting on your video card control software to
disable this synchronization. It is often referred to as VSYNC, vertical
synchronization, or “refresh rate override”.

Using application frame ratesin excess of display device frame rates with
synchronization turned off is often not useful and can even be distracting because of
missing or “dropped” frames. For example, if you try to display a 10-image
animation on adisplay device using a60 Hz refresh rate at 600 frames per second, the
animation will appear stalled, since the user will see the same image over and over.
The other 9 images are drawn to the display between display device refreshes and are
“dropped”.

Factors Affecting Animation Performance Object Programming

Chapter 10: Animating Objects 255

Example: Interactive Cine Animation

You can incorporate animation into awidget application by using the CLASSNAME
keyword to assign an IDLitWindow object to WIDGET_DRAW and using the
properties and methods documented in this chapter. The following widget application
lets you start and stop an animation, and set the frame rate and frame increment. It is
limited to this functionality only to highlight the essential features of animation. You
could incorporate zooming, panning, or the addition of annotative objects (such as
text, ROIs, or contours) in either the main-level mode or inindividual object models.
See “Using Multiple Models’ on page 248 for information on how the placement of
objects and models in the graphics hierarchy affects the display.

Example Code
Seeanimation_doc.pro inthe examples/doc/objects subdirectory of the

IDL instalation directory for the complete widget animation example. Run the
example procedure by entering animation_doc at the IDL command prompt or
view thefilein an IDL Editor window by entering . EDIT animation_doc.pro.

#1 Object Graphics Animation Demo

10

Rate [fps] LIJ _’I FrameAdvance';l

Loy Almb

Figure 10-4: Simple Widget Animation Interface

Object Programming Example: Interactive Cine Animation

javascript:doIDL("animation_doc")
javascript:doIDL(".edit animation_doc.pro")

256 Chapter 10: Animating Objects

Example: Interactive Cine Animation Object Programming

Chapter 11

Selecting Objects

This chapter will describe the IDL Object Graphics selection and direct manipulation features. The
following topics are covered in this chapter:

Selection and DataPicking 258 Daabkickingo 262
Object Selection 259 A DataPickingExample 263
A SelectionExample 261

Object Programming 257

258 Chapter 11: Selecting Objects

Selection and Data Picking

When graphical items are drawn to awindow, it is often useful to be ableto click the
mouse on a certain location and request alist of the items that are displayed at that
particular location. In IDL, thisis called selection. Because IDL object graphics are
retained in memory, they can be uniquely identified by their individual object
references, and therefore can be reported as having been selected.

In many cases, it is also useful to be able to request the data value of the object at the
user-selected location. In IDL, thisis called data picking.

Selection and Data Picking Object Programming

Chapter 11: Selecting Objects 259

Object Selection

With object graphics, the process of selection isvery similar to drawing, except that
nothing is displayed on the screen, and information about which objects were
selected is returned to the user. Selection is performed viathe Select method of an
IDLgrWindow object.

Three types of objects may be selected: view objects, model objects, and
visualization objects. For a given scene that contains more than one view, you can
use the Select method to determine which view is selected at a given location.
Likewise, for agiven view, you can use the Select method to determine which
models and/or visualization objects within that view are selected.

An object is considered to be selected if its graphical rendering falls within a box
centered on a given location. The dimensions of the box are set viathe
DIMENSIONS keyword to the Select method. Both the location argument and
dimensions keyword values are measured in units specified viathe UNITS keyword.

The Select method returns a vector of objects, sorted in depth order (nearest to the
eyeisfirst), that meet the criteria of having been selected at the given location. If no
objects are selected at the given location, the Select method returns —1.

See “IDLgrWindow::Select” (IDL Reference Guide) for a detailed description of the
Select method.

Selecting Views

To determine which of a set of views within a given scene are selected at agiven
location, call the Select method on an IDLgrWindow object with an instance of an
IDLgrScene object asitsfirst argument, and the location at which the selectionisto
occur as its second argument:

myLoc = [myMouseEvent.x, myMouseEvent.y]
mySelectedViews = myWindow->Select (myScene, myLoc)

Object Programming Object Selection

260 Chapter 11: Selecting Objects

Selecting Visualization Objects

To determine which visualization objects within a given view are selected at a given
location, call the Select method on an IDLgrWindow object with an instance of an
IDLgrView object asitsfirst argument, and the location at which the selectionisto
occur as the second argument:

myLoc = [myMouseEvent.x, myMouseEvent.y]
mySelectedGraphics = myWindow->Select (myView, myLoc)

Note
If amodel within the view is set as a selection target, the model object, rather than
its contained visualization objects, is returned in the vector of selected objects.

Selecting Models

In some cases, a group of visualization objects may be considered subcomponents of
the model in which they are contained. As aresult, you may want to know when a
model object (rather than one or more of its contained visualization objects) has been
selected. To enable selection of amodel (rather than its visualization objects), the
model object must be marked as a selection target.

To mark amodel as being a selection target, set the SELECT_TARGET property of
the model object to anonzero value.

myWindow = OBJ_NEW ('IDLgrWindow')
myView = OBJ_NEW ('IDLgrView')
myModel = OBJ_NEW ('IDLgrModel')
myView->Add, myModel
myModel->SetProperty, /SELECT_TARGET
myAxis = OBJ_NEW('IDLgrAxis', 0)
myModel->Add, myAxis

myWindow->Draw, myView

In the above example, if aselection at location [myX, myY] would normally select the
axis object, the returned value of the Select method will be the object reference to
myModel rather than the object reference to myAxis.

Object Selection Object Programming

Chapter 11: Selecting Objects 261

A Selection Example

An example procedure named sel_obj .pro creates two views, places models
within the views, and provides an interface to let you choose between selecting
models or visualization objects. A mouse click in one of the viewswill update alabel
that identifies the current selections.

Example Code
Thisexample, sel_obj.pro, isincluded in the examples/doc/objects
subdirectory of the IDL distribution. Run the example procedure by entering

sel_obj at the IDL command prompt or view thefilein an IDL Editor window by
entering .EDIT sel_obj.pro.

Object Programming A Selection Example

javascript:doIDL("sel_obj")
javascript:doIDL(".edit sel_obj.pro")

262

Chapter 11: Selecting Objects

Data Picking

Data Picking

To get the data value that corresponds to a particular window location, use the
PickData method of an IDLgrwWindow object. Note that you must draw the view to
the window before calling the PickData method.

myLoc = [myMouseEvent.x, myMouseEvent.y]
result = myWindow->PickData (myView, myModel, myLoc, returnedXYZ)

The PickData method returns one of the following values:
e 0 /(zero) if the pick hit the background of the view
e 1(one) if the pick hit the one of the visualization objectsin the view

e —1if anerror occurred (for instance, if the pick location lies outside of the
given view)

The data value at the pick is returned in the returnedXYZ argument. This value
represents the mapping of the window location to the data space of the model.

The PickData method relies on the contents of the depth buffer at the timeit is called
to compute and return its results. Be sure that the depth buffer contents are
appropriate for getting the expected results from PickData.

Note
If you set the DEPTH_WRITE_DISABLE or DEPTH_TEST DISABLE property
of an object to prevent an object from modifying the depth buffer asit isdrawn, this
also prevents the object from being located by the PickData method (the return
value will be 0).

Object Programming

Chapter 11: Selecting Objects 263

A Data Picking Example

The example procedure surf_track. pro includes code using the PickData method
to retrieve data values from a surface object. This example isdescribedin“An
Interactive Surface Example” on page 189.

Example Code
See surf_track.pro, located in the examples/doc/objects subdirectory of
the IDL distribution. Run the example procedure by entering surf_track at the

IDL command prompt or view thefilein an IDL Editor window by entering . EDIT
surf_track.pro.

Object Programming A Data Picking Example

javascript:doIDL("surf_track")
javascript:doIDL(".edit surf_track.pro")
javascript:doIDL(".edit surf_track.pro")

264 Chapter 11: Selecting Objects

A Data Picking Example Object Programming

Chapter 12

Displaying, Copying
and Printing Objects

The following topics are covered in this chapter:

Overview of Object Graphic Destinations . 266
Window Objects 267
Using Window Objects 269
Improving Window Drawing Performance 272

Object Programming

Buffer Objects 274
Clipboard Objects 275
Printer Objects 277
Bitmap and Vector Graphic Output 284

265

266

Chapter 12: Displaying, Copying and Printing Objects

Overview of Object Graphic Destinations

Once a graphic object tree has been created, it can be displayed, or drawn, to a
physical destination device (such as a computer screen or printer), to amemory
location (such as a buffer or the operating system clipboard), or to a particular file
format (such asa VRML file). Destination objects represent the final locations to
which object graphics are drawn, and provide methods that allow you to control the
properties of the physical device, memory buffer, or file format.

Each destination object includes a GetFontnames method, which returns the list of
available fonts that can be used in IDLgrFont objects. This method will only return
the names of the available TrueType fonts. Hershey fonts will not be returned as they
are fixed—see Appendix H, “Fonts’ (IDL Reference Guide) for more information.

There are five destination objects:
» buffers (IDLgrBuffer objects)
e clipboards (IDLgrClipboard objects)
e printers (IDLgrPrinter objects)
« VRML files (IDLgrVRML objects)
e windows (IDLgrWindow objects)

Of the five destination objects, Window objects are the most common and most often
used, and will be addressed first.

Note
Output to IDLgrClipboard and IDLgrPrinter objects can be in bitmap or vector
format. See “Bitmap and Vector Graphic Output” on page 284 for information on
choosing a suitable graphics output type based on scene content.

Overview of Object Graphic Destinations Object Programming

Chapter 12: Displaying, Copying and Printing Objects 267

Window Objects

Objects of the IDLgrWindow class represent a rectangular area on a computer screen
into which graphics hierarchies can be rendered. Window objects can be either stand-
aone windows on the screen or drawable areasin an IDL draw widget.

Creating Window Objects

There are two ways to create window objects: directly viathe window object’s Init
method and indirectly by creating a draw widget that uses a window object asits
drawable area.

Using the Init Method
The IDLgrWindow::Init method takes no arguments. Use the following statement to
create a window object:
myWindow = OBJ_NEW ('IDLgrWindow')

The window is displayed on the screen as soon as it has been created.
Creating a Draw Widget that Uses a Window Object

To create adraw widget that uses an Object Graphics window object rather than a
Direct Graphics window for its drawable area, set the GRAPHICS_LEVEL keyword
to the WIDGET_DRAW function equal to 2:

drawwid = WIDGET_DRAW (base, GRAPHICS_LEVEL=2)

Once the draw widget has been realized, you can then retrieve the object reference to
the draw widget's window object using the WIDGET_CONTROL procedure:

WIDGET_CONTROL, drawwid, GET_VALUE=myWindow

Color Model

By default, window objects use the RGB color model. To create a window that uses
the Indexed color model, set the COLOR_MODEL property of the window object
equal to 1 (one) when creating the window:

myWindow = OBJ_NEW ('IDLgrWindow', COLOR_MODEL=1)
You cannot change the color model used by awindow after it has been created.
See “Calor in Object Graphics’ on page 46for a discussion of the two color models.

Object Programming Window Objects

268 Chapter 12: Displaying, Copying and Printing Objects
Note on Window Size Limits

The OpenGL libraries IDL uses impose limits on the maximum size of a drawable
area. The limits are device-dependent — they depend both on your graphics hardware
and the setting of the RENDERER property. Currently, the smallest maximum
drawable area on any IDL platform is 1280-by-1024 pixels; the limit on your system
may be larger.

Window Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 269
Using Window Objects

To render agraphicstree to awindow, call the IDLgrwWindow::Draw method. The
argument must be either an IDLgrView object or an |DLgrScene object.

myWindow->Draw, myView
or

myWindow->Draw, myScene

All objects contained within the view or scene object will be drawn to the window.

Erasing a Window

To erase the contents of awindow, call the IDLgrWindow::Erase method. You can

optionally supply acolor to use to clear the window. By default, the window is erased
to white.

For example, to erase the window to black:

myWindow->Erase, COLOR=[0,0,0]
Exposing or Hiding a Window

To expose awindow so that it is the front-most window on the screen, call the
IDLgrwWindow::Show method with a nonzero value as the argument:

myWindow->Show, 1

To hide awindow, call the IDLgrWindow::Show method with a zero value as the
argument:

myWindow->Show, 0
Iconifying a Window

To iconify (minimize) awindow, call the IDLgrwWindow::Iconify method with a
nonzero value as its argument:

myWindow->Iconify, 1

To restore an iconified window, call the IDLgrWindow::lconify method with a zero
value as its argument:

myWindow->iconify, 0

Object Programming Using Window Objects

270 Chapter 12: Displaying, Copying and Printing Objects

Setting the Window Cursor

To set the appearance of the mouse cursor in an IDLgrwWindow object, call the
IDLgrwWindow::SetCurrentCursor method with a string argument representing the
name of the cursor. Valid string values for the cursor name argument are:

ARROW CROSSHAIR
ICON IBEAM
MOVE ORIGINAL
SIZE_NE SIZE_NW
SIZE_SE SIZE_SW
SIZE_NS SIZE_EW
UP_ARROW

The following statement sets the cursor to an up arrow:
myWindow->SetCurrentCursor, 'UP_ARROW'
The ORIGINAL cursor sets the cursor to the window system’s default cursor.

See " IDLgrWindow::SetCurrentCursor” (IDL Reference Guide) for details on cursor
values.

Saving/Restoring Windows

When an instance of an IDLgrWindow object is restored viathe RESTORE
procedure), it is not immediately displayed on the screen. It will be displayed as soon
as one of its methods (Draw, Erase, Iconify, etc.) is called.

Saving Window Contents to a File
If you have created a scene or view containing graphical objects and wish to save the
rendering to afile, you will first need to create an image object from which to retrieve

the image data. The following steps render an object to a window, create an image
object from the window, and save the image dataasa TIFF file.

Using Window Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 271

First, create the view to be rendered. Use an indexed color model for the window
object, setting the background color to white and the foreground color of the plot
object to black.

mywindow = OBJ_NEW ('IDLgrWindow', COLOR_MODEL=1)

myview = OBJ_NEW('IDLgrView',6 $
VIEWPLANE_RECT=[0,-4,10,8], COLOR=255)

mymodel = OBJ_NEW ('IDLgrModel')

myplot = OBJ_NEW('IDLgrPlot', RANDOMN (seed, 10), COLOR=0, $
THICK=3)

; Organize the object hierarchy:

myview->Add, mymodel

mymodel->Add, myplot

; Draw to the window:

mywindow->Draw, myview

; Next, use the window object’s Read method to create

; an image object with the rendered scene as its image data:

myimage = mywindow->Read/()

; Retrieve the image data using the GetProperty method

; of the image object:

myimage->GetProperty, DATA=image

; Display the image data using Direct Graphics:

TV, image

; Write the image to a TIFF file named myfile.tif:

WRITE_TIFF, 'myfile.tif', image

Object Programming Using Window Objects

272 Chapter 12: Displaying, Copying and Printing Objects

Improving Window Drawing Performance

The following sections describe how to optimize drawing performance in your object
graphics programs. See “Performance Tuning Object Graphics’ in Chapter 2 for
general notes on rendering performance.

Retained Graphics and Expose Events

During the course of an IDL session, it is possible that an IDL window will be
obscured by another window. When the hidden window is brought to the front, its
contents need to be regenerated. The user interface toolkit portions of the window are
repaired automatically. However, the drawable portion of the window (in which
graphics are rendered) requires specia attention. The user can choose between two
methods to handlethis situation. Thefirst option isto set the RETAIN property onthe
IDLgrwWindow object to 2, which suggeststhat IDL isrequired to retain a backing
store of the entire contents of the window. When the window is exposed, the backing
storewill be copied to the screen. The second option isto set the RETAIN property to
0 (no retention), and to request that expose events are to be reported for draw
widgets. Whenever a portion of the window becomes exposed, an event is generated.
The event handler for the drawable can then re-issue adraw of the appropriate
contents for that window.

While the second option may seem a bit more complicated, it isto the users
advantage to take this approach for performance reasons. When RETAIN is 0, the
window device drivers are able to utilize a double-buffered rendering scheme that can
capitalize on hardware acceleration. For interactive applications, this hardware
acceleration can have a crucial impact on the perceived manipulation capabilities of
the interface. When RETAIN is 2, on the other hand, IDL will render to an off screen
pixmap, which often relies on a software implementation. If several drawing calls are
issued in arow, the performance may be noticeably slower.

Instancing to Improve Redraw Performance

Within interactive graphics applications, it is often necessary to redraw a given view
over and over again (for example, as the user clicks and drags within the view to
manipul ate one or more objects). During those redraws, it may be that only a small
subset of the objects within the view is changing, while the remaining objects are
static. In such acase, it may be more efficient to take a snapshot of the unchanged
portion of the view. This snapshot can be reused for each draw, and only the
changing portion of the view needs to be re-rendered. This processis called
instancing.

Improving Window Drawing Performance Object Programming

Chapter 12: Displaying, Copying and Printing Objects 273

It isto your advantage to use instancing only in cases where displaying the snapshot
image is faster than rendering each of the objects that remain unchanged.

The following example shows how atypical instancing loop would be set up. First,
hide the objectsin the view that will be changing. In this example, we assume that the
objects that change continuously are contained by a single model object, with the
object reference myChangingModel. We set the HIDE property for this model to
remove it from the rendered view.

myChangingModel->SetProperty, HIDE=1

;Next, create an instance of the remaining portion

;of the view by setting the CREATE_INSTANCE keyword to
;the window’s Draw method:

myWindow->Draw, myView, /CREATE_INSTANCE

;Next, hide the unchanging objects.

;Assume that the unchanging portion of the
;scene is contained in a single model object.
myUnchangingModel->SetProperty, HIDE=1

;Set the HIDE property for the changing model
;object equal to zero, revealing the object:
myChangingModel->SetProperty, HIDE=0

;Set the view object’s TRANSPARENT property.
;This ensures that we will not erase the
;instance data (the unchanging part of the scene)
;when drawing the changing model.
myView->SetProperty, /TRANSPARENT

;Next, we set up a drawing loop that will render
;the changing model. For example, this loop might
;rotate the changing model in 1 degree increments.
ROT = 0
FOR i=0,359 DO BEGIN
ROT=ROT+1
myChangingModel->Rotate, [0,1,0], ROT
myWindow->Draw, myView, /DRAW_INSTANCE
ENDFOR

;After the drawing loop is done, ensure nothing is hidden,
;and that the view erases as it did before:
myUnchangingModel->SetProperty, HIDE=0
myView->SetProperty, TRANSPARENT=0

Object Programming Improving Window Drawing Performance

274 Chapter 12: Displaying, Copying and Printing Objects

Buffer Objects

Objects of the IDLgrBuffer class represent a memory buffer into which graphics
hierarchies can be rendered. Object trees can be drawn to instances of the
IDLgrBuffer object and the resulting image can be retrieved from the buffer using the
Read() method. The off-screen representation avoids dithering artifacts by providing
afull-resolution buffer for objects using either the RGB or Color Index color models.

Creating Buffer Objects
The IDLgrBuffer::Init method takes no arguments. Use the following statement to
create a buffer object:

myBuffer = OBJ_NEW('IDLgrBuffer')

This creates an object that is available as a destination device to be rendered into or
copied from.

See “IDLgrBuffer” (IDL Reference Guide) for details on creating and using buffer
objects.

Buffer Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 275

Clipboard Objects

Objects of the IDLgrClipboard class send Object Graphics output to the operating
system native clipboard or to afile in bitmap or vector format. The file type and
destination is dependent upon the platform and the values of Draw method keywords.

Note
What appears when producing bitmap or vector output is dependent upon several
factors. See “Bitmap and Vector Graphic Output” on page 284 for details.

Writing to a File from IDLgrClipboard

The file type produced when the IDLgrClipboard::Draw method is passed an
IDLgrView, IDLgrViewgroup, or IDLgrScene object varies depending upon keyword
settings and the platform on which the call isissued. If the FILENAME keyword is
set to anon-empty string, the name of thefile IDL createsis specified by the string. If
the FILENAME keyword is a non-zero, numeric value, IDL creates afile named
idl.ext where ext isreplaced with the appropriate extension shown in
parentheses in the following table.

Keyword Settings | Windows File Type UNIX File Type
VECTOR =1, Encapsulated Encapsulated PostScript
POSTSCRIPT =1 PostScript (EPS) (EPS)

VECTOR =1, Enhanced MetaFile Encapsulated PostScript
POSTSCRIPT =0 (EMF) (EPS)
VECTOR =0, Encapsulated Encapsulated PostScript
POSTSCRIPT =1 PostScript (EPS) (EPS)
VECTOR =0, Bitmap (BMP) Encapsul ated PostScript
POSTSCRIPT =0 (EPS)

Table 12-1: File Types Produced by IDLgrClipboard Draw Method

Note
PostScript clipboard output can be generated using the CMYK color model. Seethe
IDLgrClipboard::Draw method in the IDL Reference Guide for details.

Object Programming Clipboard Objects

276 Chapter 12: Displaying, Copying and Printing Objects

Writing to the Clipboard from IDLgrClipboard

Objects can be written to the operating system clipboard using
IDLgrClipboard::Draw. When the FILENAME keyword equals an empty string (" "),
equals 0 (zero), or is not specified, the output is written to the clipboard.

Note
The IDLgrClipboard object empties the Windows clipboard before writing to it.

Creating Clipboard Objects

The IDLgrClipboard::Init method takes no arguments. Use the following statement to
create a clipboard object that represents the system-native clipboard buffer:

myClipboard = OBJ_NEW ('IDLgrClipboard')

The following code creates an IDLgrClipboard object and outputs the contents of an
IDLgrView, IDLgrViewgroup, or IDLgrScene to various files based on the platform.
Thisisuseful to determine exactly how the contents of the window are trand ated into
bitmap or vector graphics. In the following code, myview denotes the name of the
object (view, viewgroup, or scene) to be output. Vector postscript output is also
generated using the CMYK color model.

oClip = OBJ_NEW('IDLgrClipboard"')

; Create Windows-only output file types.
if !VERSION.OS_FAMILY eq 'Windows' then begin
oClip->Draw, myview, VECTOR=0, POSTSCRIPT=0, $
FILENAME="clipboard.bmp"
oClip->Draw, myview, VECTOR=1, POSTSCRIPT=0, $
FILENAME="clipboard.emf"
endif

; Create bitmap and vector PostScript files.

oClip->Draw, myview, VECTOR=0, POSTSCRIPT=1, $
FILENAME="clipboard_bitmap.eps"

oClip->Draw, myview, VECTOR=1, POSTSCRIPT=1, $
FILENAME="clipboard_vector.eps"

oClip->Draw, myview, VECTOR=1, POSTSCRIPT=1, $
/CMYK, FILENAME="clipboard_ cmyk.eps"

obj_destroy, oClip
See“IDLgrClipboard” (IDL Reference Guide) for details.

Clipboard Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 277
Printer Objects

Objects of the IDLgrPrinter class represent a physical printer onto which graphics
hierarchies can be rendered in either bitmap or vector mode. What appears when
producing bitmap or vector output depends upon several factors. See “Bitmap and
Vector Graphic Output” on page 284 for details.

Creating Printer Objects
The IDLgrPrinter::Init method takes no arguments. Use the following statement to
create a printer object:

myPrinter = OBJ_NEW('IDLgrPrinter')

This creates an object that maintains information about the printer. By default, this
information pertains to the default printer installed for your system. To select a
different printer or setup attributes of the printer, use the printer dialogs described in
the next section.

See “IDLgrPrinter” (IDL Reference Guide) for details on creating printer objects.
Color Model

By default, printer objects use the RGB color model. To create a printer that uses the
Indexed color model, set the COLOR_MODEL property of the printer object equal to
1 (one) when creating the printer:

myWindow = OBJ_NEW('IDLgrPrinter', COLOR_MODEL=1)
You cannot change the color model used by a printer after it has been created.

See “Calor in Object Graphics’ on page 46 for a discussion of the two color models.
Printer Dialogs

IDL includes two functions useful for controlling printers and print jobs.
DIALOG_PRINTERSETUP

Call the DIALOG_PRINTERSETUP function with the object reference of a printer
object as its argument to open an operating system native dialog for setting the
applicable properties of aparticular printer. DIALOG_PRINTERSETUP returns a
nonzero value if you pressed the OK button in the dialog, or zero otherwise.

result = DIALOG_PRINTERSETUP (myPrinter)

Object Programming Printer Objects

278

Chapter 12: Displaying, Copying and Printing Objects

See DIALOG_PRINTERSETUP in the IDL Reference Guide for details.

DIALOG_PRINTJOB

Call the DIALOG_PRINTJOB function with the object reference of a printer object
as its argument to open an operating system native dialog to initiate a printing job.
DIALOG_PRINTJOB returns anonzero value if you pressed the OK button in the
dialog, or zero otherwise.

result = DIALOG_PRINTJOB (myPrinter)

See DIALOG_PRINTJOB in the IDL Reference Guide for details.

Drawing to a Printer

To draw agraphicstreeto aprinter, call the IDLgrPrinter::Draw method. The
argument must be either an IDLgrView object, an IDLgrViewGroup object, or an
IDL grScene object.

myPrinter->Draw, myView
or
myPrinter->Draw, myScene

All objects contained within the scene, viewgroup, or view will be drawn to the
printer.

Note
The scene or view to be drawn may be the same as the scene or view being
displayed in one or more windows.

Printer Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects

279

Printing in Bitmap or Vector Graphic Mode

The IDLgrPrinter::Draw method VECTOR keyword specifies whether the output is
in bitmap or vector format. The following table shows the keyword options and
results for each platform.

Keyword . . .
Settings Windows Printer Output UNIX File Type
VECTOR =0 Bitmap (BMP) Encapsulated PostScript (EPS)
file (e.g. xprinter. eps)
VECTOR =1 Enhanced MetaFile (EMF) Encapsulated PostScript (EPS)

file(e.g. xprinter.eps)

Table 12-2: File Types Produced by IDLgrPrinter Draw Method

VECTOR=0 isthe default. Because Windows printer output isusually sent directly to
the printer, EMF and BMP files are not viewable. On UNIX, the printer output is
directed to afilenamed xprinter . eps by default. For moreinformation on printing
views, scenes, or viewgroups, see“IDLgrPrinter::Draw” (IDL Reference Guide).

Positioning Objects Within a Page

Objects can be positioned in a printed page by first determining the size of the page.
Use the IDLgrPrinter object DIMENSIONS property to return the size of the
“drawable” area of the page. You can then use these dimensions to draw aview of
specified dimensions in the center of the printed page. The following two examples

show positioning objects within the printed page:

» Thefirst example scales an orb object based on the page size and draws the
view containing the orb to the center of the hardcopy page. See “ Example:
Centering an Orb” on page 280.

* The second example creates two IDLgrAXxis objects and an orb object, each
with a UNITS property value set to centimeters. The view is positioned in the
center of the page, but the other object locations are specified in centimeters
and drawn to the view in precise positions. See “Example: Precisely
Positioning Vector and Bitmap Output” on page 281.

Object Programming

Printer Objects

280 Chapter 12: Displaying, Copying and Printing Objects

Example: Centering an Orb

The following example positions aview containing an orb object in the center of a
page when it is printed. Centering the view is acommon task. Using this example as
aguideline, you can easily adapt it to meet your own needs.

PRO center_doc

; Define dimensions in centimeters (cm).
dims = [5.0, 5.0]

; Create a view with centimeters as units. Add the view to a model.
oView = OBJ_NEW('IDLgrView',6 $

UNITS=2, $
VIEWPLANE_RECT=[-dims[0]/2, -dims[1]/2, dims[0], dims[1]], $
ZCLIP=[MAX (dims), -MAX(dims)], EYE=MAX(dims)+1l, $

COLOR=[200,200,2001)
oModel = OBJ_NEW ('IDLgrModel"')
oView->Add, oModel

; Create an orb object and add it to the model.

o0rbl = OBJ_NEW('orb', COLOR=[0,255,0], SHADING=1, $
STYLE=2, HIDDEN=0)

oModel->Add, oOrbl

; Make radius 40% of window width.
oModel->Scale, dims[0]*0.4, dims[0]1*0.4, dims[0]*0.4
oModel->Rotate, [1,1,0], 10

; Create a light and add it to the model.
oLight = OBJ_NEW('IDLgrLight', TYPE=1, LOCATION=[1.5,1.5,21)
oModel->Add, oLight

; Create a printer object, setting centimeters as the units.
oPrinter=0BJ_NEW (' IDLgrPrinter', UNITS=2)

; Retrieve the drawable area of the page in the pagesize
; variable and use this to position the view.
oPrinter->GetProperty, DIMENSIONS=pageSize

centering = ((pageSize - dims)/2.)

oView->SetProperty, LOCATION=centering, DIMENSIONS=dims

; Print the view.
oPrinter->Draw, oView, VECTOR=1

OBJ_DESTROY, [oPrinter]
OBJ_DESTROY, [oView]

END

Printer Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 281

The following figure shows a subset of the output. The orb is positioned in the center
of aprinted page when you run this example.

Figure 12-1: Output Centered in Printed Page

Example: Precisely Positioning Vector and Bitmap Output

The following example creates a model and draws some IDLgrAXxis objectsto the
printer in vector mode. It then creates a second model for an orb object and plots the
orb, drawing it to the printer in bitmap mode. The entire view is centered in the page,
as shown in the previous example. However, this example precisely positions the orb
and axes within the view using data units (defined as centimeters).

PRO center2_doc

; Set the view dimensions in units of centimeters (cm).
viewDims = [10.0, 10.0]

; Set the orb origin in cm, relative to the lower left
; corner of the view.
orbLoc = [3.0, 4.0]

; Set the Orb radius in cm.
orbRadius = 2.2

; Create the Orb object.

; The Orb object creates a unit orb with a default radius of 1.
o0OrbModel = OBJ_NEW('IDLgrModel')

oOrb = OBJ_NEW('orb', COLOR=[0,255,0], SHADING=1, STYLE=2)
oOrbModel->Add, oOrb

; Create axes model. Create and position the axis objects.

oAxesModel = OBJ_NEW('IDLgrModel')

oX = OBJ_NEW('IDLgrAxis', 0, RANGE=[1,viewDims[0]-1], $
/EXACT, LOCATION=[orbLoc[0]-orbRadius, 1])

Object Programming Printer Objects

282 Chapter 12: Displaying, Copying and Printing Objects

oAxesModel->Add, oX

oY = OBJ_NEW('IDLgrAxis', 1, RANGE=[1, viewDims[1]-1], $
/EXACT, LOCATION=[1l, orbLoc[l]-orbRadius])

oAxesModel->Add, oY

; Add a box to show view extent.
oAxesModel->Add, OBJ_NEW('IDLgrPolygon', $
[0, viewDims[0], viewDims[0], 0], $
[0, 0, viewDims[1l], viewDims[1l]], STYLE=1)

; Create the view using the previously defined dimensions.

oView = OBJ_NEW('IDLgrView',6 $
UNITS=2, VIEWPLANE RECT=[0, 0, viewDims[0], viewDims[1]], $
ZCLIP=[MAX (viewDims), -MAX(viewDims)], EYE=MAX (viewDims)+1l, $
COLOR=[255,255,255])

oTopModel = OBJ_NEW ('IDLgrModel')

oView->Add, oTopModel

; Add a light.
oLight = OBJ_NEW('IDLgrLight', TYPE=1, LOCATION=[1.5,1.5,21])
oTopModel->Add, oLight

; Set up printer to print user-requested view. Center

; entire printer output in the page.
oPrinter=0BJ_NEW (' IDLgrPrinter', UNITS=2)
oPrinter->GetProperty, DIMENSIONS=pageSize

centering = ((pageSize - viewDims)/2.)

oView->SetProperty, LOCATION=centering, DIMENSIONS=viewDims

; Print view containing axes in vector mode then remove model.
oTopModel->Add, oAxesModel

oPrinter->Draw, oView, VECTOR=1

oTopModel->Remove, oAxesModel

; Now float the orb into the view and print it in bitmap mode.
oTopModel->Add, oOrbModel
oView->SetProperty, VIEWPLANE_RECT = $
[-orbRadius, -orbRadius, 2 * orbRadius, 2 * orbRadius], $
LOCATION=[orbLoc[0]-orbRadius, orbLoc[l]-orbRadius]+centering, $
DIMENSIONS=[2*orbRadius, 2*orbRadius]
oPrinter->Draw, oView, VECTOR=0

; oPrinter->NewDocument
OBJ_DESTROY, [oPrinter]
OBJ_DESTROY, [oView]

END

Printer Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 283

The following figure shows a subset of the output. The entire plot areais positioned
in the center of a printed page when you run this example.

Figure 12-2: Positioning Objects Within a Printed Page

Starting a New Page on a Printer

To ensure that any subsequent callsto the IDLgrPrinter::Draw method occur on a
new page, call the IDLgrPrinter::NewPage method:

myPrinter->NewPage

Submitting a Printer Job

To submit a printer job, call the IDLgrPrinter::NewDocument method. This method
submits the printing job (consisting of all previous callsto IDgrPrinter::Draw and
IDLgrPrinter::NewPage) to the printer.

After this method has been called, the printer is prepared to accept a new batch of
graphics calls (via IDLgrPrinter::Draw).

myPrinter->NewDocument

Object Programming Printer Objects

284 Chapter 12: Displaying, Copying and Printing Objects

Bitmap and Vector Graphic Output

The IDLgrClipboard and IDLgrPrinter destination objects allow objectsin a scene,
viewgroup, or view to be output as vector or bitmap graphics. Which output is
suitable depends upon the contents of the scene being sent to the output destination
object. Understanding the difference between bitmap and vector graphics will help
clarify why there is a difference in how the final output is displayed, and how the
output can be edited.

Bitmap Graphics

Bitmaps are a collection of bits that describe the individual pixels within an image.
Each pixel isa specific color, and the matrix of these pixels compose the image. In
bitmap graphics, the contents of aview, viewgroup. or scene are captured as an image
and are drawn with pixelsin the bitmap. They can be edited only by altering
individual pixels. The following figure shows the individual pixelsthat are visible
when a small segment of an imageis greatly enlarged.

Figure 12-3: Sample Bitmap Image

IDLgrClipboard bitmap graphic output can be edited by any pixel-based paint
program. In IDL, bitmap graphics can be stored as Bitmap (BMP) or PostScript
(EPS) files under Windows, and as PostScript files under UNIX. Characteristically,
bitmaps are large files, and image quality degrades when the image is substantially
enlarged or reduced.

Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 285

Vector Graphics

Vector graphics are described by simple graphic primitives. In the following figure,
the vector output of the plot, shown on the left, is composed of multiple individual
line segments that are defined mathematically. The IDLgrText objects are rendered as
text primitives. All these primitives can be edited in vector graphic files. For
example, in the following figure the final line segments in the plot have been
repositioned in the right-hand image.

0.8

0.4

| 1)
s

02

T_III |II\|I|I_|I\I| III|

lLlL-IIIIIIIIIIII\IIJIJIII _I_l_I_J_IJ
10 20

0.0 30 30

X Title
Figure 12-4: Sample Vector Image

IDL grClipboard vector graphic output can be edited by an object-based graphical
editor. In IDL, vector graphics can be stored as Enhanced MetaFile (EMF) or
Encapsulated PostScript (EPS) files under Windows, and as Encapsulated PostScript
(EPS) files under UNIX.

The main advantages of vector graphics are excellent scalability, and the ability to
easily edit text and graphic features of the objects in the display. The graphic quality
is maintained regardless of whether the graphic sizeisincreased or decreased. The
capabilities of the graphic editor determines what can be successfully edited. Simple
lines and horizontal text can be easily edited in an EMF file inserted into a Microsoft
Word document. However, more sophisticated graphic editors provide support for
editing intricate graphic features and non-horizontal text. See “ Text Rendering in
Vector Graphics’ on page 287 for more information. Vector graphics file sizes are
generally smaller compared to bitmap graphics.

Object Programming Bitmap and Vector Graphic Output

286 Chapter 12: Displaying, Copying and Printing Objects

Guidelines for Choosing Bitmap or Vector Graphics

Advanced 3-D graphics rendering system output does not always map perfectly to a
2-D vector graphics system. The vector output is an approximation of what is
displayed on the screen. How closely the vector output matches what is displayed
depends upon the scene contents. Vector output may differ dramatically from bitmap
output, and may also differ between the vector file formats (Encapsulated PostScript,
Xprinter, and Enhanced MetaFile).

In general, scenes containing multiple, intersecting surfaces with various shading,
transparency and lighting definitions are displayed with greater accuracy in a bitmap
format than a vector format. However, smple 2-D plots are perfectly suited to vector
output. Views containing the following items should not be output to vector graphic
files:

e Transparent or semi-transparent objects — transparent objectsin aview are
not rendered in vector graphic files. Semi-transparent objects are rendered
fully opague.

» Textured or patterned objects — surfaces and polygons with textures or
patterns are rendered without their textures or patterns.

e Hidden lines— polygon and surface objects drawn with the HIDDEN_LINES
property set may experience missing lines.

* Volumes — volumes, other than those drawn in low quality wire frame mode
(where the destination device QUALITY =0), are not rendered.

» Clipped objects — text strings and image objects do not appear clipped by
clipping planesin vector graphic files. These objects only appear clipped by
view boundaries.

* Smoothly shaded polygons and surfaces — Gouraud (smooth) shaded
IDLgrPolygon and I DL grSurface objects are displayed with smooth shading
only in vector PostScript files generated by IDLgrClipboard, not in Enhanced
MetaFile (EMF) vector format files, or in IDLgrPrinter vector EPSfiles.
Polygons and surfaces appear with flat shading in EMF files and when printed.

e Linesandtextin Xprinter — line style dash length islimited, and line style
patterns cannot start and end with a‘1’ bit when vector output is generated by
Xprinter under UNIX. Also, text is always drawn as a set of trianglesin
Xprinter vector output, and cannot be edited.

* Objects dependent on depth buffering — depth buffering controls are not
respected in vector graphic files. See * Primitive Object Sorting in Vector
Graphics’ on page 289 for more information.

Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 287

Controlling What is Displayed in Vector Graphics

Several factors beyond the differences between bitmap and vector graphics
(described in the previous section) affect avector graphicsfile in terms of content and
the ability to edit text. Keywords provide control over factors such as object sorting,
polygon shading, and text rendering when using the Draw method of the
IDLgrClipboard or IDLgrPrinter destination objects. See the following sections for
more information:

e “Smooth Shading in Vector Graphics’ in the following section
e “Text Rendering in Vector Graphics’ on page 287
¢ “Primitive Object Sorting in Vector Graphics’ on page 289

Smooth Shading in Vector Graphics

The IDLgrClipboard Draw method supports the VECT_SHADING keyword, which
affects the appearance of the surfaces and polygons when the VECTOR and
POSTSCRIPT keywords have also been set. When SHADING=1 (Gouraud shading)
for IDLgrSurface or IDLgrPolygon, use this keyword to control the rendering quality.
Set the VECT_SHADING keyword to one of the following:

* 0= disable smooth shading. Setting this keyword causes all polygons and
surfaces to be rendered with flat shading. Thiswill override the SHADING
value assigned to a surface or polygon object. This may be valuable when
using slower PostScript interpreters.

« 1= enable smooth shading. Setting this keyword renders smoothly shaded
polygons in the Encapsulated PostScript file. Thisis the default.

Note
Polygons and surfaces in Enhanced MetaFiles (EMF) will be rendered using flat
shading. Only the output in Encapsulated PostScript (EPS) filesis affected by this
keyword, and only when the VECTOR keyword has been set.

Text Rendering in Vector Graphics

Text can be easily edited in vector graphic files when the text is output as text
primitives. In bitmap files, text glyphs cannot be edited except by modifying
individual pixels. In avector graphic file, IDLgrText objects are rendered as graphic
primitives that can be edited. The IDLgrClipboard or IDLgrPrinter
VECT_TEXT_RENDER_METHOD keyword controls whether text appears asfilled

Object Programming Bitmap and Vector Graphic Output

288 Chapter 12: Displaying, Copying and Printing Objects

triangles or text primitives when the VECTOR keyword is also set. Set the
VECT_TEXT_RENDER_METHOD keyword to one of the following:

* 0=render text astext primitives. This uses the output device's text primitives
when rendering text. This allows the text to be edited by object-based graphics
programs. Thisis the default.

e 1=render text astriangles. This produces text glyphs that closely match the
text on the display device. The output file sizeis larger and containsfilled
triangles to represent text. This can preserve backward compatibility with the
display of text objects prior to IDL 6.1, which introduced text primitives.

Note
When using the IDLgrPrinter object under UNIX, the Xprinter output isregarded as
write-only. Asthereisno support for 3-D text, IDL always generatesfilled triangles
when rendering text in the X printer output.

Setting VECT_TEXT_RENDER_METHOD=0 creates a vector graphics file with
text rendered as primitives. The text associated with the graphic can be scaled,
transformed or repositioned when edited in an object-oriented graphics application.

Original Text Adding Text Scaling Text

" oo

Figure 12-5: Editing Text Objects Output as Vector Graphics

0.0 —

Y Axis Title
Y Tilte

An Enhanced MetaFile (EMF) inserted into a Microsoft Word document can be
edited. However, not all versions of Microsoft Word support advanced 3-D graphic
primitives such as those associated with obliquely or vertically aligned text.
Choosing to edit afile with non-horizontally aligned text may result in the text being
flattened into two dimensions. Typically, each letter becomes its own string and
alignment is altered. To edit non-horizontal text and preserve the original quality,

Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 289

create an Encapsulated PostScript (EPS) file that can be modified in amore
sophisticated object-oriented image editing program.

Setting VECT_TEXT_RENDER_METHOD=1 creates text that is rendered asfilled
triangles. Elements of the plot in the following figure are composed of line segments
that can be edited, but the text characters cannot be individually edited. The triangles
composing the | etters of the text object are visible in the right-hand image.

Original Text Composed of Triangles Detail of Text Triangles

Title

é 0.0
o= -

Figure 12-6: Text Objects Output as Triangles

Primitive Object Sorting in Vector Graphics

The IDLgrPrinter and IDLgrClipboard Draw methods support the VECT_SORTING
keyword, which affects the appearance of the output when the VECTOR keyword
has also been set. Use this keyword to simulate the depth buffer in Object Graphicsin
the output vector graphicsfile. Set the VECT_SORTING keyword to one of the
following:

* 0=disable sorting. The object primitives appear in the vector output filein the
same order they are drawn on the display device. Thisisthe order in which
they appear in the graphics tree.

« 1=enable sorting. Objects are ordered from back to front based on each
primitive object’s average depth value. Thisis the default.

The following figure shows the results of changing the VECT _SORTING keyword.
When sorting is disabled (VECT_SORTING=0) asin the left image, the first object
added to the model isdrawn first in the display and in the destination device. In the
code used to create the |left image, the text is added to the model before the surface.
Therefore it appears behind the surface in the vector graphics file. When the order is

Object Programming Bitmap and Vector Graphic Output

290

Chapter 12: Displaying, Copying and Printing Objects

reversed, the text is drawn on top of the surface. When sorting is enabled
(VECT_SORTING=1) asin theright image, primitive objects are sorted according to
their depth in the view. Most distant objects are drawn first. When two objects have
the same average depth, the object added to the model first is drawn first and will
appear behind subsequent objects.

Original View in Window

VECT_SORTING =0 VECT_SORTING =1

ext String |DEgrText String

Figure 12-7: Controlling the Sorting of Object Primitives

Note
Vector output does not support depth test functions. Vector output resolves Z
(depth) ties by using the DEPTH_TEST_FUNCTION default LESS depth test.

There are two instances in which the above sorting model is not applicable:
* Inawindow containing overlapping, transparent views
* Inawindow containing IDLgrlmage objects

See the following sections for details.

Sorting Issues with Transparent Views

When awindow contains multiple views, the objectsin each view are sorted as a
separate group. This simulates the default clear operation that IDL performs when
drawing each view to a destination, clearing the depth buffer and repainting the view
with the view color. Depending upon the ordering and transparency of the views, the
vector output might not match what is displayed, regardless of the value of
VECT_SORTING. Consider objectsin atransparent view that are positioned behind
an object in anon-transparent view. In the display, objects in the transparent view are
occluded by the object that appears closer to the viewer. However, in the vector
output, the objects in the transparent view interact with and are visible in the output.
Thisoccurs because IDL does not clear the depth buffer or repaint the view wheniitis
transparent.

Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 291

In the simple example shown in the following figure, the IDLgrText object is added
to atransparent view and is positioned behind the surface. The view associated with
the IDLgrSurface is not transparent. The view containing the surface and the
transparent view containing the text are added to an IDLgrViewgroup and displayed
in the window. The left image shows the vector file output, and the right image shows
the bitmap file output. In the vector output, all of the text is visible because the views
are sorted independently. This behavior occurs because the transparent view
containing the text is added to the viewgroup after the view containing the surface. If
the view containing the text is added first, then only the surface (whose view is not
transparent) is drawn.

Original View in Window
Vector Output Bitmap Output

Text String

Text String

Figure 12-8: Interaction of Object Primitives with Transparent Views

Transparent Images

When IDL draws a semi-transparent image with vector output, it must draw it
completely opague, as it does with other primitives. Therefore, if you use image
layers, where one image is semi-transparent in order to let you see another image
drawn before it, the output will not be correct with vector output since the semi-
transparent image will be drawn opaquely, completely hiding the image drawn before
it. You should use bitmap output to get the desired results because semi-transparent
rendering is not available with vector output.

Note
Asdescribed in “Guidelines for Choosing Bitmap or Vector Graphics’ on page 286,
al transparent abjects (not just image objects) are rendered opaque in vector output.

Object Programming Bitmap and Vector Graphic Output

292

Chapter 12: Displaying, Copying and Printing Objects

Sorting Issues Among Image and Non-Image Objects

On adisplay device, IDLgrImage objects are drawn as “pixel primitives,” which
means that they do not update the depth buffer when they are written to the screen
and also are not tested against the depth buffer to determine if they should be drawn
or not by default. In such a case, images are rendered at Z=0 in viewing coordinates.
Thismeans:

* Images aways overwrite any graphical data on the screen in the areain which
they are drawn, regardless of their relative depth in the scene. Even objectsthat
are rendered closer to the viewer than the image are overwritten.

« Objectsthat are drawn after an imageison the screen are drawn asif theimage
was hot there. Since rendering the image did not update the depth buffer in the
region where theimage was rendered, the objects drawn after theimage are not
depth-tested against the image. This means that if you render an object, after
rendering an image, so that it appears deeper than the image (Z < 0 in viewing
coordinates), the object will render “on top” of the image, even thoughiitis
physically behind it in the scene.

Note
Thisistrue unless you specifically enable depth testing (see
“DEPTH_TEST_DISABLE" (IDL Reference Guide) for details). When depth
testing is enabled, images behave just like any other 3-D object that supports depth
buffer controls.

For these reasons, IDL applications often place image objects in the graphics tree so
that they render first, unless the application wishes to make use of the behaviors
described in the above two points. IDL emulates this behavior with vector graphics
when VECT_SORTING ison asfollows:

* Image objects are drawn in the order that they are positioned in the graphics
tree.

« Non-image objects positioned before, after, or between image objectsin the
graphics tree are sorted amongst themselves. That is, non-image objects that
are positioned in the tree before the first image are sorted and drawn first. Then
the image is drawn. Then the next group of non-image objects are sorted and
drawn, etc.

These steps assure consistency between bitmap and vector output for overlapping
image and non-image primitives. However, some sorting differences may occur
between non-image primitives that overlap each other but do not overlap images. For
example, consider two non-image primitives drawn on the screen so that they do not

Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 293

overlap an image, and one of these primitivesis positioned in the graphics tree before
(drawn before) the image, and the other is positioned in the graphics tree after (drawn
after) the image. These two primitives are not sorted with respect to each other and
are always drawn so that the second primitive is drawn after the first, regardless of
their relative depth in the scene. If these primitives overlap, the result may not be
correct if the first primitive is closer to the viewer than the second. Again, in this
case, consider using bitmap output for more accurate output.

Object Programming Bitmap and Vector Graphic Output

294 Chapter 12: Displaying, Copying and Printing Objects

Bitmap and Vector Graphic Output Object Programming

Chapter 13

Creating Custom
Objects in IDL

The following topics are covered in this chapter:

Creating Custom Objects. 296
IDL Object Overview 297
Undocumented Object Classes 299
Creating an Object Class Structure 300
Object Heap Variables 304

Object Programming

The Object Lifecycle 307
Creating Custom Object Method Routines 310

Method Overriding 314
Object Examples 317
295

296 Chapter 13: Creating Custom Objects in IDL

Creating Custom Objects

This chapter describes the underlying structure of IDL objects and provides the
information needed to create a custom object in IDL. Thisincludes information on
the object lifecycle, object methods (defining, using, and overriding methods) and
custom object examples.

If you are creating objects in iTools, the concepts covered in this chapter are
applicable, but you should use the iTool Programming as your reference when
creating custom iToals, or iTool components. The iTool Programming provides
information and examples of each of the major iTool elements (such asfile readers
and writers, manipulators, operations, and visualizations), and contains valuable
discussions on data and property management within the iTool system.

Creating Custom Objects Object Programming

Chapter 13: Creating Custom Objects in IDL 297

IDL Object Overview

IDL objects are actually special heap variables, which means that they are global in
scope and provide explicit user control over their lifetimes. Object heap variables can
only be accessed via object references. Object references are discussed in this
chapter. Heap variablesin general are discussed in detail in “Heap Variables’
(Application Programming).

Briefly, IDL provides support for the object concepts and mechanisms discussed in
the following sections.

Classes and Instances

IDL objects are created asinstances of aclass, which is defined intheform of an IDL
structure. The name of the structureis also the class name for the object. The instance
data of an object isan IDL structure contained in the object heap variable, and can
only be accessed by special functions and procedures, called methods, which are
associated with the class. Class structures are discussed in “ Creating an Object Class
Structure” on page 300.

Encapsulation

Encapsulation isthe ability to combine data and the routines that affect the datainto a
single object. IDL accomplishes this by only allowing access to an object’s instance
dataviathat object’'s methods. Data contained in an object is hidden from all but the
object’s own methods.

Methods

IDL allows you to define method procedures and functions using all of the
programming tools available in IDL. Method routines are identified as belonging to
an object class via a routine naming convention. Methods are discussed in detail in
“Creating Custom Object Method Routines’ on page 310.

Polymorphism
Polymorphism is the ability to create multiple object types that support the same
operations. For example, many of 1DL’s graphics objects support an operation called

“Draw,” which sends graphics output to a specified place. The “Draw” operation is
different in different contexts; sending a graphic to a printer is different from writing

Object Programming IDL Object Overview

298

Chapter 13: Creating Custom Objects in IDL

it to afile. Polymorphism allows the details of the differences to remain hidden—all
you need to know is that a given object supports the “Draw” operation.

Inheritance

Inheritance is the ability of an object classto inherit the behavior of other object
classes. This means that when writing a new object classthat is very much like an
existing object class, you need only program the functions that are different from
those in the inherited class. IDL supports multiple inheritance—that is, an object can
inherit qualities from any number of other existing object classes. Inheritanceis
discussed in detail in “Inheritance” on page 302.

Persistence

Persistence is the ability of objects to remain in existence in memory after they have
been created, allowing you to ater their behavior or appearance after their creation.
IDL objects persist until you explicitly destroy them, or until the end of the IDL
session. In practice, object persistence removes the need (in traditiona 1DL
programs) to re-execute IDL commands that create an item (aplot, for example) in
order to change a detail of the item. For example, once you have created a graphic
object containing a plot, you can alter any aspect of the plot “on the fly,” without re-
creating it. Similarly, having created an object containing a plot, you need not
recreate the plot in order to print, save to an imagefile, or re-display it.

IDL objects also persist in the sense that you can use the SAVE and RESTORE
routines to save and recreate objects between IDL sessions.

IDL Object Overview Object Programming

Chapter 13: Creating Custom Objects in IDL 299

Undocumented Object Classes

Several of IDL’s graphics objects are subclassed from more generic IDL objects. You
may see references to the generic IDL objects when using IDL’s HEL P procedure to
get information on an object, or when you use the OBJ_ISA or OBJ CLASS
functions. You may also notice that the generic objects are not documented in the
“Object Class and Method Reference” (IDL Reference Guide). Thisisnot an
oversight.

We have chosen not to document the workings of the more generic objects from
which the IDL graphics objects are subclassed because we reserve the right to make
changes to their operation. We strongly recommend that you do not use the
undocumented object classes directly, or subclass your own object classes from them.
ITT Visual Information Solutions does not guarantee that user-written code that uses
undocumented features will continue to function in future releases of IDL.

Object Programming Undocumented Object Classes

300 Chapter 13: Creating Custom Objects in IDL

Creating an Object Class Structure

Object instance datais contained in named IDL structures. We will use theterm class
structure to refer to IDL structures containing object instance data.

Beyond the restriction that class structures must be named structures, there are no
limits on what a class structure contains. Class structures can include data of any type
or organization, including pointers and object references. When an object is created,
the name of the class structure becomes the name of the classitself, and thus servesto
define the names of all methods associated with the class. For example, if we create
the following class structure:

struct = { Classl, datal:0L, data2:FLTARR(10) }

any objects created from the class structure Classl would have the same two fields
(datal, along integer, and data2, aten-element floating-point array) and any methods
associated with the class would have the name Classl::method, where method is the
actual name of the method routine. Methods are discussed in detail in “Creating
Custom Object Method Routines” on page 310.

Note
When anew instance of a structure is created from an existing named structure, all
of the fields in the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only atemplate for that type of data. This
istrue of objectsaswell; anewly created object will contain a zeroed copy of the
class structure asitsinstance data.

It isimportant to realize that creating a class structure does not create an object.
Objects can only be created by calling the OBJ NEW or OBJARR function with the
name of the class structure as the argument, and can only be accessed viathe returned
object reference. |n addition, object methods can only be called on objects, and not on
class structures themselves.

Once defined, a given class structure type cannot be changed. If a structure definition
is executed and the structure aready exists, each tag name and the structure of each
tag field must agree with the original definition. To redefine a structure, you must
either reset or exit the current IDL session.

Creating an Object Class Structure Object Programming

Chapter 13: Creating Custom Objects in IDL 301

Automatic Class Structure Definition

If IDL finds areference to a structure that has not been defined, it will search for a
structure definition procedure to defineit. (Thisistrue of all structure references, not
just class structures.) Automatic structure definition is discussed in “Automatic
Structure Definition” on page 352. Briefly, if IDL encounters a structure reference for
a structure type that has not been defined, it searches for aroutine with a name of the
form

STRUCT__DEFINE

where STRUCT isthe name of the structure type. Note that there are two underscores
in the name of the structure definition routine.

Thefollowing is an example of a structure definition procedure that defines a
structure that will be used for the class CNAME.

PRO CNAME__DEFINE
struct = { CNAME, datal:0L, data2:FLTARR(10) }
END

This defines a structure named CNAME with 2 data fields (datal, along integer, and
data2, aten-element floating-point array). If you tell IDL to create an object of type
CNAME before this structure has been defined, IDL will search for the procedure
CNAME__DEFINE to define the class structure before attempting to create the
object. If the CNAME__DEFINE procedure has not yet been compiled, IDL will use
its normal routine searching algorithm to attempt to find a file named

CNAME__ DEFINE.PRO. If IDL cannot find a defined structure or structure
definition routine, the object-creation operation will fail.

Note
If you are creating structure definitions on the fly, the possihility exists that you will
run into namespace conflicts — that is, a structure with the same name as the
structure you are attempting to create may aready exist. This can be a problem if
you are developing object-oriented applications for others, since you probably do
not have much control over the IDL environment on your clients' systems. You can
avoid most problems by creating a unique namespace for your routines; ITT Visua
Information Solutions does this by prefixing the names of objects with the letters
“IDL". To help avoid namespace conflict, consider using a custom prefix (not
“IDL"). To be completely sure that the objects created by your programs are what
you expect, however, you should have the program inspect the created structures
and handle errors appropriately.

Object Programming Creating an Object Class Structure

302 Chapter 13: Creating Custom Objects in IDL

Inheritance

When defining a class structure, use the INHERITS specifier to indicate that this
structure inherits instance data and methods from another class structure. For
example, if we defined a class structure called “circle,” as follows:

struct = { circle, x:0, y:0, radius:0 }
we can define a subclass of the “circle” classlike this:
struct = { filled_circle, color:0, INHERITS circle }

You can use the INHERITS specifier in any structure definition. However, when the
structure being defined is a class structure (that is, an object will be created from the
structure), inheritance affects both the structure definition and the object methods
available to the object that inherits. The INHERITS specifier is discussed in
“Structure Inheritance” on page 338.

When aclass structure inherits from another class structure, it is said to be a subclass
of the class it inherits from. Similarly, the classthat isinherited fromiscalled a
superclass of the new class. Defining a subclass of an existing classin this manner
has two consequences. First, the class structure for the subclassis constructed as if
the elements of the inherited class structure were included in-line in the structure
definition. In our example, the command defining the “filled _circle’ class above
would create the followings structure definition:

{ filled circle, color:0, x:0, y:0, radius:0 }

Note that the data fields from the inherited structure definition appear in-line at the
point where the INHERITS specifier appears.

The second consequence of defining a subclass structure that inherits from another
class structureisthat when an object is created from the subclass structure, that object
inherits the methods of the superclass aswell asitsdatafields. That is, if an object of
the superclass type has a method, that method is avail able to objects created from the
subclass as well. In our example above, say we create an object of type circle and
define a Print method for it. Any objects of typefilled_circle will also have accessto
the Print method defined for circle.

IDL allows multiple inheritance. This meansthat you can include the INHERITS
specifier as many times as you desire in a structure definition, as long as all of the
resulting data fields have unique names. Data fields must have unique names because
when the class structure definition is built, the tag names are included in-line at the
point where the INHERITS specifier appears. Duplicate tag names will cause the
structure definition to fail; it is your responsibility as a programmer to ensure that tag
names are not used more than once in a structure definition.

Creating an Object Class Structure Object Programming

Chapter 13: Creating Custom Objects in IDL 303

Note
The reguirement that names be unique applies only to data fields. It is perfectly
legitimate (and often necessary) for subclasses to have methods with the same
names as methods belonging to the superclass. See “Method Overriding” on
page 314 for details.

If astructure referred to by an INHERITS specifier has not been defined in the
current IDL session, IDL will attempt to define it in the manner described in
“Automatic Class Structure Definition” on page 301.

Null Objects

The Null Object is a special object reference that is guaranteed to never point at a
valid object heap variable. It isused by IDL to initialize object reference variables
when no other initializing value is present. It is also a convenient value to use when
defining structure definitions for fields that are object references, since it avoids the
need to have a pre-existing valid object reference.

Null objects are created when you call an object-creation routine but do not specify a
class structure to be used as the new object’s template. The following statement
creates anull object:

nullobj = OBJ_NEW()

Object Programming Creating an Object Class Structure

304 Chapter 13: Creating Custom Objects in IDL

Object Heap Variables

Object heap variables are IDL heap variables that are accessible only via object
references. While there are many similarities between object references and pointers,
it isimportant to understand that they are not the same type, and cannot be used
interchangeably. Object heap variables are created using the OBJ_NEW and
OBJARR functions. For more information on heap variables and pointers, see “1DL
Pointers’” on page 364.

Heap variables are a special class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. In IDL documentation of
pointers and objects, heap variables accessible via pointers are called pointer heap
variables, and heap variables accessible via object references are called abject heap
variables.

Note
Pointers and object references have many similarities, the strongest of which is that
both point at heap variables. It isimportant to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to asystem. It is, of course, often useful to use both in
agiven program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:
» Facilitate object oriented programming.

e Providefull support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved aswell. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.

Object Heap Variables Object Programming

Chapter 13: Creating Custom Objects in IDL 305

« Aremanipulated primarily via pointers or object references using built in
language operators rather than special functions and procedures.

e Can be used to construct arbitrary, fully general data structuresin conjunction
with pointers.

Dangling References

If aheap variableis destroyed, any remaining pointer variable or object reference that
till referstoit is said to contain a dangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message.

There are several possible approaches to avoiding such errors. The best optionisto
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (viathe
PTR_VALID or OBJ VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereferencing.

Heap Variable “Leakage”

Heap variables are not reference counted—that is, IDL does not keep track of how
many references to a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to lose access to them and the memory they are using.

See “Heap Variables’ on page 359 for additional details.

Freeing Heap Variables

The HEAP_FREE procedure recursively frees all heap variables (pointers or objects)
referenced by its input argument. This routine examines the input variable, including
al array elements and structure fields. When avalid pointer or object referenceis
encountered, that heap variable is marked for removal, and then isrecursively
examined for additional heap variablesto be freed. In thisway, all heap variables that
arereferenced directly or indirectly by the input argument are located. Once all such
heap variables areidentified, HEAP_FREE releasesthem in afinal pass. Pointers are
released asif the PTR_FREE procedure was called. Objects are released aswith acall
to OBJ DESTROY.

Object Programming Object Heap Variables

306 Chapter 13: Creating Custom Objects in IDL

HEAP_FREE is recommended when:

» Thedatastructuresinvolved are highly complex, nested, or variable, and
writing cleanup code is difficult and error prone.

* Thedatastructures are opaque, and the code cleaning up does not have
knowledge of the structure.

See “HEAP_FREE" (IDL Reference Guide) for further details.

Object Heap Variables Object Programming

Chapter 13: Creating Custom Objects in IDL 307

The Object Lifecycle

Objects are persistent, meaning they exist in memory until you destroy them. We can
break the life of an object into three phases: creation and initialization, use, and
destruction. Object lifecycle routines allow the creation and destruction of object
references, lifecycle methods associated with an object allow you to control what
happens when an object is created or destroyed.

This section will discussthefirst and last phases of the object lifecycle; the remainder
of this chapter discusses manipulation of existing objects and use of object method
routines. To get information about an object, see “ Returning Object Type and
Validity” (Chapter 4, Using IDL).

Creation and Initialization

Object references are created using one of two lifecycle routines: OBJ NEW or
OBJARR. Newly created objects are initialized upon creation in two ways:

1. Theobject referenceis created based on the class structure specified,

2. Theabject’s Init method (if it has one) is called to initialize the object’s
instance data (contained in fields defined by the class structure). If the object
does not have an Init method, the object’s superclasses (if any) are searched for
an Init method.

The Init Method

An object’s lifecycle method Init is afunction named Class::Init (where Classisthe
actual name of the class). The purpose of the Init method is to populate a newly-
created object with instance data. Init should return ascalar TRUE value (such as 1) if
theinitialization is successful, and FALSE (such as 0) if theinitialization fails.

The Init method is unusual in that it cannot be called outside an object-creation
operation. This means that—unlike most object methods—you cannot call the Init
method on an object directly. You can, however, cal an object’s Init method from
within the Init method of a subclass of that object. This alows you to specify
parameters used by the superclass’ Init method along with those used by the Init
method of the object being created. In practice, thisis often done using the EXTRA
keyword. See"Keyword Inheritance” on page 89 for details.

Object Programming The Object Lifecycle

308

Chapter 13: Creating Custom Objects in IDL

The OBJ_NEW Function

Use the OBJ _NEW function to create an object reference to a new object heap
variable. If you supply the name of a class structure as its argument, OBJ NEW
creates anew object containing an instance of that class structure. Note that the fields
of the newly-created object’s instance data structure will al be empty. For example,
the command:

objl = OBJ_NEW('ClassName')

creates a new object heap variable that contains an instance of the class structure
ClassName, and places an object reference to this heap variablein obj 1. If you do not
supply an argument, the newly-created object will be a null object.

When creating an object from aclass structure, OBJ_NEW goes through the
following steps:

1. If the class structure has not been defined, IDL will attempt to find and call a
procedure to define it automatically. See “Automatic Class Structure
Definition” on page 301 for details. If the structure is still not defined,
OBJ NEW fails and issues an error.

2. If the class structure has been defined, OBJ NEW creates an object heap
variable containing a zeroed instance of the class structure.

3. Once the new object heap variable has been created, OBJ_NEW looks for a
method function named Class::Init (where Class is the actual name of the
class). If an Init method exists, it is called with the new object asitsimplicit
SELF argument, aswell as any arguments and keywords specified in the call to
OBJ_NEW. If the class has no Init method, the usual method-searching rules
are applied to find one from a superclass. For more information on methods
and method-searching rules, see “ Creating Custom Object Method Routines’
on page 310.

Note
OBJ NEW does not call al the Init methods in an object’s class hierarchy. Instead,
it simply calsthefirst oneit finds. Therefore, the Init method for a class should call
the Init methods of its direct superclasses as necessary.

4. If the Init method returnstrue, or if no Init method exists, OBJ NEW returns
an object reference to the heap variable. If Init returnsfalse, OBJ NEW
destroys the new object and returnsthe NULL object reference, indicating that
the operation failed. Note that in this case the Cleanup method is not called.

See“0OBJ NEW” (IDL Reference Guide) for further details.

The Object Lifecycle Object Programming

Chapter 13: Creating Custom Objects in IDL 309

The OBJARR Function

Use the OBJARR function to create an array of objects of up to eight dimensions.
Every element of the array created by OBJARR is set to the null object. For example,
the following command creates a 3 by 3 element object reference array with each
element contain the null object reference:

obj2 = OBJARR(3, 3)
See“OBJARR” (IDL Reference Guide) for further details.

Destruction

Use the OBJ DESTROY procedure to destroy an abject. If the object’s class, or one
of its superclasses, supplies a procedure method named Cleanup, that method is
called, and all arguments and keywords passed by the user are passed to it. The
Cleanup method should perform any required cleanup on the object and return.
Whether a Cleanup method actually exists or not, IDL will destroy the heap variable
representing the object and return.

The Cleanup method is unusual in that it cannot be called outside an object-
destruction operation. This means that—unlike most object methods—you cannot
call the Cleanup method on an object directly. You can, however, call an object’s
Cleanup method from within the Cleanup method of a subclass of that object.

Note that the object references themselves are not destroyed. Object references that
refer to nonexistent object heap variables are known as dangling references, and are
discussed in more detail in “ Dangling References’ on page 371.

See“0OBJ DESTROY” (IDL Reference Guide) for further details.
Implicit Calling of Superclass Cleanup Methods

If you create an object class and do not implement a Cleanup method for it, when you
destroy an object of your class IDL will call the Cleanup method of the class
superclass, if it has one.

If your class has multiple superclasses, on destruction IDL will attempt to call the
Cleanup method of the first superclass. If that superclass has a Cleanup method, IDL
will execute it and then destroy the object. If the first superclass does not have a
Cleanup method, IDL will proceed through the list of superclassesin the order they
are specified in the class structure definition statement until it either finds a Cleanup
method to execute or reaches the end of the list.

To ensure that Cleanup methods from multiple superclasses are called, create a
Cleanup method for your class and call the superclass’ Cleanup methods explicitly.

Object Programming The Object Lifecycle

310 Chapter 13: Creating Custom Objects in IDL

Creating Custom Object Method Routines

IDL objects can have associated procedures and functions called methods. Methods
are called on objects via their object references using the method invocation operator.

While object methods are constructed in the same way as any other IDL procedure or
function, they are different from other routines in the following ways:

* Object methods are defined using a special naming convention that
incorporates the name of the class to which the method belongs. See “ Defining
Method Routines’ below.

« All method routines automatically pass an implicit argument named self,
which contains the object reference of the object on which the method is
called. See“The Implicit Self Argument” on page 311.

e Object methods cannot be called on their own. You must use the method
invocation operator and supply avalid object reference, either of the classthe
method belongsto or of one of that class' subclasses. See “ Calling Method
Routines’” on page 312.

Note
Keyword inheritance is an extremely important concept to understand when
working with object methods. See “Keyword Inheritance” on page 89 for details.

Defining Method Routines

Method routines are defined in the same way as other IDL procedures and functions,
with the exception that the name of the class to which they belong, aong with two
colons, is prepended to the method name:

PRO ClassName: :Method
IDL statements
END

or

FUNCTION ClassName: :Method, Argumentl
IDI, statements

RETURN, value

END

For example, suppose we create two objects, each with its own “ print” method.

Creating Custom Object Method Routines Object Programming

Chapter 13: Creating Custom Objects in IDL 311

First, define two class structures:

struct = { classl, datal:0.0 }
struct = { class2, data2a:0, data2b:0L, INHERITS classl }

Now we define two “print” methods to print the contents of any objects of either of
these two classes. (If you are typing this at the IDL command line, enter the .RUN
command before each of the following procedure definitions.)

PRO classl::Printl
PRINT, self.datal
END
PRO class2::Print?2
PRINT, self.datal
PRINT, self.data2a, self.data2b
END

Once these procedures are defined, any objects of classl have access to the method
Print1, and any objects of class2 have access to both Printl and Print2 (because
class? is a subclass of—it inherits from—classl). Note that the Print2 method prints
the datal field inherited from classl.

Note
It is not necessary to give different method names to methods from different classes,
as we have done here with Printl and Print2. In fact, in most cases both methods
would have simply been called Print, with each object class knowing only about its
own version of the method. We have given the two procedures different names here
for instructional reasons; see “Method Overriding” on page 314 for amore
complete discussion of method naming.

The Implicit Self Argument

Every method routine has an implicit argument parameter named self. The self
parameter always contains the object reference of the object on which the method is
called. In the method routines created above, self is used to specify which object the
data fields should be printed from using the structure dot operator:

PRINT, self.datal

You do not need to explicitly pass the self argument; in fact, if you try to specify an
argument called self when defining a method routine, IDL will issue an error.

Object Programming Creating Custom Object Method Routines

312 Chapter 13: Creating Custom Objects in IDL

Calling Method Routines

You must use the method invocation operator (->) to call amethod on an object. The
syntax is:

ObjRef->Method

where ObjRef is an object reference and Method is a method belonging either to the
object’s class or to one of its superclasses. Method may be specified either partially
(using only the method name) or completely using both the class name and method
name, connected with two colons:

ObjRef->Class:: Method
See “ Specifying Class Names in Method Calls’ on page 315 for more information.
The exact method syntax is dightly different from other routine invocations:

; For a procedure method.
ObjRef->Method

; For a function method.
Result = ObjRef->Method()

Where ObjRef is an object reference belonging to the same class as the Method, or to
one of that class' subclasses. We can illustrate this behavior using the Print1 and
Print2 methods defined above.

First, define two new objects:

A = OBJ_NEW('classl')
B = OBJ_NEW('class2')

We can call Print1 on the object A asfollows:
A->Printl

IDL prints:
0.00000

Similarly, we can call Print2 on the object B:
B->Print2

IDL prints:

0.00000
0 0

Creating Custom Object Method Routines Object Programming

Chapter 13: Creating Custom Objects in IDL 313

Since the object B inherits its properties from classl, we can also call Printl on the
object B:

B->Printl
IDL prints:
0.00000

We cannot, however, call Print2 on the object A, since classl does not inherit the
properties of class2:

A->Print2
IDL prints:

% Attempt to call undefined method: 'CLASS1::PRINT2'.

Searching for Method Routines

When amethod is called on an object reference, IDL searches for it as with any
procedure or function, and callsit if it can be found, following the naming convention
established for structure definition routines. (See “Automatic Class Structure
Definition” on page 301.) In other words, IDL discovers methods asit needsthemin
the same way as regular procedures and functions, with the exception that it searches
for files named

classname__method.pro
rather than simply
method.pro

Remember that there are two underscores in the file name, and two colonsin the
method routine’s name.

Note
If you are working in an environment where the length of filenamesis limited, you
may want to consider defining all object methods in the same . pro file you useto
define the class structure. This practice avoids any problems caused by the need to
prepend the classname and the two underscore characters to the method name. If
you must use different . pro files, make sure that all class (and superclass)
definition filenames are unique in the first eight characters.

Object Programming Creating Custom Object Method Routines

314 Chapter 13: Creating Custom Objects in IDL

Method Overriding

Unlike datafields, method names can be duplicated. Thisis an important feature that
alows method overriding, which in turn facilitates polymorphism in the design of
object-oriented programs. Method overriding alows a subclass to provide its own
implementation of a method already provided by one of its superclasses. When a
method is called on an object, IDL searches for amethod of that class with that name.
If found, the method is called. If not, the methods of any inherited object classes are
examined in the order their INHERITS specifiers appear in the structure definition,
and the first method found with the correct name is called. If no method of the
specified nameis found, an error occurs.

The method search proceeds depth first, left to right. This means that if an object’s
class does not provide the method called directly, IDL searches through inherited
classes by first searching the left-most included class—and all of its superclasses—
before proceeding to the next inherited class to the right. If amethod is defined by
more than a single inherited structure definition, the first one found is used and no
warning is generated. This means that class designers should pick non-generic names
for their methods as well as their datafields. For example, suppose we have defined
the following classes:

struct = { classl, datal}

struct = { class2, data2a:0, data2b:0.0, inherits classl }
struct = { class3, datal3:'', inherits class2, inherits classl }
struct = { class4, datad4:0L, inherits class2, inherits class3 }

Furthermore, suppose that both classl and class3 have a method called Print defined.
Now suppose that we create an object of class4, and call the Print method:

A = OBJ_NEW('class4')
A->Print

IDL takesthe following steps:
1. Searchesclass4 for a Print method. It does not find one.

2. Searchesthe left-most inherited class (class2) in the class definition structure
for a Print method. It does not find one.

3. Searchesany superclasses of class2 for a Print method. It finds the classl Print
method and callsit on A.

Notice that IDL stops searching when it finds a method with the proper name. Thus,
IDL doesn't find the Print method that belongs to class3.

Method Overriding Object Programming

Chapter 13: Creating Custom Objects in IDL 315

When are Methods Associated with Object Classes?

It isimportant to note that IDL will associate a method with objects of a given class

the first time the method is called on an object of that class. This meansthat if anew
method definition is compiled after the first time a method with a particular nameis
called, the new definition will not be used until anew IDL session begins.

Extending the example above, suppose that after calling the Print method you
compile anew class4::Print method. Subsequent callsto the Print method will still
invoke the classl::Print method even though the object instance A’s “own” Print
method now exists. Once an association has been formed between an object class and
amethod, that association is not changed for the duration of the IDL session.

To ensure that the correct method is selected, either ensure that the method is
compiled before the first timeit is called or explicitly specify the class name when
calling the method, as described bel ow.

Specifying Class Names in Method Calls

If you specify a class name when calling an object method, like so:
ObjRef->classname: :method

Where classname is the name of one of the object’s superclasses, IDL will search
classname and any of classname’s superclasses for the method name. IDL will not
search the object’s own class or any other classes the object inherits from.

Thistype of method call is especially useful when a class has a method that overrides
a superclass method and does its job by calling the superclass method and then
adding functionality. In our simple example from “ Calling Method Routines” on
page 312, above, we could have defined a Print method for each class, as follows:

PRO classl::Print
PRINT, self.datal
END
PRO class2::Print
self->classl::Print
PRINT, self.data2a, self.data2b
END

In this case, to duplicate the behavior of the Print1 and Print2 methods, we make the
following method calls:

A->Print
IDL prints:

0.00000

Object Programming Method Overriding

316 Chapter 13: Creating Custom Objects in IDL

And now the B:
B->Print
IDL prints:

0.00000
0 0

Now we'll use the second method:
B->classl: :Print

IDL prints:
0.00000

And now A:
A->class2::Print

IDL prints:

% CLASS2 is not a superclass of object class CLASS1.
% Execution halted at: S$MAINS

Method Overriding Object Programming

Chapter 13: Creating Custom Objects in IDL 317

Object Examples

We have included a number of examples of object-oriented programming as part of
the IDL distribution. Many of the examples used in this volume are included —
sometimesin expanded form — inthe examples/doc/objects subdirectory of the
IDL distribution. By default, this directory is part of IDL’s path; if you have not
changed your path, you will be able to run the examples as described here. See
“1PATH” (IDL Reference Guide) for information on IDL's path.

Also seetheiTool Programming for additional examples of creating custom objects
including file reader and writers, manipulators, and operators that can be used within
acustomiTool.

Creating Composite Classes or Subclasses

IDL includes arich set of basic objectsthat an be used for creating visualizations.
You may find that you are using a certain combination of these objects again and
again within your applications for a particular purpose. If thisis the case, you might
want to consider defining a composite object class that encapsulates the combination
of those subcomponents.

IDL includes several such composite classes, such as the IDLgrColorbar and
IDLgrLegend objects. You will find the IDL code for these objectsinthe 1ib
directory of your IDL distribution.

Example Code
Another example can be found inthe id1exshow3__ define.pro inthe
examples/doc/utilities subdirectory. In this case, an image, surface, and
contour representation are combined into a single object called the IDLexShow3
object. To seethis object being used in an application, run the show3_track routine,
defined inthefile show3_track.pro inthe examples/doc/objects directory.

Object Programming Object Examples

318 Chapter 13: Creating Custom Objects in IDL

The program show3_track.pro createsthe following visualization:

Figure 13-1: Show3_track example

You may also find that you want to customize one or more of the classes availablein

Object Graphics. For instance, you may want to create a specialized image object that
can handle 16-bit palettes.

Example Code
An examplethat creates a specialized image object that can handle 16-bit palettesis
providedinidlexpalimage_ _define.prointheexamples/doc/utilities
subdirectory of the IDL distribution. Run the example procedure by entering
idlexpalimage__ define at thelDL command prompt or view thefileinan IDL
Editor window by entering . EDIT idlexpalimage__define.pro.

Object Examples Object Programming

javascript:doIDL("idlexpalimage__define")
javascript:doIDL(".edit idlexpalimage__define.pro")

Chapter 14

Advanced Rendering
Using Shader Objects

The following chapter describes how to use IDLgrShader functionality to take advantage of
graphics card processing and rendering capabilities in IDL object graphics applications.

AboutShaders
About Shader Programs
How Shaders Enhance Performance
Using Shadersinan IDL Application
Passing Information to a Shader Program .

Object Programming

320
323
326
328
330

Library of Pre-built Shader Objects 333
Image Filter Shaders. 334
VertexShaders 359
LightingShaders 363
Multi-texture Shaders 369

319

320 Chapter 14: Advanced Rendering Using Shader Objects

About Shaders

The shader functionality implemented in IDL object graphics provides access to the
advantages of the hardware-based OpenGL Shading Language (GL SL) features that
are available on modern graphics cards. Using a shader, computationally intensive
image processing operations can be off-loaded to the graphics card, making the time
and processing resources of the host computer available to other application
eements. Additionally, the OpenGL Shading Language greatly expands on the
capabilities of the fixed OpenGL rendering pipeline to produce advanced visual
effects. Whereas native IDL object graphics expose OpenGL capabilities through
fixed object properties, GLSL offers the ability to modify virtually any object
characteristic. Using shaders | ets you implement realistic material and lighting
effects, create animations by modifying object vertices, and achieve image
processing performance rates that far exceed what is possible using the system CPU.

Note
It isimportant to realize that this functionality only exposes the ahility to use
OpenGL Shading Language within an IDL application. It does not implement the
shading language nor does this document explain how to write shader language
code. However, numerous GL SL publications and internet resources are available.

Why Use Shaders

Shaders are often used to produce elaborate scenes including realistic materials and
lighting, especially in 3-D gaming environments. However, shaders a so offer
incredible performance and enhanced interactivity when used in image processing
applications. Consider an application the applies the following operations to an
image:

e Convolution filter

e Scaleand offset bias

e Tona compensation (LUT)

» Display compensation (LUT or BYTSCL)

Using the system CPU as the primary processor in a software-based solution, itis
only possible to achieve a display rate of afew frames per second. However, if a
shader program is implemented, the processing is shifted to the graphics card GPU
and display rates of over 100 frames per second are possible. The shader program
appliesthese operations on every draw so thereis no performance penalty for altering
parameters during rapid drawing sequence. This means that a user can change a

About Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 321

parameter of the operation and see the results nearly instantaneously, which makes
the image processing application highly responsive to interactive changes. See “How
Shaders Enhance Performance” on page 326 for details.

Shaders also provide ameans of solving awider range of image processing problems
than what is possible using only the fixed functionality of the OpenGL pipeline
exposed by IDL procedures and functions. There are no limits to the image
processing problems that you can solve using shaders other than those imposed by
the shader itself and the boundaries of your imagination.

Hardware Requirements for Shaders

In general, shader programs will work on graphics cards and drivers that support the
OpenGL 2.0 interface. However, it isimportant to note that performance varies
greatly between low-end and high-end graphics cards, and also varies depending on
the implementation and content of the shader program. Also, always use the most up-
to-date drivers available for your graphics card when developing IDL applications
that use shader programs.

Usethe SHADING_LANGUAGE_VERSION keyword to

IDLgrwWindow::GetDevicel nfo to determine whether or not a card supports shader

functionality. Executing the following codein IDL will briefly create an

IDLgrwindow object and report on whether hardware shaders are available on your

system:

oWin = OBJ_NEW ('IDLgrWindow')

oWin->GetDeviceInfo, SHADING_ LANGUAGE_VERSION=v

OBJ_DESTROY, oWin

PRINT, 'Shading language version: ', Vv

IF FLOAT(v) GE 2 THEN PRINT, 'Hardware shaders are available' $
ELSE PRINT, 'Hardware shaders are not available'

A shader-equipped graphics card will not utilize the shader hardwareif IDL isusing
software rendering. To make sure you are using the shading hardware, be sure to
specify the hardware renderer (for example, set the IDLgrWwindow RENDERER
property to 0).

Image processing applications can provide a software-based alternative in case the
system graphics card does not support OpenGL 2.0. See “Providing a Software
Alternative to Shaders’ on page 335 for details.

Note
If thereisinsufficient support for the shader program, IDL draws the scene as if
there was no shader object present unless a software fallback exists.

Object Programming About Shaders

322 Chapter 14: Advanced Rendering Using Shader Objects

Note
Setting the IDLgrWindow property RETAIN to 2 disables hardware shaders.
Software shaders are used if available.

About Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 323

About Shader Programs

A shader program is a user-defined program written in OpenGL Shading Language
(GLSL) that is executed by the graphics processing unit (GPU) of the graphics card.
This chapter provides an overview of the process of using shader programswith IDL.
It is not meant as atutorial on writing shader programs.

Note
Your graphics card must support OpenGL 2.0 functionality and you will need to
have the latest drivers installed to take advantage of shader programsin IDL.

Shader programs can produce results that are not possible using the fixed-function
rendering pipeline exposed through IDL object properties. For example, if you create
an IDLgrPolygon and set the COLOR property to green and the SHADING property
to flat, OpenGL takes over rendering of a green polygon with flat shading; more
precise control is not possible. However, a shader program provides far more control
and lets you configure lighting and texture effects on a per-pixel basis.

Object Programming About Shader Programs

324 Chapter 14: Advanced Rendering Using Shader Objects

The interaction of a shader program within the graphics system is shown in the
following figure. The graphics card GPU switches between executing fixed-function
and shader program code.

ser-defined

— = shader
Appllcatloi_____ program

f DL ™.,

(~OpenGL " Shader program
compiler

!

Graphics card

ser-defined
shader
compiled code

Fixed function
code

Figure 14-1: Shader Program Interaction with Application and Graphics Card

Note
Shader program attributes override all fixed-function attributes (those defined using
object properties). If you define ablue spherein IDL object graphics, but define a
shader program to draw a green sphere, the displayed sphere will be greenif thereis
suitable hardware support for the shader program.

Vertex and Fragment Shaders

Shader programs are highly configurable because each shader program consists of
two required parts: a vertex shader and a fragment shader. (A fragment is the same
thing as a pixel, but with extrainformation such as depth.) The shader program
compiler built into OpenGL compiles each of them separately and then links them to
form a compl ete shader program.

About Shader Programs Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 325

When a shader program is active, OpenGL calls the vertex shader program once for
every vertex in the primitiveitis currently drawing. Along with the expected position
information (X, y, z, w) for the vertex, thereis also color, normal, texture coordinate,
lighting, and other information associated with the vertex that is available to the
vertex shader program. Here, the vertices, connectivity and transformation
information are used to construct the primitive. The primitive undergoes
rasterization, which converts the vertex representation to pixel representation. This
defines the fragments.

OpenGL callsthe fragment shader for every pixel that OpenGL intends to modify on
the graphics device. The fragment shader determines the color of the pixel according
to information it may obtain from the vertex program and from its own calculations.
The shader program may also include computing normals to apply per-fragment
lighting effects. It then tells OpenGL what color to use for drawing the pixel.

N Verex
Fragment | Shader
Shader HHE
N XYZ, color,
RGB, normal, etc.
depth, etc.
4|\ T,
Hh

Figure 14-2: Interaction of Vertex and Fragment Shaders on a Primitive

For the primitive shown in the previous figure, OpenGL calls the vertex shader three
times, once for each corner of the triangle, and calls the fragment shader program
once for every pixel covered by the triangle. Vertex attributes are interpolated across
the fragments based on the vertex connectivity and the resulting distance of a
fragment from a vertex.

Object Programming About Shader Programs

326 Chapter 14: Advanced Rendering Using Shader Objects

How Shaders Enhance Performance

Using a shader lets you take advantage of the processing power of the graphics card
processing unit (GPU) instead of relying solely on the system CPU. The ability to
offload computationally intensive tasks means applications run faster and operate
more interactively. Also, the GPU can operate on multiple data streams
simultaneously. For example, some GPUs can execute a fragment shader on up to 24
fragments (pixels) simultaneously, which provides a significant performance
advantage over a CPU which can only process one pixel at atime.

Consider atypical image processing application that applies severa transforms or
operations to a set of image data, stores the result in an IDLgrImage object and then
displays the image. In the following figure, the application applies several image
operations and creates intermediate images (that may be reused). This process
requires a significant amount of computation and data movement before the final
image is copied into the image object and the graphic device's texture memory.
Additionally, al or most of this process must be repeated any time the parameters of
an operation change, reducing interactive performance.

Display

Original image (frame buffer) ,m{

Texture memory
i Operation

Temp image 1
P g Store .\

DLgrimage
i Operation instance

Temp image 2
Store /
\ Temp image 3 Temp image 4
,_,—o—"_’—/_'—'-'

Operation)
Operation

Figure 14-3: Image Processing Pipeline without Shader Program

How Shaders Enhance Performance Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 327

Consider the same image processing application that uses a shader program to apply
the operations. In the following figure, the entire processing cycle is accomplished on
the graphics card with the exception of passing in asmall amount of data containing
operation parameters.

QCriginal image

i Store

IDLgrimage

MNew shader
Graphics Card ismre program

. parameters
fl> Texture memory :
Read
h

Shader program

Display
h 4

E Display
{frame buffer)

Figure 14-4: Image Processing Pipeline with Shader Program

Without a shader program and suitable hardware, updating an image may require
several tenths of a second when the image is large and complex operations are
applied. Noticeable display updates may occur with CPU processing. With a shader
program, the display rate with the same amount of processing can be hundreds of
frames per second. Display updates will be smooth with GPU processing. Display
rates of hundreds of frames per second are not always useful, but when lower rates
are used, more CPU resources are available for other operations.

Object Programming How Shaders Enhance Performance

328

Chapter 14: Advanced Rendering Using Shader Objects

Using Shaders in an IDL Application

The IDLgrShader object class exposes OpenGL Shader Language (GLSL) code
within an IDL application. Using shader object properties, you can define the
required vertex shader and fragment shader components (described in “Vertex and
Fragment Shaders’ on page 324) by either passing in a string containing the GL SL
program or by passing in afilename. Always associate a shader object with an atomic
graphic object using the SHADER property. SHADER is a property of the following
objects:

IDLgrAXxis IDLgrPlot IDLgrROIGroup
IDLgrContour IDLgrPolygon IDLgrSurface
IDLgrimage IDLgrPolyline IDLgrText
IDLgrLight IDLgrROI IDLgrVolume

Although a shader object can be associated with any number of the listed graphic
objects, a shader program is typically written with a specific object in mind since the
IDL application will likely pass object-specific parametersto the shader program. For
example, a byte-scale image processing shader would have little applicability to a
text object. Additional shader-related properties exist on IDLgrimage, IDLgrLight,
IDLgrPiot, IDLgrPolygon, IDLgrPolyline, and IDLgrSurface. These are described in
the example sections.

Warning
Setting IDLgrimage RENDER_METHOD=1 (do not render image as texture-
mapped polygon) disables all shader functionality including the software-based
aternative.

Note
In an image processing application, more than a single shader can be associated
with an IDLgrImage object through the use of an IDLgrFilterChain object. See
“Filter Chain Shaders’ on page 355 for details.

Note
Shaders are a hardware-based feature. Be sure to specify the hardware renderer (for
example, set the IDLgrwindow RENDERER property to 0).

Using Shaders in an IDL Application Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 329

Display-Only Effects of Shaders

Unless a shader program is associated with an I DLgrlmage object, processing results
arevisible only on the display. The non-display objects (IDLgrBuffer,
IDLgrClipboard, IDLgrPrinter and IDLgrVRML) do not support shader functionality.

If the shader is associated with an IDLgrl mage object, there are two exceptionsto this
display-only limitation. You can capture image data after the application of a shader
using the IDLgrImage::ReadFilteredData method. See “Capturing Image Data
During Shader Execution” on page 335. You can also access full resolution image
dataif you have implemented a software-based alternative to an image processing
shader application. See “ Providing a Software Alternative to Shaders’ on page 335
for details.

Note
Aslong asthere is hardware support for a shader program, shader program
parameters take precedence over any OpenGL fixed pipeline parameters defined
using object properties.

Object Programming Using Shaders in an IDL Application

330 Chapter 14: Advanced Rendering Using Shader Objects

Passing Information to a Shader Program

The increased processing power provided by shaders allows the display to be quickly
updated when object parameters change. This one-way communication lets you pass
in object parameters, such as color updates, but also other variables such astime, for
which thereis no OpenGL equivalent. The parameter updates cause changesin the
color or depth buffers, but no output is returned to the calling application, hence the
one-way communication.

Exactly how datais passed to a shader program depends on the target for the
parameter data. The two main ways to communicate with a shader program include
using “Uniform Variables’ described below and “Attribute Variables’ on page 332.
IDL activates the shader program when the application draws the scene containing
the graphic object with the associated IDLgrShader object. IDL passes the uniform
variable and/or vertex attribute data that you set with the SetUniformVariable and
SetVertexAttributeData methods to the shader program.

Warning
Uniform and attribute variable names are case-sensitive, unlike most variable

namesin IDL.

Note
If there isinsufficient support for the shader program, IDL draws the scene as if
there was no shader object present.

Uniform Variables

Uniform variables contain small amounts of data that change infrequently (not more
often than when the associated object is drawn). Use the GetUniformVariable and
SetUniformVariable methods of the IDLgrShader object to retrieve or pass a named
uniform variable to a shader program.

Reserved Uniform Variables

If an IDLgrShader or object subclassing from IDLgrShader is associated with an
image, surface or polygon object, IDL sets a number of reserved uniform variables.
All reserved uniform variable names begin with"_IDL_".

e _|IDL_ImageStep — this uniform variableis of GLSL type vec2. It contains
thevalues [1/width, 1/height]. These valuesare useful for convolution
filters that must locate adjacent texels for convolution kernel computations,

Passing Information to a Shader Program Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 331

and are used with IDLgrShaderConvol 3. This uniform variable is set only
when a shader is associated with an IDLgrImage.

e _IDL_ImageTexture— this uniform variableis of GLSL type sampler2D.
When you associate a shader with an IDLgrimage, this variable contains the
texture map data associated with the IDLgrlmage object. For a shader
associated with an IDLgrPolygon or IDLgrSurface, this is the image data that
was set using the TEXTURE_MAP property. In the shader program, use the
GLSL texture2D function to access the texture data.

Note
IDL always uses OpenGL’stexture unit O to store the texture used to draw an
IDLgrImage object. IDL also uses texture unit O for textures associated with
the TEXTURE_MAP property of IDLgrPolygon and IDLgrSurface. If you
define a sampler2D uniform variable in your shader program and do not
initialize it with the SetUniformVariable method in your IDL application,
OpenGL associates your sampler2D uniform variable with texture unit O.
This automatic association ensures correct operation because your GLSL
sampler isreferencing the correct texture. This feature may be useful when
using shader programs from outside sources. For example if you obtain a
shader program from the Internet that performs a type of image filtering, it
probably defines a samp1ler2D uniform variable, perhaps named image. You
can use the shader program without modification and not bother setting the
uniform variable called imagein your IDL code since IDL and OpenGL will
correctly associate your IDLgrimage data with the sampler2D uniform
variable.

However, it may be good form and improve self-documentation to use the
IDL reserved uniform variable, _TD1_TmageTexture, to explicitly indicate
that the shader program is using the IDL texture as described above.

While the data is automatically associated with these uniform variables and made
available to the shader program, you still must define them in the shader program to
access the data from within the shader program.

Note
If you are layering multiple textures on a surface or polygon, see “Uniform
Variables and Multi-Texture Shaders’ on page 370 for information on how to
manage reserved and custom uniform variables.

Object Programming Passing Information to a Shader Program

332

Chapter 14: Advanced Rendering Using Shader Objects

Attribute Variables

Attribute variables contain per-vertex data that is passed to the vertex shader
program. This type of data changes frequently (often for each vertex). Modifying
object vertices can display movement within a scene. For example, an attribute
variable that contains per-vertex velocity vectors multiplied by a uniform variable
that contains a time val ue generates an offset location for each vertex. When this
vertex program runs repeatedly with increasing time values, it simulates the motion
of aset of vertices where each vertex hasits own velocity vector representing its own
movement direction. Such avertex program can be used to visualize the path of
moving particles.

Use the GetVertexAttributeData and SetVertexAttributeData methods of the graphic
object (not the shader object since vertex datais intimately related to the object
vertices) to retrieve or pass a named attribute variable to a shader program. See
“Vertex Shaders’ on page 359 for an example.

Note
Within a GLSL program, avarying variable passes data from the vertex shader to
the fragment shader. These variables are defined at each vertex and interpol ated
across a graphic object to produce a perspective-corrected value at each fragment.
Thistype of variable cannot be directly accessed from IDL.

Passing Information to a Shader Program Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 333

Library of Pre-built Shader Objects

The IDL distribution includes two shader objects that subclass from | DL grShader.
These pre-built shader objects let you quickly add the functionality of a shader to an
image processing application without having to write any GLSL code. These
subclasses also provide a software fallback mechanism to apply the image processing
step to the image data in the absence of shader hardware. The shader code and the
corresponding equivalent IDL code (software fallback) are contained within asingle
object, which letsyou easily add this functionality to an application without worrying
about whether or not your user has graphics hardware that supports shaders.

The two pre-built shader objects are:

* |IDLgrShaderBytscl — highlights features by modifying the input and output
levels of the associated |DLgrimage object. See “IDLgrShaderBytscl” (IDL
Reference Guide) for details and an example.

e |DLgrShader Convol3 — defines a convolution filter to smooth, sharpen,
perform edge detection, or perform a custom convol ution operation when
associated with an IDLgrImage object. See “IDLgrShaderConvol3” (IDL
Reference Guide) for details. See “Filter Chain Shaders’ on page 355 for an
example.

Object Programming Library of Pre-built Shader Objects

334 Chapter 14: Advanced Rendering Using Shader Objects

Image Filter Shaders

Image shader programs are particularly easy to create, for a couple of reasons:

« ThelDLgrImage object uses a texture-mapped polygon to draw the image.
Most image filters do not change the size or the shape of the image, making it
unnecessary to modify the vertices of the polygon. Therefore, avery trivial
vertex shader component isall that is required.

« Each image pixel color is going to be completely determined by the image
filter calculation, with no lighting or shading effects. Therefore, thereisno
need to worry about applying lighting and shading calculations in a shader
program. This further simplifies the shader program.

There are several ways to incorporate shader functionality into an image processing
application. You can either use one of the pre-built shader objects
(IDLgrShaderBytscl or IDLgrShaderConvol3) or create a custom shader program. If
you design your own shader, you have additional options that include using a
IDLgrFilterChain object to link a number of shaders together and apply them
successively to the image data. See the following topics for sample applications:

e “Library of Pre-built Shader Objects’ on page 333 — provides information on
the pre-defined IDL grShaderBytscl and DL grShaderConvol 3 objects. These
are excellent optionsif you need byte scaling or convolution filtering
functionality, and do not want to write custom GL SL shader programs.

» “Altering RGB Levels Using a Shader” on page 336 — creates a simple shader
program that allows you to interactively alter the red, green or blue levelsin an
RGB image.

e “Applying Lookup Tables Using Shaders’ on page 342 — loadsa LUT into a
one-dimensional image object so that the shader program can efficiently
accesses it as atexture map.

» “High Precision Images’ on page 349 — shows how to display 16-bit and
11-bit images using the full precision of the data and how to display an 11-bit
image with a contrast adjustment LUT.

e “Filter Chain Shaders’ on page 355 — lets you apply a sequence of shadersto
asingle image object.

Image Filter Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 335

Providing a Software Alternative to Shaders

When the appropriate graphics hardware support is missing, a software-based
aternative can be provided for image processing applications (when the shader
program is associated with an IDLgrIlmage).

When IDL renders the image and hardware shader support is missing, the
IDLgrShader::Filter method is automatically called when theimage is drawn. (You
never call this method directly.) In this method, add code that provides a software-
based equivalent to the shader program functionality that will be used when thereis
insufficient hardware support for the shader program. See “Hardware Requirements
for Shaders’ on page 321 for graphics card requirements.

Note
When developing a software fallback, use the FORCE_FILTER property during
shader object initialization to force the system to test the software-based aternative
even when sufficient hardware support is available.

If there is no software fallback specified, application execution simply continues asif
there were no shader program. Also, no software fallback is available when a shader
is associated with a non-image object.

Caching Shader Results

If ashader object is associated with an IDLgrImage object, you may set the
IDLgrShader CACHE_RESULT property to determine whether a shader programis
executed every time Draw is called. If this property is set to 1, the image is cached
after running the shader program and the cached image is used in subsequent draws
until shader program parameters are changed. If this property is set to O (the default),
the result of running the shader program is not cached. See the property description
for details on when each CACHE_RESULT setting may prove more useful. If a
software fallback is used, the result is always cached.

Capturing Image Data During Shader Execution

When you apply one or more shader programs to image data, you can capture the
results of the image filtering shader operation using the IDLgrimage
ReadFilteredData method. Using this method, you can capture a portion of atiled
image, capture the image after applying a single shader, or capture the image after
applying any number of shadersin afilter chain sequence. See
“IDLgrImage::ReadFilteredData” (IDL Reference Guide) for details. After reading
the data, you can placeit in a new image object and print or display the resuilt.

Object Programming Image Filter Shaders

336 Chapter 14: Advanced Rendering Using Shader Objects

Altering RGB Levels Using a Shader

This shader program example lets you interactively apply color level correction to an
image when you view it. This does not modify the image dataitself. This example
places the original image datain an IDLgrlmage object and attaches the custom
shader object using the SHADER property. It then creates asimple user interface that
lets you alter the color levels and passes these values to the shader program in a
named uniform variable. The Filter method implements the software fallback. When
the correct graphics hardware is unavailable, IDL automatically calls the Filter

method.

Example Code
See shader_rgb_doc__define.pro, located inthe examples/doc/shaders

subdirectory of the IDL distribution, for the complete, working example. Run the
example by creating an instance of the object at the IDL command prompt using
orgbshader=0BJ_NEW (' shader_rgb_doc') or view thefilein an IDL Editor
window by entering .EDIT shader_rgb_doc__define.pro.

The example code differs slightly from that presented here for the sake of clarity.
Whereas the working example includes code needed to support user interface
interaction, the following sections leave out such modifications to highlight the
shader program components.

Basic RGB Shader Object Class

First, create a basic object class that inherits from IDLgrShader:

; Initialize object.
FUNCTION shader_rgb_doc::Init, _EXTRA=_extra
IF NOT self->IDLgrShader::Init (_EXTRA=_extra) THEN $
RETURN, O
RETURN, 1
END

; Clean up.

PRO shader_rgb_doc::Cleanup
self->IDLgrShader: :Cleanup

END

; Filter method for software fallback option.

FUNCTION shader_rgb_doc::Filter, Image
RETURN, Image

END

Altering RGB Levels Using a Shader Object Programming

javascript:doIDL(".edit shader_rgb_doc__define.pro")

Chapter 14: Advanced Rendering Using Shader Objects 337

; Class definition.
PRO shader_rgb_doc_ _define
COMPILE_OPT hidden
struct = { shader_rgb_doc, $
INHERITS IDLgrShader $
}
END

Uniform Variable for RGB Values

In this example, a uniform variable contains the values of the red, green and blue
levels. You can set or change uniform variables anytime before you draw the scene
and their values will remain in effect until you change them again. These types of
variables are perfect for making minor adjustments to the image filter and then
viewing the image to seeif the result is satisfactory.

First set the uniform variable to a reasonable default value such as[1,1,1] before you
start, otherwise the shader program defaults of [0,0,0] will make the image look dim.
Add the following line to your Init function:

self->SetUniformvariable, 'scl', [1.0, 1.0, 1.0]

Warning
The uniform variable name is case-sensitive, unlike most variable namesin IDL.

This example lets you change color levels using diders. You can read the slider
values from your GUI, and modify the uniform variable at any time. Assuming that
the instance of your shader_rgb_doc object is called oShaderRGB and red, green
and blue are floating point values, update the value of the uniform variable as
follows:

oShaderRGB->SetUniformVariable, 'scl', [red, green, blue]

Once the needed elements are defined, associate your shader object with olmage, an
image object (that has been previously defined).

oImage->SetProperty, SHADER=self

Once the shader object is associated with the image, shader program display updates
are activated any time the SetUniformVariable method is called.

Software Fallback for RGB Shader

IDL calls the Filter method when shader functionality is not supported by the
graphics hardware. Providing a software-based fallback is never a requirement and
you may choose not to if you know sufficient hardware will always be available.

Object Programming Altering RGB Levels Using a Shader

338 Chapter 14: Advanced Rendering Using Shader Objects

However, it is good practice to write this method just in case the application is ever
executed on a machine without suitable hardware.

In the Filter method, retrieve the uniform variable values using GetUniformVariable,
and then return a modified copy of the image data.

Function shader_rgb_doc::Filter, Image

newlmage=Image
self->GetUniformvariable, 'scl', s
newImage[0,*,*] *= s[0]
newImage[l,*,*] *= s[1]
newImagel[2,*,*] *= s[2]

RETURN, newlImage

END

IDL always passes the image to the Filter method in RGBA floating-point pixel-
interleaved format, so you don't have to worry about alot of input data combinations.
IDL also clamps the data this function returns to the [0.0, 1.0] range and scales it to
the correct pixel range, usualy [0, 255], for your display device.

Note
Uniform variables are, in a sense, free-form propertiesin the IDLgrShader
superclass. Within the Filter method, accessing the scale vector from the uniform
variable maintains consistency since thisis same place the hardware shader obtains
it. This reduces the chance for confusion.

At this point, you can test your work by writing a simple display program that loads
your datainto an IDLgrlmage object, creates an instance of your shader_rgb_doc
object, and attaches the filter to your image object by setting the object reference of
the shader in the SHADER property of IDLgrImage. You also need to set the
FORCE_FILTER property on classinitiaization so that the filter fallback runs, even
if you have shader hardware. You can force use of the fallback either when creating
the shader object:

oShaderRGB = OBJ_NEW('shader_rgb_doc', /FORCE_FILTER)
or explicitly in the shader object’s Init method:
FUNCTION shader_rgb_doc::Init, _EXTRA=_extra
IF NOT self->IDLgrShader::Init (_EXTRA=_extra, /FORCE_FILTER) $

THEN $
RETURN, O

Altering RGB Levels Using a Shader Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 339

Hardware Shader Program for RGB Shader

The OpenGL Shading Language (GLSL) is avast subject that requires extensive
study to develop an expert level of programming, a subject that isimpossible to cover
here. However, this exampleis relatively simple and you can likely easily follow
along with the code required for the vertex and fragment shader portions of the shader
program. All shader programs need a vertex program and afragment program.

RGB Vertex Shader Program

The following vertex shader isfairly common among image filtering shader
programs. Add the following code to the bottom of your Init function:

vertexProgram = $

[$

'void main (void) {', $
gl_TexCoord[0] = gl_MultiTexCoordO;', $
gl_Position = ftransform();', $

1)
Thefirst lineafter main () transfersthe texture coordinate from OpenGL'sS Texture
Unit 0 into the current texture coordinate predefined variable. Remember that IDL
draws its images with texture maps applied to rectangles, so you need to pass along
the texture coordinate. IDL always uses Texture Unit O when drawing images. The
gl_TexCoord[0] isavarying variable that transmits data from the vertex program
to the fragment shader program.

The next line in the program simply applies the current OpenGL
ModelViewProjection transform to the vertex, sothat it endsup in the right
place on the screen.

RGB Fragment Shader Program

The fragment program of an image filtering shader program is where all the work
happens. Add the following to the Init function as well:

fragmentProgram = $

[s
'uniform sampler2D _IDL_ImageTexture;', $
'uniform vec3 scl;', $
'void main(void) {', $
'vecd ¢ = texture2D(_IDL_ImageTexture, gl_TexCoord[0].xv);', S
c.rgb *= scl;', S
gl_FragColor = c;', $

Object Programming Altering RGB Levels Using a Shader

340

Chapter 14: Advanced Rendering Using Shader Objects

This GLSL code can be trandlated relatively easily. IDLgrlmage uses texturesto
draw image data. Access the texture map associated with the base image's datain the
IDL reserved uniform variable, _IDL_ImageTexture, Which isautomatically
created for the base image. The sixth line in the program above fetches the image
pixel (atexture texel) from the image texture and storesit in ¢, which is a 4-element
vector that represents the RGBA channel data. Modify the color of thetexel in the
next tile using the uniform variable, scl, declared on line four. Finally, tell OpenGL
about the new color for this particular pixel on the screen by setting g1_FragColor.
OpenGL clamps the pixel color values to the appropriate range for your display.

This fragment program runs once for every pixel (fragment) on your screen that is
covered by the image.

Assign RGB Shader Program to Shader Object

You need to supply the program code to the shader object so that it is available to the
graphics card when it is needed. To accomplish this, you can use shader object
properties VERTEX_PROGRAM_STRING and

FRAGMENT_PROGRAM _STRING to associate inline shader program components
with the shader object.

Note
With more complicated (longer) shader programs, it may be easier to keep the
shader program components in separate files. In such a case, associate the shader
program elements with a shader object using the VERTEX_PROGRAM_FILE and
FRAGMENT_PROGRAM_FILE properties.

Add the following code to the bottom of your Init function.

self->IDLgrShader: :SetProperty, $
VERTEX_PROGRAM_STRING=STRJOIN (vertexProgram, STRING(10B)), $
FRAGMENT_PROGRAM_STRING=STRJOIN (fragmentProgram, STRING (10B))

Add newlines (STRING (10B)) so that the shader program compiler sees your

program as a single long string containing many source code lines, instead of one

long line. If you ever get a compile-time error, the shader compiler can tell you on

what line the error occurred when you insert the newlines.

Tip
Remove the FORCE_FILTER keyword from the initialization function if you have
been testing your software fallback.

Altering RGB Levels Using a Shader Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 341

The following image shows the result of modifying the RGB levels of an image of a
rose.

Change RGE Intenzity Scales:

Red:
I 1.50000
K e
Green:
I 1.97800
K 1]
Blue:
0.190400
KN 2

Reset | Capture Image |

Object Programming Altering RGB Levels Using a Shader

342 Chapter 14: Advanced Rendering Using Shader Objects

Applying Lookup Tables Using Shaders

The IMAGE_1D property on the IDLgrImage object lets you load color lookup table
(LUT) valuesinto atexture map and pass the LUT to a shader program. LUTs are
useful for a number of tasks including:
» Displaying palletized images.
e Adding color to greyscale images.
* Optimizing the evaluation of expensive functions. For example, if your image
is 8-bit greyscale and you need to apply an expensive function to each pixel it

is normally more efficient to pass each of the 256 greyscale values to the
function and store the result in a 256 entry LUT used for drawing.

e Adjusting image brightness, gamma, contrast, color balance and other settings.

* Adjusting data ranges such as converting an 11-bit image to 8-bits for display
(see “High Precision Images’ on page 349 for more information).

Example Code
See shader_lut_doc__define.pro, located in the examples/doc/shaders

subdirectory of the IDL distribution, for the complete, working example. Run the
example by creating an instance of the object at the IDL command prompt using
oLUTshader=0BJ_NEW (' shader_lut_doc') or view thefilein an IDL Editor
window by entering .EDIT shader_lut_doc__define.pro.

The example code differs slightly from that presented here for the sake of clarity.
Whereas the working example includes code needed to support user interface
interaction, the following sections leave out such modifications to highlight the
shader program components.

Basic LUT Shader Object Class

The shader_lut_doc object classinherits from IDLgrShader and contains the
Filter method, just like the “Basic RGB Shader Object Class’ on page 336. See that
section for the base code or the example for the complete code. The one differenceis
this example uses the shader object VERTEX_PROGRAM_FILENAME and
FRAGMENT_PROGRAM _FILENAME properties, which reference external shader
program files for the vertex and fragment shader components.

Applying Lookup Tables Using Shaders Object Programming

javascript:doIDL(".edit shader_lut_doc__define.pro")

Chapter 14: Advanced Rendering Using Shader Objects 343

Uniform Variable for LUT Example

In this example, a uniform variable named lut contains the values of the 256-element
array of color table values. This can either be a custom LUT such as an enhanced
greyscale color table, or one of the predefined IDL LUTSs.

The following code creates agreyscale LUT defined by a curve rather than alinear
ramp, making the dark areas darker and the light areas lighter. Notice that the 256-
entry LUT isloaded into a one-dimensional image (an IDLgrImage object with
IMAGE_1D property set). ThisIDLgrImage isautomatically converted into atexture
map for use by the shader. SetUniformVariable is called with the name of the
uniform variable and the value (the image object) so the shader can access the texture
map containing the LUT.

; Create enhanced grayscale LUT and store in 1-D IDLgrImage.
x = 2*!PI/256 * FINDGEN(256) ;; 0 to 2 pi
lut = BYTE(BINDGEN(256) - sin(x)*30) ;; Create 256 entry

oLUT = OBJ_NEW('IDLgrImage', lut, /IMAGE_1D)

; Store LUT in uniform variable named lut.
self->SetUniformvariable, 'lut', oLUT

Warning
The uniform variable name is case-sensitive, unlike most variable namesin IDL.

The LUT isloaded into atexture map instead of auniform variable array becauseitis
more efficient to load and index the LUT when itisin atexture. In addition, under
certain circumstances you can use hilinear filtering to interpolate between valuesin
the LUT if itisin atexture map.

A side effect of using atexture map isit islimited by the maximum texture size
(MAX_TEXTURE_DIMENSIONS in IDLgrWindow::GetDevicelnfo). On most
hardware today thisis 4096 by 4096 pixels, soif your LUT islarger than thisyou will
need to work around this limitation (using a 2-D texture map is one possible
solution). Also, as texture maps must be a power of 2 in size (128, 256, 512, 1024,
etc.), ensure the size of your LUT is apower of 2 to keep it from being scaled to the
next higher power of 2.

To display palletized images or to add color to greyscale images, simply load an RGB
LUT into the 1D IDLgrImage rather than a greyscale LUT. The shader code remains
exactly the same. (The shader_1lut_doc__define.pro program lets you apply
either the enhanced greyscale or one of IDL’s pre-defined colortables.)

Object Programming Applying Lookup Tables Using Shaders

344 Chapter 14: Advanced Rendering Using Shader Objects

Hardware Shader Program for LUT Shader

This example reads the shader source from text files. The vertex shader
(LuTShaderVert . txt located in examples/doc/shaders) containsthe
following code:

void main (void)

{
gl_TexCoord[0] = gl_MultiTexCoord0;
gl_Position = ftransform() ;

}

This basic vertex program passes along the texture coordinate and then applies a
transform to the vertex to correctly position it on the screen. The g1_TexCoord[0]
isavarying variable that transmits data from the vertex program to the fragment
shader program.

The fragment shader (LuTShaderFrag. txt located in examples/doc/shaders)
contains the following code:

uniform sampler2D _IDL_ImageTexture;
uniform samplerlD lut;

void main (void)

{
float i = texture2D(_IDL_ImageTexture, gl_TexCoord[0].xy).r;
gl_FragColor = texturelD(lut, 1i);

}

The fragment shader is where the lookup happens. The uniform variable, lut, which
was defined in the IDL application using SetUniformVariable, contains the lookup
tablein a1-D texture (of GLSL type sampleri1D). Aspreviously explained, the LUT
is loaded into a texture map for efficiency.

The _IDL_ImageTexture Variableisareserved uniform variable that provides
access to the 2-D base image (of GLSL type sampler2D). When a shader object is
associated with an IDLgrImage object, and the uniform variable is not defined using
SetUniformVariablein the IDL application, the base image object (a texture mapped
onto arectangle) is stored in areserved uniform variable named
_IDIL_TmageTexture. The baseimage isthe IDLgrImage to which the shader is
attached. If it is attached to more than one image, the base image is the one currently
being shaded. Non-base images are those passed to the shader program using
SetUniformVariable.

Since more than one texture is used in the rendering of the image (the
_IDL_TmageTexture baseimage texture and the lut texture), thisisreferred to as
multi-texturing.

Applying Lookup Tables Using Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 345

The GLSL texture2D procedure call reads the texel at the current texture
coordinate. This procedure typically returns afloating point, four-element vector
(containing red, green, blue and a pha values). But with a greyscale image, the red,
green, and blue values are the same, so the appending . r keepsonly the red channel
and assignsit to thefloat i.

The GLSL texturelD procedure takes two parameters, the lut and i (the texture
coordinate that instructs it which texel to sample). This value normally ranges from
0.0t0 1.0 (0.0 being thefirst texel, 1.0 the last). Since the value read from the image
into i also normally ranges between 0.0 and 1.0, it is possible to use it directly asa
texture coordinate to do the lookup.

When performing alookup on the CPU, you directly accessthe LUT array using the
pixel value astheindex. A pixel value of O corresponds to the first entry inthe LUT
and apixel value of 255 corresponds to the last entry.

However, in a shader program the texture coordinate lookup is possible because
before a pixel reaches the fragment shader it is converted to floating point by
OpenGL. In the case of an 8-bit greyscale image, therangeis0.0to 1.0. That meansa
pixel with value 0 becomes 0.0 and 255 becomes 1.0. When doing the coordinate
texture lookup on the GPU, the texture1D procedure does the lookup by using the
converted pixel values where pixel value of 0 corresponds to the first LUT entry and
apixel value of 1.0 (converted from 255) corresponds to the last entry.

Assign LUT Shader Program to Shader Object

You need to supply the program code to the shader object so that it is available to the
graphics card when it is needed. To accomplish this, you can use shader object
properties VERTEX_PROGRAM_FILE and FRAGMENT_PROGRAM_FILE to
associate external shader program components with the shader object.

Add the following code to the bottom of your Init function:

vertexFile=filepath ('LUTShaderVert.txt', $

SUBDIRECTORY=['examples', 'doc', 'shaders'])
fragmentFile=filepath('LUTShaderFrag.txt', $
SUBDIRECTORY=['examples', 'doc', 'shaders'])

self->IDLgrShader: :SetProperty, $
VERTEX_PROGRAM_FILENAME=vertexFile, $
FRAGMENT_PROGRAM_FILENAME=fragmentFile

Object Programming Applying Lookup Tables Using Shaders

346 Chapter 14: Advanced Rendering Using Shader Objects

At this paint, you can easily add image display code to your program and test your
LUT shader. The result of applying one of IDL’s pre-defined colortables appearsin
the following figure.

#lLUT Shader Demo

Select LUT Colortable:

26

Kl i DN
Fieset Enhance Grepscale |

Figure 14-5: LUT Shader Example
Software Fallback for the LUT Shader

The following code performs the LUT lookup. When there is not sufficient hardware
support for shaders or when the FORCE_FILTER keyword is set on initialization, the
colortables changes result from the following code instead of a shader program. You
will likely find that performance slows significantly.

Function shader_lut_doc::Filter, Image

; Allocate return array of same dimension and type.
sz = SIZE(Image)

newImage = FLTARR(sz[1:3], /NOZERO)

; Get the LUT uniform variable.
self->GetUniformvVariable, 'lut', oLUT

Applying Lookup Tables Using Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 347

; Read the LUT data from the 1-D image.
oLUT->GetProperty, DATA=lut
FOR y=0, sz[3]-1 DO BEGIN
FOR x=0, sz[2]-1 DO BEGIN
; Read from the image.
idr = Imagel0,x,vy]
; Convert from 0.0-1.0 back to 0-255.
idr *= 255

; Get the number of image channels.
szlut = SIZE(lut)
IF szlut[0] EQ 1 THEN BEGIN
; Greyscale LUT, only 1 channel.
grey = lut[idr]
fgrey = FLOAT (grey) / 255.0

newImage[0,x,y] = fgrey
newImage[l,x,y] = fgrey
newImage([2,x,y] = fgrey
newImage([3,x,y] = 1.0
ENDIF ELSE BEGIN
;; RGB LUT.
rgb = lut[*, idr]
frgb = FLOAT (rgb) / 255.0
newImage[0:2,x,v] = frgb
newImage([3,x,y] = 1.0
ENDELSE
ENDFOR
ENDFOR
RETURN, newlmage
END

IDL always passes the image to the Filter method in RGBA floating-point pixel-
interleaved format, so you don't have to worry about alot of input data combinations.
IDL also clamps the data this function returns to the [0.0, 1.0] range and scales it to
the correct pixel range, usualy [0, 255], for your display device.

Note
Uniform variables are, in a sense, free-form propertiesin the IDLgrShader

superclass. Within the Filter method, accessing the lut texture map from the
uniform variable maintains consistency sincethisis same place the hardware shader
obtainsit. This reduces the chance for confusion.

At this paint, you can test your work by writing a ssimple display program that loads
your datainto an IDLgrlmage object, creates an instance of your shader_1lut_doc
object and attaches the LUT to your image object by setting the object reference of
the shader in the SHADER property of IDLgrImage. You also need to set the

Object Programming Applying Lookup Tables Using Shaders

348 Chapter 14: Advanced Rendering Using Shader Objects

FORCE_FILTER property on classinitialization so that the filter fallback runs, even
if you have shader hardware:

oLUTshader = OBJ_NEW('shader_lut_doc', /FORCE_FILTER)

Applying Lookup Tables Using Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 349

High Precision Images

Traditionally, most computer graphics cards and monitors have been able to display a
maximum color depth of 8-bits per channel. In such cases high-precision images that
exceed 8-bits per channel must be converted to 8-bit for display. Thiswas
traditionally accomplished using the IDL BY TSCL function, which was limited by
the processing capabilities of the CPU. Fortunately, this conversion can now be
accomplished by the GPU. The full precision imageis passed to the video card
memory once and is then converted asit is rendered.

OpenGL Conversion of Image Data to Texture Data

It isimportant to understand how OpenGL converts a high precision imageto a
texture map before writing a shader program. The graphics card vendor ultimately
decides what formats are supported. Using the IDLgrimage

INTERNAL_DATA_TY PE property, you tell OpenGL inwhat format you would like
the texture stored. The following table describes the relationship between OpenGL
types and the INTERNAL_DATA_TY PE property value.

OpenGL INTERNAL—DATA—TYPE Description
Setting

RGBAS8 1 8-bit unsigned bytes per channel,
widely supported

RGBA16F 2 16-bit floating point with 1 sign bit,
5 exponent bits and 10 mantissa
bits

RGBA32F 3 32-bit floating point, which is
standard | EEE float format

Table 14-1: Texture Data Types and Settings

An IDLgrImage will accept data of type BY TE, UINT, INT and FLOAT. When the
texture map is created the data from IDLgrImage is converted to the type specified in
INTERNAL_DATA_TYPE.

Note
If your image datais floating point, your fragment shader must scale it to the range
0.0to 1.0 before writing it to g1_FragColor or you need to scale it to the range of
0.0 to 1.0 before setting it on the IDIgrimage.

Object Programming High Precision Images

350 Chapter 14: Advanced Rendering Using Shader Objects

If INTERNAL_DATA_TYPE is set to floating point INTERNAL_DATA_TYPE
equals 2 or 3), image data conversion is performed by OpenGL as followswherecis
the color component being converted:

Image Data Type Flcc:frgiyegrsﬁginm
BYTE o/(2°-1)
UINT c/(2'-1)

INT (2c+1)/(216-1)
FLOAT ¢

Table 14-2: OpenGL Conversion of Image Data to Floating Point

If INTERNAL_DATA_TYPE is1 (8-bit unsigned byte), then theimage dataiis scaled
to unsigned byte. Thisis equivalent to alinear BY TSCL from the entire type range
(e.g. 0-65535) to unsigned byte (0-255).

Note
INTERNAL_DATA_TYPE of 0, the default, maintains backwards compatibility by
converting the image data to byte without scaling.

To avoid dataloss during conversion, you should choose an internal data type with
sufficient precision to hold your image data. For example, with a16-bit UINT image
that uses the full range of 0-65535, if you set INTERNAL_DATA_TYPE to 2 (16-bit
floating point), your image will till be converted to the range of 0.0 to 1.0, but some
precision will be lost (due to the mantissa of a 16-bit float being only 10 bits). If you
need a higher level of precision, set INTERNAL_DATA_TY PE to 3 (32-hit floating
point). However, on some cards there may be a performance penalty associated with
the higher level of precision, and requesting 32-bit floating point will certainly
require more memory.

Once the image has been converted to a texture map it can be sampled by the shader.
The GLSL procedure, texture2D, returnsthe sampled texel in floating point (0.0 to
1.0). Therefore, if the INTERNAL_DATA_TYPE is 1 (unsigned byte) thetexd is
converted to floating point, using c/(28 - 1), before being returned.

High Precision Images Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 351

Examples of Handling High-Precision Images

Thefollowing examples provide guidelines for reading in various types of image data
including how to set the IDLgrimage INTERNAL_DATA_TY PE property and
supporting fragment shader code. However, due to the size limitations of the IDL
distribution, high-precision images are not included, so you will need to use your
own data to create working examples. See the following sections:

e “Displaying a 16-bit UINT Image” below

* “Displaying an 11-bit UINT Image” on page 352

* “Displaying an 11-bit UINT Image with Contrast Adjustment” on page 353
Displaying a 16-bit UINT Image

In this example, the input image (uilmageData) is 16-bit unsigned integer greyscale
image that uses the full range of 0 to 65535. The goal isto display the entire range
using alinear byte scale. Traditionally we'd usethe BY TSCL functionin IDL prior to
loading data into the IDL grlmage object:

ScaledImData = BYTSCL (uiImageData, MIN=0, MAX=65535)
oImage = OBJ_NEW ('IDLgrImage', ScaledImData, /GREYSCALE)

To have the GPU do the scaling, load the unscaled image datainto the IDLgrlmage
and set INTERNAL_DATA_TY PE to 3 (32-hit floating point):

oImage = OBJ_NEW('IDLgrImage', uilmageData, $
INTERNAL_DATA_TYPE=3, /GREYSCALE, SHADER=oShader)

The fragment shader is extremely simple. Here, the reserved uniform variable,
_IDL_ImageTexture, representsthe baseimagein IDL:

uniform sampler2D _IDL_ImageTexture;

void main (void)

{

gl_FragColor = texture2D(_IDL_ImageTexture, gl_TexCoord[0].xy);
}

All we are doing is reading the texel with texture2D and setting itin
gl_FragColor. You will notice that there is no explicit conversion to byte because
thisis handled by OpenGL. The value written into g1_FragColor isaGLSL type
vec4 (4 floating point values, RGBA). OpenGL clamps each floating point value to
the range 0.0 to 1.0 and convertsit to unsigned byte where 0.0 mapsto 0 and 1.0
maps to 255. So all we haveto do isread thetexel value from _IDIL_ImageTexture
and setitinto gl_FragColor.

Object Programming High Precision Images

352 Chapter 14: Advanced Rendering Using Shader Objects

Displaying an 11-bit UINT Image

An 11-bit unsigned integer imageis usually stored in a 16-bit UINT array, but with
only 2048 (211 values used. For this example, let's say the minimum valueis 0 and
the max is 2047. Traditionally this would be converted to byte as follows:

ScaledImData = BYTSCL (uiImageData, MIN=0, MAX=2047)
oImage = OBJ_NEW('IDLgrImage', ScaledImData, /GREYSCALE)

To scale on the GPU we again load the image with the original data. Thistime
INTERNAL_DATA_TYPE can be set to 2 (16-bit float) as this can hold 11-bit
unsigned integer data without loss of precision:

oImage = OBJ_NEW('IDLgrImage', uilImageData, $
INTERNAL_DATA_ TYPE=2, /GREYSCALE, SHADER=oShader)

The fragment shader 1ooks like the following where _TDI,_TmageTexture
represents the baseimage in IDL:

uniform sampler2D _IDL_TImageTexture;

void main (void)

{

gl_FragColor = texture2D(_IDL_TImageTexture, gl_TexCoord[0].xy) *
(65535.0 / 2047.0);

}

The only difference between this 11-bit example and the previous 16-bit exampleis
the scaling of each texel. When the 16-bit UINT imageis converted to floating point,
the equation c/(216 - 1) isused (see Table 14-2) so 65535 mapsto 1.0. However, the
maximum value in the 11-bit image is 2047, which is 0.031235 when converted to
floating point. This needs scaled to 1.0 before being assigned to g1_FragcColor if
we want 2047 (image maximum) to map to 255 (maximum intensity) when the byte
conversion isdone. (Remember avalueof 1.0ingl_FragColor iSmapped to 255.)

It's possible to implement the full byte scale functionality on the GPU, and let the
user interactively specify the input min/max range by passing them as uniform
variables. There is a performance advantage to doing this on the GPU as the image
data only needsto be loaded once and the byte scal e parameters are changed simply
by modifying uniform variables. See “IDLgrShaderBytscl” (IDL Reference Guide)
and the associated example to see how this can be achieved.

High Precision Images Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 353

Displaying an 11-bit UINT Image with Contrast Adjustment

The previous example applied alinear scaling to the 11-bit data to convert it to 8-bit
for display purposes. Sometimes it's useful to apply a non-linear function when
converting to 8-bit to perform contrast adjustments to compensate for the non-linear
response of the display device (monitor, LCD, projector. etc.).

For an 11-bit image this can be achieved using a LUT with 2048 entries where each
entry contains an 8-bit value. Thisis sometimes referred to as an 11-bit in, 8-bit out
LUT, which uses an 11-bit value to index the LUT and returns an 8-bit value.

Thisisrelatively simple to implement on the GPU. First create the 2048 entry
contrast enhancement LUT and load it into an IDLgrlmage which will be passed to
the shader as atexture map (see “Applying Lookup Tables Using Shaders” on
page 342 for more information).

x = 2*1PI/256 * FINDGEN(256) ;; 0 to 2 pi

lut = BYTE (BINDGEN(256) - sin(x)*30)

; Stretch to 2048 entry LUT.

lut = CONGRID (1lut, 2048)

oLUT = OBJ_NEW('IDLgrImage', lut, /IMAGE_1D, /GREYSCALE)
oShader->SetUniformVariable, 'lut', oLUT

Theimage is created as before:

oImage = OBJ_NEW('IDLgrImage',6 uilmageData, $
INTERNAL_DATA_ TYPE=2, /GREYSCALE, SHADER=oShader)

The fragment shader 1ooks like the following where _TD1,_TmageTexture
represents the baseimage in IDL and lut is the lookup table.:

uniform sampler2D _IDL_TImageTexture;
uniform samplerlD lut;

void main (void)
{
float 1 = texture2D(_IDL_ImageTexture, gl_TexCoord[0].xy).r *
(65535.0/2048.0) ;
gl_FragColor = texturelD(lut, 1i);
}

Asyou can see thetexel valueis scaled before being used as an index into the LUT.

Thefollowing figure shows how the 11-bit to 8-bit LUT isindexed. Only afraction of
the input datarange is used (0-2047 out of a possible 0-65535). As 2047 (0.0312
when converted to float) is the maximum val ue, this should index to the top entry in
the LUT. So we need to scaleit to 1.0 by multiplying by 32.015. Now the range of
values in the image (0-2047) index the entire range of entriesin the LUT.

Object Programming High Precision Images

354

6553

207

Chapter 14: Advanced Rendering Using Shader Objects

1.0

Scale to
index
entire
LuUT

0.03
0.0

207

1.0

8-bit

values
convert-
ed to
float

UINT image

converted to float
texture

0.0
2048 entry LUT

Converted to
Byte and
displayed by
OpenGL

Figure 14-6: Conversion to BYTE Using 11-bit to 8-bit LUT

Although this could be done on the CPU, it is much more efficient to do it on the
GPU since the image dataonly needsto be loaded once and the display compensation
curve can be modified smply by changing datain the IDLgrImage holding the LUT.

High Precision Images

Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 355

Filter Chain Shaders

A series of image filtering shaders can be grouped and applied sequentially to an
image. To do so, add each shader to an IDLgrFilterChain object, whichisa
specialized type of container designed to hold IDLgrShader objects or objects that
subclass from IDLgrShader. Then associate the IDLgrFilterChain object with the
IDLgrlmage object using the SHADER property.

When the scene is drawn, the image datais modified by each shader program
according to container order. The output from the first shader is processed by each
subsequent shader until all shader programs have been applied. IDL then draws the
result to the window.

Note
This functionality requires support for GLSL frame buffer object extension in
addition to the standard hardware support required by IDLgrShader. See the
IDLgrWindow::GetDevicelnfo methods's
FRAMEBUFFER_OBJECT_EXTENSION keyword for details).

The following example creates an IDLgrFilterChain object and lets you add and
remove individual 1DLgrShaderConvol3 abjects, which provide the ability to apply
sharpening, smoothing, and edge detection convolution filters to an image. Like the
IDLgrShaderBytscl object, the pre-defined | DL grShaderConvol 3 object includes a
software fallback that is automatically used when there is not sufficient hardware
support for shader operations.

Example Code
See shader_filterchain_doc__ define.pro, located inthe
examples/doc/shaders subdirectory of the IDL distribution, for the complete,
working example. Run the example by entering
0bj=0BJ_NEW ('shader_filterchain_doc') atthelDL command prompt or
view thefilein an IDL Editor window by entering . EDIT
shader_filterchain_doc__define.pro.

Basic Filter Chain Shader Object Class

The shader_filterchain_doc object classinherits from IDLgrFilterChain,
which inherits container manipulation methods from IDL_Container, but also
includesthe FORCE_FILTER method common to IDLgrShader. This meansthat you
can test any software based alternative code provided in a shader’s Filter method as
described in “Providing a Software Alternative to Shaders’ on page 335. Since this

Object Programming Filter Chain Shaders

javascript:doIDL(".edit shader_filterchain_doc__define.pro")
javascript:doIDL(".edit shader_filterchain_doc__define.pro")

356

Chapter 14: Advanced Rendering Using Shader Objects

example uses the pre-defined IDL grShaderConvol 3 object, there is no need to specify
vertex or fragment programs since these are inherent to the object definition.

In addition to the typical object definition code, this example creates instances of the
four types of pre-defined convolution filters and stores them in an object array:

oIdentity = OBJ_NEW("IDLgrShaderConvol3", KERNEL=0)
oSmooth = OBJ_NEW ("IDLgrShaderConvol3", KERNEL=1)
oSharpen = OBJ_NEW ("IDLgrShaderConvol3", KERNEL=2)
oEdge = OBJ_NEW ("IDLgrShaderConvol3", KERNEL=3)
objarray = [oIdentity, oSmooth, oSharpen, oEdge]

Since an unmodified image is loaded first, make sure the identity convolution filter is
the only itemin the filter chain object (self in the following lines). Then associate the
IDLgrFilterChain object with the image using the SHADER property.

self->Add, oIdentity
oImage->SetProperty, SHADER=self

In this program, you can select among four check boxes to apply varying
combinations of convolution filtersto agrayscale image. Each time you select a
different check box, the list of shaders are removed from the IDLgrFilterChain
container and then the selected items are re-added.

; Remove all items from the collection and add back
; selected shaders.

self->Remove, /ALL

selected = WHERE (value EQ 1)

IF N_ELEMENTS (selected) GT 1 || selected NE -1 THEN BEGIN
self->Add, (*pstate).objarray[where (value EQ 1)]
ENDIF

; Update base and covolution factors for all

; selected shaders.

shaderObjs=self->Get (/ALL, COUNT=count)

FOR i =0, count-1 DO BEGIN

shaderObjs[i]->SetProperty,

BASE_BLEND_FACTOR= (*pState) .basefactor, $
CONVOL_BLEND_FACTOR= (*pState) .convolfactor

ENDFOR

; Draw.
(*pState) .oWindow->Draw, (*pState).oView

Note
Shaders are applied in container order. You could use different user interface

controls to provide away to apply shadersin a specific order instead of using check
boxes.

Filter Chain Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 357

Uniform Variables for Filter Chain Example

There are no exposed uniform variables since the IDL grShaderConvol 3 object
exposes its uniform variables as properties. When you call SetProperty for one of the
convolution shader’s properties, it calls SetUniformVariable internally. See
“|DLgrShaderConvol3 Properties’ (IDL Reference Guide) for information on the
BASE BLEND_FACTOR, CONVOL_BLEND_FACTOR, and KERNEL properties.
If youlook in idlgrshaderconvol3__define.pro located inthe 1ib
subdirectory of the IDL distribution, you will see the following uniform variablesin
the fragment shader program:

uniform sampler2D _IDL_ImageTexture

uniform float BaseBlend

uniform float ConvolBlend

uniform vec2 _IDL_ImageStep
uniform vecd kernel[9]

The BaseBlend, ConvolBlend and kernel variables relate to object properties.
The _1p1,_TImageTexture refersto the base IDLgrlmage object and
_IDL_TmageStep isused by the convolution filtering operation. Both are reserved
uniform variables (see “ Reserved Uniform Variables’ on page 330 for details).

Hardware Shader Program for Filter Chain Example

The fragment and vertex shader programs are incorporated into the

IDL grShaderConvol 3 object definition file,
idlgrshaderconvol3__define.pro, located in the 1ib subdirectory of the IDL
distribution.

Software Fallback for the Filter Chain Shader

The IDLgrShaderConvol 3 abject definition file includes a software fallback option
that can be exercised using the IDLgrFilterChain FORCE_FILTER property. Set the
property either on object creation or in the FilterChain object’s Init method. For
example, to use the shader_filterchain_doc example with the software
fallback, create the object as follows:

obj=0BJ_NEW ('shader_filterchain_doc', /FORCE_FILTER)

Switching the value of the FORCE_FILTER property between 0 and 1 in this
example allows you to see the execution speed differences between the hardware and
software versions of the filter chain.

Object Programming Filter Chain Shaders

358

Chapter 14: Advanced Rendering Using Shader Objects

When you create a shader_filterchain_doc object and select mineral.png,
you can apply one or more convolution shaders and modify shader parameters as

shown in the following figure.

Convolution Shaders

Bage blend factor

¥ |dentity I Dt
[Srmooth A] 4
oo Convolution blend factor
[~ Sharpen 0.821400
v Edge Detection ﬂ J _'I
Reset

Figure 14-7: Applying a Combination of Shaders Using IDLgrFilterChain

Filter Chain Shaders

Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 359

Vertex Shaders

Vertex attribute data may be associated with IDLgrPlot, IDLgrPolygon,
IDLgrPolyline, and IDLgrSurface objects using the GetVertexAttributeData and
SetVertexAttributeData. While uniform variables are useful for passing concise
control parametersto a shader program, they are not suited for passing large amounts
of datawhere the data might contain values that are associated with each vertex. The
ability to pass frequently changing per-vertex attribute datato a shader program in an
attribute variable lets you show movement within adisplay (asdescribed in “Attribute
Variables’ on page 332).

The following example uses an attribute variable to replicate the effect of wind on a
set of particles. Each particle has an initial position and avelocity assigned toit. The
initial position of the particle can be easily represented by the aready-familiar vertex
[X, Y, Z] information.

Example Code
See shader_vertexwinds_doc.pro, located in the examples/doc/shaders
subdirectory of the IDL distribution, for the complete, working example. Run the
example procedure by entering shader_vertexwinds_doc at the IDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
shader_vertexwinds_doc.pro.

Attribute and Uniform Variables for Vertex Shader

This example uses the global wind data (g1obalwinds .dat) that is shipped as part
of the IDL distribution. Thereisalso a[2,n] vector of (u,v) pairs, representing the
wind velocity at each point.

; Get initial positions and wind velocity data.
RESTORE, FILE=FILEPATH('globalwinds.dat',6 $
SUBDIRECTORY=['examples', 'data'l)

; Set up point grid.
pts = FLTARR(2, 128%*64)
FOR i=0, 63 DO BEGIN
pts[0, 1*128: (i+1)*128-1]
pts[l, 1*128:(i+1)*128-1]
ENDFOR

; Set up per-sample velocity information.
REFORM (u, 128*64)
REFORM (v, 128%*64)

Object Programming Vertex Shaders

javascript:doIDL("shader_vertexwinds_doc")
javascript:doIDL(".edit shader_vertexwinds_doc.pro")
javascript:doIDL(".edit shader_vertexwinds_doc.pro")

360 Chapter 14: Advanced Rendering Using Shader Objects

uv = TRANSPOSE([[ul, [v]])

This code fragment creates an |DLgrPolygon object with the initial sample (particle)
locations and uses sTYLE=0, which simply draws adot at each vertex. Instead of
placing the velocity data in the shader object, you storeit in the graphic object, the
polygon, using the SetVertexAttributeData method:

; Create graphical object and associate the wind data.
oPoints = OBJ_NEW('IDLgrPolygon', pts, STYLE=0, THICK=3)
oPoints->SetVertexAttributeData, 'uv', uv

A time uniform variable is used to determine the amount of displacement of aparticle
from itsoriginal location since time will be multiplied by velocity in the vertex
shader program.

; Animate and track time.
t0 = SYSTIME (1)
frames = 0L
FOR 1=0, 2 DO BEGIN
FOR time=0.0, 2, 0.01 DO BEGIN
oShader->SetUniformVariable, 'Time', time
oWin->Draw
frames++
ENDFOR
ENDFOR

Warning
Attribute and uniform variable names are case-sensitive, unlike most variable
namesin IDL.

Hardware Shader Program for Vertex Shader

The vertex program does the majority of the work. The wind velocity data contained
in the attribute variable, uv, is passed to the vertex program by calling
SetVertexAttributeData. The vertex program runs once for every vertex in the
primitive. In this case, OpenGL finds the attribute data associated with each vertex as
it callsthis shader program, and places that attribute datain uv. As uv is afregquently
changing attribute variable, the value will likely be different each time the vertex
shader is called.

The uniform variable, Time, specifies how long the particle has been moving with the
velocity uv. Therefore the actual displacement is simply the velocity multiplied by
time. The IDL application sets the value of Time for each frame in the animation.

vertexProgram = [$
'attribute vec2 uv;', $

Vertex Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 361

'uniform float Time;', $

'void main() {', $
'vecd vert;', $
'vert = gl_Vertex + vecd4(uv * Time, 0.0, 0.0);', S
'gl_Position = gl_ModelViewProjectionMatrix * vert;',6 $

"3
OpenGL sets the special, pre-defined GLSL uniform variable, g1_vertex, to the
current vertex position [X, y, z, w] for each vertex. The expression uv*Time
multiplies the 2-element velocity vector by the scalar time value, resulting in another
2-element vector. Thisresult is expanded to a 4-element vector and then added to the
vertex location. Finally, the new vertex location is transformed from world to screen
space and passed back to OpenGL viathe special GLSL variable g1_Position.

The fragment program is rather trivial. The only thing this program doesis set the
color of the point.

fragmentProgram = [$
'void main() {', $
'gl_FragColor = vecd (1.0, 0.44, 0.122, 0.8);', $

"1

Note
Any color set using the COLOR property of the IDLgrPolygon object isignored
since the fragment shader rendering takes precedence over the fixed-function
OpenGL pipeline rendering. If the fragment portion of the shader program does not
set afragment color, the fragment (pixel) is drawn with color set to black.

Assign Vertex Shader Program to Shader Object

Since the fragment and vertex shader programs were defined inline, associate them
with anewly created shader object using the VERTEX_PROGRAM_STRING and
FRAGMENT_PROGRAM _STRING properties. Then assign the shader to the
polygon object (oPoints).

; Set up shader object

oShader = OBJ_NEW ('IDLgrShader"')

oShader->SetProperty, $

VERTEX_PROGRAM_STRING=STRJOIN (vertexProgram, STRING(10b)), $

FRAGMENT_PROGRAM_STRING=STRJOIN (fragmentProgram, STRING(10Db))
oPoints->SetProperty, SHADER=oShader

The only remaining task isto create the display objects. See
shader_vertexwinds_doc.pro inthe examples/doc/shaders directory if
needed.

Object Programming Vertex Shaders

362 Chapter 14: Advanced Rendering Using Shader Objects

When you run the program, the time loop cycles through the animation three times.
The framerate is printed to the output window when the program finishes. An IDL
application could duplicate this example without using shaders by applying the

vel ocity-multiplied-by-time factor repeatedly to al the vertex data and repeatedly
updating the vertex data stored in the polygon object. However, thiswould be amuch
slower process than the average 200 frames per second achieved by the shader
program. The following figure shows a subset of the world map and the final
positions of wind vector points.

Figure 14-8: Vertex Shader Example Mapping Wind Velocity Data

Vertex Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 363

Lighting Shaders

Shader programs that do not involve computing fragment color based on lighting or
shading calculations are typically straightforward and relatively simple. For image
filters, the fragment color is determined by the image data, modified by the filter.
And drawing simple points requires setting a simple color to tell OpenGL what color
to use when drawing the points.

However, when a shader is performing lighting calculations rather than drawing an
image, the shader program replaces the fixed, OpenGL lighting calculations. Your
shader program code will need to define lighting and shading effects. In general, this
isafairly complex task, but there are tools available to make it a bit easier.

Note
The code in the following example was created with atool called ShaderGen, by
3Dlabs (http://www.3dlabs.com). It is beyond the scope of this documentation to
describe such third party tools. However, an internet search will likely provide
several options that allow you to define and adjust lighting parameters and produce
usable shader code output.

Beyond defining the characteristics of lightsin GLSL code, you need to understand
how lights defined in IDL relate to the OpenGL light table.

IDL Lights and the OpenGL Light Table

InIDL thereisalimit of 8 active IDLgrLight objects, which you define by their
position, direction, color, and other parameters. OpenGL passes these light
definitions to the shader program via a pre-defined GLSL array variable called
gl_LightSource. The shader program then looks up the light definitionsin the
table and performs the required lighting calculations. The key is determining which
IDL light correspondsto alight entry inthe g1_1.i ghtSource table.

The IDLgrLight object LIGHT _INDEX property provides ameans of tying a
particular IDLgrLight object to an element of the g1_1LightSource table. When
you define alight, you also set the LIGHT _INDEX property to avalue between 0 and
7, inclusive, without duplicating avalue in any of the lights. You can then pass these
indices to the shader program in uniform variables, or simply hard-codeit in the
shader program.

Object Programming Lighting Shaders

364

Chapter 14: Advanced Rendering Using Shader Objects

For example the following code creates alight and tells OpenGL to put the definition
for thislight in entry 4 of the light source table:

oLight = OBJ_NEW('IDLgrLight', TYPE=1, LOCATION=[200,200,500], $
COLOR=[255,255,255], INTENSITY=0.8, LIGHT_INDEX=4)

The shader program then expects to see the definition for thislight in entry 4 of the
table. Here some shader program code fetches the light characteristics:

Ambient += gl_LightSource[4].ambient * attenuation;
Diffuse += gl_LightSource[4].diffuse * nDotVP * attenuation;
Specular += gl_LightSource[4].specular * pf * attenuation;

Note
In some shader programs, the light needs to be identified by a single integer value

(such as 4) instead of by alight tableentry (g1_1.ightSource[41). Insuch acase,
you can define auniform variable that containsthe light index value and passthisto
the shader program. The following example uses this method, defining a uniform
variable named Directional Lightlndex with avalue of 4 and passing it to the shader
program.

Ambient Lights

An ambient light is a bit different from the other lights. IDL does not use a light
source to define an ambient light, and an ambient light does not count toward the
limit of 8 active lights. Instead, IDL sets the ambient portion of the OpenGL light
model state to the desired ambient light color and intensity. (If alight is not defined
with a TY PE setting of positional, directional, or spotlight, the light will be
considered to be an ambient light by default.) In a shader program, you would add in
the ambient light contribution as follows:

Ambient = gl_LightModel.ambient; // Use IDL's ambient light

Note
See“IDLgrLight” (IDL Reference Guide) for additional information about ambient

lights.

Lighting Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 365

Adding Lighting and Shading to a Surface

Thisexample displays an IDLgrSurface, and uses the vertex shader to displace part of
it up and down in an animation sequence. It also changes the color of the displaced
part dightly for additional emphasis. An ambient light and a positional light
illuminate the surface.

Example Code
See shader_lightsurf_doc.pro, located in the examples/doc/shaders
subdirectory of the IDL distribution, for the complete, working example. Run the
example procedure by entering shader_1lightsurf_doc at the IDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
shader_lightsurf_doc.pro.

First create the surface:

; Generate surface data and create surface object.
surfdata = BESELJ (SHIFT(dist(100), 50, 50) / 2,0) * 40
oSurface = OBJ_NEW('IDLgrSurface', surfdata, STYLE=2,
COLOR=[200,200,40])

; Create model for the visibile surface and rotate angle
; for good viewing.

oModel = OBJ_NEW ('IDLgrModel"')

oModel->Add, oSurface

oModel->Translate, -50, -50, O

oModel->Rotate, [0,0,1]1, -30

oModel->Rotate, [1,0,0], -60

oModel->Translate, 50, 50, O

Then define the ambient and positional lights. The directional light has an arbitrary
light index value (4 in this example) in order to identify it in the shader program.

oLightModel = OBJ_NEW ('IDLgrModel')
oLightModel->Add, OBJ_NEW('IDLgrLight', TYPE=0, $
COLOR=[100, 50, 401])
oLightModel->Add, OBJ_NEW('IDLgrLight', TYPE=1,
LOCATION=[200,200,500]1, $
COLOR=[255,255,255], INTENSITY=0.8, LIGHT INDEX=4)

Object Programming Adding Lighting and Shading to a Surface

javascript:doIDL("shader_lightsurf_doc")
javascript:doIDL(".edit shader_lightsurf_doc.pro")
javascript:doIDL(".edit shader_lightsurf_doc.pro")

366 Chapter 14: Advanced Rendering Using Shader Objects

Uniform and Attribute Variables for Lighting Shader

The IDL application (shader_lightsurf_doc.pro) creates and passes two
uniform variables and an attribute variable containing per-vertex information to the
shader program.

» Displacement — this attribute variable contains a “ displacement mask”,
which describes the part of the surface to displace. Thereis avalue for each
vertex, where a zero means no displacement will be applied at that point, and a
non-zero val ue describes the magnitude of the relative displacement.

disp = FLTARR(100,100)

disp[50:99, 50:99] = MAX(surface)

oSurface->SetVertexAttributeData, 'Displacement', $
REFORM (disp, 100*100)

e DirectionalLightlndex — this uniform variabl e identifies the one non-
ambient light’s index value that is being passed to the shader program. The
value for this uniform variable matches the LIGHT _INDEX value.

oShader->SetUniformvVariable, 'DirectionallLightIndex', 4
Note
The generated shader program requires an integer (4) rather than atable entry
(91_nightSource[4]) to identify the light. While defining a uniform
variableis not a requirement, using Directional Lightlndex in the shader
program code makes it easier to understand than hard-coding the number 4.

e Time - thisuniform variable isincremented during IDL application execution
and the updated value is used within the shader program to vary the amount of
displacement with respect to time.

Hardware Shader Program for Lighting Shader

The vertex shader program for this example was largely generated by 3Dlabs
ShaderGen program. Only a small amount of code needed to be added or modified to
make the generated code work with the example IDL application. See the code
comments for details.

Example Code
See lightSurfvert. txt, located in the examples/doc/shaders subdirectory
of the IDL distribution, for the complete, working example.

Adding Lighting and Shading to a Surface Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 367

The fragment shader program (1ightsurf. frag) isvery simple:

void main () {
gl_FragColor = gl_Color;
}

Assign Lighting Shader Program to Shader Object

The vertex shader program is rather long and complex, so it is stored in an external
file, asisthe fragment shader program. Associate the shader program components
with the IDLgrShader object using the VERTEX_PROGRAM_FILE and
FRAGMENT_PROGRAM _FILE properties.

; Access shader program files.
vertexFile=FILEPATH ('lightSurfVert.txt', $

SUBDIRECTORY=['examples', 'doc', 'shaders'])
fragmentFile=FILEPATH('lightSurfFrag.txt', $
SUBDIRECTORY=['examples', 'doc', 'shaders'])

; Create shader and associate vertex and fragment programs.

oShader = OBJ_NEW('IDLgrShader')

oShader->SetProperty, VERTEX_PROGRAM_FILENAME=vertexFile, $
FRAGMENT_PROGRAM_FILENAME=fragmentFile

; Associate shader with the surface. You can comment out

; this line to run without the shader program.
oSurface->SetProperty, SHADER=oShader

Object Programming Adding Lighting and Shading to a Surface

368 Chapter 14: Advanced Rendering Using Shader Objects

With the appropriate display objects and a FOR loop to increment the uniform
variable Time, you can visualize the results of applying the shader program lighting

calculations to the surface. A detail of the surface during program execution appears
in the following figure.

Figure 14-9: Lighting Calculations Applied to Surface Displacement

Adding Lighting and Shading to a Surface Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 369

Multi-texture Shaders

Some applications display multiple 2-D datasets that overlay each other and are
layered on an object such as a polygon. When you want to blend the overlying
textures in a specific manner, using a shader program provides precise control over
how the blending occurs. With a shader multi-texture application, you can specify
multiple textures and control how they are displayed relative to each other. Two areas
of control are:

1. Texture blending — the shader program controls how the textures are blended
with each other and applies simple blending factors that result in an immediate
update of the display. The same update in IDL would require re-blending the
image and sending the result to the graphics device. Thiswould be required for
each modification.

2. Texture coordinate mapping — the application can specify aunique set of
texture coordinates for each texture, allowing independent control of the
positioning of each texture on the object.

However, if you want to uniformly blend images, it may be easier to use traditional
IDL methods to create a single image, which can then be used as a texture map. You
can combine or “burn” the overlay datainto the baseimage to produce a singleimage
that IDL then displays in the usual, static manner. Suppose your multi-texture
example features a map with an overlay of weather data. If the mapisan IDL BYTE
array with dimensions[3,256, 256] and the cloud datain an IDL BY TE array with
dimensions [256, 256], then code to “burn” the clouds into the map might look like:

fmap = FLOAT (map) / 255.0

fclouds = FLOAT (clouds) / 255.0

fclouds = TRANSPOSE([[[fclouds]], [[fclouds]l], [[fclouds]l] 1)
map = BYTE((fmap * (1.0-fclouds) + fclouds) * 255)

This code simply increases the amount of white in the image, proportional to the
values of the cloud data, and reduces the map color by the same amount. However, to
change the blending the IDL application must re-blend the image and send the results
to the graphics device each time a blending factor changes. A shader program can
handle such multi-texturing tasks with greater flexibility and performance.

Note
Often data for multiple textures will be correctly sized and positioned to map onto a
surface in the same way. However, if you need change the position of one texturein
relation to others, see “Repositioning Textures’ on page 374.

Object Programming Multi-texture Shaders

370 Chapter 14: Advanced Rendering Using Shader Objects

Uniform Variables and Multi-Texture Shaders

When more than one texture is being layered on a surface or polygon, you do not
need to use SetUniformVariable to pass the texture data associated with the primary
image object to the shader program. (The primary image is the one to which the
shader object is attached). The texture map associated with the primary image object
datais automatically contained in the reserved uniform variable
_IDL_TmageTexture. However, you do need to use SetUniformVariable to pass
any additional textures to the shader program.

Note
If SetUniformVariable references an |DLgrlmage object with dimensions that are
not a power of 2, the image will be padded to the next largest power of 2. If the
dimensions of the IDLgrImage are larger than MAX_TEXTURE_DIMENSIONS
(returned by IDLgrWindow::GetDevicel nfo) then the image will be scaled down to
MAX_TEXTURE_DIMENSIONS. Keep thisin mind when generating texture
coordinates to access the texture map.

Multi-texture Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 371

Manipulating Multiple Textures Using Shaders

The following multi-texturing shader program exampl e provides the ability to
interactively scrape away the section of clouds under the mouse cursor to see the
earth below. Because this requires blending only a section of the image, using a
shader programin this caseisfar easier than duplicating the outcome using only IDL.

Example Code
Seeshader _multitexture_doc.pro,locatedintheexamples/doc/shaders
subdirectory of the IDL distribution, for the complete, working example. Run the
example procedure by entering shader_multitexture_doc at the DL
command prompt or view the filein an IDL Editor window by entering .EDIT
shader_multitexture_doc.pro.

Uniform Variables for Multi-texture Shader

This example uses three uniform variables that define the map of the earth, the
clouds, and the position of the mouse cursor on the map where you want to reveal the
earth below the clouds. These are:

» Day — the base image of the map of the earth that is added to the
IDLgrModel. This baseimage object is stored in the reserved uniform variable
_IDL_ImageTexture by default and need not be explicitly passed to the shader
program using SetUniformVariable.

READ_JPEG, 'Day.jpg', day
oDay = OBJ_NEW ('IDLgrImage', day)

» Clouds— thisimage of the cloud cover is explicitly passed to the shader
program using SetUniformVariablein the main IDL application,
shader_multitexture_doc.pro.

READ_JPEG, 'Clouds.jpg', clouds
oClouds = OBJ_NEW('IDLgrImage', clouds)
oShader->SetUniformvVariable, 'Clouds', oClouds

e Scrape— this provides the position of the mouse cursor, which scrapes avay
acircle of clouds when the scraper has been activated. Thisinformationis
passed using SetUniformVariable in the OnM ouseUp and OnMouseM otion
methods of the window observer.

Example Code
The window observer object fileislocated in winobserver__define.prointhe
examples/doc/shaders subdirectory of the IDL distribution. Run the example

Object Programming Manipulating Multiple Textures Using Shaders

javascript:doIDL("shader_multitexture_doc")
javascript:doIDL(".edit shader_multitexture_doc.pro")
javascript:doIDL(".edit shader_multitexture_doc.pro")

372 Chapter 14: Advanced Rendering Using Shader Objects

procedure by entering winobserver__define at the IDL command prompt or
view thefilein an IDL Editor window by entering . EDIT
winobserver_ _define.pro.

Hardware Shader Program for Multi-texture Shader

The vertex shader program (multitexturevert. txt located in
examples/doc/shaders) isvery simple since the example requires only display-
related transformation of the vertices.

void main ()

{
gl_TexCoord[0]
gl_Position

}

gl_MultiTexCoord0;
ftransform() ;

This basic vertex program passes along the texture coordinate and then applies a
transform to the vertex to correctly position it on the screen. The g1_TexCoord[0]
isavarying variable that transmits data from the vertex program to the fragment
shader program.

Note
If you need to align or change the position of atexture in relation to other textures
you can use the SetM ultitextureCoord method. See “ Repositioning Textures’ on
page 374 for details.

The fragment shader program (multitextureFrag.txt locatedin
examples/doc/shaders) uses the three uniform variables to determine which
portion of the clouds needs to be removed.

uniform sampler2D Clouds;
uniform sampler2D _IDL_ImageTexture;
uniform vec2 Scrape;

void main ()

{

vec3 clouds = vec3 (texture2D(Clouds, gl_TexCoord[0].st).r);

vecl3 daytime = texturel2D(_IDL_ImageTexture,
gl_TexCoord[0] .st) .rgb;

vec3 color = daytime;
vec2 f = Scrape - gl_TexCoord[0].st;

f.s *= 2.0; // aspect ratio correction

if (length(f) > 0.02)

Manipulating Multiple Textures Using Shaders Object Programming

javascript:doIDL("winobserver__define")
javascript:doIDL(".edit winobserver__define.pro")
javascript:doIDL(".edit winobserver__define.pro")

Chapter 14: Advanced Rendering Using Shader Objects 373

color = mix(daytime, clouds, clouds.r);

gl_FragColor = wvecd(color, 1.0);
}

The shader program mixes the map and cloud data according to the cloud intensity,
but only when greater than a certain distance away from the specified position (the
Scrape location). If close enough to the specified position, the program just draws the
map color. The shader program is fast enough to let you interactively change the
Scrape location to reflex the position of the mouse cursor. Attempting the same
operation in IDL would likely be too slow to be useful.

Assign Multi-texture Shader Program to Shader Object

You need to supply the program code to the shader object so that it is available to the
graphics card when it is needed. To accomplish this, you can use shader object
properties VERTEX_PROGRAM_FILE and FRAGMENT_PROGRAM_FILE to
associate external shader program components with the shader object.

vertexFile=filepath('multitexturevVert.txt', $
SUBDIRECTORY=['examples', 'doc', 'shaders'])

fragmentFile=filepath('multitextureFrag.txt', $
SUBDIRECTORY=['examples', 'doc', 'shaders'])

; Create the shader object, link the shader programs, and

; associate the shader with the base image object, the daytime

; map of the earth (oDay).

oShader = OBJ_NEW ('IDLgrShader"')

oShader->SetProperty, $
VERTEX_PROGRAM_FILENAME='multitexture.vert'

oShader->SetProperty, $
FRAGMENT_PROGRAM_FILENAME='multitexture.frag'

oDay->SetProperty, SHADER=oShader

At this paint, you can easily add image display code and a window observer to your
program and test your multi-texture shader.

When you run shader_multitexture_doc.pro, click inthe window to turn on
the cloud “scraper” and move your mouse cursor to reveal the ground beneath. The

Object Programming Manipulating Multiple Textures Using Shaders

374

Manipulating Multiple Textures Using Shaders

Chapter 14: Advanced Rendering Using Shader Objects

following figure shows the upper Baja peninsulawith clouds (left) and without (right)

as the shader interactively blends the two textures under the mouse cursor.

Figure 14-10: Multi-texture Blending Example

Repositioning Textures

When working with multiple textures, the textures may all map the same way onto
the object. However, if one texture needs to be repositioned or if you want to animate

atexture, you can assign individual texture coordinates to each texture. Using the

map and cloud example, you could either shift the position of the clouds or animate

the clouds to move across the map.

To achieve such results, you need to supply adifferent set of texture coordinates for

each texture using the IDLgrPolygon::SetMulti TextureCoord or the
IDL grSurface::SetM ulti TextureCoord method. This method has the signature of:;

obj->SetMultiTextureCoord, Unit, TexCoord

where Unit specifies a texture coordinate unit and TexCoord contains the texture
coordinates. This effort beginsin your IDL application:

tcMap = < code that generates the texture coords >
tcClouds = tcMap
tcClouds[0,*,*] += 0.2 ;; shift the clouds to the west

oPolygon->SetMultiTextureCoord, 0, tcMap
oPolygon->SetMultiTextureCoord, 1, tcClouds

The last two lines associate two sets of texture coordinates with the polygon object.
Access these texture coordinates in the vertex program where texture coordinate O
(zero) relates to the map texture and texture coordinate 1 is the cloud texture. Your

vertex shader program must collect these and pass them to the fragment shader:

gl_TexCoord[0]
gl_TexCoord[1]

gl_MultiTexCoord0;
gl_MultiTexCoordl;

Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 375

The fragment shader then uses the appropriate texture coordinate to lookup the color
from each texture. That is, it uses gl_TexCoord[1] to lookup the cloud texture,
and g1_TexCoord[0] to lookup the map texture.

vecl3 clouds = vec3(texture2D(Clouds,
gl_TexCoord[1l].st) .r);
vec3 map = texture2D (Map, gl_TexCoord[0].st) .rgb;

vec3 color = mix(map, clouds, clouds.r);

gl_FragColor = vecd(color, 1.0);

Thus, you can use two sets of texture coordinates to control the display of two
different textures.

Rotating Earth with Multiple Textures
This example loads three images, a base day image of the earth, a night image and an

image of clouds, into textures. It then draws the rotating earth showing aday scene on
one side and night scene (lights of big cities) on the other.

Figure 14-11: Sample Image from Multi-texture Shader Application

Inthe IDL code:

Object Programming Manipulating Multiple Textures Using Shaders

376

Chapter 14: Advanced Rendering Using Shader Objects

Create three IDLgrImage objects to hold the daytime, nighttime and cloud
textures. Assign the object references for these image objects to uniform
variables, using the DL grShader:: SetUniformVariable method.

; Tell the shader program about our textures.
oShader->SetUniformVariable, 'EarthDay', oDay
oShader->SetUniformvVariable, 'EarthNight', oNight
oShader->SetUniformvVariable, 'EarthCloudGloss', oClouds

Use the SetMuulti TextureCoord method for IDLgrPolygon to set texture
coordinates (tc) for the textures.

oEarth->SetMultiTextureCoord, 0, tc
Note
If the textures did not share the same coordinates, you could call
SetM ulti TextureCoord multiple times. See “ Repositioning Textures’ on
page 374 for additional information.

In the Shader Program:

In the vertex program (earthvert . txt), fetch the texture coordinates for
both the daytime and nighttime textures from the predefined GLSL uniform
variable g1_MultiTexCoord[n], where n corresponds to the numbers used
in the IDLgrPolygon:: SetMulti TextureCoord method calls. These texture
coordinates are passed to the fragment shader with varying variables.

Thefragment shader (earthFrag. txt) then decides on what side of the earth
the fragment is on, and chooses the appropriate texture and texture coordinates
to use to look up the texel value to use as the fragment color.

This shader program was taken directly from Chapter 10 of the “ Orange Book”

(“OpenGL Shading Language”, Second Edition, by Randi J. Rost) and required no
modifications to work with the IDL application, shader_earthmulti.pro.

Example Code

See shader_earthmulti.pro, located in the examples/doc/shaders
subdirectory of the IDL distribution, for the complete, working example. Run the
example procedure by entering shader_earthmulti atthelDL command prompt
or view thefilein an IDL Editor window by entering . EDTT
shader_earthmulti.pro. The associated shader program files
earthvert.txt and earthFrag. txt arelocated in the same directory.

Manipulating Multiple Textures Using Shaders Object Programming

javascript:doIDL("shader_earthmulti")
javascript:doIDL(".edit shader_earthmulti.pro")
javascript:doIDL(".edit shader_earthmulti.pro")

Index

Numerics

3D
text objects, 220

A

aigning text

text objects, 219
aphablending, 115, 198
apha channel

image object data, 98

image object transparency, 115

objects supporting, 60
alphacomposit_image _doc, 118
aphaimage _obj_doc, 116
animation

animating objects

about, 246

Object Programming

behavior object, 251
display object hierarchy, 246
model object, 248
object example, 255
controlling rate, 250
performance, 253
animation_doc.pro, 255
animation_image_doc.pro, 252
animation_surface_doc.pro, 252
annotating
object graphics display
about, 218
annotated image examples, 236
colorbar object, 231
font abject, 223
indexed images, 236
legend object, 228
light object, 233
RGB images, 240

377

378

ROI object, 227
text object, 219
text objects, 219

applycolorbar_indexed_object.pro, 236

applycolorbar_rgb_object.pro, 240
arguments

described, 20
assignment

using, 27
attribute objects, 40
attribute variables, 330
automatic

class structure definition, 301
axes

adding to

objects, 161

axis object

tick labels, 174

title, 174

visualization object, 41

working with, 161

B

back-face culling, 212
baseline changes to text objects, 221
behavior object, 247, 251
binary images

displaying

Object Graphics, 100

bitmap graphics

defined, 284

IDLgrClipboard, 275

IDLgrPrinter, 277

text rendering, 284

VEersus vector, 284

when to use, 286
buffer objects

creating, 274

destination object, 37

overview, 274

Index

C

calling sequence
function methods, 19
procedure methods, 19
channels
alpha, 98
image objects, 98
Cine, 255
class
object, 297
structure, 300
structures
zeroed, 300
Cleanup method
implicit calling, 309
of superclasses, 309
clipboard objects
creating, 276
destination object, 37
clipping planes, 77
color
mapping voxel values, 197
Object Graphics, 46
color modé
destination objects, 48
indexed, 48
printers, 277
RGB, 46, 49
window objects, 267
color property of objects, 51
colorbar objects
creating, 231
overview, 231
using, 231
visualization object, 41
coloring vertices, 214
combining transformations, 94

common methodsin object classes, 19

composite classes, 317
concave polygons, 206
contour object

Object Programming

about, 154
visualization object, 41
control points, 122
convex polygons, 206
coordinate conversion, 80, 83
coordinate systems
scaling coordinates, 70
transformation, 70
coordinate transformations, 80
copying
tiled image, 146
copyrights, 2
creating
objects
axis, 161
buffer, 274
clipboard, 276
colorbar, 231
contour, 154
image, 100
legend, 228
light, 233
plot, 157
polygon, 204
polyline, 214
printer, 277
surface, 184
text, 219
tiled image, 140
volume, 194
window, 267
culling to improve performance, 212

D

dangling references, 305
data

coordinate conversion, 81
data picking, 258, 262
date/time data

displaying

Object Programming

379

onh axis objects, 165
default font, 222, 223
defining
method routines, 310
depth buffering objects
about, 58
test functions, 58
destination device, 266
destination objects, 37, 37, 37, 37, 37
color models, 48
drawing, 266
destroying
objects, 26, 309
dialogs
printer, 277
DICOM object
file format object, 44
display support objects, 38
displaybinaryimage objectt.pro, 101
displaygrayscaleimage _object.pro, 103
displaying
Object Graphics
binary images, 100
grayscale images, 102
multiple images, 106
displaymultiples _object.pro, 106
dot operator, 311
draw widgets
object graphics window
color mode, 48
setting, 267
drawing
destination device, 266
object graphics displays, 55
to a printer object, 278

E

EMF file, 285
encapsulation, 297
EQ operator

Index

380

comparing object references, 28
erasing
window objects, 269
ex_reverse plot.pro, 174
examples
objects
alphacomposite_image_doc, 118
aphaimage_obj_doc, 116
animation_doc.pro, 255
animation_image_doc.pro, 252
animation_surface_doc.pro, 252
applycolorbar_indexed_object.pro, 236
applycolorbar_rgb_object.pro, 240
displaybinaryimage object.pro, 101
displaygrayscaleimage_object.pro, 103
displaymultiples_object.pro, 106
ex_reverse plot.pro, 174
maponsphere_object.pro, 132
obj_axis.pro, 162
obj_plot.pro, 180
obj_tess.pro, 206
obj_vol.pro, 194, 196
panning_object.pro, 111
penta.pro, 178
rot_text.pro, 222
sel_obj.pro, 261
surf_track.pro, 189, 263
test_surface.pro, 86
tilingjp2_doc.pro, 150
transparentwarping_object.pro, 121
zooming_object.pro, 88
shaders
lightSurfVert.txt, 366
shader_earthmulti.pro, 376
shader_filterchain_doc__define.pro, 355
shader_lightsurf_doc.pro, 365
shader_|ut_doc _define.pro, 342
shader_multitexture_doc.pro, 371
shader_rgb_doc__define.pro, 336
shader_vertexwinds_doc.pro, 359
utilities

Index

get_bounds.pro, 79
idlexpalimage _define.pro, 318
idlexshow3__define.pro, 317
norm_coord.pro, 82
set_view.pro, 79

expose events, 272

exposing window objects, 269

eye position, 75

F

far clipping plane, 77
filling
polygons
with pattern, 205
filter chain shaders, 355
font object
about, 223
setting text object font, 222
visualization object, 43
fonts
default
object graphics, 223
Hershey, 224
TrueType, 223
type size, 222
type style, 222
fragment shader, 325
freeing
heap variables
objects, 305
objects
about, 305
function methods
calling sequence for, 19

G

get_bounds.pro, 79
GetProperty method

Object Programming

about, 22
GLSL. See OpenGL Shading Language
graphic objects, 40
graphics
bitmap versus vector, 284
visualization objects, 40
graphics object tree, 35
graphs, 153
grayscale images
displaying
Object Graphics, 102
zooming, 88

H

heap variables

freeing

variables, 305

leakage, 305

objects, 304
Hershey fonts, 224
hidden line removal, 187
hidden object classes, 299
hiding

window objects, 269
hierarchy

graphic objects, 35

iconifying

windows, 269
idlexpalimage__define.pro, 318
idlexshow3__define.pro, 317
IDLffDXF object

file format object, 44
IDLffIPEG2000

file format object, 44
IDLgrFilterChain

using, 355
IDLgrimage

Object Programming

381

See also image objects.
IDLgrShader
hardware requirements, 321
IDLgrShaderBytscl
hardware requirements, 321
IDLgrShaderConvol 3
hardware requirements, 321
IDLgrText
rendering
bitmap graphics, 284
vector graphics, 285
image display
multiple images, 106
object graphics
binary, 100
grayscale, 102
multiple images, 106
image objects
about, 100
aphablending, 115
array configurations, 98
channels, 98
creating, 100
displaying
binary, 100
grayscale, 102
palette, 98
saving to afile, 270
tiling. See imagettiling.
transparency, 115
visualization object, 42
warping, 121
image pyramid, 137
image tiling
about, 136
about tiles, 139
application, 140
copying, 146
example, 150
panning, 142
preloading tiles, 147
printing, 146

Index

382

pyramid, 137

guerying required tiles, 141

zooming, 143
images

manipulating in Object Graphics

panning, 111

ROI abjects, 227

tiling application, 140

warping atransparency, 115
implicit self argument, 311
indexed color model, 46, 48
indexed images

color annotations, 236
inheritance

defined, 302

object, 298
initializing

objects, 23
instance, object, 297
instancing

back-face culling, 212

lighting, 235

redraw performance, 272

window objects, 272
interpolation

voxel values, 199

K

keywords
definition, 20
setting, 21

L

language catal og object
file format object, 44
legalities, 2
legend object
about, 228

Index

visualization object, 41
lifecycle

methods, 19

routines, 307
light objects

adding to avolume, 197

creating, 233

overview, 233

types of lights, 233

using, 234

visualization object, 42
lights

performance, 235
lightSurf vertex shader, 366
location

object graphicsto view area, 70

text object, 219
logarithmic

plots, 163

M

mani pulating images
panning
Object Graphics, 111
zooming
Object Graphics, 88
maponsphere_object.pro, 132
mapping
images onto a sphere
creating display objects, 132
Object Graphics, 132
transparent images, 121
transparent overlays, 121
maximum intensity projection, 198
maximum value
inaplot, 158
maximum window size, 268
method overriding, 314
methods
about, 310

Object Programming

defining routines, 310
invocation, 19
object, 297

minimum value
inaplot, 158

MIP. See maximum intensity projection

model class
methods, 91
model object
display object, 39
rotation, 92
scaling, 93
selecting models, 260
trandglation, 92
Motion JPEG2000
file format object, 44
mouse
cursor, 270
MPEG object
file format abject, 45
MrSID imagefiles
file format object, 44
multiple images
displaying in Object Graphics, 106

N

named

variables, 20
NE operator

comparing object references, 28
near and far clipping planes, 77
new page, 283
NORM _COORD function, 81
norm_coord.pro, 82
normal

computations, 213
null object, 303

Object Programming

O
obj_axis.pro, 162

OBJ DESTROY procedure

using, 26, 309
OBJ _NEW function
using, 308
obj_plot.pro, 180
obj_tess.pro, 206
obj_vol.pro, 194, 196
OBJARR function
using, 309
object classes
attribute objects, 40
attributes, 223
axis, 41, 161
buffer, 37, 274
clipboard, 37
colorbar, 41
common methods
Cleanup, 19
GetProperty, 19
Init, 19
SetProperty, 19
contour, 41, 154
destination objects, 37
DICOM, 44
display support, 38
DXF, 44
file format objects, 44
font, 43, 223
IDLffJPEG2000, 44
IDLffMJPEG2000, 44
image, 42
LangCat, 44
legend, 41, 228
light, 42, 233
model, 39
MPEG, 45
MrSID, 44
naming conventions, 32
palette, 42, 50

383

Index

384

pattern, 41, 207 color annotations
plot, 41, 157 indexed images, 236
polygon, 43, 204 RGB images, 240
polyline, 43, 214 composite classes, 317
printer, 37 displaying
ROI, 42 binary images, 100
ROIGroup, 42 grayscale images, 102
scene, 38 multiple images, 106
ShapeFile, 45 transparent images, 115
surface, 42, 184 expose events, 272
symbol, 41, 176 hierarchy, 38
tessellator, 43, 206 indexed color model, 46
text, 43, 219 instancing, 272
TrackBall, 43 mani pulating images
view, 39 panning, 111
viewgroup, 38 zooming, 88
visualization object, 40 polygon optimization, 209
volume, 42 typographical conventions used, 32
VRML, 45 object heap variables, 304
window, 37 object hierarchy, 35
XMLDOM, 45 object properties
XMLSAX, 45 setting, 22

object concepts object reference
class, 297 about heap variables, 304
class structures, 300 object tree
clean up, 309 display objects, 38
encapsulation, 297 graphic objects, 35
heap variables, 304 object-oriented programming, 16
inheritance, 298 objects
inheritance, specifying, 302 about, 297
instances, 297 animating, 245
lifecycle, 307 color of, 51
method routines, 310 controlling depth, 58
null object, 303 data picking, 258
persistence, 298 depth buffering, 58
polymorphism, 297 destroying
properties, 22 custom, 309
salf, 311 how to, 26

object graphics graphics hierarchy, 35
animating objects, 246 null, 303
animation example, 255 selecting, 258

Index Object Programming

self argument, 311
undocumented classes, 299
on-the-glasstext, 220
opacity table, 196
OpenGL Shading Language (GLSL)
about, 320
operations
on objects, 27
orientation
text objects, 222

P

pal ette object

indexed color data, 98

using, 50

visualization object, 42
panning images

Object Graphics, 111
panning_object.pro, 111
paralel projection, 73
pattern filling of polygon objects, 205
pattern object

about, 207

visualization object, 41
penta.pro, 178
performance

lighting optimization, 235

object graphics, 66

polygon optimization, 209

window drawing, 272
persistence

about, 298
perspective projection, 74
pixmap objects, using, 269
plot objects

averaging points, 159

minimum and maximum values, 158

plotting symbols, 159

using, 157

visualization object, 41

Object Programming

plotting

logarithmic axes, 163

object graphics, 153

object graphics example, 180

reverse axis, Object Graphics, 174
pointer heap variables, 304
pointers

freeing all, 305
polygon mesh optimization, 209
polygon objects

back-face culling, 212

normal computations, 213

optimization, 209

using, 204

visualization object, 43
polygons

converting to convex, 206
polyline object

using, 214

visualization object, 43
polymorphism, objects, 297
position of graphics, 70
positioning

objectsin aview, 70

text objects, 219
printer object

about, 277

color model, 277

creating, 277

destination object, 37

drawing, 278

print dialogs, 277

starting new page, 283

submitting job, 283
printing

object graphics, 277, 277

tiled image, 146
procedure methods

calling sequence for, 19
projections

overview, 73

385

Index

386

paralel, 73

perspective, 74
properties

objects, setting, 22, 22

retrieving, 24

setting, 23

R

rendering
graphics objects, 55
hardware versus software, 66
performance, 66
polygon objects, 204
polyline objects, 214
speed of volumes, 199
surface objects, 185
reserved uniform variables, 330
restoring
windows, 270
retained graphics, 272
retrieving object properties, 24
revealing window objects, 269
reverse axis, Object Graphics, 174
RGB color system
in object graphics, 46, 49
RGB images
color annotations, 240
ROI
visualization object, 42
ROIGroup object, 42
rot_text.pro, 222
Rotate method, 92
rotating
model objects, 92
objectsin aview, 91

S

saving

Index

windows, 270
Scale method, 93
scaling
about, 93
coordinate systems, 70
visualization objects, 91
scanlines, 147
scene objects
display object, 38
sel_obj.pro, 261
selecting
in window objects, 259
model objects, 260
objectsin aview, 260
viewsin awindow object, 259
self argument (objects), 311
set_view.pro, 79
SetProperty method
about, 22
setting
keywords, 21
properties of objects, 22
window object cursor, 270
setting properties
existing objects, 23
initialization, 23
objects, 22
shader_earthmulti.pro, 376

shader_filterchain_doc__define, 355

shader_lightsurf_doc, 365
shader_lut_doc__define, 342
shader_multitexture_doc, 371
shader_rgb_doc __define, 336
shader_vertexwinds_doc, 359
shaders
about shader functionality, 320
about shader programs, 323
applications, usein, 328
attribute variables
about, 330
using, 359

Object Programming

display-only, 329

fragment and vertex components, 324

fragment program, 325
hardware rendering requirement, 321
hardware requirements, 321
image filtering
about, 334
cache, 335
data capture, 335
examples
filter chaining, 355
high precision images, 349
LUT shader, 342
RGB shader, 336
software alternative, 335
lighting, 363
multi-texture
about, 369
repositioning textures, 374
OpenGL data conversion, 349
passing information, 330
performance enhancement, 326
pre-built, 333
shading language (GLSL), 320
support for, 321
uniform variables
about, 330
reserved, 330
varying variable, 332
vertex program, 325
vertex shaders, 359
shading
polygon objects, 205
polylines, 214
Shapefile
file format abject, 45
simple polygons, 206
skirts, 187
software rendering
about, 272
structures

Object Programming

automatic definition, 301

dot operator, 311

zeroed, 300
submitting print job, 283
surf_track.pro, 189, 263
surface objects

creating, 184

hidden line removal, 187

interactive example, 189

overview, 184

rendering style, 185

shading, 186

skirts, 187

texture mapping, 188

using, 185

visualization object, 42
symbol object

about, 176

visualization object, 41

symbol use for polylines, 214

symbols
pre-defined, 176

T

tessellator object, 43, 206
test_surface.pro, 86
text object
creating and using, 219
editing output, 287
setting font, 222
visualization object, 43
texture maps
polygon objects, 205
surfaces, 188
tick labels, 174
tiling images
about, 136
about tiles, 139

creating tiling application, 140

example, 150

387

Index

388

image pyramids, 137

panning, 142

preloading tiles, 147

querying required tiles, 141

zooming, 143
tilingjp2_doc.pro, 150
timers

IDLitWindow, 250
TrackBall

about, 43
trademarks, 2
transformations

combining, 94

coordinate, 80

model class example, 83, 86

model objects, 91

rotation, 91, 92

scaling, 91, 93

tranglation, 91, 92
Trandate method, 92
translation, 91
transparency

adding an alpha channel, 115

alphachannel, 98

image objects, 115

in vector graphics, 286

of voxels, 196
transparentwarping_object.pro, 121
TrueType fonts

about, 223
typographical conventions, 32

U

undocumented object classes, 299
uniform variables, 330
upward direction of text objects, 222
using

colorbar objects, 231

pixmap objects, 269

volume objects, 195

Index

window objects, 267, 269

Vv

variables
named, 20
varying variable, 332
vector graphics
defined, 285
display results, 287
IDLgrClipboard, 275
IDLgrPrinter, 277
inserting EMF file, 285
object sorting, 289
object sorting issues
IDLgrImage objects, 292
transparent views, 290
smooth shading, 287
text rendering, 285, 287
transparency, 286
versus bitmap, 284
when to use, 286
vertex shader, 325
view area, 70
view object
display object, 39
view volume
finding, 78
overview, 77
viewplane rectangle, 77
viewgroup object
display object, 38
viewplane rectangle, 77, 83
viewport, 70, 71
volume objects
attributes, 196
color values, 197
compositing, 198
creating, 194
interpolating values, 199
lighting, 197

Object Programming

opacity table, 196
overview, 194
rendering speed, 199
using, 195
visualization object, 42
Zbuffering, 198
voxel
transparency, 196
values, 194
VRML objects
file format object, 45

W

warping images
Object Graphics display, 121
window object
destination object, 37
window objects
color moddl, 267
creating, 267
draw widgets, 267
erasing, 269
exposing, 269
hiding, 269
iconifying, 269
instancing, 272

Object Programming

maximum size, 268

restoring, 270

saving, 270

selection, 259

setting the cursor, 270

using, 267, 269
winobserver__define.pro, 371

X

XMLDOM object

file format object, 45
XMLSAX object

file format object, 45
Xprinter

vector graphics, 286

Z

Z-buffer
volume objects, 198
zeroed structures, 300
Zzooming images
Object Graphics, 88
zooming_object.pro, 88

389

Index

	Online Manuals
	IDL Documentation
	What's New in IDL 7.0
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Analyst Reference Guide
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Object Programming
	Contents
	The Basics of Using Objects in IDL
	Object-Oriented Programming Concepts
	Using IDL Objects
	Creating Objects
	Acting on Objects Using Methods
	Modifying Object Properties
	Destroying Objects
	Using Operations with Objects
	Object Examples

	Creating an Object Graphics Display
	Overview of Object Graphics Classes
	Creating an Object Graphics Display
	Object Graphics Display Hierarchy
	Destination Objects
	Display Objects
	Visualization Objects
	File Format Objects
	Color in Object Graphics
	Color and Destination Objects
	Palette Objects
	Specifying Object Color
	How IDL Interprets Color Values
	Rendering Objects
	Controlling the Depth of Objects in a View
	Controlling Object Transparency
	Performance Tuning Object Graphics

	Positioning Objects in a View
	Positioning Visualizations in a View
	Viewport
	Projection
	Eye Position
	View Volume
	Converting Data to Normal Coordinates
	Example: Centering an Image
	Example: Transforming a Surface
	Zooming within an Object Display
	Translating, Rotating and Scaling Objects
	Interactive 3D Transformations

	Working with Image Objects
	Overview of Image Objects
	Creating Image Objects
	Positioning Image Objects in a View
	Panning in Object Graphics
	Defining Transparency in Image Objects
	Warping Image Objects
	Mapping an Image Object onto a Sphere
	Image Tiling
	Adding Tiling to Your Application
	Example: JPEG2000 Files for Tiling

	Working with Plots and Graphs
	Contour Objects
	Plot Objects
	Axis Objects
	Displaying Date/Time Data on Axis Objects
	Axis Titles and Tickmark Text
	Symbol Objects
	A Plotting Routine

	Working with Surface Objects
	Surface Objects
	An Interactive Surface Example

	Creating Volume Objects
	Creating a Volume Object
	Setting Volume Object Attributes

	Polygon and Polyline Objects
	About Polygon and Polyline Objects
	Polygon Objects
	Tessellator Objects
	Pattern Objects
	Polygon Optimization
	Polyline Objects
	Polygon and Polyline Object Examples

	Annotating an Object Display
	Annotating Object Graphic Displays
	Text Objects
	Font Objects
	ROI Objects
	Legend Objects
	Colorbar Objects
	Light Objects
	Custom Image Object Annotations

	Animating Objects
	Overview of Object Animation
	Configuring an Animation Model Object
	Controlling the Animation Rate
	Designing a Behavior Object
	Factors Affecting Animation Performance
	Example: Interactive Cine Animation

	Selecting Objects
	Selection and Data Picking
	Object Selection
	A Selection Example
	Data Picking
	A Data Picking Example

	Displaying, Copying and Printing Objects
	Overview of Object Graphic Destinations
	Window Objects
	Using Window Objects
	Improving Window Drawing Performance
	Buffer Objects
	Clipboard Objects
	Printer Objects
	Bitmap and Vector Graphic Output

	Creating Custom Objects in IDL
	Creating Custom Objects
	IDL Object Overview
	Undocumented Object Classes
	Creating an Object Class Structure
	Object Heap Variables
	The Object Lifecycle
	Creating Custom Object Method Routines
	Method Overriding
	Object Examples

	Advanced Rendering Using Shader Objects
	About Shaders
	About Shader Programs
	How Shaders Enhance Performance
	Using Shaders in an IDL Application
	Passing Information to a Shader Program
	Library of Pre-built Shader Objects
	Image Filter Shaders
	Altering RGB Levels Using a Shader
	Applying Lookup Tables Using Shaders
	High Precision Images
	Filter Chain Shaders

	Vertex Shaders
	Lighting Shaders
	Adding Lighting and Shading to a Surface

	Multi-texture Shaders
	Manipulating Multiple Textures Using Shaders

	Index

