
IDL Version 7.0
November 2007 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

IDL
Connectivity
Bridges

1107IDL70CB

Restricted Rights Notice
The IDL®, IDL Analyst™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures, functions, and
documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the
restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document at
any time and without notice.

Limitation of Warranty
ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information
This software and its associated documentation are subject to the controls of the Export Administration Regulations (EAR). It has
been determined that this software is classified as EAR99 under U.S. Export Control laws and regulations, and may not be re-
transferred to any destination expressly prohibited by U.S. laws and regulations. The recipient is responsible for ensuring compliance
to all applicable U.S. Export Control laws and regulations.

Acknowledgments
ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, ION Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.

NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has a commercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN is licensed from the United States of America under U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.

FLAASH is licensed from Spectral Sciences, Inc. under a U.S. Patent Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.

IMSL is a trademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visual Numerics, Inc. All Rights Reserved.

Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents
Chapter 1
About the IDL Bridges .. 9
What Is a Bridge? .. 10
IDL Import Bridge ... 11
IDL Export Bridge ... 12

Part I: Importing into IDL

Chapter 2
Overview: COM and ActiveX in IDL ... 15
COM Objects and IDL .. 16
Using COM Objects with IDL .. 18
Skills Required to Use COM Objects .. 19
IDL Connectivity Bridges 3

4

Chapter 3
Using COM Objects
in IDL .. 21
About Using COM Objects in IDL .. 22
IDLcomIDispatch Object Naming Scheme ... 24
Creating IDLcomIDispatch Objects .. 28
Method Calls on IDLcomIDispatch Objects .. 29
Managing COM Object Properties .. 37
Passing Parameter Arrays by Reference .. 40
References to Other COM Objects .. 42
Destroying IDLcomIDispatch Objects .. 43
COM-IDL Data Type Mapping ... 44
Example: RSIDemoComponent ... 46

Chapter 4
Using ActiveX Controls in IDL ... 49
About Using ActiveX Controls in IDL .. 50
ActiveX Control Naming Scheme ... 52
Creating ActiveX Controls .. 53
Method Calls on ActiveX Controls .. 55
Managing ActiveX Control Properties .. 56
ActiveX Widget Events ... 57
Destroying ActiveX Controls .. 60
Example: Calendar Control .. 61
Example: Spreadsheet Control ... 65

Chapter 5
Using Java Objects in IDL .. 71
Overview of Using Java Objects .. 72
Initializing the IDL-Java Bridge .. 75
IDL-Java Bridge Data Type Mapping ... 78
Creating IDL-Java Objects .. 84
Method Calls on IDL-Java Objects .. 87
Managing IDL-Java Object Properties .. 89
Destroying IDL-Java Objects .. 91
Showing IDL-Java Output in IDL ... 92
The IDLJavaBridgeSession Object .. 94
Contents IDL Connectivity Bridges

5

Java Exceptions ... 96
IDL-Java Bridge Examples ... 99
Troubleshooting Your Bridge Session .. 118

Part II: Exporting from IDL

Chapter 6
Exporting IDL Objects .. 125
Overview of Exporting IDL Objects ... 126
Wrapper Objects .. 127
Object Lifecycle .. 130
IDL Access .. 132
Parameter Passing and Type Conversion .. 136
Event Handling .. 139
Supported Platforms and IDL Modes .. 140
Configuring Build and Client Machines ... 142

Chapter 7
Using the Export Bridge Assistant .. 147
Export Bridge Assistant Overview .. 148
Running the Assistant .. 149
Using the Assistant .. 150
Working with a Project .. 157
Building an Object ... 161
Exporting an Object ... 162
Specifying Information for Exporting ... 164
Information Skipped During Export .. 178
Exporting a Source Object’s Superclasses .. 180
Modifying a Source Object After Export .. 181
Wrapper Generation Example ... 182

Chapter 8
Using Exported COM Objects .. 189
Overview of COM Export Objects .. 190
COM Wrapper Objects .. 191
Event Handling .. 208
Error Handling ... 211
Debugging ... 213
IDL Connectivity Bridges Contents

6

Chapter 9
Using Exported Java Objects .. 215
Overview of Java Export Objects .. 216
Java Wrapper Objects .. 217
Event Handling .. 232
Error Handling ... 242
Debugging .. 244

Chapter 10
Using the Connector Object .. 245
About the IDL Connector Object ... 246
Preparing to Use the IDL Connector Object .. 247
Connector Object COM Examples .. 249
Connector Object Java Examples .. 253

Chapter 11
Writing IDL Objects for Exporting ... 261
Overview .. 262
Programming Limitations .. 263
Exporting Drawable Objects .. 264
Drawable Object Canvas Examples ... 266

Chapter 12
Creating Custom COM Export Objects ... 269
About COM Export Object Examples ... 270
Nondrawable COM Export Example ... 272
Drawable COM Export Examples ... 276

Chapter 13
Creating Custom Java Export Objects ... 291
About Java Export Object Examples ... 292
Nondrawable Java Export Example ... 294
Drawable Java Export Examples ... 298

Part III: Appendices

Appendix A
IDL Java Object API .. 311
Package Summary .. 312
Contents IDL Connectivity Bridges

7

Appendix B
COM Object Creation .. 471
Sample IDL Object .. 472
Visual Basic .NET Code Sample .. 475
C++ Client Code Sample ... 477
C# Code Sample .. 479
Visual Basic 6 Code Sample ... 481

Appendix C
Java Object Creation ... 483
Sample IDL Object .. 484
Java Object Initiation Without Parameters .. 487
Java Object Initiation with Parameters .. 489

Appendix D
Multidimensional Array Storage and Access 493
Overview ... 494
Why Storage and Access Matter ... 495
Storage and Access in COM and IDL ... 496
2D Array Examples ... 498

Index ... 503
IDL Connectivity Bridges Contents

8

Contents IDL Connectivity Bridges

Chapter 1

About the IDL Bridges
This chapter discusses the following topics.
What Is a Bridge? . 10
IDL Import Bridge . 11

IDL Export Bridge 12
IDL Connectivity Bridges 9

10 Chapter 1: About the IDL Bridges
What Is a Bridge?

A bridge is a technology path that lets applications in different programming
languages or environments share information: for example, between IDL and Java.
With bridge technology, you can use an application that manipulates data in its native
language (e.g., Java) by calling on objects and processes from another language (e.g.,
IDL). In this way, you can take advantage of both environments to solve a problem
that might be otherwise difficult for either environment separately: for example,
embedding an IDL data object in a Java GUI to display a complex data
transformation.

Note
Startup files are not executed when running bridge applications because an IDL
command line is not present. See “Understanding When Startup Files are Not
Executed” (Chapter 1, Using IDL) for details.

IDL supports import and export bridge technology. The Import Bridge lets you
import the functionality of a COM or Java object to an IDL application. The Export
Bridge lets you export the functionality of an IDL object to COM or Java application.
See the following for more information:

• “IDL Import Bridge” on page 11

• “IDL Export Bridge” on page 12
What Is a Bridge? IDL Connectivity Bridges

Chapter 1: About the IDL Bridges 11
IDL Import Bridge

The IDL Import Bridge technology lets you use COM and Java objects in IDL
applications. For a general overview of this technology, see “Overview: COM and
ActiveX in IDL” on page 15.

COM and ActiveX

You have two options for incorporating a COM object into IDL:

• If the COM object does not have its own interface, you can use the
IDLcomIDispatch object class to communicate with the underlying COM
object through the COM IDispatch interface (see “Using COM Objects in
IDL” on page 21 for details)

• If the COM object does have its own interface (i.e., it is an ActiveX control),
you can use IDL’s WIDGET_ACTIVEX routine to place the control in an IDL
widget hierarchy (see “Using ActiveX Controls in IDL” on page 49 for details)

Java

The IDL-Java bridge lets you access Java objects within IDL code. Java objects
imported into IDL behave like normal IDL objects. The bridge also provides IDL
with access to exceptions created by the underlying Java object. For more
information, see “Using Java Objects in IDL” on page 71.
IDL Connectivity Bridges IDL Import Bridge

12 Chapter 1: About the IDL Bridges
IDL Export Bridge

The IDL Export Bridge technology lets you use IDL objects in COM and Java
applications. For a general overview of this technology, see “Exporting IDL Objects”
on page 125.

Note
The Export Bridge technology is installed as part of IDL. For the licensing and
environment requirements of this technology, see “Running the Assistant” on
page 149.

With the Export Bridge, interaction with IDL is through native Java and COM
wrapper objects that are generated for each IDL object with which client applications
want to interact. The wrapper objects manage all aspects of IDL loading,
initialization, process management, and cleanup, so users need only be familiar with
the client language (for embedding the wrapper in the client application) and the
basics of IDL (for accessing and manipulating IDL data and processes).

Export Bridge Assistant

The key to creating your own exported IDL objects is the Export Bridge Assistant,
which generates these native wrapper objects from IDL objects. The Assistant is an
interactive dialogue in IDL that lets you customize the wrapper object you want to
create from the underlying IDL object. You can select the methods, parameters, and
properties that you want to export, as well as other information about the IDL object
(e.g., whether to convert array majority for parameters). See “Using the Export
Bridge Assistant” on page 147 for details.

Connector Object

Instead of exporting a custom IDL source object using the Assistant, you can also
access IDL functionality using the prebuilt connector object that is shipped with the
IDL distribution. This IDL connector object lets you quickly incorporate the
processing power of IDL into an application developed in an external, object-oriented
environment such as COM or Java. The connector object provides a basic,
nondrawable wrapper that includes the ability to get and set IDL variables and
execute command statements in the IDL process associated with the connector
object. For more information, see “Using the Connector Object” on page 245.
IDL Export Bridge IDL Connectivity Bridges

Part I: Importing into
IDL

Chapter 2

Overview: COM and
ActiveX in IDL
This chapter discusses the following topics:
COM Objects and IDL 16
Using COM Objects with IDL 18

Skills Required to Use COM Objects 19
IDL Connectivity Bridges 15

16 Chapter 2: Overview: COM and ActiveX in IDL
COM Objects and IDL

Microsoft’s Component Object Model, or COM, is a specification for developing
modular software components. COM is not a programming language or an API, but
an implementation of a component architecture. A component architecture is a
method of designing software components so that they can be easily connected
together, reused, or replaced without re-compiling the application that uses them.
Other examples of this methodology include the Object Management Group’s
Common Object Request Broker Architecture (CORBA) and Sun’s JavaBeans
technologies.

ActiveX controls are a special class of COM object that follow a set of Microsoft
interface specifications; they are normally designed to present a user interface.

IDL for Windows supports three methods for using COM-based software
components in your applications:

• Exposing a COM object as an IDL object

• Including an ActiveX control in an IDL widget hierarchy

Note
While COM components can be developed for numerous platforms, most COM-
based software is written for Microsoft Windows platforms. IDL for Windows
supports the inclusion of COM technologies, but IDL for UNIX does not. The
chapters in this section will discuss COM in the context of Microsoft Windows
exclusively.

What Are COM Objects?

A COM object, or component, is a piece of software that:

• Is a library, rather than a stand-alone application (that is, it runs inside some
sort of client application such as IDL, a Visual Basic application, or a Web
browser)

• Is distributed in a compiled, executable form

• Exposes a group of methods and properties to its client application
COM Objects and IDL IDL Connectivity Bridges

Chapter 2: Overview: COM and ActiveX in IDL 17
In addition to these criteria, a component may also supply a user interface that can be
manipulated by the user. COM objects that supply a user interface and send events to
the programs that use them are generally packaged as ActiveX controls, although it is
not a requirement that an ActiveX control provide a user interface.

COM objects and ActiveX controls are nearly always packaged as Windows
executable (.exe), dynamic link library (.dll), or object linking and embedding
(.ocx) files.

Why Use COM Objects with IDL?

There are several reasons to use COM technologies alongside IDL:

• COM objects can be designed to use the facilities of the underlying Windows
operating system. If you need access to Windows features not exposed within
IDL, incorporating a COM object into your IDL program may provide the
functionality you need.

• COM objects have been written to provide custom user interface elements or
accomplish specific tasks. Many of these components are available to you free
or at minimal cost. If you work exclusively in a Windows environment,
incorporating a pre-written component in your IDL program may be faster than
coding the same functionality in IDL.
IDL Connectivity Bridges COM Objects and IDL

18 Chapter 2: Overview: COM and ActiveX in IDL
Using COM Objects with IDL

The methods for using COM objects with IDL are:

• “Exposing a COM Object as an IDL Object” on page 18

• “Including an ActiveX Control in an IDL Widget Hierarchy” on page 18

Exposing a COM Object as an IDL Object

IDL’s IDLcomIDispatch object class creates an IDL object that communicates with
an underlying COM object using the COM object’s IDispatch interface. When you
create an IDLcomIDispatch object, you provide the identifier for the COM object you
wish to use, and IDL handles instantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
The IDLcomIDispatch object is useful when you want to incorporate a generic
COM object into your IDL application. If the COM object you want to use is an
ActiveX control, use the WIDGET_ACTIVEX routine, discussed below.

For details on using the IDLcomIDispatch object class to incorporate COM objects
into your IDL applications, see Chapter 3, “Using COM Objects in IDL”.

Including an ActiveX Control in an IDL Widget
Hierarchy

IDL’s WIDGET_ACTIVEX routine incorporates an ActiveX control directly into an
IDL widget hierarchy. This allows you to place the ActiveX control in an IDL widget
interface, and to receive widget events directly from the control for handling by a
standard IDL widget event handler.

Internally, IDL uses the same mechanisms it uses when creating IDLcomIDispatch
objects when it instantiates an ActiveX control as part of an IDL widget hierarchy.
After the widget hierarchy has been realized, an object reference to the IDL object
that encapsulates the ActiveX control can be retrieved and used as an interface with
the ActiveX control. This allows you to call the ActiveX control’s methods and get
and set its properties using standard IDL object conventions and syntax.

For details on using the WIDGET_ACTIVEX routine to incorporate ActiveX
controls into your IDL applications, see Chapter 4, “Using ActiveX Controls in IDL”.
Using COM Objects with IDL IDL Connectivity Bridges

Chapter 2: Overview: COM and ActiveX in IDL 19
Skills Required to Use COM Objects

Although IDL provides an abstracted interface to COM functionality, you must be
familiar with some aspects of COM to intertwine COM and IDL successfully.

If You Are Using COM Objects

If you are using a COM object directly, via the IDLcomIDispatch object, you will
need a thorough understanding of the COM object you are using, including its
methods and properties. An understanding of the Windows tools used to discover
information about COM objects is useful.

If You Are Using ActiveX Controls

If you are incorporating an ActiveX control into an IDL widget hierarchy using
WIDGET_ACTIVEX, you will need a thorough understanding of the ActiveX
control you are using, including its methods, properties, and the information returned
when an event is generated. An understanding of the Windows tools used to discover
information about ActiveX controls is useful.

If You Are Creating Your Own COM Object

If you are creating your own COM object to be included in IDL, you will need a
thorough understanding both of your development environment and of COM itself. It
is beyond the scope of this manual to discuss creation of COM objects, but you
should be able to incorporate any component created by following the COM
specification into IDL by following the procedures outlined here.
IDL Connectivity Bridges Skills Required to Use COM Objects

20 Chapter 2: Overview: COM and ActiveX in IDL
Skills Required to Use COM Objects IDL Connectivity Bridges

Chapter 3

Using COM Objects
in IDL
This chapter discusses the following topics:
About Using COM Objects in IDL 22
IDLcomIDispatch Object Naming Scheme . 24
Creating IDLcomIDispatch Objects 28
Method Calls on IDLcomIDispatch Objects 29
Managing COM Object Properties 37

Passing Parameter Arrays by Reference . . 40
References to Other COM Objects 42
Destroying IDLcomIDispatch Objects 43
COM-IDL Data Type Mapping 44
Example: RSIDemoComponent 46
IDL Connectivity Bridges 21

22 Chapter 3: Using COM Objects in IDL
About Using COM Objects in IDL

If you want to incorporate a COM object that does not present its own user interface
into your IDL application, use IDL’s IDLcomIDispatch object class.

IDL’s IDLcomIDispatch object class creates an IDL object that uses the COM
IDispatch interface to communicate with an underlying COM object. When you
create an IDLcomIDispatch object, you provide information about the COM object
you wish to use, and IDL handles instantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
If the COM object you want to use in your IDL application is an ActiveX control,
use the WIDGET_ACTIVEX routine, discussed in Chapter 4, “Using ActiveX
Controls in IDL”.

Array Data Storage Format

COM, like C, stores array data in row-major format. IDL stores array data in column-
major format. See Appendix D, “Multidimensional Array Storage and Access” for a
detailed discussion of this issue and its implications for IDL application design.

Object Creation

To create an IDL object that encapsulates a COM object, use the OBJ_NEW function
as described in “Creating IDLcomIDispatch Objects” on page 28. IDL creates a
dynamic subclass of the IDLcomIDispatch object class, based on information you
specify for the COM object.

Method Calls and Property Management

Once you have created your IDLcomIDispatch object within IDL, use normal IDL
object method calls to interact with the object. (See Chapter 1, “The Basics of Using
Objects in IDL” (Object Programming) for a discussion of IDL objects.) COM object
properties can be set and retrieved using the GetProperty and SetProperty methods
implemented for the IDLcomIDispatch class. See “Method Calls on
IDLcomIDispatch Objects” on page 29 and “Managing COM Object Properties” on
page 37 for details.
About Using COM Objects in IDL IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 23
Object Destruction

Destroy IDLcomIDispatch objects using the OBJ_DESTROY procedure. See
“Destroying IDLcomIDispatch Objects” on page 43 for details.

Registering COM Components on a Windows
Machine

Before a COM object or ActiveX control can be used by a client program, it must be
registered on the Windows machine. In most cases, components are registered by the
program that installs them on the machine. If you are using a component that is not
installed by an installation program that handles the registration, you can register the
component manually.

To register a component (.dll or .exe) or a control (.ocx), use the Windows
command line program regsvr32, supplying it with name of the component or
control to register. For example, the IDL distribution includes a COM component
named RSIDemoComponent, contained in a file named RSIDemoComponent.dll
located in the examples\doc\bridges\COM subdirectory of the IDL distribution.
To register this component, do the following:

1. Open a Windows command prompt.

2. Change directories to the examples\doc\bridges\COM subdirectory of the
IDL distribution.

3. Enter the following command:

regsvr32 RSIDemoComponent.dll

Windows will display a pop-up dialog informing you that the component has been
registered. (You can specify the “ /s “ parameter to regsvr32 to prevent the dialog
from being displayed.)

Note
You only need to register a component once on a given machine. It is not necessary
to register a component before each use.
IDL Connectivity Bridges About Using COM Objects in IDL

24 Chapter 3: Using COM Objects in IDL
IDLcomIDispatch Object Naming Scheme

When you create an IDLcomIDispatch object, IDL automatically creates a dynamic
subclass of the IDLcomIDispatch class to contain the COM object. IDL determines
which COM object to instantiate by parsing the class name you provide to the
OBJ_NEW function. You specify the COM object to use by creating a class name
that combines the name of the base class (IDLcomIDispatch) with either the COM
class identifier or the COM program identifier for the object. The resulting class
name looks like

IDLcomIDispatchID_typeID

where ID_type is one of the following:

• CLSID if the object is identified by its COM class ID

• PROGID if the object is identified by its COM program ID

and ID is the COM object’s actual class or program identifier string.

Note
While COM objects incorporated into IDL are instances of the dynamic subclass
created when the COM object is instantiated, they still expose the functionality of
the class IDLcomIDispatch, which is the direct superclass of the dynamic subclass.
All IDLcomIDispatch methods are available to the dynamic subclass.

Class Identifiers

A COM object’s class identifier (generally referred to as the CLSID) is a 128-bit
identifying string that is guaranteed to be unique for each object class. The strings
used by COM as class IDs are also referred to as Globally Unique Identifiers
(GUIDs) or Universally Unique Identifiers (UUIDs). It is beyond the scope of this
chapter to discuss how class IDs are generated, but it is certain that every COM
object has a unique CLSID.

COM class IDs are 32-character strings of alphanumeric characters and numerals that
look like this:

{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52}

The above class identifier identifies the RSIDemoComponent class included with
IDL.
IDLcomIDispatch Object Naming Scheme IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 25
When you create an IDLcomIDispatch object using a CLSID, you must modify the
standard CLSID string in two ways:

1. You must omit the opening and closing braces ({ }).

2. You must replace the dash characters (-) in the CLSID string with
underscores (_).

See “Creating IDLcomIDispatch Objects” on page 28 for example class names
supplied to the OBJ_NEW function.

Note
If you do not know the class ID of the COM object you wish to expose as an IDL
object, you may be able to determine it using an application provided by Microsoft.
See “Finding COM Class and Program IDs” on page 26 for details.

Program Identifiers

A COM object’s program identifier (generally referred to as the PROGID) is a
mapping of the class identifier to a more human-friendly string. Unlike class IDs,
program IDs are not guaranteed to be unique, so namespace conflicts are possible.
Program IDs are, however, easier to work with; if you are not worried about name
conflicts, use the identifier you are most comfortable with.

Program IDs are alphanumeric strings that can take virtually any form, although by
convention they look like this:

PROGRAM.Component.version

For example, the RSIDemoComponent class included with IDL has the following
program ID:

RSIDemoComponent.RSIDemoObj1.1

When you create an IDLcomIDispatch object using a PROGID, you must modify the
standard PROGID string by replacing the dot characters (.) with underscores (_).

See “Creating IDLcomIDispatch Objects” on page 28 for example class names
supplied to the OBJ_NEW function.

Note
If you do not know the program ID of the COM object you wish to expose as an
IDL object, you may be able to determine it using an application provided by
Microsoft; see “Finding COM Class and Program IDs” on page 26 for details.
IDL Connectivity Bridges IDLcomIDispatch Object Naming Scheme

26 Chapter 3: Using COM Objects in IDL
Finding COM Class and Program IDs

In general, if you wish to incorporate a COM object into an IDL program, you will
know the COM class or program ID — either because you created the COM object
yourself, or because the developer of the object provided you with the information.

If you do not know the class or program ID for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. You can download the OLE/COM Object Viewer at no
charge directly from Microsoft. As of this writing, you can locate the tool by pointing
your Web browser to the following URL:

http://www.microsoft.com/com

and then selecting Downloads from the Resources menu.

The OLE/COM Object Viewer displays all of the COM objects installed on a
computer, and allows you to view information about the objects and their interfaces.

Note
You can copy an object’s class ID to the clipboard by selecting the object in the
leftmost panel of the object viewer, clicking the right mouse button, and selecting
“Copy CLSID to Clipboard” from the context menu.

Figure 3-1: Microsoft’s OLE/COM Object Viewer Application
IDLcomIDispatch Object Naming Scheme IDL Connectivity Bridges

http://www.microsoft.com/com

Chapter 3: Using COM Objects in IDL 27
If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the
HELP command with the OBJECTS keyword. IDL displays the full dynamic
subclass name, including the class ID or program ID that was used when the object
was created.
IDL Connectivity Bridges IDLcomIDispatch Object Naming Scheme

28 Chapter 3: Using COM Objects in IDL
Creating IDLcomIDispatch Objects

To expose a COM object as an IDL object, use the OBJ_NEW function to create a
dynamic subclass of the IDLcomIDispatch object class. The name of the subclass
must be constructed as described in “IDLcomIDispatch Object Naming Scheme” on
page 24, and identifies the COM object to be instantiated.

Note
If the COM object you want to use within IDL is an ActiveX control, use the
WIDGET_ACTIVEX routine as described in Chapter 4, “Using ActiveX Controls
in IDL”. Instantiating the ActiveX control as part of an IDL widget hierarchy allows
you to respond to events generated by the control, whereas COM objects that are
instantiated using the OBJ_NEW do not generate events that IDL is aware of.

For example, suppose you wish to include a COM component with the class ID

{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52}

and the program ID

RSIDemoComponent.RSIDemoObj1.1

in an IDL program. Use either of the following calls to the OBJ_NEW function:

ObjRef = OBJ_NEW($
'IDLcomIDispatch$CLSID$A77BC2B2_88EC_4D2A_B2B3_F556ACB52E52')

or

ObjRef = OBJ_NEW($
'IDLcomIDispatch$PROGID$RSIDemoComponent_RSIDemoObj1_1')

IDL’s internal COM subsystem instantiates the COM object within an
IDLcomIDispatch object with one of the following the dynamic class names

IDLcomIDispatch$CLSID$A77BC2B2_88EC_4D2A_B2B3_F556ACB52E52

or

IDLcomIDispatch$PROGID$RSIDemoComponent_RSIDemoObj1_1

and sets up communication between the object and IDL. You can work with the
IDLcomIDispatch object just as you would with any other IDL object; calling the
object’s methods, and getting and setting its properties.

See “IDLcomIDispatch” (IDL Reference Guide) for additional details.
Creating IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 29
Method Calls on IDLcomIDispatch Objects

IDL allows you to call the underlying COM object’s methods by calling methods on
the IDLcomIDispatch object. IDL handles conversion between IDL data types and
the data types used by the component, and any results are returned in IDL variables of
the appropriate type.

As with all IDL objects, the general syntax is:

result = ObjRef -> Method([Arguments])

or

ObjRef -> Method[, Arguments]

where ObjRef is an object reference to an instance of a dynamic subclass of the
IDLcomIDispatch class.

Function vs. Procedure Methods

In COM, all object methods are functions. IDL’s implementation of the
IDLcomIDispatch object maps COM methods that supply a return value using the
retval attribute as IDL functions, and COM methods that do not supply a return
value via the retval attribute as procedures. See “Displaying Interface Information
using the Object Viewer” on page 33 for more information on determining which
methods use the retval attribute.

The IDLcomIDispatch::GetProperty and IDLcomIDispatch::SetProperty methods are
special cases. These methods are IDL object methods — not methods of the
underlying COM object — and they use procedure syntax. The process of getting and
setting properties on COM objects encapsulated in IDLcomIDispatch objects is
discussed in “Managing COM Object Properties” on page 37.

Note
The IDL object system uses method names to identify and call object lifecycle
methods (Init and Cleanup). If the COM object underlying an IDLcomIDispatch
object implements Init or Cleanup methods, they will be overridden by IDL’s
lifecycle methods, and the COM object’s methods will be inaccessible from IDL.
Similarly, IDL implements the GetProperty and SetProperty methods for the
IDLcomIDispatch object, so any methods of the underlying COM object that use
these names will be inaccessible from IDL.
IDL Connectivity Bridges Method Calls on IDLcomIDispatch Objects

30 Chapter 3: Using COM Objects in IDL
What Happens When a Method Call Is Made?

When a method is called on an IDLcomIDispatch object, the method name and
arguments are passed to the internal IDL COM subsystem, where they are used to
construct the appropriate IDispatch method calls for the underlying COM object.

From the point of view of an IDL user issuing method calls on the IDLcomIDispatch
object, this process is completely transparent. The IDL user simply calls the COM
object’s method using IDL syntax, and IDL handles the translation.

Data Type Conversions

IDL and COM use different data types internally. While you should be aware of the
types of data expected by the COM object’s methods and the types it returns, you do
not need to worry about converting between IDL data types and COM data types
manually. IDL’s dynamic type conversion facilities handle all conversion of data
types between IDL and the COM system. The data type mappings are described in
“COM-IDL Data Type Mapping” on page 44.

For example, if the COM object that underlies an IDLcomIDispatch object has a
method that requires a value of type INT as an input argument, you would supply the
value as an IDL Long. If you supplied the value as any other IDL data type, IDL
would first convert the value to an IDL Long using its normal data type conversion
mechanism before passing the value to the COM object as an INT.

Similarly, if a COM object returns a BOOL value, IDL will place the value in a
variable of Byte type, with a value of 1 (one) signifying True or a value of 0 (zero)
signifying False.

Optional Arguments

Like IDL routines, COM object methods can have optional arguments. Optional
arguments eliminate the need for the calling program to provide input data for all
possible arguments to the method for each call. The COM optional argument
functionality is passed along to COM object methods called on IDLcomIDispatch
objects, and to the IDLcomIDispatch::GetProperty method. This means that if an
argument is not required by the underlying COM object method, it can be omitted
from the method call used on the IDLcomIDispatch object.
Method Calls on IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 31
Note
Only method arguments defined with the optional token in the object’s interface
definition are optional. See “Displaying Interface Information using the Object
Viewer” on page 33 for more information regarding the object’s interface definition
file.

Warning
If an argument that is not optional is omitted from the method call used on the
IDLcomIDispatch object, IDL will generate an error.

Argument Order

Like IDL, COM treats arguments as positional parameters. This means that it makes
a difference where in the argument list an argument occurs. (Contrast this with IDL’s
handling of keywords, which can occur anywhere in the argument list after the
routine name.) COM enforces the following ordering for arguments to object
methods:

1. Required arguments

2. Optional arguments for which default values are defined

3. Optional arguments for which no default values are defined

The same order applies when the method is called on an IDLcomIDispatch object.

Default Argument Values

COM allows objects to specify a default value for any method arguments that are
optional. If a call to a method that has an optional argument with a default value
omits the optional argument, the default value is used. IDL behaves in the same way
as COM when calling COM object methods on IDLcomIDispatch objects, and when
calling the IDLcomIDispatch::GetProperty method.

Method arguments defined with the defaultvalue() token in the object’s interface
definition are optional, and will use the specified default value if omitted from the
method call. See “Displaying Interface Information using the Object Viewer” on
page 33 for more information regarding the object’s interface definition file.

Argument Skipping

COM allows methods with optional arguments to accept a subset of the full argument
list by specifying which arguments are not present. This allows the calling routine to
supply, for example, the first and third arguments to a method, but not the second.
IDL provides the same functionality for COM object methods called on
IDL Connectivity Bridges Method Calls on IDLcomIDispatch Objects

32 Chapter 3: Using COM Objects in IDL
IDLcomIDispatch objects, but not for the IDLcomIDispatch::GetProperty or
SetProperty methods.

To skip one or more arguments from a list of optional arguments, include the SKIP
keyword in the method call. The SKIP keyword accepts either a scalar or a vector of
numbers specifying which arguments are not provided.

Note
The indices for the list of method arguments are zero-based — that is, the first
method argument (either optional or required) is argument 0 (zero), the next is
argument 1 (one), etc.

For example, suppose a COM object method accepts four arguments, of which the
second, third, and fourth are optional:

ObjMethod, arg1, arg2-optional, arg3-optional, arg4-optional

To call this method on the IDLcomIDispatch object that encapsulates the underlying
COM object, skipping arg2, use the following command:

objRef->ObjMethod, arg1, arg3, arg4, SKIP=1

Note that the SKIP keyword uses the index value 1 to indicate the second argument in
the argument list. Similarly, to skip arg2 and arg3, use the following command:

objRef->ObjMethod, arg1, arg4, SKIP=[1,2]

Finally, note that you do not need to supply the SKIP keyword if the arguments are
supplied in order. For example, to skip arg3 and arg4, use the following command:

objRef->ObjMethod, arg1, arg2

Finding Object Methods

In most cases, when you incorporate a COM object into an IDL program, you will
know what the COM object’s methods are and what arguments and data types those
methods take, either because you created the COM object yourself or because the
developer of the object provided you with the information.

If for some reason you do not know what methods the COM object supports, you may
be able to determine which methods are available and what parameters they accept
using the OLE/COM Object Viewer application provided by Microsoft. (See “Finding
COM Class and Program IDs” on page 26 for information on acquiring the
OLE/COM Object Viewer.)
Method Calls on IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 33
Warning
Finding information about a COM object’s methods using the OLE/COM Object
Viewer requires a moderately sophisticated understanding of COM programming,
or at least COM interface definitions. While we provide some hints in this section
on how to interpret the interface definition, if you are not already familiar with the
structure of COM objects you may find this material inadequate. If possible, consult
the developer of the COM object you wish to use rather than attempting to
determine its structure using the object viewer.

Displaying Interface Information using the Object Viewer

You can use the OLE/COM Object Viewer to view the interface definitions for any
COM object on your Windows machine. Select a COM object in the leftmost panel of
the object viewer, click the right mouse button, and select “View Type
Information...” A new window titled “ITypeLib Viewer” will be displayed, showing
all of the component’s interfaces (Figure 3-2).

Note
The top lines in the right-hand panel will say something like:

// Generated .IDL file (by the OLE/COM Object Viewer)
//

Figure 3-2: Viewing a COM Object’s Interface Definition
IDL Connectivity Bridges Method Calls on IDLcomIDispatch Objects

34 Chapter 3: Using COM Objects in IDL
// typelib filename: RSIDemoComponent.dll

The “.IDL file” in this case has nothing to do with IDL, the Interactive Data
Language. Here “IDL” stands for Interface Description Language — a language
used to define component interfaces. If you are familiar with the Interface
Description Language, you can often determine what a component is designed to
do.

With the top-level object selected in the left-hand pane of the ITypelib Viewer, scroll
down in the right-hand pane until you find the section that defines the IDispatch
interface for the object in question. The definition will look something like this:

interface IRSIDemoObj1 : IDispatch {
[id(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr);
[id(0x00000002), propput]
HRESULT MessageStr([in] BSTR pstr);
[id(0x00000002), propget]
HRESULT MessageStr([out, retval] BSTR* pstr);
[id(0x00000003)]
HRESULT DisplayMessageStr();
[id(0x00000004)]
HRESULT Msg2InParams(

[in] BSTR str,
[in] long val,
[out, retval] BSTR* pVal);

[id(0x00000005)]
HRESULT GetIndexObject(

[in] long ndxObj,
[out, retval] IDispatch** ppDisp);

[id(0x00000006)]
HRESULT GetArrayOfObjects(

[out] long* pObjCount,
[out, retval] VARIANT* psaObjs);

};

Method definitions look like this:

[id(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr);

where the line including the id string is an identifier used by the object to refer to its
methods and the following line or lines (usually beginning with HRESULT) define the
method’s interface.

Again, while it is beyond the scope of this manual to discuss COM object methods in
detail, the following points may assist you in determining how to use a COM object:
Method Calls on IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 35
• Methods whose definitions include the retval attribute will appear in IDL as
functions.

[id(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr);

• Methods that do not include the retval attribute will appear in IDL as
procedures.

[id(0x00000003)]
HRESULT DisplayMessageStr();

• Methods whose definitions include the propget attribute allow you to retrieve
an object property using the IDLcomIDispatch::GetProperty method. You
cannot call these methods directly in IDL; see “Managing COM Object
Properties” on page 37 for additional details.

[id(0x00000002), propget]
HRESULT MessageStr([out, retval] BSTR* pstr);

• Methods whose definitions include the propput attribute allow you to set an
object property using the IDLcomIDispatch::SetProperty method. You cannot
call these methods directly in IDL; see “Managing COM Object Properties” on
page 37 for additional details.

[id(0x00000002), propput]
HRESULT MessageStr([in] BSTR pstr);

• Methods that accept optional input values will include the optional token in
the argument’s definition. For example, the following definition indicates that
the second input argument is optional:

[id(0x00000004)]
HRESULT Msg1or2InParams(

[in] BSTR str,
[in, optional] int val,
[out, retval] BSTR* pVal);

• Methods that provide default values for optional arguments replace the
optional token with the defaultvalue() token, where the default value of
the argument is supplied between the parentheses. For example, the following
definition indicates that the second input argument is optional, and has a
default value of 15:

HRESULT Msg1or2InParams(
[in] BSTR str,
[in, defaultvalue(15)] int val,
[out, retval] BSTR* pVal);

• While methods generally return an HRESULT value, this is not a requirement.
IDL Connectivity Bridges Method Calls on IDLcomIDispatch Objects

36 Chapter 3: Using COM Objects in IDL
Displaying Interface Information Using the IDL HELP
Procedure

If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the
HELP command with the OBJECTS keyword. IDL displays a list of objects, along
with their methods, with function and procedure methods in separate groups for each
object class.
Method Calls on IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 37
Managing COM Object Properties

As a convenience to the IDL programmer, COM object methods that have been
defined using the propget and propput attributes are accessible via the
IDLcomIDispatch object’s GetProperty and SetProperty methods. This means that
rather than calling the COM object’s methods directly to get and set property values,
you use the standard IDL syntax.

Note
If a COM object method’s interface definition includes either the propget or the
propput attribute, you must use the IDL GetProperty and SetProperty methods to
get and set values. IDL does not allow you to call these methods directly.

As with all IDL objects, the IDLcomIDispatch object’s GetProperty and SetProperty
methods use procedure syntax. Keywords to the methods represent the names of the
properties being retrieved or set, and the keyword values represent either an IDL
variable into which the property value is placed or an IDL expression that is the value
to which the property is set. You must use the procedure syntax when calling either
method, even if the underlying COM object methods being used are functions rather
than procedures.

Setting Properties

To set a property value on a COM object, use the following syntax:

ObjRef->SetProperty, KEYWORD=Expression

where ObjRef is the IDLcomIDispatch object that encapsulates the COM object,
KEYWORD is the COM object property name, and Expression is an IDL expression
representing the property value to be set.

If the underlying COM object’s propput method requires additional arguments, the
arguments are supplied in the setProperty method call, using the following
syntax:

ObjRef->SetProperty [, arg0, arg1, ... argn], KEYWORD=Expression

Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property setting method. The partial keyword name functionality provided by IDL
is not valid with IDLcomIDispatch objects.

You can set multiple property values in a single statement by supplying multiple
KEYWORD=Expression pairs.
IDL Connectivity Bridges Managing COM Object Properties

38 Chapter 3: Using COM Objects in IDL
IDL lets you to set multiple properties at once in the same SetProperty call. For
example:

ObjRef->SetProperty, OPTION=1, INDEX=99L

This command is equivalent to the following lines:

ObjRef->SetProperty, OPTION=1
ObjRef->SetProperty, INDEX=99L

If you pass parameters when setting multiple properties, the parameter or parameters
are sent to each property being set. For example:

ObjRef->SetProperty, 'Parm1', 24L, oRef, OPTION=1, INDEX=99L

This command is equivalent to the following lines:

ObjRef->SetProperty, 'Parm1', 24L, oRef, OPTION=1
ObjRef->SetProperty, 'Parm1', 24L, oRef, INDEX=99L

Thus, when you are setting multiple properties at the same time and passing
parameters, all the properties that are set at the same time must be defined as
receiving the same sets of parameters.

Getting Properties

To retrieve a property value from a COM object, use the following syntax:

ObjRef->GetProperty, KEYWORD=Variable

where ObjRef is the IDLcomIDispatch object that encapsulates the COM object,
KEYWORD is the COM object property name, and Variable is the name of an IDL
variable that will contain the retrieved property value.

Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property getting method. The partial keyword name functionality provided by IDL
is not valid with IDLcomIDispatch objects.

You can get multiple property values in a single statement by supplying multiple
KEYWORD=Variable pairs.

Because some of the underlying COM object’s propget methods may require
arguments, the IDLcomIDispatch object’s GetProperty method will accept optional
arguments. To retrieve a property using a method that takes arguments, use the
following syntax:

ObjRef->GetProperty [, arg0, arg1, ... argn], KEYWORD=Variable
Managing COM Object Properties IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 39
Note, however, that if arguments are required, you can only specify one property to
retrieve.
IDL Connectivity Bridges Managing COM Object Properties

40 Chapter 3: Using COM Objects in IDL
Passing Parameter Arrays by Reference

By default, IDL arrays are passed to and received from the COM subsystem “by
value”, meaning the array is copied. When dealing with large arrays or a large
number of arrays, performance may suffer due to the by value passing scheme.
However, you can implement “by reference” array passing, which passes an IDL
array to a COM object in such a way that the COM object can directly alter the IDL
array memory without the cost of marshaling (copying) the array to or from the COM
object. This can increase performance and save system memory allocation.

An IDL array parameter is passed by reference to a COM method when the parameter
is defined as an IDL pointer to an array. For example:

myarr = LINDGEN(100)
myptr = PTR_NEW(myarr, /NO_COPY)

or

myptr = PTR_NEW(LINDGEN(100), /NO_COPY)

Then, the pointer is passed like a normal parameter:

PRINT, *myptr ; array before call
obj->UseArrayRef, myptr
PRINT, *myptr ; altered array after call

The IDL array must be large enough for the client's use. On the COM side:

• The COM object cannot resize the array (although the COM object does not
have to use or set all the elements in the array)

• The COM object cannot change the type of elements

• The COM object cannot change the dimensionality of the array

Thus, for multidimensional arrays, IDL must define the source array with the same
dimensions as the COM client expects.

In order for the IDL-COM subsystem to know that an IDL array should be passed by
reference, it looks at the source IDL variable to make sure it is a pointer to an array,
and that the destination COM method parameter is also declared as an array. Thus, it
is important to properly declare the destination COM parameter as a
SAFEARRAY(<type>), when implementing in C++.

For example, if the desire is to pass an IDL array of 32-bit integer values to a COM
client, the COM method parameter needs to be declared like this:

[in, out] SAFEARRAY(long) psa
Passing Parameter Arrays by Reference IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 41
For the code example above, the full method signature in C++/ATL is:

HRESULT UseArrayRef([in, out] SAFEARRAY(long) psa);

When implementing a COM-callable class in C# and passing in an array of 32-bit
integers, declare the method as:

public void UseArrayRef([MarshalAs(UnmanagedType.SafeArray,
SafeArraySubType=System.Runtime.InteropServices.VarEnum.VT_I4)]
ref long [] arr)
{
arr[0] = 10;
arr[1] = 11;
// etc
}

It is critical to make sure that the element size of the IDL array matches the element
size declared in the COM method signature. If they don't, a marshaling error occurs
because the marshaler checks for consistency between the source and destination.
This issue is notorious for causing problems with element types of “int” and “long”.
For example, trying to call either of the two COM method signatures above with an
IDL “integer” array would cause an error since IDL “integers” are 16-bits by default
and C++/COM “ints” are 32-bits. Thus, in the code above, we declared the IDL array
as “long” values, which are 32-bits and match the C++/COM “long” value in size.

Unsupported Array Types

You cannot pass an array by reference if the array consists of one of the following
types:

• Strings

• Object references

• IDL pointers

• IDL structures
IDL Connectivity Bridges Passing Parameter Arrays by Reference

42 Chapter 3: Using COM Objects in IDL
References to Other COM Objects

It is not uncommon for COM objects to return references to other COM objects,
either as a property value or via an object method. If an IDLcomIDispatch object
returns a reference to another COM object’s IDispatch interface, IDL automatically
creates an IDLcomIDispatch object to contain the object reference.

For example, suppose the GetOtherObject method to the COM object
encapsulated by the IDLcomIDispatch object Obj1 returns a reference to another
COM object.

Obj2 = Obj1->GetOtherObject()

Here, Obj2 is an IDLcomIDispatch object that encapsulates some other COM object.
Obj2 behaves in the same manner as any IDLcomIDispatch object.

Note that IDLcomIDispatch objects created in this manner are not linked in any way
to the object whose method created them. In the above example, this means that
destroying Obj1 does not destroy Obj2. If the COM object you are using creates new
IDLcomIDispatch objects in this manner, you must be sure to explicitly destroy the
automatically-created objects along with those you explicitly create, using the
OBJ_DESTROY procedure.
References to Other COM Objects IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 43
Destroying IDLcomIDispatch Objects

Use the OBJ_DESTROY procedure to destroy and IDLcomIDispatch object.

When OBJ_DESTROY is called with an IDLcomIDispatch object as an argument,
the underlying reference to the COM object is released and IDL resources relating to
that object are freed.

Note
Destroying an IDLcomIDispatch object does not automatically cause the
destruction of the underlying COM object. COM employs a reference-counting
methodology and expects the COM object to destroy itself when there are no
remaining references. When an IDLcomIDispatch object is destroyed, IDL simply
decrements the reference count on the underlying COM object.

Note
IDL does not automatically destroy an object when the object variable goes out of
scope (e.g., when a procedure returns). If the IDLcomIDispatch object is not
explicitly destroyed, the COM reference count is not decremented, which could
keep the object instantiated and never released.
IDL Connectivity Bridges Destroying IDLcomIDispatch Objects

44 Chapter 3: Using COM Objects in IDL
COM-IDL Data Type Mapping

When data moves from IDL to a COM object and back, IDL handles conversion of
variable data types automatically. The data type mappings are shown in Table 3-1.

COM Type IDL Type

BOOL (VT_BOOL) Byte (true =1, false=0)

ERROR
(VT_ERROR)

Long

CY (VT_CY) Double (see note below)

DATE (VT_DATE) Double

I1 (VT_I1) Byte

INT (VT_INT) Long

UINT (VT_UINT) Unsigned Long

VT_USERDEFINED The IDL type is passed through

VT_UI1 Byte

VT_I2 Integer

VT_UI2 Unsigned integer

VT_ERROR Long

VT_I4 Long

VT_UI4 Unsigned Long

VT_I8 Long64

VT_UI8 Unsigned Long 64

VT_R4 Float

VT_BSTR String

VT_R8 Double

Table 3-1: IDL-COM Data Type Mapping
COM-IDL Data Type Mapping IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 45
Note on the COM CY Data Type

The COM CY data type is a scaled 64-bit integer, supporting exactly four digits to the
right of the decimal point. To provide an easy-to-use interface, IDL automatically
scales the integer as part of the data conversion that takes place between COM and
IDL, allowing the IDL user to treat the number as a double-precision floating-point
value. When the value is passed back to the COM object, it will be truncated if there
are more than four significant digits to the right of the decimal point.

For example, the IDL double-precision value 234.56789 would be passed to the
COM object as 234.5678.

VT_DISPATCH IDLcomIDispatch

VT_UNKNOWN IDLcomIDispatch

COM Type IDL Type

Table 3-1: IDL-COM Data Type Mapping (Continued)
IDL Connectivity Bridges COM-IDL Data Type Mapping

46 Chapter 3: Using COM Objects in IDL
Example: RSIDemoComponent

This example uses a COM component included in the IDL distribution. The
RSIDemoComponent is included purely for demonstration purposes, and does not
perform any useful work beyond illustrating how IDLcomIDispatch objects are
created and used.

The RSIDemoComponent is contained in a file named RSIDemoComponent.dll
located in the examples\doc\bridges\COM subdirectory of the IDL distribution.
Before attempting to execute this example, make sure the component is registered on
your system as described in “Registering COM Components on a Windows Machine”
on page 23.

There are three objects defined by the RSIDemoComponent. The example begins by
using RSIDemoObj1, which has the program ID:

RSIDemoComponent.RSIDemoObj1

and the class ID:

{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52}

Example Code
This complete example, IDispatchDemo.pro, is located in the
examples\doc\bridges\COM subdirectory of the IDL distribution. It develops
an IDL procedure called IDispatchDemo that illustrates use of the
RSIDemoComponent. Run the example procedure by entering IDispatchDemo at
the IDL command prompt or view the file in an IDL Editor window by entering
.EDIT IDispatchDemo.pro.

1. Begin by creating an IDLcomIDispatch object from the COM object. You can
use either the class ID or the program ID. Remember that if you use the class
ID, you must remove the braces ({ }) and replace the hyphens with
underscores.

obj1 = OBJ_NEW($
'IDLCOMIDispatch$PROGID$RSIDemoComponent_RSIDemoObj1')

or (with Class ID):

obj1 = OBJ_NEW($
'IDLCOMIDispatch$CLSID$A77BC2B2_88EC_4D2A_B2B3_F556ACB52E52')

2. The COM object implements the GetCLSID method, which returns the class
ID for the component. You can retrieve this value in and IDL variable and
Example: RSIDemoComponent IDL Connectivity Bridges

javascript:doIDL(".edit IDispatchDemo.pro")
javascript:doIDL("IDispatchDemo")

Chapter 3: Using COM Objects in IDL 47
print it. The string should be '{A77BC2B2-88EC-4D2A-B2B3-
F556ACB52E52}'.

strCLSID = obj1->GetCLSID()
PRINT, strCLSID

Note
The GetCLSID method returns the class identifier of the object using the
standard COM separators (-).

3. The COM object has a property named MessageStr. To retrieve the value of
the MessageStr property, enter:

obj1 -> GetProperty, MessageStr = outStr
PRINT, outStr

IDL should print 'RSIDemoObj1'.

4. You can also set the MessageStr property of the object and display it using
the object’s DisplayMessageStr method, which displays the value of the
MessageStr property in a Windows dialog:

obj1 -> SetProperty, MessageStr = 'Hello, world'
obj1 -> DisplayMessageStr

5. The Msg2InParams method takes two input parameters and concatenates
them into a single string. Executing the following commands should cause IDL
to print 'The value is: 25'.

instr = 'The value is: '
val = 25L
outStr = obj1->Msg2InParams(instr, val)
PRINT, outStr

6. To view all known information about the IDLcomIDispatch object, including
its dynamic subclass name and the names of its methods, use the IDL HELP
command with the OBJECTS keyword:

HELP, obj1, /OBJECTS

7. The GetIndexObject() method returns an object reference to one of the
following three possible objects:

• RSIDemoObj1 (index = 1)

• RSIDemoObj2 (index = 2)

• RSIDemoObj3 (index = 3)
IDL Connectivity Bridges Example: RSIDemoComponent

48 Chapter 3: Using COM Objects in IDL
Note
If the index is not 1, 2, or 3, the GetIndexObject method will return an
error.

To get a reference to RSIDemoObj3, use the following command:

obj3 = obj1->GetIndexObject(3)

8. All three objects have the GetCLSID method. You can use this method to
verify that the desired object was returned. The output of the following
commands should be '{13AB135D-A361-4A14-B165-785B03AB5023}'.

obj3CLSID = obj3->GetCLSID()
PRINT, obj3CLSID

9. Remember to destroy a retrieved object when you are finished with it:

OBJ_DESTROY, obj3

10. Next, use the COM object’s GetArrayOfObjects() method to return a
vector of object references to RSIDemoObj1, RSIDemoObj2, and
RSIDemoObj3, respectively. The number of elements in the vector is returned
in the first parameter; the result should 3.

objs = obj1->GetArrayOfObjects(cItems)
PRINT, cItems

11. Since each object implements the GetCLSID method, you could loop through
all the object references and get its class ID:

FOR i = 0, cItems-1 do begin
objCLSID = objs[i] -> GetCLSID()
PRINT, 'Object[',i,'] CLSID: ', objCLSID

ENDFOR

12. Remember to destroy object references when you are finished with them:

OBJ_DESTROY, objs
OBJ_DESTROY, obj1
Example: RSIDemoComponent IDL Connectivity Bridges

Chapter 4

Using ActiveX Controls
in IDL
This chapter discusses the following topics:
About Using ActiveX Controls in IDL 50
ActiveX Control Naming Scheme 52
Method Calls on ActiveX Controls 55
Managing ActiveX Control Properties 56

ActiveX Widget Events 57
Destroying ActiveX Controls 60
Example: Calendar Control 61
Example: Spreadsheet Control 65
IDL Connectivity Bridges 49

50 Chapter 4: Using ActiveX Controls in IDL
About Using ActiveX Controls in IDL

If you want to incorporate a COM object that presents a user interface (that is, an
ActiveX control) into your IDL application, use IDL’s WIDGET_ACTIVEX routine
to place the control in an IDL widget hierarchy. IDL provides the same object method
and property manipulation facilities for ActiveX controls as it does for COM objects
incorporated using the IDLcomIDispatch object interface, but adds the ability to
process events generated by the ActiveX control using IDL’s widget event handling
mechanisms.

Note
IDL can only incorporate ActiveX controls on Windows 2000/XP (and later)
platforms. See “Feature Support by Operating System” (What’s New in IDL 6.4) for
details.

When you use the WIDGET_ACTIVEX routine, IDL automatically creates an
IDLcomActiveX object that encapsulates the ActiveX control. IDLcomActiveX
objects are a subclass of the IDLcomIDispatch object class, and share all of the
IDLcomIDispatch methods and mechanisms discussed in Chapter 3, “Using COM
Objects in IDL”. You should be familiar with the material in that chapter before
attempting to incorporate ActiveX controls in your IDL programs.

Note
If the COM object you want to use in your IDL application is not an ActiveX
control, use the IDLcomIDispatch object class.

Warning: Modeless Dialogs

When displaying an ActiveX form or dialog box, it is the responsibility of the COM
object to pump messages. Modal dialogs pump messages themselves, but modeless
dialogs do not. IDL’s COM subsystem does not provide the ability to pump messages
explicitly, giving IDL no way to pump messages while a modeless dialog is
displayed. As a result, calling a modeless dialog from IDL will result in an error.

Registering COM Components on a Windows
Machine

Before a COM object or ActiveX control can be used by a client program, it must be
registered on the Windows machine. In most cases, components are registered by the
program that installs them on the machine. If you are using a component that is not
About Using ActiveX Controls in IDL IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 51
installed by an installation program that handles the registration, you can register the
component manually. For a description of the registration process, see “Registering
COM Components on a Windows Machine” on page 23.
IDL Connectivity Bridges About Using ActiveX Controls in IDL

52 Chapter 4: Using ActiveX Controls in IDL
ActiveX Control Naming Scheme

When you incorporate an ActiveX control into an IDL widget hierarchy using the
WIDGET_ACTIVEX routine, IDL automatically creates an IDLcomActiveX object
that instantiates the control and handles all communication between it and IDL. You
tell IDL which ActiveX control to instantiate by passing the COM class or program
ID for the ActiveX control to the WIDGET_ACTIVEX routine as a parameter.

IDL automatically creates a dynamic subclass of the IDLcomActiveX class (which is
itself a subclass of the IDLcomIDispatch class) to contain the ActiveX control. The
resulting class name looks like

IDLcomActiveXID_typeID

where ID_type is one of the following:

• CLSID if the object is identified by its COM class ID

• PROGID if the object is identified by its COM program ID

and ID is the COM object’s actual class or program identifier string.

For more on COM class and program IDs see “Class Identifiers” on page 24 and
“Program Identifiers” on page 25.

While you will never need to use this dynamic class name directly, you may see it
reported by IDL via the HELP routine or in error messages. Note that when IDL
reports the name of the dynamic subclass, it will replace the hyphen characters in a
class ID and the dot characters in a program ID with underscore characters. This is
because neither the hyphen nor the dot character are valid in IDL object names.

Finding COM Class and Program IDs

In general, if you wish to incorporate an ActiveX object into an IDL widget
hierarchy, you will know the COM class or program ID, either because you created
the control yourself or because the developer of the control provided you with the
information.

If you do now know the class or program ID for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. For more information, see “Finding COM Class and Program
IDs” on page 26.
ActiveX Control Naming Scheme IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 53
Creating ActiveX Controls

To include an ActiveX control in an IDL application, use the WIDGET_ACTIVEX
function, supplying the COM class or program ID of the ActiveX control as the
COM_ID argument.

Note
If the object you want to use in your IDL application is not an ActiveX control, use
the IDLcomIDispatch object class as described in Chapter 3, “Using COM Objects
in IDL”. Instantiating a non-ActiveX component using the WIDGET_ACTIVEX
function is not supported, and may lead to unpredictable results.

Once the ActiveX object has been instantiated within an IDL widget hierarchy, you
can call the control’s native methods as described in “Method Calls on ActiveX
Controls” on page 55, and access or modify its properties as described in “Managing
ActiveX Control Properties” on page 56. IDL widget events generated by the control
are discussed in “ActiveX Widget Events” on page 57.

For example, suppose you wished to include an ActiveX control with the class ID:

{0002E510-0000-0000-C000-000000000046}

and the program ID:

OWC.Spreadsheet.9

in an IDL widget hierarchy. Use either of the following calls the
WIDGET_ACTIVEX function:

wAx = WIDGET_ACTIVEX(wBase, $
'0002E510-0000-0000-C000-000000000046')

or

wAx = WIDGET_ACTIVEX(wBase, 'OWC.Spreadsheet.9', ID_TYPE=1)

where wBase is the widget ID of the base widget that will contain the ActiveX
control.

Note
When instantiating an ActiveX control using the WIDGET_ACTIVEX function,
you do not need to modify the class or program ID as you do when creating an
IDLcomIDispatch object using the OBJ_NEW function. Be aware, however, that
when IDL creates the underlying IDLcomActiveX object, the dynamic class name
will replace the hyphens from a class ID or the dots from a program ID with
underscore characters.
IDL Connectivity Bridges Creating ActiveX Controls

54 Chapter 4: Using ActiveX Controls in IDL
IDL’s internal COM subsystem instantiates the ActiveX control within an
IDLcomActiveX object with one of the following dynamic class names

IDLcomActiveX$CLSID$0002E510_0000_0000_C000_000000000046

or

IDLcomActiveX$PROGID$OWC_Spreadsheet_9

and sets up communication between the object and IDL. IDL also places the control
into the specified widget hierarchy and prepares to accept widget events generated by
the control.

See “WIDGET_ACTIVEX” (IDL Reference Guide) for additional details.
Creating ActiveX Controls IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 55
Method Calls on ActiveX Controls

IDL allows you to call the underlying ActiveX control’s methods by calling methods
on the IDLcomActiveX object that is automatically created when you call the
WIDGET_ACTIVEX function. IDL handles conversion between IDL data types and
the data types used by the component, and any results are returned in IDL variables of
the appropriate type. As with all IDL objects, the general syntax is:

result = ObjRef->Method([Arguments])

or

ObjRef -> Method[, Arguments]

where ObjRef is an object reference to an instance of a dynamic subclass of the
IDLcomActiveX class.

The IDLcomActiveX object class is a direct subclass of the IDLcomIDispatch object
class and provides none of its own methods. As a result, method calls on
IDLcomActiveX objects follow the same rules as calls on IDLcomIDispatch objects.
You should read and understand “Method Calls on IDLcomIDispatch Objects” on
page 29 before calling an ActiveX control’s methods.

Retrieving the Object Reference

Unlike IDLcomIDispatch objects, which you create explicitly with a call to the
OBJ_NEW function, IDLcomActiveX objects are created automatically by IDL. To
obtain an object reference to the automatically created IDLcomActiveX object, use
the GET_VALUE keyword to the WIDGET_CONTROL procedure.

For example, consider the following lines of IDL code:

wBase = WIDGET_BASE()
wAx = WIDGET_ACTIVEX(wBase, 'myProgram.myComponent.1', ID_TYPE=1)
WIDGET_CONTROL, wBase, /REALIZE
WIDGET_CONTROL, wAx, GET_VALUE=oAx

The first line creates a base widget that will hold the ActiveX control. The second
line instantiates the ActiveX control using its program ID and creates an
IDLcomActiveX object. The third line realizes the base widget and the ActiveX
control it contains; note that the ActiveX widget must be realized before you can
retrieve a reference to the IDLcomActiveX object. The fourth line uses the
WIDGET_CONTROL procedure to retrieve an object reference to the
IDLcomActiveX object in the variable oAx. You can use this object reference to call
the ActiveX control’s methods and set its properties.
IDL Connectivity Bridges Method Calls on ActiveX Controls

56 Chapter 4: Using ActiveX Controls in IDL
Managing ActiveX Control Properties

As a convenience to the IDL programmer, ActiveX control methods that have been
defined using the propget and propput attributes are accessible via the
IDLcomActiveX object’s GetProperty and SetProperty methods, which are inherited
directly from the IDLcomIDispatch object class. This means that rather than calling
the ActiveX control’s methods directly to get and set property values, you use the
standard IDL syntax.

The IDLcomActiveX object class is a direct subclass of the IDLcomIDispatch object
class and provides none of its own methods. As a result, IDL’s facilities for managing
the properties of ActiveX controls follow the same rules as for IDLcomIDispatch
objects. You should read and understand “Managing COM Object Properties” on
page 37 before working with an ActiveX control’s properties.
Managing ActiveX Control Properties IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 57
ActiveX Widget Events

Events generated by an ActiveX control are dispatched using the standard IDL
widget methodology. When an ActiveX event is passed into IDL, it is packaged in an
anonymous IDL structure that contains the ActiveX event parameters.

While the actual structure of an event generated by an ActiveX control will depend
on the control itself, the following gives an idea of the structure’s format:

{ID : 0L,
 TOP : 0L,
 HANDLER : 0L,
 DISPID : 0L, ; The DISPID of the callback method
 EVENT_NAME : "", ; The name of the callback method
<Param1 name> : <Param1 value>,
<Param2 name> : <Param2 value>,

<ParamN name> : <ParamN value>
}

As with other IDL Widget event structures, the first three fields are standard. ID is
the widget id of the widget generating the event, TOP is the widget ID of the top level
widget containing ID, and HANDLER contains the widget ID of the widget
associated with the handler routine.

The DISPID field contains the decimal representation of the dispatch ID (or DISPID)
of the method that was called. Note that in the OLE/COM Object Viewer, this ID
number is presented as a hexadecimal number. Other applications (Microsoft Visual
Studio among them) may display the decimal representation.

The EVENT_NAME field contains the name of the method that was called.

The Param name fields contain the values of parameters returned by the called
method. The actual parameter name or names displayed, if any, depend on the
method being called by the ActiveX control.

Using the ActiveX Widget Event Structure

Since the widget event structure generated by an ActiveX control depends on the
method that generated the event, it is important to check the type of event before
processing values in IDL. Successfully parsing the event structure requires a detailed
understanding of the dispatch interface of the ActiveX control; you must know either
the DISPID or the method name of the method, and you must know the names and
data types of the values returned.
IDL Connectivity Bridges ActiveX Widget Events

58 Chapter 4: Using ActiveX Controls in IDL
For example, suppose the ActiveX control you are incorporating into your IDL
application includes two methods named Method1 and Method2 in a dispatch
interface that looks like this:

dispinterface MyDispInterface {
properties:
methods:

[id(0x00000270)]
void Method1([in] EventInfo* EventInfo);
[id(0x00000272)]
HRESULT Method2([out, retval] BSTR* EditData);

};

A widget event generated by a call to Method1, which has no return values, would
look something like:

** Structure <3fb7288>, 5 tags, length=32, data length=32:
ID LONG 13
TOP LONG 12
HANDLER LONG 12
DISPID LONG 624
EVENT_NAME STRING 'Method1'

Note that the DISPID is 624, the decimal equivalent of 270 hexadecimal.

A widget event generated by a call to Method2, which has one return value, would
look something like:

** Structure <3fb7288>, 6 tags, length=32, data length=32:
ID LONG 13
TOP LONG 12
HANDLER LONG 12
DISPID LONG 626
EVENT_NAME STRING 'Method2'
EDITDATA STRING 'some text value'

An IDL event-handler routine could use the value of the DISPID field to check which
of these two ActiveX control methods generated the event before attempting to use
the value of the EDITDATA field:

PRO myRoutine_event, event
IF(event.DISPID eq 626) THEN BEGIN

PRINT, event.EDITDATA
ENDIF ELSE BEGIN

<do something else>
ENDELSE

END
ActiveX Widget Events IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 59
Dynamic Elements in the ActiveX Event Structure

Parameter data included in an event structure generated by an ActiveX control can
take the form of an array. If this happens, the array is placed in an IDL pointer, and
the pointer, rather than the array itself, is included in the IDL event structure.
Similarly, an ActiveX control may return a reference to another COM object, as
described in “References to Other COM Objects” on page 42, in its event structure.

IDL pointers and objects created in this way are not automatically removed; it is the
IDL programmer’s responsibility free them using a routine such as PTR_FREE,
HEAP_FREE, or OBJ_DESTROY.

If it is unclear whether the event structure will contain dynamic elements (objects or
pointers) it is best to pass the ActiveX event structure to the HEAP_FREE routine
when your event-handler routine has finished with the event. This will ensure that all
dynamic portions of the structure are released.
IDL Connectivity Bridges ActiveX Widget Events

60 Chapter 4: Using ActiveX Controls in IDL
Destroying ActiveX Controls

An ActiveX control incorporated in an IDL widget hierarchy is destroyed when any
of the following occurs:

• When the widget hierarchy to which the ActiveX widget belongs is destroyed.

• When a call to WIDGET_CONTROL, wAx, /DESTROY is made, where wAx
is the widget ID of the ActiveX widget.

• When the underlying IDLcomActiveX object is destroyed by a call to
OBJ_DESTROY.

In most cases, cleanup of an application that includes an ActiveX control is not
different from an application using only IDL native widgets. However, because it is
possible for an ActiveX control to return references to other COM objects to IDL,
you must be sure to keep track of all objects created by your application and destroy
them as necessary. See “References to Other COM Objects” on page 42 for details.

In addition, it is possible for the widget event structure generated by an ActiveX
control to include IDL pointers or object references. Pointers and object references
included in the event structure are not automatically destroyed. See “Dynamic
Elements in the ActiveX Event Structure” on page 59 for more information.
Destroying ActiveX Controls IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 61
Example: Calendar Control

This example uses an ActiveX control that displays a calendar interface. The control,
contained in the file mscal.ocx, is installed along with a typical installation of
Microsoft Office 97, and may also be present on your system if you have upgraded to
a more recent version of Microsoft Office. If the control is not present on your system
(you’ll know the control is not present if the example code does not display a
calendar similar to the one shown in Figure 4-1), you can download a the control as
part of a package of sample ActiveX controls included in the file actxsamp.exe,
discussed in Microsoft Knowledge Base Article 165437.

If you download the control, place the file mscal.exe in a known location and
execute the file; you will be prompted for a directory in which to place mscal.ocx.
Open a command prompt window in the directory you chose and register the control
as described in “Registering COM Components on a Windows Machine” on page 23.

The calendar control has the program ID:

MSCAL.Calendar.7

and the class ID:

{8E27C92B-1264-101C-8A2F-040224009C02}

Example Code
This example, ActiveXCal.pro, is included in the
examples\doc\bridges\COM subdirectory of the IDL distribution and develops
an IDL routine called ActiveXCal that illustrates use of the calendar ActiveX
control within an IDL widget hierarchy. Run the example procedure by entering
ActiveXCal at the IDL command prompt or view the file in an IDL Editor
window by entering .EDIT ActiveXCal.pro.

1. Create the ActiveXCal procedure. (Remember that in the ActiveXCal.pro
file, this procedure occurs last.)

PRO ActiveXCal

2. Create a top-level base widget to hold the ActiveX control.

wBase = WIDGET_BASE(COLUMN = 1, SCR_XSIZE = 400, $
TITLE='IDL ActiveX Widget Calendar Control')

3. Create base widgets to hold labels for the selected month, day, and year. Set
the initial values of the labels.
IDL Connectivity Bridges Example: Calendar Control

javascript:doIDL("ActiveXCal")
javascript:doIDL(".edit ActiveXCal.pro")

62 Chapter 4: Using ActiveX Controls in IDL
wSubBase = WIDGET_BASE(wBase, /ROW)
wVoid = WIDGET_LABEL(wSubBase, value = 'Month: ')
wMonth = WIDGET_LABEL(wSubBase, value = 'October')
wSubBase = WIDGET_BASE(wBase, /ROW)
wVoid = WIDGET_LABEL(wSubBase, VALUE = 'Day: ')
wDay = WIDGET_LABEL(wSubBase, VALUE = '22')
wSubBase = WIDGET_BASE(wBase, /ROW)
wVoid = WIDGET_LABEL(wSubBase, VALUE = 'Year: ')
wYear = WIDGET_LABEL(wSubBase, VALUE = '1999')

4. Instantiate the ActiveX Control, using the control’s class ID.

wAx=WIDGET_ACTIVEX(wBase, $
'{8E27C92B-1264-101C-8A2F-040224009C02}')

5. Realize the top-level base widget.

WIDGET_CONTROL, wBase, /REALIZE

6. Set the top-level base’s user value to an anonymous structure containing
widget IDs of the month, day, and year label widgets.

WIDGET_CONTROL, wBase, $
SET_UVALUE = {month:wMonth, day:wDay, year:wYear}

7. Retrieve the object ID of the IDLcomActiveX object that encapsulates the
ActiveX control. Use the GetProperty method to retrieve the current values of
the month, day, and year from the control.

WIDGET_CONTROL, wAx, GET_VALUE = oAx
oAx->GetProperty, month=month, day=day, year=year

8. Set the values of the label widgets to reflect the current date, as reported by the
ActiveX control.

WIDGET_CONTROL, wMonth, SET_VALUE=STRTRIM(month, 2)
WIDGET_CONTROL, wDay, SET_VALUE=STRTRIM(day, 2)
WIDGET_CONTROL, wYear, SET_VALUE=STRTRIM(year, 2)

9. Call XMANAGER to manage the widget events, and end the procedure.

XMANAGER, 'ActiveXCal', wBase

END

10. Now create an event-handling routine for the calendar control. (Remember that
in the ActiveXCal.pro file, this procedure occurs before the ActiveXCal
procedure.)

PRO ActiveXCal_event, ev

11. The ActiveX widget is the only widget in this application that generates widget
events, so the ID field of the event structure is guaranteed to contain the widget
Example: Calendar Control IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 63
ID of that widget. Use the GET_VALUE keyword to retrieve an object
reference to the IDLcomActiveX object that encapsulates the control.

WIDGET_CONTROL, ev.ID, GET_VALUE = oCal

12. The user value of the top-level base widget is an anonymous structure that
holds the widget IDs of the month, day, and year label widgets (see step 6
above). Retrieve the structure into a variable named state.

WIDGET_CONTROL, ev.TOP, GET_UVALUE = state

13. Use the GetProperty method on the IDLcomActiveX object to retrieve the
current values of the month, day, and year from the calendar control.

ocal->GetProperty, month=month, day=day, year=year

14. Use WIDGET_CONTROL to set the values of the month, day, and year label
widgets.

WIDGET_CONTROL, state.month, SET_VALUE = STRTRIM(month,2)
WIDGET_CONTROL, state.day, SET_VALUE = STRTRIM(day,2)
WIDGET_CONTROL, state.year, SET_VALUE = STRTRIM(year,2)

15. Call HEAP_FREE to ensure that dynamic portions of the event structure are
released, and end the procedure.

HEAP_FREE, ev

END
IDL Connectivity Bridges Example: Calendar Control

64 Chapter 4: Using ActiveX Controls in IDL
Running the ActiveXCal procedure displays a widget that looks like the following:

Figure 4-1: An IDL widget program Using an ActiveX Calendar Control
Example: Calendar Control IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 65
Example: Spreadsheet Control

This example uses an ActiveX control that displays a spreadsheet interface. The
control, contained in the file msowc.dll, is installed along with a typical installation
of Microsoft Office. If the control is not present on your system (you’ll know the
control is not present if the example code fails when trying to realize the widget
hierarchy), the example will not run.

The spreadsheet control has the program ID:

OWC.Spreadsheet.9

and the class ID:

{0002E510-0000-0000-C000-000000000046}

Note
The spreadsheet control used in this example is included with older versions of
Microsoft Office; it is discussed in Microsoft Knowledge Base Article 248822.
Newer versions of Microsoft Office may include spreadsheet controls with updated
program and class IDs.

Information about the spreadsheet control’s properties and methods was gleaned
from Microsoft Excel 97 Visual Basic Step by Step by Reed Jacobson (Microsoft
Press, 1997) and by inspection of the control’s interface using the OLE/COM Object
Viewer application provided by Microsoft. It is beyond the scope of this manual to
describe the spreadsheet control’s interface in detail.

Example Code
This example, ActiveXExcel.pro, is included in the
examples\doc\bridges\COM subdirectory of the IDL distribution and develops
an IDL routine called ActiveXExcel that illustrates use of the spreadsheet ActiveX
control within an IDL widget hierarchy. Run the example procedure by entering
ActiveXExcel at the IDL command prompt or view the file in an IDL Editor
window by entering .EDIT ActiveXExcel.pro.

1. Create a function that will retrieve data from cells selected in the spreadsheet
control. The function takes two arguments: an object reference to the
IDLcomActiveX object that instantiates the spreadsheet control, and a variable
to contain the data from the selected cells.

FUNCTION excel_getSelection, oExcel, aData
IDL Connectivity Bridges Example: Spreadsheet Control

javascript:doIDL(".edit ActiveXExcel.pro")
javascript:doIDL("ActiveXExcel")

66 Chapter 4: Using ActiveX Controls in IDL
2. Retrieve an object that represents the selected cells. Note that when the
ActiveX control returns this object, IDL automatically creates an
IDLcomActiveX object that makes it accessible within IDL.

oExcel->GetProperty, SELECTION=oSel

3. Retrieve the total number of cells selected.

oSel->GetProperty, COUNT=nCells

4. If no cells are selected, destroy the selection object and return zero (the failure
code).

IF (nCells LT 1) THEN BEGIN
OBJ_DESTROY, oSel
RETURN, 0

ENDIF

5. Retrieve objects that represent the dimensions of the selection.

oSel->GetProperty, COLUMNS=oCols, ROWS=oRows

6. Get the dimensions of the selection, then destroy the column and row objects.

oCols->GetProperty, COUNT=nCols
OBJ_DESTROY, oCols
oRows->GetProperty, COUNT=nRows
OBJ_DESTROY, oRows

7. Create a floating point array with the same dimensions as the selection.

aData = FLTARR(nCols, nRows, /NOZERO);

8. Iterate through the cells, doing the following:

• Retrieve an object that represents the cell. Note that the numeric index of
the FOR loop is passed to the GetProperty method as an argument.

• Get the value contained in the cell.

• Set the appropriate element of the aData array to the cell's value.

• Destroy the object.

FOR i=1, nCells DO BEGIN
oSel->GetProperty, ITEM=oItem, i
oItem->GetProperty, VALUE=vValue
aData[i-1] = vValue
OBJ_DESTROY, oItem

ENDFOR

9. Destroy the selection object.

OBJ_DESTROY, oSel
Example: Spreadsheet Control IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 67
10. Return one (the success code) and end the function definition.

RETURN, 1

END

11. Next, create a procedure that sets the values of the cells in the spreadsheet.
This procedure takes one argument: an object reference to the IDLcomActiveX
object that instantiates the spreadsheet control.

PRO excel_setData, oExcel

12. Define the size of the data array.

nX = 20

13. Get an object representing the active spreadsheet.

oExcel->GetProperty, ActiveSheet=oSheet

14. Get an object representing the cells in the spreadsheet.

oSheet->GetProperty, CELLS=oCells

15. Generate some data.

im = BESELJ(DIST(nX))

16. Iterate through the elements of the data array, doing the following:

• Retrieve an object that represents the cell that corresponds to the data
element. Note that the numeric indices of the FOR loops are passed to the
GetProperty method as arguments.

• Set the value of the cell.

• Destroy the object.

FOR i=0, nX-1 DO BEGIN
FOR j=0, nX-1 DO BEGIN

oCells->GetProperty, ITEM=oItem, i+1, j+1
oItem->SetProperty, VALUE=im(i,j)
OBJ_DESTROY, oItem

ENDFOR
ENDFOR

17. Destroy the spreadsheet and cell objects, and end the procedure.

OBJ_DESTROY, oSheet
OBJ_DESTROY, oCells

END

18. Next, create a procedure to handle events generated by the widget application.
IDL Connectivity Bridges Example: Spreadsheet Control

68 Chapter 4: Using ActiveX Controls in IDL
PRO ActiveXExcel_event, ev

19. The user value of the top-level base widget is set equal to a structure that
contains the widget ID of the ActiveX widget. Retrieve the structure into the
variable sState.

WIDGET_CONTROL, ev.TOP, GET_UVALUE=sState, /NO_COPY

20. Use the value of the DISPID field of the event structure to sort out “selection
changing” events.

IF (ev.DISPID EQ 1513) THEN BEGIN

21. Place data from selected cells in variable aData, using the
excel_getSelection function defined above. Check to make sure that the
function returns a success value (one) before proceeding.

IF (excel_getSelection(sState.oExcel, aData) NE 0) THEN BEGIN

22. Get the dimensions of the aData variable.

szData = SIZE(aData)

23. If aData is two-dimensional, display a surface, otherwise, plot the data.

IF (szData[0] GT 1 AND szData[1] GT 1 AND szData[2] GT 1) $
THEN SURFACE, aData $

ELSE $
PLOT, aData

ENDIF

ENDIF

24. Reset the state variable sState and end the procedure.

WIDGET_CONTROL, ev.TOP, SET_UVALUE=sState, /NO_COPY

END

25. Create the main widget creation routine.

PRO ActiveXExcel

!EXCEPT=0 ; Ignore floating-point underflow errors.

26. Create a top-level base widget.

wBase = WIDGET_BASE(COLUMN=1, $
TITLE="IDL ActiveX Spreadsheet Example")

27. Instantiate the ActiveX spreadsheet control in a widget.

wAx=WIDGET_ACTIVEX(wBase, $
Example: Spreadsheet Control IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 69
'{0002E510-0000-0000-C000-000000000046}', $
SCR_XSIZE=600, SCR_YSIZE=400)

28. Realize the widget hierarchy.

WIDGET_CONTROL, wBase, /REALIZE

29. The value of an ActiveX widget is an object reference to the IDLcomActiveX
object that encapsulates the ActiveX control. Retrieve the object reference in
the variable oExcel.

WIDGET_CONTROL, wAx, GET_VALUE=oExcel

30. Turn off the TitleBar property on the spreadsheet control.

oExcel->SetProperty, DisplayTitleBar=0

31. Populate the spreadsheet control with data, using the excel_setData
function defined above.

excel_setData, oExcel

32. Set the user value of the top-level base widget to an anonymous structure that
contains the widget ID of the spreadsheet ActiveX widget.

WIDGET_CONTROL, wBase, SET_UVALUE={oExcel:oExcel}

33. Call XMANAGER to manage the widgets, and end the procedure.

XMANAGER,'ActiveXExcel', wBase, /NO_BLOCK
END
IDL Connectivity Bridges Example: Spreadsheet Control

70 Chapter 4: Using ActiveX Controls in IDL
Running the ActiveXExcel procedure display widgets that look like the following:

Figure 4-2: An IDL Widget Program Using an ActiveX Spreadsheet Control
Example: Spreadsheet Control IDL Connectivity Bridges

Chapter 5

Using Java Objects in
IDL
The following topics are covered in this chapter:
Overview of Using Java Objects 72
Initializing the IDL-Java Bridge 75
IDL-Java Bridge Data Type Mapping 78
Creating IDL-Java Objects 84
Method Calls on IDL-Java Objects 87
Managing IDL-Java Object Properties 89

Destroying IDL-Java Objects 91
Showing IDL-Java Output in IDL 92
The IDLJavaBridgeSession Object 94
Java Exceptions . 96
IDL-Java Bridge Examples 99
Troubleshooting Your Bridge Session . . . 118
IDL Connectivity Bridges 71

72 Chapter 5: Using Java Objects in IDL
Overview of Using Java Objects

Java is an object-oriented programming language developed by Sun Microsystems
that is commonly used for web development and other programming needs. It is
beyond the scope of this chapter to describe Java in detail. Numerous third-party
books and electronic resources are available. The Java website (http://java.sun.com)
may be useful.

The IDL-Java bridge allows you to access Java objects within IDL code. Java objects
imported into IDL behave like normal IDL objects. See “Creating IDL-Java Objects”
on page 84 for more information. The IDL-Java bridge allows the arrow operator (->)
to be used to call the methods of these Java objects just as with other IDL objects, see
“Method Calls on IDL-Java Objects” on page 87 for more information. The public
data members of a Java object are accessed through GetProperty and SetProperty
methods, see “Managing IDL-Java Object Properties” on page 89 for more
information. These objects can also be destroyed with the OBJ_DESTROY routine,
see “Destroying IDL-Java Objects” on page 91 for more information.

Note
IDL requires an evaluation or permanent IDL license to use this functionality. This
functionality is not available in demo mode.

The bridge also provides IDL with access to exceptions created by the underlying
Java object. This access is provided by the IDLJavaBridgeSession object, which is a
Java object that maintains exceptions (errors) during a Java session, see “The
IDLJavaBridgeSession Object” on page 94 for more information.

Note
Visual Java objects cannot be embedded into IDL widgets.

Note
On Solaris, there are potential problems creating graphical windows from the IDL-
Java bridge using Java versions before 1.5. We recommend using the XToolkit
option, which the IDL-Java bridge will use by default.

Java Runtime Environment Requirements

IDL supports version 1.5 and greater of the Java runtime environment.
Overview of Using Java Objects IDL Connectivity Bridges

http://java.sun.com

Chapter 5: Using Java Objects in IDL 73
Note
On Macintosh machines, the version of Java installed along with the operating
system should be sufficient, whatever its version number.

Java Terminology

You should become familiar with the following terms before trying to understand
how IDL works with Java objects:

Java Virtual Machine (JVM) - A software execution engine for executing the byte
codes in Java class files on a microprocessor.

Java Native Interface (JNI) - Standard programming interface for accessing Java
native methods and embedding the JVM into native applications. For example, JNI
may be used to call C/C++ functionality from Java or JNI can be used to call Java
from C/C++ programs.

Java Invocation API - An API by which one embeds the Java Virtual Machine into
your native application by linking the native application with the JVM shared library.

Java Reflection API - Provides a small, type-safe, and secure API that supports
introspection about the classes and objects. The API can be used to:

• Construct new class instances and new arrays

• Access and modify fields of objects and classes

• Invoke methods on objects and classes

• Access and modify elements of arrays

IDL-Java Bridge Architecture

The IDL-Java bridge uses the Java Native Interface (JNI), the reflection API, and the
JVM to enable the connection between IDL and the underlying Java system.

The IDL OBJ_NEW function can be used to create a Java object. A Java-specific
class token identifies the Java class used to create a Java proxy object. IDL parses this
class name and creates the desired object within the underlying Java environment.

The Java-specific token is a case-insensitive form of the name of the Java class.
Besides the token, the case-sensitive form of the name of the Java class is provided
because Java itself is case-sensitive while IDL is not. IDL uses the case-insensitive
form to create the object definition while Java uses the case-sensitive form.
IDL Connectivity Bridges Overview of Using Java Objects

74 Chapter 5: Using Java Objects in IDL
After creation, the object can then be used and manipulated just like any other IDL
object. Method calls are the same as any other IDL object, but they are vectored off to
an IDL Java system, which will call the appropriate Java method using JNI.

The OBJ_DESTROY procedure in IDL is used to destroy the object. This process
releases the internal Java object and frees any resources associated with it.
Overview of Using Java Objects IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 75
Initializing the IDL-Java Bridge

The IDL-Java bridge must be configured before trying to create and use Java objects
within IDL. The IDL program initializes the bridge when it first attempts to create an
instance of IDLjavaObject. Initializing the bridge involves starting the Java Virtual
Machine, creating any internal Java bridge objects (both C++ and Java) including the
internal IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on
page 94 for more information on the session object.

Configuring the Bridge

The .idljavabrc file on UNIX or idljavabrc on Windows contains the IDL-
Java bridge configuration information. Even though the IDL installer attempts to
create a valid working configuration file based on IDL location, the file should be
verified before trying to create and use Java objects within IDL.

The IDL-Java bridge looks for the configuration file in the following order:

1. If the environment variable IDLJAVAB_CONFIG is set, the file it indicates is
used.

Note
This environment variable must include both the path and the file name of
the configuration file.

2. If the environment variable IDLJAVAB_CONFIG is not set or the file
indicated by that variable is not found in that location, the path specified in the
HOME environment variable is used to try to locate the configuration file.

3. If the file is not found in the path indicated by the HOME environment
variable, the <IDL_DEFAULT>/resource/bridges/import/java path
is used to try to locate the configuration file.

The configuration file contains the following settings. With a text editor, open your
configuration file to verify these settings are correct for your system.

• The JVM Classpath setting specifies additional locations for user classes. It
must point to the location of any class files to be used by the bridge. On
Windows, paths should be separated by semi-colons. On UNIX, colons should
separate paths.

This path may contain folders that contain class files or specific jar files. It
follows the same rules for specifying ’-classpath’ when running java or
IDL Connectivity Bridges Initializing the IDL-Java Bridge

76 Chapter 5: Using Java Objects in IDL
javac. You can also include the CLASSPATH environment variable in the
JVM Classpath:

JVM Classpath = $CLASSPATH:/home/johnd/myClasses.jar

which allows any class defined in the CLASSPATH environment variable to
be used in the IDL-Java bridge.

On Windows, an example of a typical JVM Classpath setting is:

JVM Classpath = E:\myClasses.jar;$CLASSPATH

On UNIX, an example of a typical JVM Classpath setting is:

JVM Classpath = /home/johnd/myClasses.jar:$CLASSPATH

• The JVM LibLocation setting tells the Windows IDL-Java bridge which
JVM shared library within a given Java version to use. Various versions of
Java ship with different types of JVM libraries. For example, Java 1.3 on
Windows ships with a “classic” JVM, a “hotspot” JVM, and a “server” JVM.
Other versions and platforms have different JVM types.

On Windows, an example of a typical JVM LibLocation setting is:

JVM LibLocation = E:\jdk1.3.1_02\jre\bin\hotspot

On UNIX, you should not set JVM LibLocation in the configuration file.
Instead, set the IDLJAVAB_LIB_LOCATION environment variable for the
session that will use the IDL-Java bridge. The following is a typical command
to set the environment variable:

setenv IDLJAVAB_LIB_LOCATION
/usr/java/j2re1.4.0_02/lib/sparc/client

Note
You can also set the IDLJAVAB_LIB_LOCATION environment variable on
Windows platforms, rather than specifying the value in the configuration file.

Note
On Macintosh platforms, IDL is hard-coded to use the Java VM 1.3.1, and so
the system ignores any value you place in IDLJAVAB_LIB_LOCATION.

• The JVM Option# (where # is any whole number) setting allows you to send
additional parameters to the Java Virtual machine upon initialization. These
settings must be specified as string values. When these settings are
encountered in the initialization, the options are added to the end of the options
that the bridge sets by default.
Initializing the IDL-Java Bridge IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 77
• The Log Location setting indicates the directory where IDL-Java bridge log
files will be created. The default location provided by the IDL installer is /tmp
on Unix and C:\temp on Windows.

• The Bridge Logging setting indicates the type of bridge debug logging to be
sent to a file called jb_log<pid>.txt (where <pid> is a process ID
number) located in the directory specified by the Log Location setting.

Acceptable values (from least verbose to most verbose) are SEVERE, CONFIG,
CONFIGFINE. The default value is SEVERE, which specifies that bridge errors
are logged. The CONFIG value indicates the configuration settings are also
logged. The CONFIGFINE value is the same as CONFIG, but provides more
detail.

No log file is created if this setting is set to OFF.

The IDL-Java bridge usually only uses the configuration file once during an IDL
session. The file is used when the first instance of the IDLjavaObject class is created
in the session. If you edit the configuration file after the first instance is created, you
must exit and restart IDL to update the IDL-Java bridge with the changes you made
to the file.
IDL Connectivity Bridges Initializing the IDL-Java Bridge

78 Chapter 5: Using Java Objects in IDL
IDL-Java Bridge Data Type Mapping

When data moves between IDL and a Java object, IDL automatically converts
variable data types.

The following table maps how Java data types correlate to IDL data types.

Java Type (# bytes) IDL Type Notes

boolean (1) Integer True becomes 1,
false becomes 0

byte (1) Byte

char (2) Byte The bridge handles
Java UTF characters

short (2) Integer

int (4) Long

long (8) Long64

float (4) Float

double (8) Double

Java.lang.String String Java has the notion
of a NULL string
(the java.lang.String
reference equals
null) and the concept
of an empty string.
IDL makes no such
differentiation, so
both are identically
converted.

Arrays of the above types IDL array of the same
dimensions (from 1 to
8 dimensions) and
corresponding type.

Table 5-1: Java to IDL Data Type Conversion
IDL-Java Bridge Data Type Mapping IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 79
Java.lang.Object (or array of
java.lang.Object) and any
subclass of java.lang.Object

IDL array of
primitives or IDL
array of
IDLjavaObjects

In Java, everything is
a subclass of Object.
If the Java object is
an array of
primitives, an IDL
array of the same
dimensions and
corresponding type
(shown in this table)
is created. IDL
similarly converts
arrays of primitives,
arrays of strings,
arrays of other Java
objects to an IDL
Java object of the
same dimensions. If
the Object is some
single Java object,
IDL creates an object
reference of the
IDLjavaObject class.

Null object IDL Null object

Java Type (# bytes) IDL Type Notes

Table 5-1: Java to IDL Data Type Conversion (Continued)
IDL Connectivity Bridges IDL-Java Bridge Data Type Mapping

80 Chapter 5: Using Java Objects in IDL
The following table shows how data types are mapped from IDL to Java.

IDL Type Java Type (# bytes) Notes

Byte byte (1) IDL bytes range from 0 to 255,
Java bytes are -128 to 127. IDL
bytes converted to Java bytes
will retain their binary
representation but values greater
than 127 will change. For
example, BYTE(255) becomes a
Java byte of -1. If BYTE is
converted to wider Java value,
the sign and value is preserved.

Integer short (2)

Unsigned integer short (2) IDL unsigned integers range
from 0 to 65535, Java shorts are
-32768 to 32767. IDL unsigned
integers converted to Java shorts
will retain their binary
representation but values greater
than 32768 will change. For
example, UINT(65535) becomes
a Java short of -1. If UINT is
converted to wider Java value,
the sign and value is preserved.

Long int (4)

Table 5-2: IDL to Java Data Type Conversion
IDL-Java Bridge Data Type Mapping IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 81
Unsigned long int (4) IDL unsigned longs range from
0 to 4294967295, Java ints are -
2147483648 to 2147483647.
IDL unsigned longs converted to
Java ints will retain their binary
representation but values greater
than 2147483647 will change.
For example,
ULONG(4294967295) becomes
a Java int of -1. If ULONG is
converted to wider Java value,
the sign and value is preserved.

Long64 long (8)

Unsigned Long64 long (8) IDL unsigned long64 range from
0 to 18446744073709551615,
Java ints range from
-9223372036854775808 to
9223372036854775807. IDL
unsigned long64 converted to
Java longs will retain their
binary representation values
greater than
9223372036854775807 will
change. For example,
ULONG64(1844674407370955
1615) becomes a Java long of -1.

Float float (4)

Double double (8)

String Java.lang.String

Arrays of the above
types

Java array of the same
dimensions and
corresponding type

IDL Type Java Type (# bytes) Notes

Table 5-2: IDL to Java Data Type Conversion (Continued)
IDL Connectivity Bridges IDL-Java Bridge Data Type Mapping

82 Chapter 5: Using Java Objects in IDL
When calling a Java method or constructor from IDL, the data parameters are
promoted as little as possible based on the signature of the given method. The
following table shows how data types are promoted within Java relative to IDL.

Note
When strings and arrays are passed between IDL and Java, the array must be
copied. Depending upon the size of the array, this copy may be time intensive. Care
should be taken to minimize array copying.

IDLjavaObject Object of corresponding
Java class

Arrays of objects Java array of the same
dimensions, consisting of
corresponding Java proxy
objects

Only objects of type
IDLjavaObject are converted.

Null object Java null

IDL Type
Java Type (to order of

desired promotion) Notes

Byte byte, char, short, int, long,
float, double, boolean

Integer short, int, long, float, double,
boolean

Unsigned integer short, int, long, float, double,
boolean

Long int, long, float, double, boolean

Unsigned Long int, long, float, double, boolean

Long64 long, float, double, boolean

Unsigned Long64 long, float, double, boolean

Table 5-3: Java Data Type Promotion Relative to IDL

IDL Type Java Type (# bytes) Notes

Table 5-2: IDL to Java Data Type Conversion (Continued)
IDL-Java Bridge Data Type Mapping IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 83
Float float, double

Double double

String Java.lang.String

IDLjavaObject Java.lang.Object

IDL Type
Java Type (to order of

desired promotion) Notes

Table 5-3: Java Data Type Promotion Relative to IDL (Continued)
IDL Connectivity Bridges IDL-Java Bridge Data Type Mapping

84 Chapter 5: Using Java Objects in IDL
Creating IDL-Java Objects

As with all IDL objects, a Java object is created using the IDL OBJ_NEW function.
Keying off the provided Java class name, the underlying implementation uses the
IDL Java subsystem to call the constructor on the desired Java object. The following
line of code demonstrates the basic syntax for calling OBJ_NEW to create a Java
object within IDL:

oJava = OBJ_NEW(IDLjavaObject$JAVACLASSNAME, JavaClassName $
[, Arg1, Arg2, ..., ArgN])

where JAVACLASSNAME is the class name token used by IDL to create the object,
JavaClassName is the class name used by Java to initialize the object, and Arg1
through ArgN are any data parameters required by the constructor. See “Java Class
Names in IDL” for more information.

Example Code
The example hellojava.pro is located in the
resource/bridges/import/java/examples directory of the IDL distribution
and shows a simple example of an IDL-Java object creation. Run the example
procedure by entering hellojava at the IDL command prompt or view the file in
an IDL Editor window by entering .EDIT hellojava.pro.

Note
If you edit and recompile a Java class used by IDL during an IDL-Java bridge
session, you must first exit and restart IDL before your modified Java class will be
recognized by IDL.

The IDL-Java bridge also provides the ability to access static Java methods and data
members. See “Java Static Access” on page 85 for more information.

Java Class Names in IDL

The underlying Java interpreter recognizes the Java class name including all objects
contained within the Java interpreter’s class path.

To identify a proper Java object, the fully-qualified package name should be used
when creating the IDL class name. For example, a class of type String would be
referred to as java.lang.String.

In the IDL class name, the Java class separator ('.') should be replaced with an
underscore ('_'). If a Java class of type String were created, the following IDL
OBJ_NEW call would be used:
Creating IDL-Java Objects IDL Connectivity Bridges

javascript:doIDL("hellojava")
javascript:doIDL("hellojava.pro")

Chapter 5: Using Java Objects in IDL 85
oJString = OBJ_NEW('IDLJavaObject$JAVA_LANG_STRING',$
'java.lang.String', 'My String')

The class name is provided twice because IDL is case-insensitive whereas Java is
case-sensitive, see “IDL-Java Bridge Architecture” on page 73 for more information.

Note
IDL objects use method names (INIT and CLEANUP) to identify and call object
lifecycle methods. As such, these method names should be considered reserved. If
an underlying Java object implements a method using either INIT or CLEANUP,
those methods will be overridden by the IDL methods and not accessible from IDL.
In Java, you can wrap these methods with different named methods to work around
this limitation.

Java Static Access

In Java, a program can call a static method or access static data members on a Java
class without first having to create the object.

IDL contains a special wrapper object type for calling static methods. This IDL
object wrapper references the underlying Java class, allowing the object to call static
methods on the class or allowing the object to use the Get/Set Property calls to access
static data members. The following line of code demonstrates the basic syntax for
calling OBJ_NEW to create a static proxy within IDL:

oJava = OBJ_NEW(IDLjavaObject$Static$JAVACLASSNAME, JavaClassName)

where JAVACLASNAME is the class name token used by IDL to create the object and
JavaClassName is the class name used by Java to initialize the object. See “Java
Class Names in IDL” on page 84 for more information.

A special static object would not need to be created to call an instantiated
IDLJavaObject with static methods:

oNotStatic = OBJ_NEW('IDLjavaObject$JAVACLASSNAME', $
'JavaClassName')

oNotStatic -> aStaticMethod ; this is OK

Example Code
The javaprops.pro file is located in the
resource/bridges/import/java/examples directory of the IDL distribution
and shows an example of working with static data members. Run the example
procedure by entering javaprops at the IDL command prompt or view the file in
an IDL Editor window by entering .EDIT javaprops.pro.
IDL Connectivity Bridges Creating IDL-Java Objects

javascript:doIDL("javaprops")
javascript:doIDL(".edit javaprops.pro")

86 Chapter 5: Using Java Objects in IDL
Note
All restrictions on creating Java objects apply to this static object.
Creating IDL-Java Objects IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 87
Method Calls on IDL-Java Objects

When a method is called on a Java-based IDL object, the method name and
arguments are passed to the IDL-Java subsystem and the Java Reflection API to
construct and invoke the method call on the underlying object.

IDL handles conversion between IDL and Java data types. Any results are returned in
IDL variables of the appropriate type.

As with all IDL objects, the general syntax in IDL for an underlying Java method that
returns a value (known as a function method in IDL) is:

result = ObjRef->Method([Arguments])

and the general syntax in IDL for an underlying Java method that does not return a
value, a void method, (known as a procedure method in IDL) is:

ObjRef->Method[, Arguments]

where ObjRef is an object reference to an instance of a dynamic subclass of the
IDLjavaObject class.

Note
Besides other Java based objects, the value of an argument may be an IDL primitive
type, an IDLjavaObject, or an IDL primitive type array. No complex types
(structures, pointers, etc.) are supported as parameters to method calls.

What Happens When a Method Call Is Made?

When a method is called on an instance of IDLjavaObject, IDL uses the method
name and arguments to construct the appropriate method calls for the underlying Java
object.

From the point of view of an IDL user issuing method calls on an instance of
IDLjavaObject, this process is completely transparent. IDL handles the translation
when the IDL user calls the Java object’s method.

Due to case-sensitivity incompatibilities between IDL and Java, Java’s ability to
overload methods, and the fact that Java might promote certain data types, the Java
bridge uses an algorithm to match the IDL method name and parameters to the
corresponding Java object method.
IDL Connectivity Bridges Method Calls on IDL-Java Objects

88 Chapter 5: Using Java Objects in IDL
Before the algorithm starts, IDL provides a case-insensitive <METHODNAME> and
a reference to the Java object. For a given object and its parent classes, the Java
bridge obtains a list of all the public method names, including static methods. This
algorithm performs the following steps:

1. If the Java class has one method name matching the IDL <METHODNAME>
(except for case insensitivity), this Java method name is used. At this point,
signatures and overloaded functions are not taken into account.

2. If the Java class has several method names that differ only in case and one is
all uppercase, the uppercase name is used. Otherwise, the IDL-Java bridge
issues an error that it has no method named <METHODNAME>.

3. Once the method name has been determined, a promotion algorithm then
matches the Java data parameters as closely as possible with the IDL
parameters. Minimum data promotion from IDL to Java is preferred and only
widening promotion is allowed. If no match is found, an error is issued.

Data Type Conversions

IDL and Java use different data types. IDL’s dynamic type conversion facilities
handle all conversion of data types between IDL and the Java system. The data type
mappings are described in “IDL-Java Bridge Data Type Mapping” on page 78.

For example, if the Java object has a method that requires a value of type int as an
input argument, IDL would supply the value as an IDL Long. For any other IDL data
type, IDL would first convert the value to an IDL Long using its normal data type
conversion mechanism before passing the value to the Java object as an int.
Method Calls on IDL-Java Objects IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 89
Managing IDL-Java Object Properties

Property names and arguments are also passed to the IDL Java subsystem and are
used in conjunction with the Java Reflection API to construct and access public data
members on the underlying object. These public data members (known as properties
in IDL) are identified through arguments to the GetProperty and SetProperty
methods. See “Getting and Setting Properties” on page 90 for more information.

Note
Only public data members may be accessed.

Due to case-sensitivity incompatibilities between IDL and Java and the fact that Java
might promote certain data types, the Java bridge uses an algorithm to match the IDL
properties name to the corresponding Java object data members.

Before the algorithm starts, IDL provides a case-insensitive <PROPERTYNAME>
and a reference to the Java object. For the given object and its parent classes, the Java
bridge obtains a list of all the public data members including static members. This
algorithm performs the following steps:

1. If the Java class has one data member name matching the IDL
<PROPERTYNAME> (except for case insensitivity), this Java data member is
used. At this point, data types are not yet taken into account; this algorithm
only matches the data member names.

2. If the Java class has several member names that differ only in case, the data
member name that exactly matches the IDL <PROPERTYNAME > (i.e. the
one that is all caps) is called. Otherwise, the IDL-Java bridge issues an error
that the class has no data members named < PROPERTYNAME >.

3. When setting a property with the SetProperty method, a promotion algorithm
matches the provided IDL parameter with the Java data parameter as closely as
possible. If the IDL value can be promoted to the same type as the data
member, this data member is used. Otherwise, an error is issued.

When retrieving a property with the GetProperty method, this step is skipped
and the value is returned to IDL.

Example Code
The allprops.pro and publicmembers.pro files in the
resource/bridges/import/java/examples directory of the IDL distribution
provide information about data members associated with given Java classes. Run
the example procedures by entering allprops and publicmembers at the IDL
IDL Connectivity Bridges Managing IDL-Java Object Properties

javascript:doIDL("allprops")
javascript:doIDL("publicmembers")

90 Chapter 5: Using Java Objects in IDL
command prompt or view the files in an IDL Editor window by entering .EDIT
allprops.pro or .EDIT publicmembers.pro.

Getting and Setting Properties

The IDL-Java bridge follows the standard IDL property interface to support data
member access on Java objects and classes.

To retrieve a property value from a Java object, use the following syntax:

ObjRef->GetProperty, PROPERTY=variable

where ObjRef is an instance of IDLjavaObject that encapsulates the Java object,
PROPERTY is the name of the Java object’s data member (property), and variable is
the name of an IDL variable that will contain the retrieved property value.

To retrieve multiple property values in a single statement supply multiple
PROPERTY=variable pairs separated by commas.

To set a property value on a Java object, use the following syntax:

ObjRef->SetProperty, Property=value

where ObjRef is an instance of IDLjavaObject that encapsulates the Java object,
PROPERTY is the name of the Java object’s data member, and value is value of the
property to be set.

To set multiple property values in a single statement supply multiple
PROPERTY=value pairs separated by commas.

Note
The provided PROPERTY must map directly to a data member name. Any name
passed into either of the property routines is assumed to be a fully qualified Java
property name. As such, the partial property name functionality provided by IDL is
not valid with IDL Java based objects.

The variable or value part may be an IDL primitive type, an instance of
IDLJavaObject, or an array of an IDL primitive type. See “IDL-Java Bridge Data
Type Mapping” on page 78 for more information.

Note
Besides other Java-based objects, no complex types (structures, pointers, etc.) are
supported as parameters to property calls.
Managing IDL-Java Object Properties IDL Connectivity Bridges

javascript:doIDL(".edit allprops.pro")

javascript:doIDL(".edit allprops.pro")

javascript:doIDL(".edit publicmembers.pro")

Chapter 5: Using Java Objects in IDL 91
Destroying IDL-Java Objects

The OBJ_DESTROY routine is used to destroy instances of IDLjavaObject. When
OBJ_DESTROY is called with a Java-based object as an argument, IDL releases the
underlying Java object and frees IDL resources relating to that object.

Note
Destruction of the IDL object does not automatically cause the destruction of the
underlying Java object. Because Java utilizes a garbage collection mechanism to
release any information allocated for a particular object, the resources utilized by
the underlying Java object will persist until the Java virtual machine’s garbage
collector runs.
IDL Connectivity Bridges Destroying IDL-Java Objects

92 Chapter 5: Using Java Objects in IDL
Showing IDL-Java Output in IDL

By default, IDL prints the output from Java (the System.out and System.err
output streams).

For example, given the following Java code:

public class helloWorld
{
// ctor
public helloWorld() {
System.out.println("helloWorld ctor");
}

public void sayHello() {
System.out.println("Hello! (from the helloWorld object)");
}

}

The following output occurs in IDL:

IDL> oJHello = OBJ_NEW('IDLjavaObject$HelloWorld', 'helloWorld')
% helloWorld ctor
IDL> oJHello -> SayHello
% Hello! (from the helloWorld object)
IDL> OBJ_DESTROY, oJHello

Example Code
This example code is also provided in the helloJava.java and
hellojava2.pro files, which are in the
resource/bridges/import/java/examples directory of the IDL
distribution. Run these example procedures by entering helloJava and
hellojava2 at the IDL command prompt or view the files in an IDL Editor
window by entering .EDIT helloJava.pro and .EDIT hellojava2.pro.

Note
Due to restrictions in IDL concerning receiving standard output from non-main
threads, the bridge will only send System.out and System.err information to
IDL from the main thread. Other threads’ output will be ignored.

Note
A print() in Java will not have a carriage return at the end of the line (as opposed
to println(), which does). However, when outputting to Java both print() and
println() will print to IDL followed by a carriage return. You can change this
Showing IDL-Java Output in IDL IDL Connectivity Bridges

javascript:doIDL("helloJava")
javascript:doIDL("hellojava2")
javascript:doIDL(".edit helloJava.pro")

javascript:doIDL(".edit hellojava2.pro")

Chapter 5: Using Java Objects in IDL 93
result by having the Java-side application buffer its data up into the lines you wish
to see on the IDL-side.
IDL Connectivity Bridges Showing IDL-Java Output in IDL

94 Chapter 5: Using Java Objects in IDL
The IDLJavaBridgeSession Object

Java exceptions are handled within IDL through an IDL-Java bridge session object,
IDLJavaBridgeSession. This Java object can be queried to determine the status of the
bridge, including information on any exceptions. For example, one important Java
object available through the session object is the last issued Java exception.

The session object is a proxy to an internal Java object, which is created during the
IDL-Java bridge initialization process. You can connect an IDLJavaObject to this
object using OBJ_NEW:

oJSession = OBJ_NEW('IDLjavaObject$IDLJAVABRIDGESESSION’)

Note
Only one Java session object needs to be created during an IDL session. Subsequent
calls to this object will point to the same internal object.

When an exception occurs, the GetException function method indicates what
exception occurred:

oJException = oJSession->GetException()

where oJSession is a reference to the session object and oJException is a proxy
object to a java.lang.Throwable object, which is the class used in Java to
manage exceptions. The session object also has a ClearException method that clears
the session object’s last exception. The GetException method always calls
ClearException method.

The IDLJavaBridgeSession object also has the GetVersionObject method, which
retrieves the IDLJavaVersion object:

oJVersion = oJSession->GetVersionObject()

where oJSession is a reference to the session object and oJVersion is a proxy
object to an IDLJavaVersion object. This object determines version information
about the IDL-Java bridge and the underlying Java system.

The IDLJavaVersion object provides the following function methods, which do not
require any arguments:

• GetBuildDate() - a java.lang.String object specifying the build date. For
example, Apr 1 2003.

• GetJavaVersion() - a java.lang.String object specifying the Java version. For
example, 1.3.1_02.
The IDLJavaBridgeSession Object IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 95
• GetBridgeVersion() - a java.lang.String object specifying the IDL-Java bridge
version.

Example Code
An example of the version object is provided in the bridge_version.pro file,
which is in IDL’s resource/bridges/import/java/examples directory. Run
the example procedure by entering bridge_version at the IDL command prompt
or view the file in an IDL Editor window by entering .EDIT
bridge_version.pro.
IDL Connectivity Bridges The IDLJavaBridgeSession Object

javascript:doIDL("bridge_version")
javascript:doIDL(".edit bridge_version.pro")

javascript:doIDL(".edit bridge_version.pro")

96 Chapter 5: Using Java Objects in IDL
Java Exceptions

During the operation of the bridge, an error may occur when initializing the bridge,
creating an IDLjavaObject, calling methods, setting properties, or getting
properties. Typically, these errors will be fixed by changing your IDL or Java code
(or by changing the bridge configuration). Java bridge errors operate like other IDL
errors in that they stop execution of IDL and post an error message. These errors can
be caught like any other IDL error.

On the other hand, Java uses the exception mechanism to report errors. For example,
in Java, if we attempt to create a java.lang.StringBuffer of negative length, a
java.lang.NegativeArraySizeException is issued.

Java exceptions are handled much like bridge errors. They stop IDL execution (if
uncaught) and they report an error message containing a line number. In addition, a
mechanism is provided to grab the exception object (a subclass of
java.lang.Throwable) via the session object. Once connected with the exception
object, IDL can call any of the methods provided by this Java object. For example,
IDL can query the exception name to determine how to handle it, or print a stack
trace of where the exception occurred in your Java code.

The exception object is provided through the GetException method to the
IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on page 94
for more information about this object.

Uncaught Exceptions

If a Java exception is not caught, IDL will stop execution and display an Exception
thrown error message. For example, when the following program is saved as
ExceptIssued.pro, compiled, and ran in IDL:

PRO ExceptIssued

; This will throw a Java exception
oJStrBuffer = OBJ_NEW($

'IDLJavaObject$java_lang_StringBuffer', $
’java.lang.StringBuffer’, -2)

END

IDL issues the following output:

IDL> ExceptIssued
% Exception thrown
% Execution halted at: EXCEPTISSUED 4 ExceptIssues.pro
% $MAIN$
Java Exceptions IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 97
From the IDL command line, you can then use the session object to help debug the
problem:

IDL> oJSession = OBJ_NEW('IDLJavaObject$IDLJAVABRIDGESESSION')
IDL> oJExc = oJSession->GetException()
IDL> oJExc->PrintStackTrace
% java.lang.NegativeArraySizeException:
% at java.lang.StringBuffer.<init>(StringBuffer.java:116)

Example Code
A similar example is also provided in the exception.pro file, which is in the
resource/bridges/import/java/examples directory of the IDL
distribution. The exception.pro example shows how to use the utility routine
provided in the showexcept.pro file. This showexcept utility routine can be re-
used to provide consist error messages when Java exceptions occur. The
showexcept.pro file is also provided in the
resource/bridges/import/java/examples directory of the IDL
distribution. Run the example procedure by entering exception at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
exception.pro.

Caught Exceptions

Java exceptions can be caught just like IDL errors. Consult the documentation of the
Java classes that you are using to ensure IDL is catching any expected exceptions.
For example:

PRO ExceptCaught

; Grab the special IDLJavaBridgeSession object
oJBridgeSession = OBJ_NEW('IDLJavaObject$IDLJAVABRIDGESESSION')

bufferSize = -2
; Our Java constructor might throw an exception, so let’s catch it
CATCH, error_status
IF (error_status NE 0) THEN BEGIN

; Use session object to get our Exception
oJExc = oJBridgeSession->GetException()
; should be of type
; IDLJAVAOBJECT$JAVA_LANG_NEGATIVEARRAYSIZEEXCEPTION
HELP, oJExc
; Now we can access the members java.lang.Throwable
PRINT, 'Exception thrown:', oJExc->ToString()
oJExc->PrintStackTrace
; Cleanup
OBJ_DESTROY, oJExc
; Increase the buffer size to avoid the exception.
IDL Connectivity Bridges Java Exceptions

javascript:doIDL("exception")
javascript:doIDL(".edit exception.pro")

javascript:doIDL(".edit exception.pro")

98 Chapter 5: Using Java Objects in IDL
bufferSize = bufferSize + 100
ENDIF

; This throws a Java exception the 1st time, but pass the 2nd time.
oJStrBuffer = OBJ_NEW('IDLJavaObject$java_lang_StringBuffer', $

'java.lang.StringBuffer', bufferSize)

OBJ_DESTROY, oJStrBuffer
OBJ_DESTROY, oJBridgeSession

END

Example Code
A similar example is also provided in the exception.pro file, which is in the
resource/bridges/import/java/examples directory of the IDL
distribution. The exception.pro example shows how to use the utility routine
provided in the showexcept.pro file. This showexcept utility routine can be re-
used to provide consist error messages when Java exceptions occur. The
showexcept.pro file is also provided in the
resource/bridges/import/java/examples directory of the IDL
distribution. Run the example procedure by entering showexcept at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
showexcept.pro.
Java Exceptions IDL Connectivity Bridges

javascript:doIDL("showexcept")
javascript:doIDL(".edit showexcept.pro")

javascript:doIDL(".edit showexcept.pro")

Chapter 5: Using Java Objects in IDL 99
IDL-Java Bridge Examples

The following examples demonstrate how to access data through the IDL-Java
bridge:

• “Accessing Arrays Example”

• “Accessing URLs Example” on page 102

• “Accessing Grayscale Images Example” on page 104

• “Accessing RGB Images Example” on page 108

Note
If IDL is not able to find any Java class associated with these examples, make sure
your IDL-Java bridge is properly configured. See “Configuring the Bridge” on
page 75 for more information.

Accessing Arrays Example

This example creates a two-dimensional array within a Java class, which is contained
in a file named array2d.java. IDL then accesses this data through the ArrayDemo
routine, which is in a file named arraydemo.pro.

Example Code
These files are located in the resource/bridges/import/java/examples
directory of the IDL distribution. Run this example procedure by entering
arraydemo at the IDL command prompt or view the file in an IDL Editor window
by entering.EDIT arraydemo.pro.

The array2d.java file contains the following text for creating a two-dimensional
array in Java:

public class array2d {
short[][] m_as;
long[][] m_aj;

// ctor
public array2d() {

int SIZE1 = 3;
int SIZE2 = 4;

// default ctor creates a fixed number of elements
m_as = new short[SIZE1][SIZE2];
IDL Connectivity Bridges IDL-Java Bridge Examples

javascript:doIDL("arraydemo")

javascript:doIDL(".edit arraydemo.pro")

100 Chapter 5: Using Java Objects in IDL
m_aj = new long[SIZE1][SIZE2];

for (int i=0; i<SIZE1; i++) {
for (int j=0; j<SIZE2; j++) {

m_as[i][j] = (short)(i*10+j);
m_aj[i][j] = (long)(i*10+j);
}

}

}

public void setShorts(short[][] _as) {
m_as = _as;

}

public short[][] getShorts() {return m_as;}

public short getShortByIndex(int i, int j) {
return m_as[i][j];

}

public void setLongs(long[][] _aj) {
m_aj = _aj;

}

public long[][] getLongs() {return m_aj;}
public long getLongByIndex(int i, int j) {return m_aj[i][j];}

}

The arraydemo.pro file contains the following text for accessing the two-
dimensional array within IDL:

PRO ArrayDemo

; The Java class array2d creates 2 initial arrays, one
; of longs and one of shorts. We can interrogate and
; change this array.
oJArr = OBJ_NEW('IDLJavaObject$ARRAY2D', 'array2d')

; First, let’s see what is in the short array at index
; (2,3).
PRINT, 'array2d short(2, 3) = ', $

oJArr -> GetShortByIndex(2, 3), $
' (should be 23)’

; Now, let’s copy the entire array from Java to IDL.
shortArrIDL = oJArr->GetShorts()
HELP, shortArrIDL
IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 101
PRINT, 'shortArrIDL[2, 3] = ', shortArrIDL[2, 3], $
' (should be 23)'

; Let’s change this value...
shortArrIDL[2, 3] = 999
; ...and copy it back to Java...
oJArr->SetShorts, shortArrIDL
; ...now its value should be different.
PRINT, 'array2d short(2, 3) = ', $

oJArr->GetShortByIndex(2, 3), ' (should be 999)'

; Let’s set our array to something different.
oJArr -> SetShorts, INDGEN(10, 8)
PRINT, 'array2d short(0, 0) = ', $

oJArr->GetShortByIndex(0, 0), ' (should be 0)'
PRINT, 'array2d short(1, 0) = ', $

oJArr->GetShortByIndex(1, 0), ' (should be 1)'
PRINT, 'array2d short(2, 0) = ', $

oJArr->GetShortByIndex(2, 0), ' (should be 2)'
PRINT, 'array2d short(0, 1) = ', $

oJArr->GetShortByIndex(0, 1), ' (should be 10)'

; Array2d has a setLongs method, but b/c arrays do not
; (currently) promote, the first call to setLongs works
; but the second fails.
oJArr->SetLongs, L64INDGEN(10, 8)
PRINT, 'array2d long(0, 1) = ', $

oJArr->GetLongByIndex(0, 1), ' (should be 10)'

;PRINT, '(expecting an error on the next line...)'
;oJArr->SetLongs, INDGEN(10,8)

; Cleanup our object.
OBJ_DESTROY, oJArr

END

After saving and compiling the above files (array2d.java in Java and
ArrayDemo.pro in IDL), update the jbexamples.jar file in the
resource/bridges/import/java directory with the new compiled class and run
the ArrayDemo routine in IDL. The routine should produce the following results:

array2d short(2, 3) = 23 (should be 23)
SHORTARRIDL INT = Array[3, 4]
shortArrIDL[2, 3] = 23 (should be 23)
array2d short(2, 3) = 999 (should be 999)
array2d short(0, 0) = 0 (should be 0)
array2d short(1, 0) = 1 (should be 1)
array2d short(2, 0) = 2 (should be 2)
IDL Connectivity Bridges IDL-Java Bridge Examples

102 Chapter 5: Using Java Objects in IDL
array2d short(0, 1) = 10 (should be 10)
array2d long(0, 1) = 10 (should be 10)

Accessing URLs Example

This example finds and reads a given URL, which is contained in a file named
URLReader.java. IDL then accesses this data through the URLRead routine, which
is in a file named urlread.pro.

Example Code
These files are located in the resource/bridges/import/java/examples
directory of the IDL distribution. Run this example procedure by entering urlread
at the IDL command prompt or view the file in an IDL Editor window by entering
.EDIT urlread.pro.

The URLReader.java file contains the following text for reading a given URL in
Java:

import java.io.*;
import java.net.*;

public class URLReader
{

private ByteArrayOutputStream m_buffer;

 // **
 //
 // Constructor. Create the reader
 //
 // **
 public URLReader() {
 m_buffer = new ByteArrayOutputStream();
 }

 // **
 //
 // readURL: read the data from the URL into our buffer
 //
 // returns: number of bytes read (0 if invalid URL)
 //
 // NOTE: reading a new URL clears out the previous data
 //
 // **
 public int readURL(String sURL) {
 URL url;
 InputStream in = null;
IDL-Java Bridge Examples IDL Connectivity Bridges

javascript:doIDL("urlread")
javascript:doIDL(".edit urlread.pro")

Chapter 5: Using Java Objects in IDL 103
m_buffer.reset(); // reset our holding buffer to 0 bytes

 int total_bytes = 0;
 byte[] tempBuffer = new byte[4096];
 try {
 url = new URL(sURL);
 in = url.openStream();

 int bytes_read;
 while ((bytes_read = in.read(tempBuffer)) != -1) {
 m_buffer.write(tempBuffer, 0, bytes_read);
 total_bytes += bytes_read;
 }
 } catch (Exception e) {
 System.err.println("Error reading URL: "+sURL);
 total_bytes = 0;
 } finally {
 try {
 in.close();
 m_buffer.close();
 } catch (Exception e) {}
 }

 return total_bytes;
 }

 // **
 //
 // getData: return the array of bytes
 //
 // **
 public byte[] getData() {
 return m_buffer.toByteArray();
 }

 // **
 //
 // main: reads URL and reports # of byts reads
 //
 // Usage: java URLReader <URL>
 //
 // **

 public static void main(String[] args) {
 if (args.length != 1)
 System.err.println("Usage: URLReader <URL>");
 else {
 URLReader o = new URLReader();
 int b = o.readURL(args[0]);
IDL Connectivity Bridges IDL-Java Bridge Examples

104 Chapter 5: Using Java Objects in IDL
 System.out.println("bytes="+b);
 }
 }

}

The urlread.pro file contains the following text for inputting an URL as an IDL
string and then accessing its data within IDL:

FUNCTION URLRead, sURLName

; Create an URLReader.
oJURLReader = OBJ_NEW('IDLjavaObject$URLReader', 'URLReader')

; Read the URL data into our Java-side buffer.
nBytes = oJURLReader->ReadURL(sURLName)

;PRINT, 'Read ', nBytes, ' bytes'

; Pull the data into IDL.
byteArr = oJURLReader->GetData()

; Cleanup Java object.
OBJ_DESTROY, oJURLReader

; Return the data.
RETURN, byteArr

END

After saving and compiling the above files (URLReader.java in Java and
urlread.pro in IDL), you can run the URLRead routine in IDL. This routine is a
function with one input argument, which should be a IDL string containing an URL.
For example:

address = 'http://www.ittvis.com'
data = URLRead(address)

Accessing Grayscale Images Example

This example creates a a grayscale ramp image within a Java class, which is
contained in a file named GreyBandsImage.java. IDL then accesses this data
through the ShowGreyImage routine, which is in the showgreyimage.pro file.

Example Code
These files are located in the resource/bridges/import/java/examples
directory of the IDL distribution. Run this example procedure by entering
IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 105
showgreyimage at the IDL command prompt or view the file in an IDL Editor
window by entering.EDIT showgreyimage.pro.
IDL Connectivity Bridges IDL-Java Bridge Examples

javascript:doIDL("showgreyimage")
javascript:doIDL(".edit showgreyimage.pro")

106 Chapter 5: Using Java Objects in IDL
The GreyBandsImage.java file contains the following text for creating a grayscale
image in Java:

import java.awt.*;
import java.awt.image.*;

public class GreyBandsImage extends BufferedImage
{
 // Members
 private int m_height;
 private int m_width;

 //
 // ctor
 //
 public GreyBandsImage() {
 super(100, 100, BufferedImage.TYPE_INT_ARGB);
 generateImage();
 m_height = 100;
 m_width = 100;
 }

 //
 // private method to generate the image
 //
 private void generateImage() {
 Color c;
 int width = getWidth();
 int height = getHeight();
 WritableRaster raster = getRaster();
 ColorModel model = getColorModel();

 int BAND_PIXEL_WIDTH = 5;
 int nBands = width/BAND_PIXEL_WIDTH;
 int greyDelta = 255 / nBands;
 for (int i=0 ; i < nBands; i++) {
 c = new Color(i*greyDelta, i*greyDelta, i*greyDelta);
 int argb = c.getRGB();
 Object colorData = model.getDataElements(argb, null);

 for (int j=0; j < height; j++)
 for (int k=0; k < BAND_PIXEL_WIDTH; k++)
 raster.setDataElements(j, (i*5)+k, colorData);

 }
 }

 //
IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 107
 // mutators
 //
 public int[] getRawData() {
 Raster oRaster = getRaster();
 Rectangle oBounds = oRaster.getBounds();
 int[] data = new int[m_height * m_width * 4];

 data = oRaster.getPixels(0,0,100,100, data);
 return data;
 }
 public int getH() {return m_height; }
 public int getW() {return m_width; }

}

The showgreyimage.pro file contains the following text for accessing the
grayscale image within IDL:

PRO ShowGreyImage

; Construct the GreyBandImage in Java. This is a sub-class of
; BufferedImage. It is actually a 4 band image that happens to
display bands in greyscale. It is 100x100 pixels.
oGrey = OBJ_NEW('IDLjavaObject$GreyBandsImage', 'GreyBandsImage')

; Get the 4 byte pixel values.
data = oGrey -> GetRawData()

; Get the height and width.
h = oGrey -> GetH()
w = oGrey -> GetW()

; Display the graphic in an IDL window
WINDOW, 0, XSIZE = 100, YSIZE = 100
TV, REBIN(data, h, w)

; Cleanup
OBJ_DESTROY, oGrey

END
IDL Connectivity Bridges IDL-Java Bridge Examples

108 Chapter 5: Using Java Objects in IDL
After saving and compiling the above files (GreyBandsImage.java in Java and
showgreyimage.pro in IDL), you can run the ShowGreyImage routine in IDL.
The routine should produce the following image:

Accessing RGB Images Example

This example imports an RGB (red, green, and blue) image from the IDL distribution
into a Java class. The image is in the glowing_gas.jpg file, which is in the
examples/data directory of the IDL distribution. The Java class also displays the
image in a Java Swing user-interface. Then, the image is accessed into IDL and
displayed with the new iImage tool.

Example Code
The Java and IDL code for this example is provided in the
resource/bridges/import/java/examples directory, but the Java code has
not been built as part of the jbexamples.jar file.

Note
This example uses functionality only available in Java 1.4 and later.

Note
Due to a Java bug, this example (and any other example using Swing on AWT) will
not work on Linux platforms.

Figure 5-1: Java Grayscale Image Example
IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 109
The first and main Java class is FrameTest, which creates the Java Swing application
that imports the image from the glowing_gas.jpg file. Copy and paste the
following text into a file, then save it as FrameTest.java:

import java.awt.*;
import java.awt.image.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.io.File;

public class FrameTest extends JFrame {

RSIImageArea c_imgArea;
int m_xsize;
int m_ysize;
Box c_controlBox;

public FrameTest() {

super("This is a JAVA Swing Program called from IDL");
// Dispose the frame when the sys close is hit
setDefaultCloseOperation(DISPOSE_ON_CLOSE);
m_xsize = 350;
m_ysize = 371;
buildGUI();

}

public void buildGUI() {

c_controlBox = Box.createVerticalBox();

JLabel l1 = new JLabel("Example Java/IDL Interaction");
JButton bLoadFile = new JButton("Load new file");
bLoadFile.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
JFileChooser chooser = new JFileChooser(new
File("c:\\ITT\\IDL63\\EXAMPLES\\DATA"));
chooser.setDialogTitle("Enter a JPEG file");
if (chooser.showOpenDialog(FrameTest.this) ==
JFileChooser.APPROVE_OPTION) {

java.io.File fname = chooser.getSelectedFile();
String filename = fname.getPath();
System.out.println(filename);
c_imgArea.setImageFile(filename);

}
}

IDL Connectivity Bridges IDL-Java Bridge Examples

110 Chapter 5: Using Java Objects in IDL
});

JButton b1 = new JButton("Close this example");
b1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
dispose();
}
});

c_imgArea = new
RSIImageArea("c:\\itt\\idl63\\examples\\data\\glowing_gas.jpg",
new Dimension(m_xsize,m_ysize));

Box mainBox = Box.createVerticalBox();
Box rowBox = Box.createHorizontalBox();
rowBox.add(b1);
rowBox.add(bLoadFile);

c_controlBox.add(l1);
c_controlBox.add(rowBox);
mainBox.add(c_controlBox);
mainBox.add(c_imgArea);

getContentPane().add(mainBox);

pack();
setVisible(true);
c_imgArea.displayImage();
c_imgArea.addResizeListener(new RSIImageAreaResizeListener() {
public void areaResized(int newx, int newy) {
Dimension cdim = c_controlBox.getSize(null);
Insets i = getInsets();
newx = i.left + i.right + newx;
newy = i.top + cdim.height + newy + i.bottom;
setSize(new Dimension(newx, newy));
}
});
}

public void setImageData(int [] imgData, int xsize, int ysize) {
MemoryImageSource ims = new MemoryImageSource(xsize, ysize,
imgData, 0, ysize);
Image imgtmp = createImage(ims);
Graphics g = c_imgArea.getGraphics();
g.drawImage(imgtmp, 0, 0, null);

}

public void setImageData(byte [][][] imgData, int xsize,
IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 111
int ysize) {

System.out.println("SIZE = "+xsize+"x"+ysize);
int newArray [] = new int[xsize*ysize];
int pixi = 0;
int curpix = 0;
short [] currgb = new short[3];
for (int i=0;i<m_xsize;i++) {
for (int j=0;j<m_ysize;j++) {
for (int k=0;k<3;k++) {
currgb[k] = (short) imgData[k][i][j];
currgb[k] = (currgb[k] < 128) ? (short) currgb[k] : (short)
(currgb[k]-256);

}
curpix = (int) currgb[0] * +
((int) currgb[1] * (int) Math.pow(2,8)) +
((int) currgb[2] * (int) Math.pow(2,16));

if (pixi % 1000 == 0)
System.out.println("PIXI = "+pixi+" "+curpix);
newArray[pixi++] = curpix;
}
}

MemoryImageSource ims = new MemoryImageSource(xsize, ysize,
newArray, 0, ysize);
c_imgArea.setImageObj(c_imgArea.createImage(ims));

}

public byte[][][] getImageData()
{
int width = 1;
int height = 1;
PixelGrabber pGrab;

width = m_xsize;
height = m_ysize;

// pixarray for the grab - 3D bytearray for display
int [] pixarray = new int[width*height];
byte [][][] bytearray = new byte[3][width][height];

// create a pixel grabber
pGrab = new PixelGrabber(c_imgArea.getImageObj(),0,0,
width,height, pixarray, 0, width);

// grab the pixels from the image
try {
IDL Connectivity Bridges IDL-Java Bridge Examples

112 Chapter 5: Using Java Objects in IDL
boolean b = pGrab.grabPixels();
} catch (InterruptedException e) {
System.err.println("pixel grab interrupted");
return bytearray;
}

// break down the 32-bit integers from the grab into 8-bit bytes
// and fill the return 3D array
int pixi = 0;
int curpix = 0;
for (int j=0;j<m_ysize;j++) {
for (int i=0;i<m_xsize;i++) {
curpix = pixarray[pixi++];
bytearray[0][i][j] = (byte) ((curpix >> 16) & 0xff);
bytearray[1][i][j] = (byte) ((curpix >> 8) & 0xff);
bytearray[2][i][j] = (byte) ((curpix) & 0xff);
}
}
return bytearray;
}

public static void main(String [] args) {
FrameTest f = new FrameTest();
}

}

Note
The above text is for the FrameTest class that accesses the glowing_gas.jpg file
in the examples/data directory of a default installation of IDL on a Windows
system. The file’s location is specified as c:\\ITT\\IDL70\\EXAMPLES\\DATA
in the above text. If the glowing_gas.jpg file is not in the same location on
system, edit the text to change the location of this file to match your system.

The FrameTest class uses two other user-defined classes, RSIImageArea and
RSIImageAreaResizeListener. These classes help to define the viewing area and
display the image in Java. Copy and paste the following text into a file, then save it as
RSIImageArea.java:

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Vector;
import java.io.File;
IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 113
public class RSIImageArea extends JComponent implements
MouseMotionListener, MouseListener {

Image c_img;
int m_boxw = 100;
int m_boxh = 100;
Dimension c_dim;
boolean m_pressed = false;
int m_button = 0;
Vector c_resizelisteners = null;

public RSIImageArea(String imgFile, Dimension dim) {

c_img = getToolkit().getImage(imgFile);
c_dim = dim;
setPreferredSize(dim);
setSize(dim);
addMouseMotionListener(this);
addMouseListener(this);

}

public void addResizeListener(RSIImageAreaResizeListener l) {
if (c_resizelisteners == null) c_resizelisteners = new Vector();
if (! c_resizelisteners.contains(l)) c_resizelisteners.add(l);
}
public void removeResizeListener(RSIImageAreaResizeListener l) {
if (c_resizelisteners == null) return;
if (c_resizelisteners.contains(l)) c_resizelisteners.remove(l);
}

public void displayImage() {
repaint();
}

public void paint(Graphics g) {

int xsize = c_img.getWidth(null);
int ysize = c_img.getHeight(null);
if (xsize != -1 && ysize != -1) {
if (xsize != c_dim.width || ysize != c_dim.height) {
c_dim.width = xsize;
c_dim.height = ysize;
setPreferredSize(c_dim);
setSize(c_dim);
if (c_resizelisteners != null) {
RSIImageAreaResizeListener l = null;
for (int j=0;j<c_resizelisteners.size();j++) {
IDL Connectivity Bridges IDL-Java Bridge Examples

114 Chapter 5: Using Java Objects in IDL
l = (RSIImageAreaResizeListener)
c_resizelisteners.elementAt(j);
l.areaResized(xsize, ysize);
}
}
}
}
g.drawImage(c_img, 0, 0, null);
}

public void setImageFile(String fileName) {
c_img = null;
c_img = getToolkit().getImage(fileName);
repaint();
}

public Image getImageObj() {
return c_img;
}

public void setImageObj(Image img) {
c_img = img;
repaint();
}

public void drawZoomBox(MouseEvent e) {
int bx = e.getX() - m_boxw/2;
bx = (bx >=0) ? bx :0;
int by = e.getY() - m_boxh/2;
by = (by >=0) ? by :0;
int ex = bx + m_boxw;
if (ex > c_dim.width) {
ex = c_dim.width;
bx = c_dim.width-m_boxw;
}
int ey = by + m_boxh;
if (ey > c_dim.height) {
ey = c_dim.height;
by = c_dim.height-m_boxh;
}

repaint();
Graphics g = getGraphics();
g.drawImage(c_img, bx, by, ex, ey, bx+(m_boxw/4), by+(m_boxh/4),
ex-(m_boxw/4),ey-(m_boxh/4), null);
g.setColor(Color.white);
g.drawRect(bx, by, m_boxw, m_boxh);
IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 115
}

public void mouseDragged(MouseEvent e) {
drawZoomBox(e);
}

public void mouseMoved(MouseEvent e) {

Graphics g = getGraphics();
if (m_pressed && (m_button == 1)) {
drawZoomBox(e);
g.setColor(Color.white);
g.drawString("DRAG", 10,10);
} else {

g.setColor(Color.white);
String s = "("+e.getX()+","+e.getY()+")";
repaint();
g.drawString(s, e.getX(), e.getY());
}

}

public void mouseClicked(MouseEvent e) {}
public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent e) {}

public void mousePressed(MouseEvent e) {
m_pressed = true;
m_button = e.getButton();
repaint();
if (m_button == 1) drawZoomBox(e);
}

public void mouseReleased(MouseEvent e) {
m_pressed = false;
m_button = 0;
}
}

And copy and paste the following text into a file, then save it as
RSIImageAreaResizeListener.java:

public interface RSIImageAreaResizeListener {
public void areaResized(int newx, int newy);
}

Compile these classes in Java. Then either update the jbexamples.jar file in the
resource/bridges/import/java directory with the new compiled class, place
IDL Connectivity Bridges IDL-Java Bridge Examples

116 Chapter 5: Using Java Objects in IDL
the resulting compiled classes in your Java class path, or edit the JVM Classpath
setting in the IDL-Java bridge configuration file to specify the location (path) of these
compiled classes. See “Configuring the Bridge” on page 75 for more information.

With the Java classes compiled, you can now access them in IDL. Copy and paste the
following text into the IDL Editor window, then save it as ImageFromJava.pro:

PRO ImageFromJava
; Create a Swing Java object and have it load image data
; into IDL.

; Create the Java object first.
oJSwing = OBJ_NEW('IDLjavaObject$FrameTest', 'FrameTest')

; Get the image from the Java object.
image = oJSwing -> GetImageData()
PRINT, 'Loaded Image Information:'
HELP, image

; Delete the Java object.
OBJ_DESTROY, oJSwing

; Interactively display the image.
IIMAGE, image

END

After compiling the above routine, you can run it in IDL. This routine produces the
following Java Swing application.

Figure 5-2: Java Swing Application Example
IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 117
Then, the routine produces the following iImage tool.

Note
After IDL starts the Java Swing application, the two displays are independent of
each other. If a new image is loaded into the Java application, the IDL iImage tool
is not updated. If the iImage tool modifies the existing image or opens a new image,
the Java Swing application is not updated.

Figure 5-3: iImage Tool from Java Swing Example
IDL Connectivity Bridges IDL-Java Bridge Examples

118 Chapter 5: Using Java Objects in IDL
Troubleshooting Your Bridge Session

The IDL-Java bridge provides error messages for specific types of operations. These
messages can be used to determine when these errors occur, how these errors happen,
and what solutions can be applied. The following sections pertain to these error
messages and their possible solutions for each type of operation:

• “Calling System.exit”

• “Errors When Initializing the Bridge”

• “Errors When Creating Objects” on page 119

• “Errors When Calling Methods” on page 120

• “Errors When Accessing Data Members” on page 121

Calling System.exit

The Java method System.exit terminates the process in which the Java Virtual
Machine is running. When the Java Virtual Machine is initialized by IDL,
terminating its process also terminates IDL.

Errors When Initializing the Bridge

The IDL-Java bridge initializes when the first Java object in IDL is created. If the
bridge is not configured correctly, an error message is issued and the IDL stops. The
following errors occur because the IDL-Java bridge cannot find the Java Virtual
Machine on your system. On UNIX, check the IDLJAVAB_LIB_LOCATION
environment variable, and on Windows, check the IDLJAVAB_LIB_LOCATION
environment variable. If this environment variable does not exist on your system,
create it and set it equal to the location of the Java Virtual Machine on your system.
See “Configuring the Bridge” on page 75 for details:

• Bad JVM Home value: 'path', where path is the location of Java Virtual
Machine on your system.

• JVM shared lib not found in path 'JVM LibLocation', where JVM
shared lib is the location of the Java Virtual Machine shared library and JVM
LibLocation is the value of the IDLJAVAB_LIB_LOCATION environment
variable.

• No valid JVM shared library exists at location pointed to
by $IDLJAVAB_LIB_LOCATION
Troubleshooting Your Bridge Session IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 119
• idljavab.jar not found in path 'path', where path is the location of
the /resource/bridges/import/java directory in the IDL distribution.

• Bridge cannot determine which JVM to run

• Java virtual machine failed to start

• Failure loading JVM: path/JVM shared lib name, where path is the
location of the Java Virtual Machine and JVM shared lib name is the name of
the main Java shared library, which is usually libjvm.so on UNIX and
jvm.dll on Windows.

If IDL catches an error and continues, subsequent attempts to call the bridge will
generate the following message:

• IDL-Java bridge is not running

If this message occurs, fix the error and restart IDL.

Errors When Creating Objects

The following error messages can occur while creating a Java object in IDL. Possible
solutions for these errors are also provided:

• Wrong number of parameters - occurs if OBJ_NEW does not have 2 or
more parameters. Make sure you are specifying the class name twice; once in
uppercase with periods replaced by underscores for IDL, and another with
periods for Java. See “Java Class Names in IDL” on page 84 for details.

• Second parameter must be the Java class name - occurs if 2nd
parameter is not an IDL string. When using OBJ_NEW, make sure the Java
class name parameter is an IDL string. In other words, the class name has a
single quote mark before and after it. See “Java Class Names in IDL” on
page 84 for details.

• Class classname not found, where classname is the class name you
specified in the first two parameters to OBJ_NEW - occurs if the IDL-Java
bridge cannot find the class name specified. Check the spelling of each class
name parameter and make sure the class name specified for IDL is referring to
the same type of object specified for the Java class name. If the parameters are
correct, check the Classpath setting in the IDL-Java bridge configuration file.
Make sure the Classpath is set to the correct path for the class files containing
the classname class. See “Configuring the Bridge” on page 75 for details.

• Class classname is not a public class, where classname is the class
name you specified in the first two parameters to OBJ_NEW - occurs if
IDL Connectivity Bridges Troubleshooting Your Bridge Session

120 Chapter 5: Using Java Objects in IDL
specified class is not a public class. Edit your Java code to make sure the class
you want to access is public.

• Constructor class::class(signature) not found, where class is the class
name - occurs if the IDL-Java bridge cannot find the class constructor with the
given parameters. Check the spelling of the specified parameters and look in
your Java code to see if you are specifying the correct arguments for the class
you are trying to create. Also check to ensure your IDL data can be promoted
to the data types in the Java signature. See “Java Class Names in IDL” on
page 84 for details.

• Illegal IDL value in parameter n, where n is the position of the
parameter - occurs if an illegal parameter type is provided. For example, an
IDL structure is not allowed as a parameter to an IDLjavaObject.

• Exception thrown - occurs if an exception occurs in Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on
page 94 for details.

Errors When Calling Methods

The following error messages can occur while calling methods to Java objects in IDL.
Possible solutions for these errors are also provided:

• Illegal IDL value in parameter n, where n is the position of the
parameter - occurs if an illegal parameter type is provided. For example, an
IDL structure are not allowed as a parameter to an IDLjavaObject.

• Class class has no method named method, where class is the class name
and method is the method name specified when trying to call the Java method -
occurs if the method of given name does not exist. Check the spelling of the
method name. Also compare the method name in the Java class source file with
the method name provided when calling the method in IDL. See “What
Happens When a Method Call Is Made?” on page 87 for details.

• class::method(signature) is a void method. Must be called as a
procedure, where class is the class name and method is the method name
specified when a void Java method is called as an IDL function. Change the
syntax of the method call. See “Method Calls on IDL-Java Objects” on
page 87 for details.

• Method class::method(signature) not found, where class is the class
name and method is the method name specified when trying to call the Java
method - occurs if the IDL-Java bridge cannot find the method with a matching
Troubleshooting Your Bridge Session IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 121
signature. Check the spelling of the method name. Also compare the method
name in the Java class source file with the method name provided when calling
the method in IDL. Also check to ensure your IDL data can be promoted to the
Java signature. See “What Happens When a Method Call Is Made?” on
page 87 for details.

• Exception thrown - occurs if an exception occurs in Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on
page 94 for details.

Errors When Accessing Data Members

The following error messages can occur while accessing data members to Java
objects in IDL. Possible solutions for these errors are also provided:

• Illegal IDL value in parameter n, where n is the position of the
parameter - occurs if an illegal parameter type is provided. For example, an
IDL structure is not allowed as a parameter to an IDLjavaObject.

• Class class has no data member named property, where class is the
class name and property is the data member name specified when trying to
access the Java data member - occurs if the data member of the given name
does not exist. Check the spelling of the property name. Also compare the data
member name in the Java class source file with the property name provided
when accessing it in IDL. See “Managing IDL-Java Object Properties” on
page 89 for details.

• Property class::property of type type not found, where class is the
class name, property is the data member name specified, and type is property’s
data type when trying to access the Java data member - occurs if the IDL-Java
bridge cannot find the Java data member of the given type. Check the data type
of Java data member and make sure you are trying to use a similar type in IDL.
See “Getting and Setting Properties” on page 90 for details.

• Exception thrown - occurs if an exception occurs in Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on
page 94 for details.
IDL Connectivity Bridges Troubleshooting Your Bridge Session

122 Chapter 5: Using Java Objects in IDL
Troubleshooting Your Bridge Session IDL Connectivity Bridges

Part II: Exporting from
IDL

Chapter 6

Exporting IDL Objects
This chapter discusses the following topics.
Overview of Exporting IDL Objects 126
Wrapper Objects . 127
Object Lifecycle . 130
IDL Access . 132

Parameter Passing and Type Conversion . 136
Event Handling . 139
Supported Platforms and IDL Modes 140
Configuring Build and Client Machines . 142
IDL Connectivity Bridges 125

126 Chapter 6: Exporting IDL Objects
Overview of Exporting IDL Objects

IDL’s Export Bridge technology allows you to easily integrate IDL technology into
external environments using the latest component based frameworks and technology.
Unlike the Callable IDL interface, which lets you create applications that exchange
data with IDL through IDL variables and issue commands to the IDL interpreter but
which requires familiarity with both C/C++ and IDL’s own internal semantics and
syntax, the export bridge technology allows you to create IDL objects that can be
called directly from Java and COM applications.

Interaction with IDL is through native Java and COM wrapper objects that are
generated for each IDL object with which client applications want to interact. The
wrapper objects manage all aspects of IDL loading, initialization, process
management, and cleanup, so you only need to be familiar with the client language
(for embedding the wrapper in the client application) and the basics of IDL (for
accessing and manipulating IDL data and processes).

The key to the Export Bridge is the Export Bridge Assistant, which generates these
native wrapper objects from IDL objects. For more information on the Assistant, see
“Using the Export Bridge Assistant” on page 147. For more information on wrapper
objects, see “Wrapper Objects” on page 127.

Note
Before attempting to create and use wrapper objects, you should be familiar with
the information in “Configuring Build and Client Machines” on page 142.
Overview of Exporting IDL Objects IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 127
Wrapper Objects

The main concept used when exporting IDL objects for use in a client application is
that of a wrapper object. A wrapper object is a native-language object (COM or Java)
that exposes an IDL object’s behavior to a client. The client interacts with an instance
of the wrapper object using native-language constructs and native-language data
types.

A wrapper object is built using the Export Bridge Assistant, in which you can choose
which methods and properties of the IDL object to expose to the client. During the
wrapper creation, you must specify the language-dependent variable types for all the
parameters of the methods and properties to be exported. This is required since IDL
has dynamically typed variables, whereas Java and COM do not. You can leave some
properties or methods unimplemented in the wrapper object. For more information,
see “Using the Export Bridge Assistant” on page 147.

When the Assistant exports an IDL object, it creates a language-specific wrapper
object for the IDL object. The wrapper exposes methods and properties of the
underlying IDL object it wraps, and the client interacts with the wrapper. When the
client calls a method or modifies a property on a wrapper object, it is translated
through a series of abstraction layers, and the underlying IDL object’s method is
called or property modified.

Every wrapper object has a collection of stock methods that are common to all
wrapper objects as described in this document. Additionally, the underlying
abstraction layers also handle creating the IDL object in another process. This use of
multiple processes provides for IDL object pooling and isolation. For more
information on these processes, see “IDL Access” on page 132.

For COM object wrappers, a .dll file is created for nondrawable objects; an .ocx
file is created for drawable objects. In addition, a .tlb file is generated. The user
registers the component and references the COM type library and property accessors
(put/get) on the objects using native language constructs. A COM wrapper provides
an IDispatch-based interface for client use.

For Java object wrappers, java files (.java) and class files (.class) are created.
The user references the Java class definition in their code projects and calls methods
and property accessors (set/get) on the objects using native language constructs. The
Java wrapper is exposed as a standard Java object.

The actual use of the generated wrapper objects depends on the structure and patterns
used for the client environment. For more information, see “Using Exported COM
Objects” on page 189 and “Using Exported Java Objects” on page 215.
IDL Connectivity Bridges Wrapper Objects

128 Chapter 6: Exporting IDL Objects
IDL Connector Objects and Custom Wrapper Objects

Access to IDL functionality from an external programming environment is available
through connector and custom wrapper objects. The prebuilt connector wrapper
object provides the ability to communicate with the IDL process from and external
application. A custom wrapper object incorporates the functionality of your own IDL
object.

Connector Objects

The connector object (distributed with IDL) provides access to IDL’s processing
capabilities through a number of methods that let you communicate with the IDL
process. Using these methods, you can:

• Create and destroy instances of the connector object in your application

• Pass data to and retrieve data from IDL

• Get and set the IDL process name (see “IDL Access” on page 132 for more
information)

• Execute IDL commands

Although the connector object does not provide support for graphics, it provides an
easy way to access the processing power of IDL in an external environment. See
“Stock COM Wrapper Methods” on page 192 (COM) and “Stock Java Wrapper
Methods” on page 218 (Java) for complete language-specific method reference
information. For examples using the connector object, see Chapter 10, “Using the
Connector Object”.

Note
There are no stock properties.

Custom Wrapper Objects

A custom wrapper object is an IDL object that is exported using the Export Bridge
Assistant. A custom wrapper object contains the stock methods (referenced above) in
addition to the specific methods and properties of the IDL object being wrapped. For
information about how to create an IDL object that can be successfully exported, see
Chapter 11, “Writing IDL Objects for Exporting”. Examples of creating and using
custom objects are available in:

• Chapter 12, “Creating Custom COM Export Objects”

• Chapter 13, “Creating Custom Java Export Objects”
Wrapper Objects IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 129
Note
For more information on the language-specific wrapper objects, see “COM
Wrapper Objects” on page 191 (COM) and “Java Wrapper Objects” on page 217
(Java).

Drawable and Nondrawable Objects

Custom wrapper objects can encapsulate either drawable or nondrawable IDL
objects. To create a custom drawable wrapper object, the IDL source object must
subclass from an IDLitWindow, IDLgrWindow, or IDLitDirectWindow visualization
class and implement a set of callback routines for event handling. When events are
detected for that window object, the callback methods are called with the information
specific to the event detected. By subclassing from one of the drawable objects, a
visualization written for use in an iTool visualization, Object Graphics display, or
Direct Graphics display will seamlessly operate in an external environment via an
export bridge. See “Exporting Drawable Objects” on page 264 for important
information about creating and using drawable objects.

Nondrawable IDL objects are not derived from the IDLitWindow, IDLgrWindow, or
IDLitDirectWindow classes and do not render to the screen. Nondrawable IDL
objects do not have to inherit from any superclass, though derivation from
IDLitComponent is necessary to fire IDL notifications.

Note
Java drawable objects are not supported on the Macintosh OS X platform.
IDL Connectivity Bridges Wrapper Objects

130 Chapter 6: Exporting IDL Objects
Object Lifecycle

Object lifecycle means the duration in which an object is valid for use between the
time it is instantiated or created and then released or destroyed. There are two
lifecycles to understand when dealing with the Export Bridge’s wrapper objects: the
lifecycle of an instance of the wrapper object and the lifecycle of the underlying IDL
object being wrapped.

The lifecycle of a wrapper object begins when an instance of the wrapper object is
created within the client’s application. However, the underlying IDL object is not
created until the CreateObject stock method is called on the wrapper object instance.
Every wrapper object has a set of stock methods, including CreateObject and
DestroyObject, which are used to manage the object lifecycle. (For more information,
see “Object Creation” and “Object Release” below.)

Note
For Java objects, the method is createObject, which is a more Java-like method-
naming scheme. Assume that when this chapter mentions method calls, COM
capitalizes the first word, but Java does not.

When the CreateObject method is called, the underlying IDL process is created (if
necessary), and an instance of the IDL object is created. The lifecycle of the IDL
object continues until the DestroyObject stock method is called on the wrapper object
instance. The lifecycle of the client’s wrapper object instance continues until it is
released or destroyed using native language constructs.

Object Creation

Calling the CreateObject method on the wrapper object instance creates an instance
of the underlying IDL object and calls its Init method with the specified parameters,
if any. See “CreateObject” on page 194 (COM) and “createObject” on page 220
(Java) for language-specific calling conventions.

Object Release

Calling the DestroyObject method calls the underlying IDL object’s Cleanup method,
if present; then the underlying IDL object itself is destroyed. Calling DestroyObject
does not release or destroy the wrapper object instance within the client space. This
happens when the release method is called on the wrapper instance. See
“DestroyObject” on page 199 (COM) and “destroyObject” on page 223 (Java) for
language-specific calling conventions.
Object Lifecycle IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 131
Java uses a garbage-collection scheme to clean up memory. It is important that there
are no references to the wrapper object remaining in the client application; otherwise,
the Java Virtual Machine (JVM) will not garbage-collect the wrapper object.

Note
There can be a period of time between the call to the DestroyObject method and
when the wrapper instance itself is released. During that period, no method calls on
the wrapper instance can be made because the underlying IDL object no longer
exists.
IDL Connectivity Bridges Object Lifecycle

132 Chapter 6: Exporting IDL Objects
IDL Access

Calling a method or accessing a property on a wrapper object instance calls into the
underlying IDL object’s method or property. Each wrapper object is associated with
an IDL process, controlled by the IDL main process, by giving it a process name
during wrapper creation by the Export Bridge Assistant. All wrapper objects that use
the same process name have their underlying IDL objects created within the same
IDL process. For each wrapper object that provides a unique process name, a new
IDL process is created.

As a COM or Java developer, you do not need to worry about IDL process creation or
destruction. Creating a new object creates a new process for it (unless a process
already exists and the new object is being added to it), and destroying the last object
in a process also destroys the process.

The code for the IDL object must be available because the bridge’s process layers
call it. The wrapper does not contain the IDL object, only provides an interface for it,
and if you modify the IDL object after generation of its wrapper object, the wrapper
might not work as expected. For more information, see “Modifying a Source Object
After Export” on page 181.

Note
See “Configuring Build and Client Machines” on page 142 for information on
setting up machines for building and using wrapper objects.

Note
Stock wrapper methods allow you to work with IDL processes. For COM, see
“GetProcessName” on page 205 and “SetProcessName” on page 207. For Java, see
“getProcessName” on page 228 and “setProcessName” on page 231. To take effect,
you must set a process name before creating an object in order for the object to exist
in that process.

Consider the following diagram:
IDL Access IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 133
In the diagram, the client has created instances of several different wrapper objects:
A, B, C, D, and E. Wrapper objects A and B have their process name set to X, and
thus all instances of A and B create their underlying IDL objects in the same IDL
process called X. Wrapper object C uses a different process, Y. Since there are three
instances of the same wrapper object C, there are three instances of the IDL object C
created in the process, Y. Wrapper objects E and D use an entirely different
process, Z.

Figure 6-1: Example of Wrapper and Process Use
IDL Connectivity Bridges IDL Access

134 Chapter 6: Exporting IDL Objects
IDL Ownership and Blocking

During a method call, the client-side wrapper object instance becomes the owner of
the IDL process that contains the underlying IDL object and remains the owner until
the method call returns. An IDL process can only have one owner at a time. If there is
a current owner of an IDL process and another wrapper object attempts to access the
same IDL process, an IDL busy indication is returned through the wrapper object.

COM and Java handle error conditions differently: COM method calls return an
HRESULT error value, whereas Java method calls throw an exception. In COM, this
results in an IDL_BUSY condition; however, in Java, the requests are queued so that
no busy condition occurs. See “Error Handling” on page 211 (COM) and “Error
Handling” on page 242 (Java) for more information.

However, if one wrapper object instance owns a particular IDL process, another
client process is free to make calls on other wrapper object instances that map to
different IDL processes. In other words, the client can have multiple method calls
executing at the same time as long as each method call maps to a different process.

For example, using the diagram in Figure 6-1, if Instance #1 of wrapper object A is
the current owner of the IDL process named X, and then another thread calls a
method on Instance #1 of wrapper object B, it will return an IDL busy error, since it
will try to use the same process as the wrapper object A. However, another thread can
call a method on any instances of wrapper objects C, D, and E since they map to a
different processes that are not currently owned.

IDL Licensing Modes

By default, when a client COM or Java application initializes the IDL object, the IDL
export bridge checks to see what type of license is available on the client machine. If
an IDL development license is available, it is used and the IDL object runs in full
development mode. If a development license is not found, the export bridge checks
for a runtime license; if the IDL object runs in runtime mode, normal runtime
limitations (no compilation of .pro code, for example) are enforced. If no
development or runtime license is found, the IDL object runs in Virtual Machine
mode; normal Virtual Machine limitations (no compilation of .pro code, use of
EXECUTE disabled, etc.) are enforced.

COM and Java applications can explicitly set IDL process initialization parameters to
specify which licensing mode the IDL object will use. See the description of the
initializer argument to the createObject method for details on initializing IDL objects
from a Java application. See the description of the flags argument to the
IDL Access IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 135
CreateObjectEx method for details on initializing IDL objects from a COM
application.
IDL Connectivity Bridges IDL Access

136 Chapter 6: Exporting IDL Objects
Parameter Passing and Type Conversion

The following topics contain important information that must be kept in mind when
passing objects, arrays and variables between IDL and an external programming
environment:

• “Object Reference Use” below

• “Array Order Conversion” on page 137

• “Type Conversion” on page 137

Object Reference Use

It is possible to pass an object reference to another wrapper object as a method
parameter, with the following restrictions.

• The object reference must be a reference to another Export Bridge wrapper
object instance of the same wrapper language type (COM or Java) — that is,
COM to COM or Java to Java

• You cannot pass in object references to non-Export Bridge wrapper objects

• The object reference is “in-only,” meaning that methods and properties cannot
return or modify a reference to an object

• Both objects (the object being referred to and the object using the reference)
must have their underlying IDL objects contained within the same IDL
process.

For example, using the diagram in Figure 6-1, wrapper object A can have a method
that takes an object reference. But the only valid object reference that can be specified
is to an instance of wrapper object B, since both have their underlying IDL objects
living in the same process, X.

If you attempt to pass in an object reference to an IDL object contained in different
processes, the method call returns an error. An error is also returned if you attempt to
pass in an object reference that does not reference an instance of an Export Bridge
wrapper object.

Arrays of Object References

You can also create an array of object references as long as all the objects being
referenced are in the same IDL process as the object using the array.
Parameter Passing and Type Conversion IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 137
When creating an array of object references for COM, it must be defined as a
SAFEARRAY of variants, with each variant containing the IUknown or IDispatch
pointer to a COM or ActiveX wrapper object instance.

When creating an array of object references for Java, it must be defined as a
JIDLArray containing an array of JIDLObjectI references.

Array Order Conversion

A method parameter or property value can be an array. When dealing with
multidimensional arrays, one must always be aware of the array ordering. See
“Multidimensional Array Storage and Access” on page 493 for a complete discussion
of the issues.

However, you must take into account the array ordering of the client-side array and
the array order expected by IDL. The wrapper objects will convert array ordering
when designated to do so in the Export Bridge Assistant. During wrapper object
construction, the Export Bridge Assistant lets you designate a method parameter as
an array and then indicate if the array needs to be converted (see “Converting Array
Majority” on page 165 for details). If the array parameter is marked for conversion,
the client array is converted during the method call before being sent to the
underlying IDL object. If the parameter is also marked with In/Out mutability
(meaning that the parameter is not constant and can be set by the caller and pass the
value back to the caller), the array is also converted on the way back to the client. For
more information on mutability, see “Parameter Information” on page 176.

However, there are certain cases where arrays are automatically converted and the
user does not have the option to designate conversion. When calling the
GetIdlVariable and SetIdlVariable methods on a wrapper object, or when an IDL
function returns an array value, the array is always converted into the order expected
by COM. (For Java, the user has the option to designate conversion.)

Type Conversion

IDL is a dynamically typed language that lets variables change type after creation.
Java and COM are strongly typed languages, which require a variable to be given a
fixed type when it is created. This difference can lead to type-conversion errors
during method calls because the IDL object can redefine the data type of a parameter.
When a method parameter is marked In/Out, the updated parameter value is returned
to the client upon return of the method. During the method return, the wrapper
compares the data type of the input value against the data type of the output value.
IDL Connectivity Bridges Parameter Passing and Type Conversion

138 Chapter 6: Exporting IDL Objects
The wrapper will perform a loose type conversion in which:

• Any scalar type can be converted to any other scalar type (e.g., a short integer
to a long integer)

• A scalar string to a scalar string (e.g., a string of one length to a different
length)

• An array to an array (e.g., any dimensionality and type to any other
dimensionality and type)

Loose type conversion attempts to convert the variables returned by the wrapped IDL
object to the types expected by the wrapper object.

A data conversion error is returned when the above rules are not met. For example:

• A scalar changes to a string

• A scalar changes to an array

• A string changes to a scalar

• A string changes to an array

• An array changes to a scalar

• An array changes to a string

See “Supported Data Types” on page 166 for data types supported by COM and Java.

IDL Error State and Successful Method Return

If your client creates an instance of a COM/Java Export Bridge wrapper object, and
calls an object method whose code throws an error, the wrapped method will return
an error unless the referenced code resets the internal IDL error state.

In this circumstance, it is best if the wrapped code catches its own error, handles it,
and resets the IDL error state. You can reset the IDL error state in the error handling
catch block by calling the MESSAGE procedure:

MESSAGE, /RESET

This procedure call sets the !ERROR_STATE system variable back to the
“success” state.
Parameter Passing and Type Conversion IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 139
Event Handling

There are three main types of events that the clients of wrapper objects care about:
user-interface events (e.g., mouse click and mouse move), IDL output, and IDL
notifications. User-interface events are only available for drawable wrapper objects.
The IDL output and notifications are available for drawable and nondrawable
wrapper objects. The mechanism for the clients to receive wrapper-object events is
different for the different wrapper-object languages, as described in “Event
Handling” on page 208 (COM) and “Event Handling” on page 232 (Java).

An IDL notification is a way for an IDL object to relay information back to wrapper
object instances while in the middle of a method call. This can be used for things like
updating the status of lengthy operations. In order for a wrapper object to receive an
IDL notification, the IDL object must inherit from the IDLitComponent object, and
the client must subscribe to the wrapper instance’s events. All IDL graphic objects
automatically inherit from IDLitComponent. For nondrawable objects, if the IDL
object needs to send out a notification, it must explicitly inherit from
IDLitComponent.

The IDLitComponent::NotifyBridge method sends the notification. It takes any two
strings as parameters. For example, in the pro code below, assume that the object is
derived from IDLitComponent and the user wants to inform the client of the status of
a lengthy computation.

pro IDLmyObject::DoLongComputation

for I = 0, 10000000 do begin
...
percentDone = CalcPercentDone()
; Send client some status
self->NotifyBridge, 'Completion Status', STRING(percentDone)

endfor

end

Note
IDL objects must derive from IDLitComponent if IDL notifications will be used.
IDL Connectivity Bridges Event Handling

140 Chapter 6: Exporting IDL Objects
Supported Platforms and IDL Modes

The IDL Export Bridge technology is available on the following platforms:

a Graphical Java objects cannot be exported under Macintosh OS X.

Supported Compilers

The IDL Export Bridge requires the following compilers for building COM and Java
wrapper objects.

Feature

Windows OS X Linux Solaris

32-bit 64-bit 32-bit 32-bit 64-bit 32-bit 64-bit

COM Object –Export (via
Export Bridge Assistant)

•

Java Object –Export (via Export
Bridge Assistant)

• • •a • • • •

Table 6-1: Export Bridge Platform Support

Wrapper Object
Type Compilers Supported

COM Use Visual Studio 2005 for both the machine running the
Export Bridge Assistant and the machine building an
application using the wrapper objects (if different). VB.NET,
C#, C++ Managed, and C++ Unmanaged are all supported.

Java Use the Java Developer’s Kit (JDK) and Java Runtime
Environment (JRE) version 1.5 or higher

Note - On Macintosh machines, the version of Java installed
along with the operating system should be sufficient,
whatever its version number.

Table 6-2: Export Bridge Wrapper Object Compiler Support
Supported Platforms and IDL Modes IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 141
Client Machine Requirements

Client machines (those running applications that incorporate a wrapper object) have
separate requirements. See “Configuring the Machine Running the Wrapper Client”
on page 144 for details

Output Destinations

Windows allows output to both COM and Java. On other supported platforms, only
Java is supported (not COM). For a COM project on non-Windows platforms, the
Build menu in the Export Bridge Assistant is disabled.

IDL Licensing

Build machines must have an IDL license and an Export Bridge Assistant license.
Client machines must have either an licensed installation of IDL or a copy of the IDL
Virtual Machine. (Note that the ExecuteString methods are disabled for applications
running in the IDL Virtual Machine.)

Export Bridge Assistant Licensing

The Export Bridge Assistant is an IDL application. While the Assistant will run and
allow you to create export projects with any IDL license, an additional-cost license is
required to build the Java or COM native wrapper objects.

The Export Bridge Assistant cannot be run in runtime mode or in the IDL Virtual
Machine. Attempting to run the Assistant in various licensing modes will have the
following effects:

• Runtime mode — the Assistant will issue an error and exit

• IDL demo mode or no IDL license — the Save and Build operations are
disabled

• No Export Bridge Assistant license — the Build operation is disabled without
an Assistant licence feature (idl_bridge_assist)
IDL Connectivity Bridges Supported Platforms and IDL Modes

142 Chapter 6: Exporting IDL Objects
Configuring Build and Client Machines

This section describes how to configure build machines:

• Machines that run the Export Bridge Assistant

• Machines that use the wrapper objects created by the Assistant in an external
development environment (if different)

and client machines:

• Machines running applications that rely on wrapper objects

As a developer of applications that use wrapped IDL objects, you should be familiar
with all of the information in this section.

Configuring the Machine Running the Assistant

The computer that runs the Export Bridge Assistant must meet the following
requirements:

Item Description

General Requirements • IDL must be installed.

• The IDL source object does not need to be in the
IDL path to be used by the Assistant, but does to
be used by the client application (see below).
Any IDL code referenced by the source object
must be in the same directory as the source object
or in the IDL path.

• Drawable IDL objects that inherit from
IDLgrWindow, IDLitWindow, and
IDLitDirectWindow have special requirements
as described in “Requirements for Drawable
Objects” on page 264.

COM Requirements Visual Studio must be installed.

Java Requirements Java must be installed, and javac must be in the
execution path.
Configuring Build and Client Machines IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 143
Note
See “Supported Platforms and IDL Modes” on page 140 for supported COM and
Java versions.

Configuring the Machine Using Wrapper Objects

If different from the machine running the Assistant, the machine using wrapper
objects in application development must meet the following requirements in addition
to the requirements listed for the Assistant (“Configuring the Machine Running the
Assistant” on page 142).

COM Registration Requirements

The wrapper object generated by the Assistant must be registered using regsvr32
<wrapperName>.DLL for non-drawable objects or regsvr32
<wrapperName>.OCX for drawable objects. To register a file:

1. Select Start → Run, type cmd in the text box and click OK to open the
Command Prompt window.

2. Use the cd command to change to the directory containing the file to be
registered.

3. Enter regsvr32 <wrapperName>.DLL or <wrapperName>.OCX to register
the file.

A message box will report the successful registration of the file.

Note
If needed, you can unregister a file by using the -u flag as in

regsvr32 -u <wrapperName>.DLL

See “Wrapper Generation Example” on page 182 for a short example that exports and
uses a simple IDL object.

Java Requirements

Java must be installed. Both javac and java must be in the execution path.

Note
The Java runtime environment installation does not provide javac.

For compilation and execution, the file
IDL Connectivity Bridges Configuring Build and Client Machines

144 Chapter 6: Exporting IDL Objects
IDL_DIR/resource/bridges/export/java/javaidlb.jar

must be in the Java classpath.

For Java routines to use the exported java objects, they must use the following import
statement:

import com.idl.javaidl.*

On UNIX systems, the LD_LIBRARY_PATH environment variable
(DYLD_LIBRARY_PATH on Mac OS X) must include the IDL
bin.<platform>.<arch> directory. The PATH environment variable must also
include this directory.

The IDL_PATH environment variable must include the directory containing the IDL
source object source or SAVE file. In most cases, the variable should also include the
default IDL library so that IDL routines can be resolved.

See “Wrapper Generation Example” on page 182 for a short example that exports and
uses a simple IDL object.

The bridge_setup Script

On UNIX platforms, source the <IDL_DIR>/bin/bridge_setup script to set the
appropriate values for the IDL_DIR, LD_LIBRARY_PATH, and CLASSPATH
environment variables. (The <IDL_DIR>/bin directory also contains versions of this
script for use with the korn or bash shells.)

Note
On 64-bit Solaris platforms, the bridge_setup script will specify the 32-bit
version of IDL by default, since most Solaris systems use the 32-bit version of Java
as the default. To explicitly specify that the 64-bit version of IDL should be used,
set the IDL_PREFER_64 environment variable. (The value to which this
environment variable is set is not important; if it is defined at all the 64-bit version
of IDL will be used.)

There is no bridge_setup script for Windows platforms. In most cases, setting the
CLASSPATH environment variable (or specifying the class path along with the java
or javac command at the command line) is the only configuration necessary.

Configuring the Machine Running the Wrapper Client

The machine running the COM or Java application that uses a wrapper object must
have either a licensed version of IDL or a copy of the IDL Virtual Machine installed.
(Note that applications that use the ExecuteString method will not work in the IDL
Configuring Build and Client Machines IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 145
Virtual Machine.) Additionally, the IDL .pro or .sav file containing the object
definition must be in the IDL path. This requirement also applies to any IDL files
called by code in the source object.

COM Applications

For a COM application:

• The executable file (.exe), and any .dlls generated during the Visual Studio
build process must be made available to the client.

• The .dll or .ocx file associated with a custom wrapper object must be
registered on the client machine. The client need not have Visual Studio
installed.

Note
Applications using the connector wrapper object need not register the
connector object .dll. This file is automatically registered upon IDL
installation.

• For an application built in a .NET language (such as Visual Basic .NET or C#),
the Microsoft .NET Framework must be installed on the client machine.

Java Applications

For a Java application:

• The Java Runtime Environment (JRE) must be installed (see “Supported
Platforms and IDL Modes” on page 140 for supported version information)

• The executable .class file must be made available to the client

• IDL_DIR/resource/bridges/export/java/javaidlb.jar must be in
the Java classpath

Note
On UNIX systems, it is advisable to execute the bridge_setup script on the client
machine as part of the Java application initialization. This ensures that IDL is
properly configured on the client machine. See “The bridge_setup Script” on
page 144 for details.
IDL Connectivity Bridges Configuring Build and Client Machines

146 Chapter 6: Exporting IDL Objects
Configuring Build and Client Machines IDL Connectivity Bridges

Chapter 7

Using the Export Bridge
Assistant
This chapter discusses the following topics.
Export Bridge Assistant Overview 148
Running the Assistant 149
Using the Assistant 150
Working with a Project 157
Building an Object 161
Exporting an Object 162

Specifying Information for Exporting . . . 164
Information Skipped During Export 178
Exporting a Source Object’s Superclasses 180
Modifying a Source Object After Export . 181
Wrapper Generation Example 182
IDL Connectivity Bridges 147

148 Chapter 7: Using the Export Bridge Assistant
Export Bridge Assistant Overview

The Export Bridge technology lets an IDL object be accessed from Java or COM
through the use of wrapper objects. The Export Bridge Assistant helps to automate
the process of creating the Java or COM wrapper object from the IDL source object.

The Assistant obtains as much information as possible about the IDL object directly
from IDL. Since IDL is loosely typed, the return types of functions and the types of
object properties and method parameters cannot be determined from IDL. Other
information such as the output destination (Java or COM) and destination specific
properties are not available from IDL and must be specified by the user.

The Assistant lets you specify the information described above for each item that is to
be exported. Note that you can choose not to export some properties, methods, or
parameters of the IDL source object. Any items that are both fully specified and
marked for export are built in the exported Java or COM object.

The Export Bridge Assistant can produce an IDL SAVE file containing a
specification of the IDL source object that is to be exported. This SAVE file, called a
wrapper definition file, preserves the state of your work between invocations of the
Assistant. You can stop the Assistant before the specification is complete and reopen
it at a later time to continue building.

Note
There are special requirements for IDL source object that are to be exported
including data type limitations, structural requirements, and methods that need to be
included for drawable objects. See Chapter 11, “Writing IDL Objects for
Exporting” for complete details.

Platform Support and Machine Configuration

See “Supported Platforms and IDL Modes” on page 140 for information on the
platforms on which you can use the Export Bridge Assistant to create wrapper
objects. See “Configuring Build and Client Machines” on page 142 for details on
configuring computers to build and run wrapper objects.
Export Bridge Assistant Overview IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 149
Running the Assistant

Start the Export Bridge Assistant from the IDL Workbench by entering the command

IDLEXBR_ASSISTANT

at the IDL command line. For more information, see “IDLEXBR_ASSISTANT”
(IDL Reference Guide).
IDL Connectivity Bridges Running the Assistant

150 Chapter 7: Using the Export Bridge Assistant
Using the Assistant

You can use the Export Bridge Assistant to create COM or Java wrapper objects from
native IDL objects. The Assistant is a system-wide dialog; for information on
launching it, see “Running the Assistant” on page 149.

Figure 7-1 shows the Assistant when it is first launched, without a project open.

Figure 7-1: The Export Bridge Assistant When Launched
Using the Assistant IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 151
Understanding the Assistant Interface

The Assistant consists of three panels, a menu bar, and a toolbar. The panels are a tree
view of the current project (if any), a property view of the current selected item (if
any), and a view of the three informational logs available in the Assistant.

The Menu Bar

The following menus appear on the Assistant menu bar:

• File

• Edit

• Build

• Help

The File menu, shown in Table 7-1, contains tools for creating, importing, exporting,
and saving projects.

Menu Selection Function

New Project For COM or Java (selected in a sub-menu), creates a new
project by selecting an IDL source file (.pro) or SAVE file
containing an object definition. See “Working with a Project”
on page 157 for details.

Open Project... Opens an existing project. See “Opening a Project” on
page 157 for details.

Close Project Closes the current project, prompting you to save any unsaved
changes.

Save Project Saves the current project to an IDL SAVE file. If the project
has not been previously saved, the behavior matches that of
Save Project As... (below). See “Saving a Project” on page 157
for details.

Save Project As... Prompts you to select a name for the project’s IDL SAVE file.
See “Saving a Project” on page 157 for details.

Revert To Saved Prompts you to discard changes made to the current project
and revert to its most recent saved version.

Table 7-1: The File menu
IDL Connectivity Bridges Using the Assistant

152 Chapter 7: Using the Export Bridge Assistant
The Edit menu contains only one operation: Clear Log, which clears the contents of
the current log (change, export, or build). The operation’s name changes to reflect
that of the current log (e.g., Clear Change Log). See “The Logs Panel” on page 154
for details.

The Build menu contains only one operation: Build Object, which builds the current
object. See “Building an Object” on page 161 for details.

The Help menu opens the online help for the following topics:

• Using the Export Bridge Assistant

• Configuring the Export Bridge Assistant

• Exporting IDL objects to COM and Java

• Using exported COM objects

• Using exported Java objects

• Help on IDL

The Toolbar

The following buttons appear on the Assistant toolbar:

• Open Project

• Save Project

• Build Object

Update From Source... Prompts you to select an IDL source file or SAVE file
containing an object definition, which is compared to the
source object in the current project. See “Updating a Project”
on page 158 for details.

Save Log... Saves the contents of the current log (change, export, or
build). The menu selection’s name changes to reflect that of
the current log (e.g., Save Change Log...). See “The Logs
Panel” on page 154 for details.

Exit Closes the Assistant, prompting you to save any unsaved
project changes.

Menu Selection Function

Table 7-1: The File menu
Using the Assistant IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 153
These buttons match the menu operations of the same name. See “The Menu Bar” on
page 151 for details.

The Project Tree View

The project tree displays a hierarchical view of the project and the contained IDL
source object with its properties, methods, method parameters, and superclasses. (See
“Specifying Information for Exporting” on page 164 for more information.) Clicking
on an item in the tree fills in the property sheet for that selected item.

Multiple selection is enabled. This can be very useful for setting object properties
efficiently. A property is only applied to a selected item if it implements the property,
allowing a selection to span disparate items.

The icons next to items in the project tree indicate their readiness for export to a
wrapper object. For more information, see “Exporting an Object” on page 162.

Figure 7-2: The Project Tree View of the Export Bridge Assistant
IDL Connectivity Bridges Using the Assistant

154 Chapter 7: Using the Export Bridge Assistant
The Property Sheet View

The property view displays the properties of items selected in the project tree view.
You can change the properties using this view. Multiple selection is not enabled.

The Logs Panel

The logs panel has three tabs: Change Log, Export Log, and Build Log.

The Change Log

This text field initially contains welcome text that is cleared when a project is created
or closed. When a project is open, the field displays a running log of property settings
made by the user, including property changes and the following actions: Save
Project, Update From Source, and Revert To Saved Project. Figure 7-4 shows an
example of a change log in progress.

The text is saved with the project, and when an existing project is opened, it is re-
displayed.

Figure 7-3: The Property Sheet View of the Export Bridge Assistant

Figure 7-4: The Change Log of the Export Bridge Assistant
Using the Assistant IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 155
The Export Log

This text field contains a description of the items that are to be exported (those items
that are both fully specified and marked for export). It is cleared when a project is
created or closed. Figure 7-5 shows an example of an export log in progress.

The text is saved with the project, and when an existing project is opened, it is re-
displayed.

The Build Log

This text field displays the results of the build operation. It is cleared when a project
is created, opened or closed. Figure 7-6 shows an example of a build log in progress.

Figure 7-5: The Export Log of the Export Bridge Assistant
IDL Connectivity Bridges Using the Assistant

156 Chapter 7: Using the Export Bridge Assistant
The text is saved with the project, and when an existing project is opened, it is re-
displayed.

Note
The ProgID identifies the exported IDL object, and is displayed on the Build Log
tab. You may need this identifier if you handle the exported object directly in a
custom application.

Figure 7-6: The Build Log of the Export Bridge Assistant
Using the Assistant IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 157
Working with a Project

The Export Bridge Assistant works with a project that contains an IDL source object
to be exported. You can create a new project or open an existing one, modify or
update it, and save it.

Opening a Project

If you are creating a new project, you have the choice of making it COM or Java. For
both object types, you must specify the IDL source object by selecting either an IDL
source file (<idlObject>__define.pro) or a SAVE file containing an object
definition (<idlObject>__define.sav).

To open an existing project, you must select an existing wrapper definition file
(<idlObject>_<dest>_wrapdef.sav) created by a previous invocation of the
Assistant.

Note
You can create or open a COM project on UNIX, but you cannot build any COM
objects. See “Output Destinations” on page 141 for details.

Once the source object is specified, the IDL object is resolved. Note that the source
object file does not have to be in the path. However, any supporting or referenced
source file must be in the same directory or in the IDL path so that it can be resolved.

When the object is resolved, the Assistant populates the project tree with property
names, routine names, and parameter names from the object. You can use this view to
specify information about the object necessary for creation of the wrapper objects.

If you create a new project or open an existing project while you already have a
project open, you will be prompted to save any changes made to the current project
before the new or existing project opens. You can cancel instead to continue working
on the current project.

Saving a Project

You can save your work in the current project at any time. The Assistant stores the
information in an IDL SAVE file. You can save a project without having an Export
Bridges license (see “Running the Assistant” on page 149 for details).

If you are saving a project for the first time, the Assistant prompts you for the SAVE
file’s name and location. The default name is based on the source object class name
IDL Connectivity Bridges Working with a Project

158 Chapter 7: Using the Export Bridge Assistant
as follows: <idlObject>_<dest>_wrapdef.sav, where <dest> is either java
or com.

Note
This filename is the default created by the Assistant, but you can save project files
in SAVE files with any name.

Updating a Project

You might have used the Assistant to generate a wrapper object’s specification, make
changes to the original IDL source object, and want to merge these changes into the
existing object specification without losing the initial work done in the Assistant.
You can do this by bringing in the modified source object and having the Assistant
respond with both automated and manual update functionality.

The following list provides some common cases where an update might be useful:

• Changes to the IDL object

• Changes to method names in IDL object, parameters unchanged

• Methods added

• Methods removed

• Method parameters added

• Method parameters removed

• Changes to object specification

• Method data modified (e.g., from function to procedure, the return type,
whether the return value is an array or not)

• Parameter data modified (e.g., parameter type, array)

When you select an object definition using the File → Update From Source...
command, the Assistant compares it to the object in the current project and ensures
that the object class of the file selected matches the class of the existing project.

Updating an existing project with an IDL source object redefines the project based on
the definition of the source object. When applicable, attributes from the existing
project are applied to matching items from the update. This application takes place
both automatically in the Assistant and manually through interaction with a dialog
that launches to guide the update.

First, the project tree is populated with routine names and parameter names from the
updated source (the master). Next, information from the IDL source object is
Working with a Project IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 159
compared to the existing definition. Property, method, and parameter information is
copied when the item is present in both existing definition and the updated source
object. The matching functionality is triggered if there are both added and removed
methods. The matching dialog is displayed (if applicable) so you can match names of
methods that were renamed. If matched, parameter information that matches exactly
is copied to the new wrapper definition.

The following dialog shows a method that has been renamed in the updated source
(marked with '_CHANGED'). The method TESTPROCEDURE1MULT from the old
methods has been linked to the new method
TESTPROCEDURE1MULT_CHANGED, which updates the display of linked
methods.

Figure 7-7: The Export Bridge Assistant’s Update Dialogue
IDL Connectivity Bridges Working with a Project

160 Chapter 7: Using the Export Bridge Assistant
Table 7-2 summarizes the details of object modification and project update.

Object
Modifications

Effect of
Modification in

Assistant

Manual Action
Taken

Automatic Action
Taken

Method renamed,
parameters
unchanged

Both Methods Added
and Methods Removed
are true

Object method added,
object definition
method missing; you
can match old method
name with new
method name

New method added,
information from old
method copied to new
method, old method
removed.

Method added Object has a method
not in the project

If Methods Removed
is false, add method;
otherwise, see the
method-renamed
information (above)

New method added

Method removed Object lacks a method
in the project

If Methods Added is
false, remove method;
otherwise, see the
method-renamed
information (above)

Old method removed

Parameter renamed N/A None New parameter added,
old parameter removed

Parameter added Updated object has a
parameter not in the
project

None New parameter added

Parameter removed Object lacks a
parameter in the project

None Old parameter
removed

Property added Updated object has a
property not in the
project

None New property added

Property removed Object lacks a property
in the project

None Old property removed

Table 7-2: Resolving an Update from Source in the Export Bridge Assistant
Working with a Project IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 161
Building an Object

To build a wrapper object, you need to create an object specification about the
exported object in the Export Bridge Assistant. This wrapper object is what your
client application needs to use the IDL source object’s functionality.

Note that the wrapper object is only an interface between your client application and
the IDL source object. That is, the Assistant does not include the entire IDL object in
a wrapper object generated from it, but creates a COM or Java layer to interact with
the source object. Furthermore, if you change the source object, you might affect an
existing wrapper object exported from it (see “Modifying a Source Object After
Export” on page 181).

Important topics regarding building an object include the following:

• Understanding the object status for exporting (“Exporting an Object” on
page 162)

• What information you need to specify when exporting an object (“Specifying
Information for Exporting” on page 164)

• Java and COM types supported by the Export Bridge technology (“Supported
Data Types” on page 166)

• What gets skipped for exporting (“Information Skipped During Export” on
page 178)

• How to export superclasses (“Exporting a Source Object’s Superclasses” on
page 180)

• What to do with a modified object after exporting (“Modifying a Source
Object After Export” on page 181)
IDL Connectivity Bridges Building an Object

162 Chapter 7: Using the Export Bridge Assistant
Exporting an Object

The Assistant lets you set data types for parameters and other values needed for
creation of the wrappers. In addition, the interface for the Assistant indicates visually
the progress made so far. The icons representing properties, methods, and parameters
in the assistant indicate the following:

• Which parts of the source object will be used:

• Methods that will be exported

• Methods that will be not be exported

• Which parts of the source object are completed:

• Methods that are fully specified

• Methods requiring further information

These two aspects of the state of the source object are independent from one another.
For example, a method might be fully specified, but Export could be False because
you want to test the exported object without generating the method. You might want
to set Export to True for several methods, fill out the information for only some of
them, and then create the exported object. The wrappers would be generated only for
those items that have Export set to true and are fully specified.

Note
Changing the export or completion status of a parameter could affect the status of
the method containing the parameter.

To make the process as simple as possible, default values and behaviors have been
specified when possible. For example, all methods start out with Export set to False,
but as soon as you specify information, such as a return type on the method, the value
of the Export property is set to True. (For more information, see “About the Export
Property” on page 165.)
Exporting an Object IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 163
The project tree icons indicate the status of an item. The icons shown below represent
all of the permutations of the states described above.

Meaning Icons

Export is False, Incomplete
(initial default)

• Method:

• Property or parameter:

Export is True, Incomplete • Method:

• Property or parameter:

Export is False, Fully Specified • Method:

• Property or parameter:

Export is True, Fully Specified • Method:

• Property or parameter:
IDL Connectivity Bridges Exporting an Object

164 Chapter 7: Using the Export Bridge Assistant
Specifying Information for Exporting

When the Assistant creates a new project, it supplies default values for the attributes
that must be specified. Most of these values are set to UNSPECIFIED to indicate that
you must modify this attribute. Some attributes do not have a default value because
there is no reasonable one; also, supplying a default value could cause the wrappers
to be built with incorrect values.

The one value that is set by default in most cases is the Convert Majority flag, used if
the value is an array. The default setting for this attribute (True) provides the most
expected behavior. For more information, see “Converting Array Majority” on
page 165.

Note that in the IDL language, parameters are optional, so the Assistant does not
require the user to export every parameter that is retrieved from the IDL source object
and presented in the Assistant. It is up to the user to decide which parameters should
be exported. This might require defensive programming in the IDL source object to
ensure that parameters are not used if they are not supplied.

Information that can be specified includes:

• “Bridge Information” on page 167 — defines general wrapper object
information, the output directory, package name (Java only) and GUIDS
settings (COM only)

• “Source Object Information” on page 170 — indicates whether the object is
drawable or not (this cannot be changed)

• “Property Information” on page 171 — defines the property data type, whether
it is an array (and the array majority if it is), and whether or not it is to be
exported

• “Method Information” on page 173 — defines the export characteristics of a
procedure or function method, and defines the return value data type and array
characteristics if the method is a function

• “Parameter Information” on page 176 — defines the mutability, data type,
array characteristics and export selection for method parameters

Note
See “Parameter Passing and Type Conversion” on page 136 for important
information about passing objects, arrays and variables as parameters.
Specifying Information for Exporting IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 165
About the Export Property

The first (and only the first time) any attribute of a property, method, or parameter
other than Export is set, the item has its Export property set to True. This behavior is
provided as a convenience.

Converting Array Majority

The Convert Majority property may be an option for a property, function return value
or method parameter that is defined as an array (the Array property is True). The
rules for the Convert Majority property vary depending on destination (COM or Java)
and whether the array is a property value, function return value or method parameter.
The settings and default values are described in Table 7-3.

See the following for more information on these rules:

• Table 7-8 in “Property Information” on page 171

• Table 7-10 in “Method Information” on page 173

• Table 7-11 in “Parameter Information” on page 176

Note
For COM wrappers, you could theoretically set the Convert Majority flag for the
property setting call but not the property retrieval call. In practice, the Assistant
uses one flag to control the Convert Majority setting for both Get and Set Property,
and so for COM, the setting for properties is always Convert Majority, which is set
to True and disabled.

For more information on array majority, see “Multidimensional Array Storage and
Access” on page 493. Also see “Array Order Conversion” on page 137.

Where to Specify Can Specify in COM? Can Specify in Java?

Get Property No (arrays always converted) Yes (default is to convert)

Set Property Yes (default is to convert) Yes (default is to convert)

Function return values No (arrays always converted) Yes (default is to convert)

Procedure parameters Yes (default is to convert) Yes (default is to convert)

Table 7-3: Rules for Specifying the Convert Majority Property
IDL Connectivity Bridges Specifying Information for Exporting

166 Chapter 7: Using the Export Bridge Assistant
Supported Data Types

The following data types are supported with the Export Bridge technology.

Note
See Appendix A, “IDL Java Object API” for information on JIDL* objects.

COM • Unsigned char

• Char

• Short

• Unsigned short

• Long

• Unsigned long

• LONGLONG

• ULONGLONG

• Float

• Double

• BSTR

• IUnknown*

• VARIANT

Java • JIDLNumber

• JIDLObjectI

• JIDLString
Specifying Information for Exporting IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 167
Bridge Information

The project has general information about the bridge being used (COM or Java).

Table 7-5 describes the general bridge information’s properties and values

Figure 7-8: The Export Bridge Assistant: General Bridge Information

Property Value

Name Defaults to “IDL Export Bridge Project for <dest>” where
<dest> is “COM” or “Java.” Displayed in the sheet header
only, it is distinct from the project filename and source object
classname and cannot be modified.

Source object classname Specified by selection of IDL object definition file. The file
must be selected, rather than specification of the object by
name only. Because this value is obtained from the source
object filename, the capitalization is the same as the filename.

Output classname Defaults to IDL source object class name; must be non-null and
a valid IDL identifier. Because this value is obtained from the
source object filename, the capitalization is the same as the
filename.

Process name Defaults to ‘Default_Process_Name’; must be non-null and
valid IDL identifier

Output directory Defaults to location of source object file (.pro or .sav);
independent from location of project file and source file
(except for initial default to source location).

Table 7-4: General Bridge Information’s Properties
IDL Connectivity Bridges Bridge Information

168 Chapter 7: Using the Export Bridge Assistant
The other properties displayed for the project depends on which bridge it is using:
COM or Java. The following describes COM-specific values.

Figure 7-9: The Export Bridge Assistant: COM Bridge Information

Property Value

Regenerate GUIDs On the first build operation, GUIDS are always generated, so
this property is desensitized until after the first build. On
subsequent builds, if Regenerate GUIDs is False, the existing
GUIDs are used, allowing a developer to use the newly built
object without re-registering. If Regenerate GUIDs is true,
new GUIDS will be created during a build operation. Any
time GUIDs are regenerated during a build operation. they are
saved and can be used by setting Regenerate GUIDs to False.

Explicit CreateObject By default, graphical COM objects (ActiveX objects) call the
createObject method automatically when the control is
created. If this property is set to True, the automatic call to the
createObject method is removed; the client code must then
explicitly call one of the CreateObject or CreateObjectEx
methods to create the IDL process.

This property is disabled for nongraphical COM objects,
which always require an explict call to one of the CreateObject
methods.

Table 7-5: COM Bridge Information’s Property Values
Bridge Information IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 169
The following describes Java-specific properties and values.

Figure 7-10: The Export Bridge Assistant: Java Bridge Information

Property Value

Package name Defaults to source object class name. Because this value is
obtained from the source object filename, the capitalization is
the same as the filename.

This property is optional and can be blank. If blank, the Java
file and class file will be created in the output directory. If not
blank, the name is used to create one or more subdirectories
below the output directory. Period characters are separator
characters that produce a directory hierarchy in the resulting
subdirectory for the result. Each segment between period
characters must be a valid identifier.

Table 7-6: Java Bridge Information’s Property Values
IDL Connectivity Bridges Bridge Information

170 Chapter 7: Using the Export Bridge Assistant
Source Object Information

The source object for which you are making a wrapper has its own set of properties.

Table 7-7 describes the characteristics of the source object.

Figure 7-11: The Export Bridge Assistant: Source Object Information

Property Value

Name Name of this IDL source object; specified when project was
created and shown in the sheet header only

Drawable object True if IDL source object is a subclass of IDLitWindow,
IDLgrWindow, or IDLitDirectWindow; otherwise False.

Table 7-7: Source Object Information’s Property Values
Source Object Information IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 171
Property Information

Each property of the source object has its own set of properties.

Table 7-8 describes the properties and values of the source object’s properties.

Figure 7-12: The Export Bridge Assistant: Source Object Properties

Property Value

Name Name of the object’s property; shown in the sheet header only.

Type One of the types supported by the Export Bridge technology.
For the list, see “Supported Data Types” on page 166.

Array Indicates if property is of type array: True if it is, False
otherwise. If True, Convert Majority is sensitive.

Convert Majority Sensitive only if Array is True. Set to True if the property
value is an array and needs to be converted when setting the
property. (For COM, when retrieving a property value, the
majority is always converted regardless of this attribute
setting.) The default value for both COM and Java is True.

For more information, see “Converting Array Majority” on
page 165.

Export Indicates if the Assistant will export this property: True if it
will, False otherwise.

Table 7-8: Source Object Property Information’s Property Values
IDL Connectivity Bridges Property Information

172 Chapter 7: Using the Export Bridge Assistant
About Property Extraction

The object properties are extracted from the IDL source object by compiling the list
of all keywords on either or both of the SetProperty and GetProperty methods of the
object.

The following factors are not used to determine source object properties:

• Whether a property is registered or not (the export bridges do not require that
an object uses the component framework)

• The presence of a member variable in the source object's definition structure

• Keywords to the object's Init method

Note that properties of built-in superclasses are not extracted (see “Exporting a
Source Object’s Superclasses” on page 180). To obtain wrapper routines to get or set
a superclass property, you must add an explicit property handler to your SetProperty
and/or GetProperty methods for the superclass property.
Property Information IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 173
Method Information

Each method of the source object has its own set of properties. Figure 7-13 displays a
procedure’s property information. Figure 7-14 displays the property information for a
function.

Table 7-9 describes the procedure information’s properties and values.

Figure 7-13: The Export Bridge Assistant: Procedure Information

Property Value

Name Name of the procedure; shown in the sheet header only.

Output Method Name The name of the wrapper method in the wrapper object.
Defaults to the method name obtained from the source object,
but can be changed to reflect native platform naming
conventions and case. Regardless of the output method name,
the wrapper method will call through the Export Bridge
technology layers to the original source object method name in
the IDL object.

Export Indicates if the Assistant will export this property: True if it
will, False otherwise.

Table 7-9: Procedure Information’s Property Values
IDL Connectivity Bridges Method Information

174 Chapter 7: Using the Export Bridge Assistant
Table 7-10 describes the function information’s properties and values. In addition to
the values that can be specified for procedure methods (Table 7-9), the following can
also be defined.

Figure 7-14: The Export Bridge Assistant: Function Information

Property Value

Return Type One of the types supported by the Export Bridge technology.
For the list, see “Supported Data Types” on page 166.

Array Indicates if property is of type array: True if it is, False
otherwise. If True and the destination is Java, Convert
Majority is sensitive.

Table 7-10: Function Information’s Property Values
Method Information IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 175
Convert Majority Sensitive only if Array is True and the destination is Java. Set
to True if the property value is an array and needs to be
converted when setting the property. (For COM, when
retrieving a property value, the majority is always converted
regardless of this setting, which is why this property does not
appear with COM.) The default value is True.

For more information, see “Converting Array Majority” on
page 165.

Property Value

Table 7-10: Function Information’s Property Values (Continued)
IDL Connectivity Bridges Method Information

176 Chapter 7: Using the Export Bridge Assistant
Parameter Information

Each parameter of the source object’s methods has its own set of properties.

Note
If a method parameter has its Export property set to True, all parameters of the
method to the left of the current parameter are marked for export as well so as to not
leave holes in the parameters list and cause parameters to be out of sequence.
If a parameter has its Export property set to False, all parameters to the right will
also have their Export property set to False. If a parameter has its Export property
set to True, the parent method will have its Export property set to True.

Table 7-11 describes the parameter information’s properties and values.

Figure 7-15: The Export Bridge Assistant: Parameter Information

Property Value

Name Name of the procedure; shown in the sheet header only.

Mutability Either In or In/Out. Use In for parameters that are constant (In-
Only, meaning that their values cannot be changed). Use
In/Out for parameters that are not constant and require a value
to be passed back to the caller (can be In/Out or Out-only).

Return Type One of the types supported by the Export Bridge technology.
For the list, see “Supported Data Types” on page 166.

Array Indicates if property is of type array: True if it is, False
otherwise. If True, Convert Majority is sensitive.

Table 7-11: Parameter Information’s Property Values
Parameter Information IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 177
Convert Majority Sensitive only if Array is True. Set to True if the property
value is an array and needs to be converted when setting the
property. The default value is True.

For more information, see “Converting Array Majority” on
page 165.

Export Indicates if the Assistant will export this property: True if it
will, False otherwise.

Property Value

Table 7-11: Parameter Information’s Property Values (Continued)
IDL Connectivity Bridges Parameter Information

178 Chapter 7: Using the Export Bridge Assistant
Information Skipped During Export

The Assistant skips certain information when creating an object specification for
exporting because such information is unnecessary or unavailable for a wrapper
object.

Lifecycle Methods

The lifecycle methods of the IDL source object, Init and Cleanup, are not presented
in the list of methods to export in the Assistant. These methods are called through the
bridge when the wrapper object stock methods createObject and destroyObject are
called. (Note that Java capitalization is used here, COM names are different.) It is not
useful to export a wrapper method explicitly for either of these routines.

For information on the stock methods, see “Stock COM Wrapper Methods” on
page 192 (COM) and “Stock Java Wrapper Methods” on page 218 (Java).

Get Property and Set Property Methods

The GetProperty and SetProperty methods of the IDL source object are not presented
in the list of methods to export in the Assistant. These methods will be called through
the Export Bridge when the wrapper object routines for setting or retrieving a specific
property are called. It is not useful to export a wrapper method explicitly for either of
these routines.

Drawable Object Event Handlers

For drawable objects (objects subclassed from IDLitWindow, IDLgrWindow, or
IDLitDirectWindow) as well as IDLitDirectWindow superclass itself, the following
methods are not typically needed in the exported object:

By default these methods are not presented in the Assistant for export from either the
original IDL source object or its superclasses.

These routines in the source object are called directly by the Export Bridge when
events are being handled, and so they are typically not needed in the exported object.

• OnEnter

• OnExit

• OnExpose

• OnKeyboard

• OnMouseDown

• OnMouseMotion

• OnMouseUp

• OnResize
Information Skipped During Export IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 179
Exporting these routines would be unnecessary and confusing to most users since
they might assume that the methods in the exported object would be called, but under
default conditions they are unused. The sophisticated user might actually want to call
these in the client application, however, and so they can be presented in the assistant
by starting the application with the DRAWABLE_EVENTHANDLERS keyword set
(in addition to the OBJECT_FILE keyword). See “Running the Assistant” on
page 149 for details.

Typically, the methods found in .pro code object definition files will appear in the
Export Bridge Assistant. Since IDLgrWindow and IDLitWindow object definition
files are built-in, they do not appear as superclasses and their methods are not
presented in the Assistant.
IDL Connectivity Bridges Information Skipped During Export

180 Chapter 7: Using the Export Bridge Assistant
Exporting a Source Object’s Superclasses

You might want to set properties or call methods that are implemented in the
superclass of the source object. The Assistant interrogates the IDL source object to
obtain the properties, methods and method parameters. It also uses the OBJ_CLASS
method to obtain the superclasses of the source object class, and for each user class
also obtains the properties, methods and method parameters. This is a recursive
process that requires interrogating each superclass for its superclasses. Built-in IDL
superclasses will not be included in the wrapper definition.

The routine used to extract object information, IDL's ROUTINE_INFO function, can
obtain the methods of a built-in object class. However, because ROUTINE_INFO
does not provide parameter information for built-in routines, the Assistant is unable
to extract the properties (parameters to SetProperty or GetProperty) or the parameters
of object methods for a built-in superclass. The built-in superclasses are not presented
in the project tree view.

To obtain wrapper routines to modify properties of built-in superclasses, you must
add an explicit property handler to the SetProperty and/or GetProperty methods for
the superclass property. To obtain wrapper routines to call methods of built-in
superclasses, you must add an explicit method to their source object that calls the
superclass method.
Exporting a Source Object’s Superclasses IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 181
Modifying a Source Object After Export

Modifications to the IDL source object can affect the operation of an existing
wrapper object even if the wrapper is not rebuilt because the wrapper object uses the
source object in its current state, not a state cached at the time the Assistant generates
the wrapper object.

In general:

• Adding properties or methods has no impact on an existing wrapper object.

• Removing properties or methods or changing method interfaces can invalidate
an existing wrapper object.

• Modifying behavior in a property handler or method causes the new behavior
to be in effect for the next invocation of the application using the wrapper
client. This can be useful because the wrapper does not need to be regenerated
for the client to pick up IDL source modifications.
IDL Connectivity Bridges Modifying a Source Object After Export

182 Chapter 7: Using the Export Bridge Assistant
Wrapper Generation Example

The following example exports a simple IDL object that has no properties or methods
and demonstrates the configuration necessary to initialize a COM or Java client
application to use the exported object. First, create the IDL source object.

1. Create a file named helloworld__define.pro (within your IDL path)
containing the following code:

FUNCTION helloworld::INIT
RETURN, 1

END

PRO helloworld__define
struct = {helloworld, $

dummy:0b $; dummy structure field, not a property
}

END

This is the source object definition file that you will export using the Export
Bridge Assistant.

2. Open the Assistant by entering IDLEXBR_ASSISTANT at the command line.

See one of the following:

• “COM Wrapper Object Generation and Use” below

• “Java Wrapper Object Generation and Use” on page 184

COM Wrapper Object Generation and Use

The following example exports and uses the helloworld object in a simple Visual
Basic .NET console application. After creating the object definition file and
launching the Assistant as described in “Wrapper Generation Example” on page 182,
complete the following steps.

1. Select to create a COM export object by selecting File → New Project →
COM and browse to select the helloworld__define.pro file. Click Open
to load the file into the Export Assistant.
Wrapper Generation Example IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 183
2. The top-level project entry in the left-hand tree panel is selected by default.
There is no need to modify the default properties shown in the right-hand
property panel, but you can enter different values if desired. Select the tree
view item listed in the left column to configure the related properties in the
right column.

For this simple example, the source object has no properties or methods, so
none are exported.

Note
See “Specifying Information for Exporting” on page 164 for details on
configuring export values.

3. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

4. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. For a nondrawable object, .tlb

Figure 7-16: Helloworld COM Export Project

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

• Output classname

• Process name

• Output directory

helloworld Drawable object equals False

Table 7-12: Example Export Object Parameters
IDL Connectivity Bridges Wrapper Generation Example

184 Chapter 7: Using the Export Bridge Assistant
and .dll files (named based on the object name) are created in the Output
directory.

5. Register the .dll using regsvr32 helloworld.dll. See “COM
Registration Requirements” on page 143 for details if needed.

6. Create a new Visual Basic .NET console application and add a reference to the
COM library named helloworldLib 1.0 Type Library. Select
Project → Add Reference, and click on the COM tab. Select the
helloworld.dll and click Ok.

7. Replace the default module code with the following text:

Imports helloworldLib
Module Module1

Dim oHello As New helloworldLib.helloworldClass
Sub Main()

Try
oHello.CreateObject(0, 0, 0)
Catch ex As Exception
Console.WriteLine(oHello.GetLastError())
Return

End Try
AddHandler oHello.OnIDLOutput, AddressOf evOutput
oHello.ExecuteString("Print, 'Hello World'")

End Sub
Sub evOutput(ByVal ss As String)

Console.WriteLine(ss)
End Sub

End Module

In this example, the stock ExecuteString method is used to print the hello
world message. By adding a handler for the OnIDLOutput method, the console
application is able to capture and output the information that would typically
be printed to the Output window of IDL. After building the solution and
starting without debugging, the console window appears with the output
messages.

Java Wrapper Object Generation and Use

The following example exports and uses the helloworld object in a simple Java
application. After creating the object definition file and launching the Assistant as
described in “Wrapper Generation Example” on page 182, complete the following
steps.
Wrapper Generation Example IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 185
1. Select to create a Java export object by selecting File → New Project → Java
and browse to select the helloworld__define.pro file. Click Open to load
the file into the Export Assistant.

2. The top-level project entry in the left-hand tree panel is selected by default.
There is no need to modify the default properties shown in the right-hand
property panel, but you can enter different values if desired. Select the tree
view item listed in the left column to configure the related properties in the
right column.

For this simple example, the source object has no properties or methods, so
none are exported.

Figure 7-17: Helloworld Java Export Project

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make changes:

• Output classname

• Process name

• Output directory (paths in later parts of
this example assume this field equals the
main IDL installation directory, which is
typically C:\ITT\IDLxx on Windows)

helloworld Drawable object equals False

Table 7-13: Example Export Object Parameters
IDL Connectivity Bridges Wrapper Generation Example

186 Chapter 7: Using the Export Bridge Assistant
Note
See “Specifying Information for Exporting” on page 164 for details on
configuring export values.

3. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

4. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. A subdirectory, named
helloworld (based on the object name), contains the .java and .class
files, and is located in the Output directory.

5. Create a file named helloworld_example.java that contains the following
code and save the file in the helloworld directory.

package helloworld;
import com.idl.javaidl.*;
public class helloworld_example extends helloworld
implements JIDLOutputListener
{

private helloworld hwObj;

// Constructor
public helloworld_example() {

hwObj = new helloworld();
hwObj.createObject();
hwObj.addIDLOutputListener(this);
hwObj.executeString("print, 'Hello World'");

}

// implement JIDLOutputListener
public void IDLoutput(JIDLObjectI obj, String sMessage) {

System.out.println("IDL: "+sMessage);
}

public static void main(String[] argv) {
helloworld_example example = new helloworld_example();

}
}

Note
By default, the Assistant generates a package so any Java routine using an
exported wrapper object must include the package name. The second
statement, import com.idl.javaidl.*; is also required.
Wrapper Generation Example IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 187
For example purposes, the stock method executeString is called, and an output
listener is registered to retrieve the IDL output.

The wrapper is compiled and run using the commands below:

• “Windows Commands to Build and Run the Client” on page 187

• “UNIX Commands to Build and Run the Client” on page 188

Windows Commands to Build and Run the Client

The following commands build and run this Java wrapper example on Windows.

1. To compile and run the Java routine, open the Windows Command window by
selecting Start → Run and enter cmd in the textbox.

2. Use the cd command to change to the directory containing the helloworld
directory. For a default Windows installation, the command would be similar
to the following:

cd C:\ITT\IDL63

3. Reference the classpath of javaidlb.jar in the compile statement. Enter the
following commands (each as a single line), replacing IDL_DIR with the IDL
installation directory, for example ITT\IDL63:

javac -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
helloworld\helloworld_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
helloworld.helloworld_example

In both commands, the . character includes the current directory in the
classpath.

The first command uses javac to compile the example client. The path to the
helloworld_example.java file is specified using a backslash character as
a directory separator.

The second command uses java to run the example client. The final argument
specifies the package path to the helloworld_example class file. Note that a
. character is used as a separator in the package path. The final argument to the
second command intentionally omits the suffix.

After compiling and running the project, the output message will appear in the
command window.
IDL Connectivity Bridges Wrapper Generation Example

188 Chapter 7: Using the Export Bridge Assistant
UNIX Commands to Build and Run the Client

The following commands build and run this Java wrapper example on UNIX:

source IDL_DIR/bin/bridge_setup
javac helloworld/helloworld_example.java
java helloworld.helloworld_example

Note
See “Java Requirements” on page 143 for more information on the bridge_setup
file.

The source command adds the necessary directories to the dynamic library path and
the classpath.

The second command uses javac to compile the example client. The third command
uses java to run the example client. The final argument specifies the package path to
the helloworld_example. class file. Note that a . character is used as a separator
in the package path. The final argument to the second command intentionally omits
the suffix.

After compiling and running the project, the output message will appear.
Wrapper Generation Example IDL Connectivity Bridges

Chapter 8

Using Exported COM
Objects
This chapter discusses the following topics.
Overview of COM Export Objects 190
COM Wrapper Objects 191
Stock COM Wrapper Methods 192

Event Handling . 208
Error Handling . 211
Debugging . 213
IDL Connectivity Bridges 189

190 Chapter 8: Using Exported COM Objects
Overview of COM Export Objects

Once you have chosen to use a connector object or have exported a custom IDL
source object using the Assistant, use the method and event reference information
described here to create an instance of the object and interact with the IDL process
from an external COM environment.

This chapter presents important background information on using IDL objects
exported into COM:

• “COM Wrapper Objects” on page 191

• “Stock COM Wrapper Methods” on page 192

• “Event Handling” on page 208

• “Error Handling” on page 211

For examples that use the methods and events described here, see:

• “Using the Connector Object” on page 245, which describes how to use the
connector object in COM environments

• “Creating Custom COM Export Objects” on page 269, which provides
examples of using custom object methods (in addition to the stock wrapper
methods) in COM environments
Overview of COM Export Objects IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 191
COM Wrapper Objects

A COM wrapper object is defined as one that wraps a nondrawable IDL object, and
an ActiveX control as one that wraps a drawable IDL object. Typically, only ActiveX
controls handle (user) events, but COM wrapper objects can also fire events so that
the client can receive IDL output and notifications.

To use a COM wrapper object, the client instantiates one or more instances of the
wrapper objects and then calls its methods and properties. An ActiveX control must
be created in a host window before its methods and properties can be called.

ActiveX controls are typically hosted on GUI forms. These forms are generally built
in a GUI-based development environment such as Visual Basic or Visual Studio
.NET. The user creates a form by dragging and dropping controls onto the form.
ActiveX controls usually interrogate the host window to determine what user mode
they are in: design or runtime. While in design mode, the ActiveX control usually
displays a static image whereas in runtime mode, the ActiveX control is executing
and dynamically drawing to the screen.

The Export Bridge ActiveX wrapper controls also check for the user mode. In design
mode, a static image with the IDL Export Bridge logo is displayed. In runtime mode,
the ActiveX control internally calls the CreateObject method, the underlying IDL
object is created, and IDL begins rendering to the ActiveX window. When the
application is stopped and transitioned back to design mode, the ActiveX control
internally calls the DestroyObject method, and the static image is once again
displayed. See “Stock COM Wrapper Methods” on page 192 for information on these
methods.

Note
Not all ActiveX host windows provide the user mode. If the host window does not
provide the user mode, the Export Bridge ActiveX wrapper controls assume that
they are in runtime mode, and they immediately begin to render to the screen as
soon as they are instantiated.
IDL Connectivity Bridges COM Wrapper Objects

192 Chapter 8: Using Exported COM Objects
Stock COM Wrapper Methods

This section describes the stock methods in the COM wrapper objects created by the
Export Bridge Assistant:

• “Abort” on page 193

• “CreateObject” on page 194

• “CreateObjectEx” on page 196

• “DestroyObject” on page 199

• “ExecuteString” on page 200

• “GetIDLObjectClassName” on page 201

• “GetIDLObjectVariableName” on page 202

• “GetIDLVariable” on page 203

• “GetLastError” on page 204

• “GetProcessName” on page 205

• “SetIDLVariable” on page 206

• “SetProcessName” on page 207

Every connector object and custom COM wrapper object has these methods in
addition to those defined by the wrapped IDL object.
Stock COM Wrapper Methods IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 193
Abort

The Abort method requests that the IDL process containing the underlying IDL
object abort its current activity. This method is useful if a given IDL method call is
busy for a very long time (e.g., a very long image processing command).

Note
The request is only that, a request, and IDL might take a long time before it actually
stops or might completely finish its current activity. Such a wait is an effect of the
IDL interpreter.

The client can only abort the current IDL activity if that wrapper object is the current
owner of the underlying IDL process.

Syntax

HRESULT Abort(void)

Parameters

None
IDL Connectivity Bridges Abort

194 Chapter 8: Using Exported COM Objects
CreateObject

The CreateObject method creates the actual underlying IDL object. The argc, argv,
and argpal parameters are used to supply parameters to the underlying IDL object’s
Init method. If the Init method does not have any parameters, the caller sets argc,
argv, and argpal to 0, NULL, and NULL, respectively.

This method creates IDL objects that use a default licensing algorithm (see “IDL
Licensing Modes” on page 134 for details). To use a specific IDL licensing mode, use
the CreateObjectEx method.

Note
By default, ActiveX controls call the CreateObject method implicitly. In an
ActiveX control, calls to the CreateObject method in client code will be ignored if
the Explicit CreateObject property in the Export Bridge Assistant project was set
to False when the ActiveX control was built.

Syntax

HRESULT CreateObject ([in] int argc, [in] VARIANT argv, [in] VARIANT argpal)

Parameters

argc

An integer that specifies the number of elements in the argv and argpal arrays.

argv

A VARIANT containing a COM SafeArray of VARIANT types, one for each
parameter to Init. The elements in the array are given in order of the parameters listed
in Init, ordered from left to right.

argpal

A VARIANT containing a COM SafeArray of 32-bit integer flag values, which can
be a combination of the IDLBML_PARMFLAG_CONST and
IDLBML_PARMFLAG_CONVMAJORITY values ORed together. The latter value
is only used when an argv element is an array itself. For parameters that are not
arrays, the argpal[n] value must be 0.
CreateObject IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 195
The following constant values defined in the typlib information of a wrapped IDL
object can be used:

Example

Note
See Appendix B, “COM Object Creation” for examples of creating objects from a
variety of COM programming languages.

The Init method of the IDL object being wrapped has the following signature:

PRO IDLexFoo::INIT, rect, filename

where rect is an array of 4 integers and filename is a string.

The COM client code that creates an instance of the wrapper object, and calls the
CreateObject() method with the rect and filename parameters, would look like the
following:

CComSafeArray<int> csa(4);
csa[0] = 0; csa[1] = 0; csa[2] = 5; csa[3] = 10;

CComVariant argv[2];
int argp[2];

argv[0] = csa.Detach();
argp[0] = IDLBML_PARMFLAG_CONST;
argv[1] = "someFilename.txt";
argp[1] = IDLBML_PARMFLAG_CONST;

CComPtr<IMyWrapper> spWrapper;
spWrapper.CoCreateInstance(__uuidof(MyWrapper));

spWrapper->CreateObject(2, argv, argp);

IDLBML_PARMFLAG_CONST Use for parameters that are
constant (In-Only, meaning that
their values cannot be changed).

IDLBML_PARMFLAG_CONVMAJORITY Include if the property value is an
array.

For more information, see
“Converting Array Majority” on
page 165.
IDL Connectivity Bridges CreateObject

196 Chapter 8: Using Exported COM Objects
CreateObjectEx

The CreateObjectEx method creates the actual underlying IDL object; it differs from
the CreateObject method in that it allows the specification of flag values that control
the way the IDL process is initialized. The argc, argv, and argpal parameters are used
to supply parameters to the underlying IDL object’s Init method. If the Init method
does not have any parameters, the caller sets argc, argv, and argpal to 0, NULL, and
NULL, respectively. The flags parameter specifies one or more initialization flags
governing the way the IDL process is initialized; currently, the available flags control
the method used to license the IDL session. (See “IDL Licensing Modes” on
page 134 for details on the default licensing mechanism.)

Note
By default, ActiveX controls call the CreateObject method implicitly. In an
ActiveX control, calls to the CreateObject method in client code will be ignored if
the Explicit CreateObject property in the Export Bridge Assistant project was set
to False when the ActiveX control was built.

Syntax

HRESULT CreateObjectEx ([in] int argc, [in] VARIANT argv, [in] VARIANT
argpal, [in] long flags))

Parameters

argc

An integer that specifies the number of elements in the argv and argpal arrays.

argv

A VARIANT containing a COM SafeArray of VARIANT types, one for each
parameter to Init. The elements in the array are given in order of the parameters listed
in Init, ordered from left to right.

argpal

A VARIANT containing a COM SafeArray of 32-bit integer flag values, which can
be a combination of the IDLBML_PARMFLAG_CONST and
IDLBML_PARMFLAG_CONVMAJORITY values ORed together. The latter value
is only used when an argv element is an array itself. For parameters that are not
arrays, the argpal[n] value must be 0.
CreateObjectEx IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 197
The following constant values defined in the typlib information of a wrapped IDL
object can be used:

flags

Flag values that control the way the IDL process is initialized. The following constant
values defined in the typlib information of a wrapped IDL object can be used:

Example

Note
See Appendix B, “COM Object Creation” for examples of creating objects from a
variety of COM programming languages.

The Init method of the IDL object being wrapped has the following signature:

IDLBML_PARMFLAG_CONST Use for parameters that are
constant (In-Only, meaning that
their values cannot be changed).

IDLBML_PARMFLAG_CONVMAJORITY Include if the property value is an
array.

For more information, see
“Converting Array Majority” on
page 165.

IDLBML_LIC_FULL The application requires that a licensed
copy of IDL be installed on the local
machine. If IDL is installed but no license is
available, the application will run in IDL
Demo (7-minute) mode.

IDLBML_LIC_LICENSED_SAV The application looks for an embedded
license in the save file being restored.

IDLBML_LIC_RUNTIME The application looks for a runtime IDL
license. If no runtime license is available,
the application will run in Virtual Machine
mode.

IDLBML_LIC_VM The application will run in Virtual Machine
mode.
IDL Connectivity Bridges CreateObjectEx

198 Chapter 8: Using Exported COM Objects
PRO IDLexFoo::INIT, rect, filename

where rect is an array of 4 integers and filename is a string.

The COM client code that creates an instance of the wrapper object and calls the
CreateObjectEx() method with the rect and filename parameters, and which
explicitly specifies that it should run in IDL Virtual Machine mode, would look like
the following:

CComSafeArray<int> csa(4);
csa[0] = 0; csa[1] = 0; csa[2] = 5; csa[3] = 10;

CComVariant argv[2];
int argp[2];

argv[0] = csa.Detach();
argp[0] = IDLBML_PARMFLAG_CONST;
argv[1] = "someFilename.txt";
argp[1] = IDLBML_PARMFLAG_CONST;

CComPtr<IMyWrapper> spWrapper;
spWrapper.CoCreateInstance(__uuidof(MyWrapper));

spWrapper.CreateObjectEx(2, argv, argp, IDLBML_LIC_VM);
CreateObjectEx IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 199
DestroyObject

The DestroyObject method destroys the underlying IDL object. If the object being
destroyed is the last object within an OPS process, the OPS process is also destroyed.

Note
Trying to re-create an object after it has been destroyed is not supported. You must
re-define the variable and then re-create the object.

Syntax

HRESULT DestroyObject(void)

Parameters

None
IDL Connectivity Bridges DestroyObject

200 Chapter 8: Using Exported COM Objects
ExecuteString

The ExecuteString method executes the specified command in the IDL process
containing the underlying IDL object.

Note
This method is disabled for applications running in the IDL Virtual Machine.

Syntax

HRESULT ExecuteString([in] BSTR bstrCmd)

Parameters

bstrCmd

A string containing the IDL command to be executed.

Examples

See “IDL Command Line with a COM Connector Object” on page 252 for an
example that executes any IDL command entered into one textbox and writes IDL
output or error information to a second textbox.
ExecuteString IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 201
GetIDLObjectClassName

The GetIDLObjectClassName method returns the IDL class name of the underlying
IDL object.

Syntax

HRESULT GetIDLObjectClassName([out,retval] BSTR* Name)

Return Value

A string containing the class name of the IDL object.
IDL Connectivity Bridges GetIDLObjectClassName

202 Chapter 8: Using Exported COM Objects
GetIDLObjectVariableName

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. The GetIDLObjectVariableName method returns that name.

Syntax

HRESULT GetIDLObjectVariableName([out,retval] BSTR* Name)

Return Value

A string containing the variable name of the IDL object.
GetIDLObjectVariableName IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 203
GetIDLVariable

The GetIDLVariable method retrieves a named variable from the IDL process
containing the underlying IDL object.

Note
This method is disabled for applications running in the IDL Virtual Machine.

Syntax

HRESULT GetIDLVariable([in] BSTR bstrVar, [out,retval] VARIANT* Value)

Parameters

bstrVar

A string containing the name of the variable to retrieve from the IDL process.

Return Value

The variable’s values. If the variable is an array, the array is always converted from
IDL majority to the standard COM SAFEARRAY majority ordering.

Examples

See “Data Manipulation with a COM Connector Object” on page 251 for an array
manipulation example that uses the GetIDLVariable, SetIDLVariable and
ExecuteString methods.
IDL Connectivity Bridges GetIDLVariable

204 Chapter 8: Using Exported COM Objects
GetLastError

The GetLastError method gets the error string for the last error that has occurred. It is
called after a method call returns an error. The returned error string is usually the
actual IDL error message, if IDL generated the error message.

Syntax

HRESULT GetLastError([out,retval] BSTR* LastError)

Return Value

The error string for the last error that occurred.
GetLastError IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 205
GetProcessName

The GetProcessName method returns the name of the process that contains the
underlying IDL object.

Syntax

HRESULT GetProcessName([out,retval] BSTR* Name)

Return Value

A string containing the name of the process that contains the IDL object.
IDL Connectivity Bridges GetProcessName

206 Chapter 8: Using Exported COM Objects
SetIDLVariable

The SetIDLVariable method sets the specified variable name to the specified value in
the IDL process containing the underlying IDL object. If the value is a
SAFEARRAY, it is always converted from the standard COM SAFEARRAY
majority ordering to IDL majority.

Note
This method is disabled for applications running in the IDL Virtual Machine.

Syntax

HRESULT SetIDLVariable([in] BSTR bstrVar, [in] VARIANT Value)

Parameters

bstrVar

A string identifying the variable in the IDL process to be set to Value.

Value

The value for the variable.

Examples

See “Data Manipulation with a COM Connector Object” on page 251 for an array
manipulation example that uses the GetIDLVariable, SetIDLVariable and
ExecuteString methods.
SetIDLVariable IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 207
SetProcessName

The SetProcessName method sets the name of the process that will contain the IDL
object. This can only be called before making the CreateObject call. Once the object
is created, the process name cannot be reset and calling this method after
CreateObject has no effect.

Syntax

HRESULT SetProcessName([in] BSTR Name)

Parameters

Name

A string containing the name of the process that will contain the IDL object.
IDL Connectivity Bridges SetProcessName

208 Chapter 8: Using Exported COM Objects
Event Handling

Clients subscribe to wrapper instance events through a process called advising. The
wrapper object defines an outgoing source interface (event interface) containing the
event methods, and the client implements that interface. During advising, the client
passes a reference to its event interface to the wrapper. When an event occurs within
the wrapper, it fires the event to the client by calling the appropriate event method on
the client’s event interface.

ActiveX controls fire events in the classical way via an outgoing source interface.
The Export Bridge ActiveX wrapper controls define the outgoing source interface
_DIDLWrapperEvents, as described below. Any client that wants to receive the
events must subscribe to events by calling the wrapper object’s
IConnectionPoint::Advise() method. Once advised, the client unsubscribes to events
by calling IConnectionPoint::Unadvise().

HRESULT Advise ([in] IUnknown* pUnk,
[out,retval] DWORD* pdwCookie);

HRESULT Unadvise ([in] DWORD dwCookie);

The client implements the _DIDLWrapperEvents interface and calls the wrapper
object’s Advise() method with its _DIDLWrapperEvents interface reference, and
receives a cookie for that connection. When the clients wants to disconnect, the client
calls Unadvise() with the connection cookie.

In the classical sense, only ActiveX controls fire events, which are typically UI
events. However, a client using an Export Bridge COM wrapper object may be
interested in IDL output and notification. So, we carry the concept of firing events
over onto COM objects. Clients of COM wrapper objects can receive events by
advising to the same outgoing source interface in the same way that clients advise for
events on the ActiveX wrapper controls.

Mouse and Keyboard Events in COM Export Objects

For UI events generated by ActiveX wrapper object, the client receives the events
first before IDL receives them. The client then has the option to “eat” the event and
prevent IDL from ever seeing the event. Each UI event has a ForwardToIdl
parameter, which is initially set to TRUE (1). If the event handler in the client code
clears the value to FALSE (0), then the wrapper does not forward the event to IDL.

Note
For a COM example that passes keyboard events to IDL, see “COM IDLitWindow
Surface Manipulation” on page 281.
Event Handling IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 209
The event interface is defined below and uses the following values. The mouse
Button parameter can have any of the following values ORed together:

IDLBML_MBUTTON_LEFT 0x1,
IDLBML_MBUTTON_RIGHT 0x2,
IDLBML_MBUTTON_MIDDLE 0x4,

The KeyState parameter can have any of the following values ORed together:

IDLBML_KEYSTATE_SHIFT 0x1,
IDLBML_KEYSTATE_CTRL 0x2,
IDLBML_KEYSTATE_CAPSLOCK 0x4,
IDLBML_KEYSTATE_ALT 0x8,

For the KeyCode parameters, if the key pressed is an ASCII character, then KeyCode
is the ASCII value; otherwise it is one of these values:

IDLBML_KEYBOARD_EVENT_SHIFT 1
IDLBML_KEYBOARD_EVENT_CONTROL 2
IDLBML_KEYBOARD_EVENT_CAPSLOCK 3
IDLBML_KEYBOARD_EVENT_ALT 4
IDLBML_KEYBOARD_EVENT_LEFT 5
IDLBML_KEYBOARD_EVENT_RIGHT 6
IDLBML_KEYBOARD_EVENT_UP 7
IDLBML_KEYBOARD_EVENT_DOWN 8
IDLBML_KEYBOARD_EVENT_PAGE_UP 9
IDLBML_KEYBOARD_EVENT_PAGE_DOWN 10
IDLBML_KEYBOARD_EVENT_HOME 11
IDLBML_KEYBOARD_EVENT_END 12
IDLBML_KEYBOARD_EVENT_DEL 127 // isASCII is set to 1 when

// this code is given

Note
The constants above are defined in the typelib information contained within each
wrapper object and are used with the _DIDLWrapperEvents interface defined
below.

dispinterface _DIDLWrapperEvents
{

HRESULT OnMouseDown (long Button, long KeyState, long x,
long y, [in,out]long* ForwardToIdl);

HRESULT OnMouseUp (long Button, long KeyState, long x,
long y, [in,out]long* ForwardToIdl);

HRESULT OnMouseMove (long Button, long KeyState, long x,
long y, [in,out]long* ForwardToIdl);

HRESULT OnMouseWheel (long KeyState, long WheelDelta, long x,
long y, [in,out]long* ForwardToIdl);

HRESULT OnMouseDoubleClick (long Button, long KeyState, long
x, long y, [in,out]long* ForwardToIdl);
IDL Connectivity Bridges Event Handling

210 Chapter 8: Using Exported COM Objects
HRESULT OnMouseEnter (void);
HRESULT OnMouseExit (void);
HRESULT OnKeyDown (long KeyCode, long KeyState,

[in,out]long* ForwardToIdl);
HRESULT OnKeyUp (long KeyCode, long KeyState,

[in,out]long* ForwardToIdl);
HRESULT OnSize (long width, long height, [in,out]long*

ForwardToIdl);
HRESULT OnIDLNotify (BSTR bstr1, BSTR bstr2);
HRESULT OnIDLOutput (BSTR bstrOutput);

};

Note
For the OnMouseWheel event, the value of WheelDelta is a positive or negative
value that indicates the amount that the wheel was rotated forward or backward, e.g.
+/- 1, +/- 2, etc.

Note
Since the COM wrapper uses the same event interface, only the OnIDLNotify and
OnIDLOutput events will be fired to subscribers of COM “events.” The UI events
in the _DIDLWrapperEvents interface have no meaning in a nondrawable COM
wrapper context, and therefore will not be fired to the client.
Event Handling IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 211
Error Handling

Each method of a wrapper object returns an HRESULT value. If the method call was
successful, it returns S_OK; otherwise it returns a standard COM failure. If any of the
methods calls return an HRESULT error code, the client can then call the
GetLastError method to retrieve an error string, which is generally the actual IDL
error message string.

The table below describes the error return values and their meaning when they are
returned within the context of the wrapper method calls.

Error Code Meaning

E_ACCESSDENIED This error return value occurs in one of two situations:

• IDL is busy. The client made a method call on a
wrapper object, but the underlying IDL is still busy
processing a previous request (method call) and has
not finished yet. For more information, see “IDL
Ownership and Blocking” on page 134.

• The client called the Abort method on a wrapper
object, but that wrapper object is not the current owner
of the underlying IDL; therefore it is not allowed to
abort IDL.

Table 8-1: HRESULT Error Codes
IDL Connectivity Bridges Error Handling

212 Chapter 8: Using Exported COM Objects
E_ABORT This error return value occurs in one of two situations:

• It is returned from the original wrapper method call
whose operation was aborted by a successful call to
the Abort method.

• It occurs when the client has created several wrapper
instances whose underlying IDL objects all live in the
same IDL process. During a method call on one of
those wrapper instances, the IDL pro code issues the
IDL EXIT command. When this occurs, the OPS
process is destroyed, which also destroys all the
underlying IDL objects. However, the client needs to
be notified of this event so that it can consider all those
wrapper instances as invalid and not use them again.
First, each listener (event subscriber) for each wrapper
instances will receive an OnIDLNotify callback with
the first string set to “OPS_NOTIFY_EXIT”. Then,
the method call (if any) that is in progress at the time
of the EXIT command will return with the specified
error code.

Upon receiving the notification and after receiving this
error code, the user must not make any other method
calls on the wrapper instance, as the underlying IDL
object no longer exits.

E_FAIL This error return value occurs in one of two situations:

• The client called the Abort method on a wrapper
object, but the underlying IDL is not currently busy, so
there is nothing to abort.

• An IDL error occurred. In this case, the error message
will be the same as the IDL error message.

Error Code Meaning

Table 8-1: HRESULT Error Codes (Continued)
Error Handling IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 213
Debugging

When running an application that relies on a COM wrapper object, it is often difficult
to determine when errors occur in the associated IDL object or IDL process. Since the
instance of the wrapper object is invoked outside of IDL, the normal debugging
capabilities of the IDL Workbench are not available.

However, it is possible to obtain this output by setting the IDL_BRIDGE_DEBUG
environment variable as described in “IDL_BRIDGE_DEBUG” (Chapter 1, Using
IDL). This debug information is usually written to stdout on Unix and Windows
(unless noted otherwise in the following table). This output can also be captured in
Visual Studio, the Debug Monitor (DBMON.exe) or WinDbg debugger on Windows.
In each instance, the output depends on the value of the IDL_BRIDGE_DEBUG
environment variable:

The expected behavior in common debugging environments is described in the
following table.

Value Behavior

0 Turn off debug output

1 Turn on debug output, which includes output from library load
errors, IDL execution errors, and PRINT statement output

Application Debug Output

Console
Application

Command window — debug information is presented in
line with any console window output when an .exe is
executed from the Windows command window

Visual Studio — debug output does not appear

DBMON — debug information appears in the debug
monitor window as it is generated

Table 8-2: Type and Location of Debug Information Output
IDL Connectivity Bridges Debugging

214 Chapter 8: Using Exported COM Objects
Note
In Windows, the environment variable is read when an application or command
window is initially instantiated. For example, if you open Visual Studio and then
change the value of the environment variable, you must re-launch Visual Studio to
see the change in debug output behavior. DBMON is an exception as it always
listens for debug information output and immediately reflects changes in content
level.

Windows
Application

Command window — no debug output since the window
that is launched has no knowledge of the debugging
environment variable

Visual Studio — debug output appears in the Debug Output
window only when the application window is closed

DBMON — debug information appears in the debug
monitor window as it is generated

Application Debug Output

Table 8-2: Type and Location of Debug Information Output (Continued)
Debugging IDL Connectivity Bridges

Chapter 9

Using Exported Java
Objects
This chapter discusses the following topics.
Overview of Java Export Objects 216
Java Wrapper Objects 217
Stock Java Wrapper Methods 218

Event Handling . 232
Error Handling . 242
Debugging . 244
IDL Connectivity Bridges 215

216 Chapter 9: Using Exported Java Objects
Overview of Java Export Objects

Once you have chosen to use a connector object or have exported a custom IDL
source object using the Assistant, use the method and event reference information
described here to create an instance of the object and interact with the IDL process
from an external Java environment.

This chapter presents important background information on using IDL objects
exported into Java:

• “Java Wrapper Objects” on page 217

• “Stock Java Wrapper Methods” on page 218

• “Event Handling” on page 232

• “Error Handling” on page 242
Overview of Java Export Objects IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 217
Java Wrapper Objects

There are two different types of objects created by the Java Export Bridge: drawable
and non-drawable.

• Drawable wrapper objects contain a Java AWT Canvas object to which IDL
draws. These wrapper objects inherit from the JIDLCanvas object.

• Nondrawable objects provide an interface between Java and IDL to call
methods and pass data. However, these objects do not provide a Canvas on
which IDL can draw. They inherit from the JIDLObject object.

Note
Drawable Java objects are not supported on Macintosh OS X.

JIDLCanvas objects extend java.awt.Canvas, which means that they are a
heavyweight component. They will work fine with AWT components. However,
Swing introduces the concept of lightweight components, which presents some issues
in Java when heavyweight objects are mixed with lightweight components. (Swing
does not provide a lightweight Canvas. If Swing users require the use of a Canvas,
they use an awt.Canvas). Where possible, the JIDLCanvas attempts to work around
these problems. However, Swing developers should be aware of them. The following
article provides background on this problem and describes the various problems that
may occur when mixing lightweight and heavyweight components:
http://java.sun.com/products/jfc/tsc/articles/mixing/.

Java is a highly multi-threaded language, especially in GUI applications, which can
lead to problems with event handling. For example, event handling can happen in a
different thread from the main thread that started the GUI. Thus, a complicated GUI
could start processing events after the GUI has been initialized, but before the
createObject method is called to instantiate the wrapper object for client use. It is
therefore important not to start handling events before a successful object creation,
which can be accomplished by calling the isObjectCreated method available for all
Java wrapped objects to make sure the createObject call has finished successfully.

In addition to the wrapper methods created by the Export Bridge Assistant (see
“Stock Java Wrapper Methods” on page 218 for details), exported Java objects have
access to the interfaces and classes included in the IDL Java package itself. See
Appendix A, “IDL Java Object API” for details.
IDL Connectivity Bridges Java Wrapper Objects

http://java.sun.com/products/jfc/tsc/articles/mixing

218 Chapter 9: Using Exported Java Objects
Stock Java Wrapper Methods

This section describes the stock methods in the Java wrapper objects created by the
Export Bridge Assistant:

• “abort” on page 219

• “createObject” on page 220

• “destroyObject” on page 223

• “executeString” on page 224

• “getIDLObjectClassName” on page 225

• “getIDLObjectVariableName” on page 226

• “getIDLVariable” on page 227

• “getProcessName” on page 228

• “isObjectCreated” on page 229

• “setIDLVariable” on page 230

• “setProcessName” on page 231

Every Java connector object and custom Java wrapper object has these methods in
addition to those defined by the wrapped IDL object.
Stock Java Wrapper Methods IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 219
abort

The abort method requests that the IDL process containing the underlying IDL object
abort its current activity. This method is useful if a given IDL method call is busy for
a very long time (e.g., a very long image processing command).

Note
The request is only that, a request, and IDL might take a long time before it actually
stops or might completely finish its current activity. Such a wait is an effect of the
IDL interpreter.

Note that the client can only call abort from a different thread than the one currently
executing because the method executing is, by its nature, blocked. The caller cannot
abort IDL activity that is occurring from an execution call in another wrapper object.
The client can only abort the current IDL activity if that wrapper object is the current
owner of the underlying IDL process. For more information on error return code
relating to aborting, see “Error Handling” on page 242.

Syntax

public void abort()

Arguments

None
IDL Connectivity Bridges abort

220 Chapter 9: Using Exported Java Objects
createObject

The createObject method creates the actual underlying IDL object. The argc, argv,
and argpal arguments are used to supply parameters to the underlying IDL object’s
Init method. If the Init method does not have any parameters, the caller sets argc,
argv, and argpal to 0, null, and null, respectively. The initializer argument is used to
specify IDL process initialization parameters (notably the IDL licensing mode).

The createObject method does the following:

1. It calls the Init method for the IDL object.

2. It calls the superclass initListeners method (either JIDLCanvas::initListeners
or JIDLObject::initListeners) to initialize any event handlers.

The initListeners method has default behavior, which is different for drawable and
nondrawable objects (see “Event Handling” on page 232 for more information). If the
default behavior is not desired, a subclass to modify the listener initialization can
override the initListeners method.

Note
Registering or unregistering listeners for events should happen in the initListeners
method or AFTER the createObject method.

Syntax

public void createObject()

public void createObject(int argc, Object[] argv, int[] argpal)

public void createObject(int argc, Object[] argv, int[] argpal,
JIDLProcessInitializer initializer)

public void createObject(JIDLProcessInitializer initializer)

Arguments

argc

The number of parameters to be passed to Init.
createObject IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 221
argv

The array of objects to be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObjectI, JIDLString, or
JIDLArray.

argpal

An array of argc flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

initializer

A JIDLProcessInitializer object that encapsulates the IDL process initialization
parameters. (Process initialization parameters allow the Java programmer to control
the licensing mode of the IDL process. See “IDL Licensing Modes” on page 134 for
details on the default licensing mechanism.)

Example

The Init method of the IDL object being wrapped has the following signature:

PRO IDLexFoo::INIT, rect, filename

where rect is an array of four integers and filename is a string.

The following is an example of Java client code that creates an instance of the
wrapper object and calls the createObject method with the rect and filename
parameters:

// These are the Java types we want to pass to the ::Init method
int[] rect = {0, 0, 5, 10};
String file = "someFilename.txt";

// Wrap the Java types using Export Bridge data types
JIDLArray bRect = new JIDLArray(rect);
JIDLString bFile = new JIDLString(file);

// Create the wrapper object
MyWrapper wrapper = new MyWrapper();

// Set up parameters to pass to createObject
final int ARGC = 2;
Object[] argv = new Object[ARGC];
int[] argp = new int[ARGC];

IDL Connectivity Bridges createObject

222 Chapter 9: Using Exported Java Objects
argv[0] = bRect;
argp[0] = JIDLConst.PARMFLAG_CONST; // "in-only" parameter
argv[1] = bFile;
argp[1] = JIDLConst.PARMFLAG_CONST; // "in-only" parameter

// Create the underlying IDL object and call
// its ::Init method with parameters and default IDL
// process initialization settings
wrapper.createObject(ARGC, argv, argp);

Note
See Appendix C, “Java Object Creation” for additional examples of creating Java
wrapper objects with and without parameters.
createObject IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 223
destroyObject

The destroyObject method destroys the underlying IDL object associated with the
wrapper. If the object being destroyed is the last object within a process, the process
is also destroyed.

Note that this method does not destroy the actual wrapper object. Because the
wrapper object is a Java object, it follows all the Java reference-counting and
garbage-collection schemes. Once all references to the wrapper object are released
from Java code and once the JVM calls the garbage collector, the wrapper object may
be deleted from memory.

Note
Trying to re-create an object after it has been destroyed it is not supported. You
must re-define the variable and then re-create the object.

Syntax

public void destroyObject()

Arguments

None
IDL Connectivity Bridges destroyObject

224 Chapter 9: Using Exported Java Objects
executeString

The executeString method executes the specified command in the IDL process
containing the underlying IDL object

Note
This method is disabled for applications running in the IDL Virtual Machine.

Syntax

public void executeString(String sCmd)

Arguments

sCmd

The command to be executed.

Examples

See “IDL Command Line with Java Connector Object” on page 258 for an example
that executes an IDL command entered into one textbox and writes IDL output or
error information to a second textbox.
executeString IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 225
getIDLObjectClassName

The getIDLObjectClassName method returns the IDL object class name of the
underlying IDL object.

Syntax

public String getIDLObjectClassName()

Arguments

None
IDL Connectivity Bridges getIDLObjectClassName

226 Chapter 9: Using Exported Java Objects
getIDLObjectVariableName

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. The getIDLObjectVariableName method returns that name.

Syntax

public String getIDLObjectVariableName()

Arguments

None
getIDLObjectVariableName IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 227
getIDLVariable

The getIDLVariable method retrieves the named variable from the IDL process
associated with the underlying IDL object.

Note
This method is disabled for applications running in the IDL Virtual Machine.

Syntax

public Object getIDLVariable(String sVar)

Arguments

sVar

The named variable to be retrieved. The returned object is of type JIDLNumber,
JIDLString, JIDLObjectI, or JIDLArray.

If the variable is an array, the array is always converted from IDL majority to the
standard Java array majority. (For more information on implications of array
majority, see “Multidimensional Array Storage and Access” on page 493.)

Examples

See “Data Manipulation with a Java Connector Object” on page 256 for an array
manipulation example that uses the getIDLVariable, setIDLVariable and
executeString methods.
IDL Connectivity Bridges getIDLVariable

228 Chapter 9: Using Exported Java Objects
getProcessName

The getProcessName method returns the name of the process associated with the
underlying IDL object.

Syntax

public String getProcessName()

Arguments

None
getProcessName IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 229
isObjectCreated

The isObjectCreated method returns True if the object has been created successfully
and returns False if the object has not yet been created or if the object creation was
unsuccessful. This call is often useful in a multi-threaded environment to check that
an object is created before making a method call on that object.

Syntax

public boolean isObjectCreated()

Arguments

None
IDL Connectivity Bridges isObjectCreated

230 Chapter 9: Using Exported Java Objects
setIDLVariable

The setIDLVariable method sets the specified variable name to the specified value in
the IDL process containing the underlying IDL object. If the type is JIDLArray, it is
always converted to IDL majority.

Note
This method is disabled for applications running in the IDL Virtual Machine.

Syntax

public void setIDLVariable(String sVar, Object value)

Arguments

sVar

A string identifying the variable in the IDL process to be set to value.

value

The value for sVar. The value should be an object of type JIDLNumber, JIDLObjectI,
JIDLString or JIDLArray. If the variable does not exist, it is created.

Examples

See “Data Manipulation with a Java Connector Object” on page 256 for an array
manipulation example that uses the getIDLVariable, setIDLVariable and
executeString methods.
setIDLVariable IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 231
setProcessName

The setProcessName method sets the name of the process that will contain the IDL
object. This can only be called before making the createObject call. Once the object is
created, the process name cannot be reset and calling this method after createObject
has no effect.

Syntax

public void setProcessName(String sProcess)

Arguments

sProcess

A string containing the name of the process that will contain the IDL object.
IDL Connectivity Bridges setProcessName

232 Chapter 9: Using Exported Java Objects
Event Handling

Events in Java are handled by registered listener objects (often referred to as the
Observer design pattern). The object interested in listening to a given event must
implement the proper Java interface and then register to receive the events.

Any Java object can register to listen to any other object’s events, but it is often
useful for a wrapper object to listen to its own GUI and notify events. It usually
makes most sense for a client object to listen to IDL output events.

Note
Registering or unregistering listeners for events should happen in the initListeners
method or AFTER the createObject method.

Nondrawable Java Objects

Nondrawable objects, which inherit from JIDLObject, can be notified of the
following events:

• IDL notify events (by implementing JIDLNotifyListener)

• IDL output events (by implementing JIDLOutputListener)

The default behavior as provided by the JIDLObject superclass is that they are not
wired to listen to any events.

Drawable Java Objects

Drawable objects, which inherit from JIDLCanvas, are wired by default to listen to
the following events:

• Mouse events (by implementing JIDLMouseListener)

• Mouse enter canvas

• Mouse exit canvas

• Mouse pressed

• Mouse released

• Mouse motion events (by implementing JIDLMouseMotionListener)

• Mouse dragged

• Mouse moved
Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 233
• Mouse wheel events (by implementing JIDLMouseWheelListener)

• Key events (by implementing JIDLKeyListener)

• Key pressed

• Key released

• Component events (by implementing JIDLComponentListener)

• Canvas exposed

• Canvas resized

In addition, drawable objects can also listen to the following events, but they do not
listen to them by default:

• IDL notify events (by implementing JIDLNotifyListener)

• IDL output events (by implementing JIDLOutputListener)

IDL Notification

As mentioned above, IDL objects that subclass itComponent can trigger a
notification from the IDL object level by calling IDLitComponent::NotifyBridge.
Both drawable (JIDLCanvas) and nondrawable (JIDLObject) wrapper objects handle
IDL notifications.

To receive a notification, a class must implement the JIDLNotifyListener interface
and register with the wrapper object by calling its addIDLNotifyListener method to
register itself as a listener. The listener class can unregister itself by calling the
removeIDLNotifyListener method.

The following is the definition of the JIDLNotifyListener interface:

public interface JIDLNotifyListener {

// obj: a reference to the wrapper object that triggered notify
// s1 and s2 are strings sent from IDLitComponent::NotifyBridge
void OnIDLNotify(JIDLObjectI obj, String s1, String s2);

}

These methods are available to JIDLCanvas and JIDLObject:

public void addIDLNotifyListener(JIDLNotifyListener l);
public void removeIDLNotifyListener(JIDLNotifyListener l);
IDL Connectivity Bridges Event Handling

234 Chapter 9: Using Exported Java Objects
IDL Output

In general, IDL output can be listened to by any class that implements the
JIDLOutputListener interface and registers itself as a listener by calling
addIDLOutputListener. The listener class can unregister itself by calling
removeIDLOutputListener. Both drawable (JIDLCanvas) and non-drawable
(JIDLObject) wrapper objects handle IDL output.

The following is the definition of the JIDLOutputListener interface:

public interface JIDLOutputListener {

// obj: a reference to the wrapper object that triggered notify
// s is the IDL output string
void IDLoutput(JIDLObjectI obj, String s);

}

These methods are available to JIDLCanvas and JIDLObject:

public void addIDLOutputListener(JIDLOutputListener l);
public void removeIDLOutputListener(JIDLOutputListener l);

Handling Specific Events

This section describes how client applications can listen to and handle the following
events: mouse, mouse motion, keyboard, and component.

Mouse Events

Mouse events include a mouse entering the canvas, the mouse exiting the canvas, a
mouse press in the canvas, and a mouse release in the canvas. Drag and move events
are handled as mouse motion events (see “Mouse Motion Events” on page 235).

In general, mouse events may be listened to by any class that implements the
JIDLMouseListener interface and registers itself as a listener by calling the
addIDLMouseListener method. The listener class can unregister itself by calling the
removeIDLMouseListener method. Only drawable (JIDLCanvas) wrapper objects
handle this event type.

The following is the definition of the JIDLMouseListener interface:

public interface JIDLMouseListener {

// obj is a reference to the wrapper object
// e is a java.awt.event.MouseEvent
void IDLmouseEntered (JIDLObjectI obj, MouseEvent e);
void IDLmouseExited (JIDLObjectI obj, MouseEvent e);
void IDLmousePressed (JIDLObjectI obj, MouseEvent e);
Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 235
void IDLmouseReleased(JIDLObjectI obj, MouseEvent e);
}

These methods are available to JIDLCanvas:

public void addIDLMouseListener(JIDLMouseListener l);
public void removeIDLMouseListener(JIDLMouseListener l);

The default behavior of drawable wrappers is that they automatically register to listen
to themselves and provide default event handlers for each of these events. The
following table describes the default behavior for each event type.

Mouse Motion Events

Mouse motion events include a mouse being moved or dragged inside the canvas. In
general, mouse motion can be listened to by any class that implements the
JIDLMouseMotionListener interface and registers itself as a listener by calling the
addIDLMouseMotionListener method. The listener class can unregister itself by
calling the removeIDLMouseMotionListener method. Only drawable (JIDLCanvas)
wrapper objects handle this event type.

The following is the definition of the JIDLMouseMotionListener interface:

public interface JIDLMouseMotionListener {

// obj is a reference to the wrapper object

Event Action

IDLmousePressed Triggered when a mouse button is pressed inside the
canvas. The default behavior passes the event to the
IDL method OnMouseDown.

IDLmouseReleased Triggered when a mouse button is released inside the
canvas. The default behavior passes the event to the
IDL method OnMouseUp.

IDLmouseEntered Triggered when the mouse enters the canvas. Default
implementation does nothing. The default behavior
calls the IDL method OnEnter.

IDLmouseExited Triggered when the mouse exits the canvas. Default
implementation does nothing. The default behavior
calls the IDL method OnExit.

Table 9-1: The Default Behavior of Mouse Event Types
IDL Connectivity Bridges Event Handling

236 Chapter 9: Using Exported Java Objects
// e is a java.awt.event.MouseEvent
void IDLmouseDragged(JIDLObjectI obj, MouseEvent e);
void IDLmouseMoved(JIDLObjectI obj, MouseEvent e);

}

These methods are available to JIDLCanvas:

public void addIDLMouseMotionListener(JIDLMouseMotionListener l);
public void removeIDLMouseMotionListener(JIDLMouseMotionListener
l);

The default behavior of drawable wrappers is that they automatically register to listen
to themselves and provide default event handlers for each of these events. The
following table describes the default behavior for each event type.

Mouse Wheel Events

Mouse wheel events include the scroll wheel of the mouse being rolled inside the
canvas. In general, mouse wheel motion can be listened to by any class that
implements the JIDLMouseWheelListener interface and registers itself as a listener
by calling the addIDLMouseWheelListener method. The listener class can unregister
itself by calling the removeIDLMouseWheelListener method. Only drawable
(JIDLCanvas) wrapper objects handle this event type.

The following is the definition of the JIDLMouseWheelListener interface:

public interface JIDLMouseWheelListener {
/** A mouse wheel has moved inside the JIDLCanvas.
* obj is a reference to the wrapper object
* e is a java.awt.event.MouseWheelEvent
*/
void IDLmouseWheelMoved(JIDLObjectI obj, MouseWheelEvent e);

}

Event Action

IDLmouseDragged Triggered when the mouse is moved while its left
button is pressed inside the canvas. The default
behavior passes the event to the IDL method
OnMouseMotion.

IDLmouseMoved Triggered when the mouse is moved (while no button
is pressed) inside the canvas. The default behavior
passes the event to the IDL method OnMouseMotion.

Table 9-2: The Default Behavior of Mouse Motion Event Types
Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 237
These methods are available to JIDLCanvas:

public void addIDLMouseWheelListener(JIDLMouseWheelListener l);
public void removeIDLMouseWheelListener(JIDLMouseWheelListener l);

The default behavior of drawable wrappers is that they automatically register to listen
to themselves and provide default event handlers for each of these events. The
following table describes the default behavior for each event type.

Keyboard Events

Keyboard events include a key being pressed or released when the Canvas has focus.
In general, keyboard events can be listened to by any class that implements the
JIDLKeyListener interface and registers itself as a listener by calling the
addIDLKeyListener method. The listener class can unregister itself by calling the
removeIDLKeyListener method. Only drawable (JIDLCanvas) wrapper objects
handle this event type.

The following is the definition of the JIDLKeyListener interface:

public interface JIDLKeyListener {

// obj is a reference to the wrapper object
// e is a java.awt.event.KeyEvent
// (x,y) is the location of the mouse in the Canvas
void IDLkeyPressed (JIDLObjectI obj, KeyEvent e, int x, int y);
void IDLkeyReleased(JIDLObjectI obj, KeyEvent e, int x, int y);

}

These methods are available to JIDLCanvas:

public void addIDLKeyListener(JIDLKeyListener l);
public void removeIDLKeyListener(JIDLKeyListener l);

The default behavior of drawable wrappers is that they automatically register to listen
to themselves and provide default event handlers for each of these events. The
following table describes the default behavior for each event type.

Event Action

IDLmouseWheelMoved Triggered when the mouse wheel is rolled. The default
behavior passes the event to the IDL method OnWheel.

Table 9-3: The Default Behavior of Mouse Wheel Event Type
IDL Connectivity Bridges Event Handling

238 Chapter 9: Using Exported Java Objects
Component Events

Component events include the drawable canvas being resized and being exposed
(uncovered or redrawn). Typically, these events are not handled by the client, but are
handled behind the scenes by the Java Export Bridge, which resizes and repaints the
canvas automatically. However, these events can be of interest to the client.

In general, component events can be listened to by any class that implements the
JIDLComponentListener interface and registers itself as a listener by calling the
addComponentListener method. The listener class can unregister itself by calling the
removeComponentListener method. Only drawable (JIDLCanvas) wrapper objects
handle this event type, and these methods are available only to JIDLCanvas objects.

The following is the definition of the JIDLComponentListener interface:

public interface JIDLComponentListener {
void IDLcomponentResized(JIDLObjectI obj, ComponentEvent e);
void IDLcomponentExposed(JIDLObjectI obj);

}

These methods are available to JIDLCanvas:

public void addIDLComponentListener(JIDLComponentListener l)
public void removeIDLComponentListener(JIDLComponentListener l)

Specifically, drawable wrapper objects (those that inherit from JIDLCanvas)
automatically register to listen to their own component events and provide default
handlers for each of these events. The following table describes the methods and
default implementations for the events.

Event Action

IDLkeyPressed Triggered when a key is pressed when the canvas has
focus. The default behavior passes the event to the IDL
method OnKeyboard.

IDLkeyReleased Triggered when a key is released when the canvas has
focus. The default behavior passes the event to the IDL
method OnKeyboard.

Table 9-4: The Default Behavior of Keyboard Event Types
Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 239
Subclassing to Change Behavior

There are two ways to change the event-handling behavior of listener objects:
subclassing the wrapper object and handling the events in the subclass, or allowing a
client object to handle events. Typically, GUI events and notifications are handled
through subclassing and IDL output through client objects.

When a client calls the (drawable or nondrawable) wrapper object’s createObject
method, the wrapper object calls its initListeners method internally. This method,
automatically generated by the Export Bridge Assistant, determines which events the
wrapper object will listen to. As explained above, the wrapper object also has a set of
methods generated to provide the default handling of these events.

To change what the object is listening to, subclass the generated wrapper object and
override the initListeners method. The subclassed initListeners method can now
register for whatever listeners in which it is interested.

For example, automatically generated drawable wrapper objects handle mouse,
mouse motion, keyboard, and component events. Suppose you have a wrapper object
called canvasWrapper, generated by the Assistant. You could subclass a wrapper
object called myCanvasWrapper that would only handle mouse motion events. (The
mouse motion events would still be handled in the default manner, but mouse,
keyboard, and component listening would not be enabled.) This new wrapper object
would look like this:

class myCanvasWrapper extends canvasWrapper {
public void initListeners() {

addIDLMouseMotionListener(this);
}

}

Event Action

IDLcomponentResized Triggered when the canvas is resized. The default
behavior calls the IDL method OnResize.

IDLcomponentExposed Triggered when the canvas is exposed. The default
behavior calls the IDL OnExpose method, which is
expected to call the IDL object’s draw method.

Table 9-5: The Default Behavior of Component Event Types
IDL Connectivity Bridges Event Handling

240 Chapter 9: Using Exported Java Objects
To change the behavior of the listener handlers, subclass the generated wrapper
object and override the event handling method whose behavior you want change. To
get the default behavior, simply pass the event to the superclass.

Consider the following example. Given the same generated canvasWrapper class,
you could ignore mouse drags and, on a mouse press, print information to a console
object before passing up to the IDL object to handle. This class would look like this:

class myCanvasWrapper2 extends canvasWrapper {
public void IDLmousePressed(JIDLObjectI o, MouseEvent e) {

console.printMouseEvent(e);
super.IDLmousePressed(o, e); // pass to IDL

}

public void IDLmouseDragged(JIDLObjectI o, MouseEvent e) {
// do nothing

}
}

Listening from Other Java Objects

Any Java object that implements the proper listener interface and registers itself with
the wrapper object as a listener can also listen to events of interest. When more than
one object is registered to listen to a given event, all listeners receive the event
without a guarantee of order.

The steps are as follows:

1. The class implements the proper listener interface.

2. The class registers to listen to events.

3. The class handles the event in the listener interface method (or methods).

As an example, use the same canvasWrapper in a class called myClient that listens to
IDL output. First, implement the JIDLOutputListener interface. Next, use the
constructor to have the client register itself as a listener of the wrapper’s IDL output.
Finally, implement the IDLoutput to act on the output. The code is shown below:

import com.itt.javaidl.*;

class myClient implements JIDLOutputListener {
canvasWrapper m_wrapper;
public myClient() {

m_wrapper = new canvasWrapper();
m_wrapper.createObject();
m_wrapper.addIDLOutputListener(this);

}
public void IDLoutput(JIDLObjectI obj, String s) {
Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 241
// do something with the IDL output
}

...
}

IDL Connectivity Bridges Event Handling

242 Chapter 9: Using Exported Java Objects
Error Handling

When an error occurs in a Java wrapper object, it throws an unchecked exception of
type JIDLException (or a subclass of JIDLException), which means that calls into a
wrapper object should be wrapped in try-catch blocks, as is standard in Java.
JIDLException provides the following method for getting the IDL error code:

public long getErrorCode();

In addition, because JIDLException inherits from java.lang.Error, other Java
exception methods such as getMessage and printStackTrace are available.

The table below describes the error return values and their meaning when they are
returned within the context of the wrapper method calls. The Java errors are
encapsulated in a JIDLException object or a subclass of JIDLException, as noted in
the table.

Error Exception/Code Meaning

JIDLBusyException (a subclass of JIDLException)
with JIDLConst.IDL_BUSY error code

IDL is busy. The client made a method
call on a wrapper object, but the
underlying IDL process is still busy
with a previous request (method call)
and has not finished yet. For more
information, see “IDL Ownership and
Blocking” on page 134.

JIDLException with
JIDLConst.IDL_ABORT_NOT_OWNER error
code

The client called the abort method on a
wrapper object, but that wrapper
object is not the current owner of the
underlying IDL process. Therefore, it
is not allowed to abort IDL.

JIDLException with
JIDLConst.IDL_NOTHING_TO_ABORT error
code

The client called the abort method on a
wrapper object, but the underlying
IDL process is not currently busy, so
there is nothing to abort.

JIDLAbortedException (a subclass of
JIDLException) with JIDLConst.IDL_ABORTED
error code

This error is returned from the original
wrapper method call whose operation
was aborted by a successful call to the
abort method.

Table 9-6: JIDLException Error Codes
Error Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 243
JIDLException with
JIDLConst.OPS_NOTICE_PROCESS_ABORTED
error code

This error occurs when the client has
created several wrapper instances
whose underlying IDL objects all live
in the same IDL process. During a
method call on one of those wrapper
instances, the IDL pro code issues the
IDL exit command. When this occurs,
the process is destroyed, which also
destroys all the underlying IDL
objects. However, the client needs to
be notified of this event so that it can
consider all those wrapper instances as
invalid and not use them again.

First, each listener (event subscriber)
for each wrapper instance receives an
OnIDLNotify callback with the first
string set to “OPS_NOTIFY_EXIT”.
Then, the method call (if any) that is in
progress at the time of the EXIT
command will return with the
specified error code.

Upon receiving the notification and
after receiving this error code, the user
must not make any other method calls
on the wrapper instance, as the
underlying IDL object no longer exits.

JIDLException with IDL error code A specific IDL error occurred. The
error code is the same as the IDL error
code.

Error Exception/Code Meaning

Table 9-6: JIDLException Error Codes (Continued)
IDL Connectivity Bridges Error Handling

244 Chapter 9: Using Exported Java Objects
Debugging

When running an application that relies on a Java wrapper object, it is often difficult
to determine when errors occur in the associated IDL object. Since the instance of the
wrapper object is invoked outside of IDL, the normal debugging capabilities of the
IDL Workbench are not available.

However, it is possible to obtain this output by setting the IDL_BRIDGE_DEBUG
environment variable as described in “IDL_BRIDGE_DEBUG” (Chapter 1, Using
IDL). For example, if you set this environment variable to 1, you can see library load
errors (on Windows), IDL execution errors, and output from IDL print commands.
The appearance of debug information printed to stdout on Windows or UNIX
depends upon the value set for the IDL_BRIDGE_DEBUG environment variable:

To get additional Java-side diagnostics related to finding and loading the native
libraries, define the IDL_LOAD_DEBUG parameter on the command line when
starting a Java application, as follows:

java -DIDL_LOAD_DEBUG <class-to-run>

Value Behavior

0 Turn off debug output

1 Turn on debug output, which includes output from library load
errors, IDL execution errors, and PRINT statement output
Debugging IDL Connectivity Bridges

Chapter 10

Using the
Connector Object
This chapter discusses how to use the prebuilt connector object that is included in the IDL
distribution in COM and Java applications.
About the IDL Connector Object 246
Preparing to Use the IDL Connector Object . .
247

Connector Object COM Examples 249
Connector Object Java Examples 253
IDL Connectivity Bridges 245

246 Chapter 10: Using the Connector Object
About the IDL Connector Object

The prebuilt IDL connector export object that is shipped with the IDL distribution
lets you quickly incorporate the processing power of IDL into an application
developed in an external, object-oriented environment such as COM or Java. The
connector object definition provides the basis for a nondrawable COM or Java
connector wrapper object that includes the ability to get and set IDL variables and
execute command statements in the associated IDL process. These connector
wrapper objects expose all of the standard wrapper object methods. See “Stock COM
Wrapper Methods” on page 192 (COM) and “Stock Java Wrapper Methods” on
page 218 (Java) for details.

Use a connector wrapper object if you need basic IDL processing capabilities. If you
need the flexibility of custom object methods, an interactive IDL drawing interface,
and/or associated mouse events, you should create an IDL object with the needed
functionality and export it using the Export Bridge Assistant as described in Chapter
7, “Using the Export Bridge Assistant”.

Note
Using the connector object provides exactly the same functionality as creating and
exporting the simplest IDL object, which could consist of code similar to the
following:

FUNCTION simpleobj::INIT
RETURN, 1

END

PRO simpleobj__define
struct = {simpleobj, $
dummy:0b $; dummy structure field, not a property

}
END
About the IDL Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 247
Preparing to Use the IDL Connector Object

All of the files needed to use a connector object are provided in the IDL distribution.
You can locate the files in the following directory locations where IDL_DIR is where
you have installed IDL:

To use the connector object with a COM application, you must reference the
COM_idl_connectLib 1.0 Type Library library in your application. There is
no need to register the COM_idl_connect.dll as described in “COM Registration
Requirements” on page 143 since this is automatically registered upon IDL
installation.

Files File Descriptions

COM Resource files:

• COM_idl_connect.dll

• COM_idl_connect.tlb

are located in IDL_DIR/resource/bridges/export/COM

Java The java_IDL_connect class is included in the
javaidlb.jar file, which is located in the

IDL_DIR/resource/bridges/export/java

directory.

The javaidlb.jar file must be included in the Java classpath
in order to use the Java connector wrapper object. This file
contains the com.idl.javaidl package, which defines the
Java class files needed by the Java export bridge.

IDL Object The connector object definition is stored in a SAVE file named

idl_connect_define.sav

located in the IDL_DIR/lib/bridges directory.

This is the only object definition file, and since it is contained
within a SAVE file, it can be used with runtime IDL. Unlike
custom IDL object definition files, there is no need to distribute
this definition file with your application; it is already included in
the IDL distribution.

Table 10-1: Connector Object Files
IDL Connectivity Bridges Preparing to Use the IDL Connector Object

248 Chapter 10: Using the Connector Object
To use the connector object within a Java application, you must include the correct
import statement in your Java application and set the classpath and as described in
“Java Requirements” on page 143.
Preparing to Use the IDL Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 249
Connector Object COM Examples

The following examples show how to use the connector object in Visual Basic .NET
Console and Windows applications. These examples contain important information
about how to access messages sent from IDL in a COM application and how to
communicate with the IDL process. In COM clients, the IDL output and notification
methods are part of the default outgoing event interface.

• “Hello World Example with a COM Connector Object” on page 250 — shows
how to use the ExecuteString method of the wrapper object to print a statement
such as “Hello World” in a console application.

• “Data Manipulation with a COM Connector Object” on page 251 — uses
SetIDLVariable, GetIDLVariable and ExecuteString methods during array
manipulation within a Console application.

• “IDL Command Line with a COM Connector Object” on page 252 — provides
an interactive “IDL command line” in a Windows application.
IDL Connectivity Bridges Connector Object COM Examples

250 Chapter 10: Using the Connector Object
Hello World Example with a COM Connector Object

To create a Visual Basic .NET console application using the connector object
wrapper methods to print “Hello World” in a console application window, complete
the following steps:

1. Create a new Visual Basic .NET console application and add a reference to the
COM_idl_connectLib 1.0 Type Library.

2. Replace the default module definition with the code referenced below. See
code comments for details.

Example Code
The text file for this example, com_export_hello_doc.txt, is located in the
examples/doc/bridges/COM subdirectory of the IDL distribution. This Visual
Basic .NET code can be copied from the text file and adopted for use in your COM
environment.

After building and running the project, a simple console window will appear and
“Hello World” will be output to this location.

Note
An expanded “Hello World” example that allows you to optionally say hello from
someone can be found in “Hello World COM Example with Custom Method” in
Chapter 12. This example uses a custom IDL object with a method and the Export
Bridge Assistant to create the necessary wrapper object files.
Hello World Example with a COM Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 251
Data Manipulation with a COM Connector Object

The following Visual Basic .NET example creates two arrays and passes them to IDL
using the SetIDLVariable method. An ExecuteString command then multiplies the
two arrays and GetIDLVariable returns the result to the COM application. The
product of the array multiplication is printed to the console window.

1. Create a new Visual Basic .NET console application and add a reference to the
COM_idl_connectLib 1.0 Type Library.

2. Replace the default module definition with the following code. See code
comments for useful information.

Example Code
The text file for this example, com_export_arrays_doc.txt, is located in the
examples/doc/bridges/COM subdirectory of the IDL distribution. This Visual
Basic .NET code can be copied from the text file and adopted for use in your COM
environment.

Building and running this program outputs the following to the console window.

Figure 10-1: Console Output of Array Multiplication
IDL Connectivity Bridges Data Manipulation with a COM Connector Object

252 Chapter 10: Using the Connector Object
IDL Command Line with a COM Connector Object

The following example creates a simple Windows application in Visual Basic .NET
that includes two text boxes. An IDL command typed in the top textbox is passed to
the IDL process through the use of the ExecuteString method. Command output and
any error messages are printed in the bottom textbox.

To replicate this example, complete the following steps:

1. Create a new Visual Basic .NET Windows application and add a reference to
the COM_idl_connectLib 1.0 Type Library.

2. Replace the default form definition with the code referenced below. See code
comments for details.

Example Code
The text file for this example, com_export_commandline_doc.txt, is located
in the examples/doc/bridges/COM subdirectory of the IDL distribution. This
Visual Basic .NET code can be copied from the text file and adopted for use in your
COM environment.

After building and running the project, enter IDL commands in the top textbox.
Pressing the Enter key sends the command to the IDL process.

Figure 10-2: Design-time View of Simple Command Line Example
IDL Command Line with a COM Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 253
Connector Object Java Examples

The following examples introduce the capabilities of the Java connector object:

• “Hello World Example with a Java Connector Object” on page 254

• “Data Manipulation with a Java Connector Object” on page 256

• “IDL Command Line with Java Connector Object” on page 258

Note
The Java class files needed for the Export Bridge are found in the
com.idl.javaidl package, which is stored in the javaidlb.jar file. See
“Preparing to Use the IDL Connector Object” on page 247 for more information.

Note on Running the Java Examples

Examples in this chapter provide Windows-style compile javac (compile) and
java (run) commands. If you are running on a platform other than Windows, use
your platform’s path and directory separators and see “Java Requirements” on
page 143 for information about the bridge_setup file, which sets additional
information.
IDL Connectivity Bridges Connector Object Java Examples

254 Chapter 10: Using the Connector Object
Hello World Example with a Java Connector Object

To create a Java application that uses the connector object’s executeString method to
print “Hello World” in the command window, complete the following steps.

Example Code
The file for this example, hello_example.java, is located in the
examples/doc/bridges/java subdirectory of the IDL distribution.

1. Open the file named hello_example.java in the location referenced above.

2. Open the Windows Command window by selecting Start → Run and enter
cmd in the textbox.

3. Use the cd command to change to the directory containing the
hello_example.java file. For a default Windows installation, the
command would be:

cd IDL_DIR\examples\doc\bridges\java

where IDL_DIR is the directory where you have installed IDL.

4. Reference the classpath of javaidlb.jar in the compile statement. This
automatically accesses the connector object, java_IDL_connect, which is
contained within the file. Enter the following two commands (as single lines)
to compile and execute the program, replacing IDL_DIR with the IDL
installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
hello_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
hello_example

Tip
See “Note on Running the Java Examples” on page 253 for information on
executing Java commands on a non-Windows platform.

After compiling and running the project, “Hello World!” will appear in the command
window.

Note
An expanded “Hello World” example that allows you to optionally say hello from
someone can be found in “Hello World Java Example with Additional Method” on
Hello World Example with a Java Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 255
page 294. This example uses a custom IDL object with a method and the Export
Bridge Assistant to create the necessary wrapper object files.
IDL Connectivity Bridges Hello World Example with a Java Connector Object

256 Chapter 10: Using the Connector Object
Data Manipulation with a Java Connector Object

The following Java example creates two arrays and passes them to IDL using the
setIDLVariable method. An executeString command then multiplies the two arrays
and getIDLVariable returns the result to the java application. The product of the array
multiplication is printed to the command window.

Example Code
The file for this example, arrays_example.java, is located in the
examples/doc/bridges/java subdirectory of the IDL distribution.

Complete the following steps:

1. Open the file named arrays_example.java in the location referenced
above.

2. Open the Windows Command window by selecting Start → Run and enter
cmd in the textbox.

3. Use the cd command to change to the directory containing the
arrays_example.java file. For a default Windows installation, the
command would be:

cd IDL_DIR\examples\doc\bridges\java

where IDL_DIR is the directory where you have installed IDL.

4. Reference the classpath of javaidlb.jar in the compile statement. This
automatically accesses the connector object, java_IDL_connect, which is
contained within the file. Enter the following two commands (as single lines)
to compile and execute the program, replacing IDL_DIR with the IDL
installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
arrays_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
arrays_example

Tip
See “Note on Running the Java Examples” on page 253 for information on
executing Java commands on a non-Windows platform.
Data Manipulation with a Java Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 257
After compiling and running the project, the result of the array manipulation is
printed to the command window, a subset of which appears in the following figure.

Figure 10-3: Java Array Manipulation Result
IDL Connectivity Bridges Data Manipulation with a Java Connector Object

258 Chapter 10: Using the Connector Object
IDL Command Line with Java Connector Object

The following example creates a simple Java application that includes two text boxes.
An IDL command typed in the top textbox is passed to the IDL process through the
use of the executeString method. Command output and any error messages are
printed in the bottom textbox.

Example Code
The file for this example, JIDLCommandLine.java, is located in the
examples/doc/bridges/java subdirectory of the IDL distribution.

1. Open the file named JIDLCommandLine.java in the location referenced
above:

2. Open the Windows Command window by selecting Start → Run and enter
cmd in the textbox.

3. Use the cd command to change to the directory containing the
JIDLCommandLine.java file. For a default Windows installation, the
command would be:

cd IDL_DIR\examples\doc\bridges\java

where IDL_DIR is the directory where you have installed IDL.

4. Reference the classpath of javaidlb.jar in the compile statement. This
automatically accesses the connector object, java_IDL_connect, which is
contained within the file. Enter the following two commands (as single lines)
to compile and execute the program, replacing IDL_DIR with the IDL
installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
JIDLCommandLine.java

java -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
JIDLCommandLine

Tip
See “Note on Running the Java Examples” on page 253 for information on
executing Java commands on a non-Windows platform.
IDL Command Line with Java Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 259
After compiling and running the project, a simple command line interface appears as
shown in the following figure.

Send commands to the IDL process by entering them in the top text box and pressing
the Enter key. Any output or errors will appear in the lower text field.

Figure 10-4: Java “IDL” Command Line Interface
IDL Connectivity Bridges IDL Command Line with Java Connector Object

260 Chapter 10: Using the Connector Object
IDL Command Line with Java Connector Object IDL Connectivity Bridges

Chapter 11

Writing IDL Objects for
Exporting
This chapter discusses the following topics.
Overview . 262
Programming Limitations 263

Exporting Drawable Objects 264
Drawable Object Canvas Examples 266
IDL Connectivity Bridges 261

262 Chapter 11: Writing IDL Objects for Exporting
Overview

The objects you write in IDL can, in the vast number of cases, take full advantage of
the Export Bridge technology, with only a few of IDL’s capabilities not available. In
addition, due to limitations imposed by external environments (COM and Java),
certain restrictions exist for the method signatures that are exposed through the
Export Bridge. This chapter outlines these functional limitations.

The chapter also provides a concise introduction to the object classes available to
make drawable wrapper objects (objects that subclass from IDLitWindow,
IDLgrWindow, and IDLitDirectWindow) and which to use when, with examples.
Overview IDL Connectivity Bridges

Chapter 11: Writing IDL Objects for Exporting 263
Programming Limitations

This section discusses the programming limitations required by the Export Bridge
technology for successfully generating wrapper objects.

Keyword Parameters

Because COM and Java don’t support the concept of keyword parameters, the Export
Bridge does not support IDL keyword parameters in method signatures. If you want
to export an IDL method that uses keyword parameters, you must wrap the method in
another method that only implements positional parameters. The keyword parameters
to IDL source object methods are ignored except for the SetProperty and GetProperty
methods, in which keyword parameters are extracted to obtain the object’s properties.

Unsupported Data Types

Properties and method parameters exported to a wrapper object class cannot include
data of any of the following types:

• IDL Pointer

• Single- or double-precision complex data

• IDL Structure

• IDL objects, unless the object is an exported IDL object that exists in the same
process space or pool as the object upon which the method is being called (as
described in “Object Reference Use” on page 136)

Array Majority and Shape

The majority and shape of how data arrays are structured differs between the external
environments supported by the Export Bridge (COM and Java) and IDL. Note that
the Export Bridge technology might create a copy of array data when converting
between external environments and IDL.

For further information on array majority, see “Multidimensional Array Storage and
Access” on page 493. In addition, see “Array Order Conversion” on page 137 and
“Converting Array Majority” on page 165 for details on how array majority is
handled in the Assistant.
IDL Connectivity Bridges Programming Limitations

264 Chapter 11: Writing IDL Objects for Exporting
Exporting Drawable Objects

If you want to create a COM or Java application that uses a drawable wrapper object,
you must subclass your IDL object from one of the following object classes before
generating the wrapper:

• IDLgrWindow — provides a canvas for graphic objects

• IDLitWindow — provides a canvas for iTool visualizations

• IDLitDirectWindow — provides a canvas for Direct Graphic routine output

Note
Java drawable objects are not supported on the Macintosh OS X platform.

Requirements for Drawable Objects

Objects that inherit from IDLgrWindow must set the GRAPHICS_TREE property
following creation of the objects hierarchy. This supports the automatic redraw
capabilities of the OnExpose method.

Note
Common drawable object methods (such as OnKeyboard or OnMouseMotion) are
typically not displayed in the Export Bridge Assistant when exporting a drawable
object. See “Drawable Object Event Handlers” on page 178 for details.

In addition, IDL objects derived from IDLitDirectWindow must first provide a call of
self->makeCurrent at the beginning of each method to ensure that the graphics
rendering occurs in the wrapper’s drawable window, as described below.

Direct Graphics Support

To provide IDL Direct Graphics support, the export bridge uses an object to create an
IDL Direct Graphics drawing surface. The Direct Graphics object,
IDLitDirectWindow, differs from standard IDL Direct Graphics in the following
manner:

• The object implements the Active Window event handler callback methods to
manage events. As such, to perform any event processing in IDL the user must
sub-class this object and override the desired event callback methods.
Exporting Drawable Objects IDL Connectivity Bridges

Chapter 11: Writing IDL Objects for Exporting 265
• To make the window object current in the underlying direct graphics driver the
user calls the IDLitDirectWindow::MakeCurrent method on the object. This is
similar to a WSET operation in IDL, but no window index is required.

• Once a window is current, any IDL direct graphics routine can be called to
draw graphics on the provided drawing surface. The user can add a method on
the object they implement to render graphics or use the execute string
functionality of the bridge to issue IDL commands.

While the Export Bridge implementation provides a different method to create and
interact with a Direct Graphics Window, the differences are minor and let users
rapidly port their IDL Direct Graphics implementation for use with this technology.
IDL Connectivity Bridges Exporting Drawable Objects

266 Chapter 11: Writing IDL Objects for Exporting
Drawable Object Canvas Examples

The following examples use the three object classes as canvases for drawable objects.
You can use them with the Export Bridge by following “Java Wrapper Example” on
page 267 or use them with the Export Bridge Assistant (for more information, see
“Using the Export Bridge Assistant” on page 147). For information about a COM
example, see “COM Wrapper Example” on page 268.

IDLgrWindow Example

The IDLgrWindow example uses object graphics to create a map that lets you click
on and transform it with a trackball.

Example Code
The procedure file idlgrwindowexample__define.pro, located in the
examples/doc/bridges/ subdirectory of the IDL distribution, contains the
example code. Run the example procedure by entering
idlgrwindowexample__define at the IDL command prompt or view the file in
an IDL Editor window by entering .EDIT
idlgrwindowexample__define.pro.

IDLitDirectWindow Example

The IDLitDirectWindow example uses direct graphics to create a palette on which
you can draw and erase lines.

Example Code
The procedure file idliddirectwindowexample__define.pro, located in the
examples/doc/bridges/ subdirectory of the IDL distribution, contains the
example code. Run the example procedure by entering
idliddirectwindowexample__define at the IDL command prompt or view
the file in an IDL Editor window by entering .EDIT
idliddirectwindowexample__define.pro.

IDLitWindow Example

The IDLitWindow example uses the iSurface tool to plot a Hanning transform on a
surface.

Example Code
The procedure file idlitwindowexample__define.pro, located in the
examples/doc/bridges/ subdirectory of the IDL distribution, contains the
Drawable Object Canvas Examples IDL Connectivity Bridges

javascript:doIDL("idlgrwindow__define")
javascript:doIDL(".edit idlgrwindow__define.pro")

javascript:doIDL(".edit idlgrwindow__define.pro")

javascript:doIDL("idliddirectwindowexample__define")
javascript:doIDL(".edit idliddirectwindowexample__define.pro")

javascript:doIDL(".edit idliddirectwindowexample__define.pro")

Chapter 11: Writing IDL Objects for Exporting 267
example code. Run the example procedure by entering
idlitwindowexample__define at the IDL command prompt or view the file in
an IDL Editor window by entering .EDIT
idlitwindowexample__define.pro.

Java Wrapper Example

An example Java wrapper that works with all three of the canvas types described
above is included in the IDL distribution. The application accepts a parameter that
specifies the name of the IDL class to use.

Note
Drawable Java objects are not supported on Macintosh OS X.

Note
The Export Bridge Assistant creates wrapper objects comparable to the code in this
example. Your applications should not need to include such code if they are using
Assistant-generated wrappers.

Note
The following steps assume you are working on a UNIX platform. If you are
working on a Windows platform, substitute the appropriate paths and path-
separator characters.

1. Copy the file IDLWindowExample.java from the

IDL_DIR/examples/doc/bridges/java

directory to a new directory where you will compile the Java code. In this
example, we assume you will build the Java example in the
/tmp/idljavatest directory.

2. Change directories to the /tmp/idljavatest directory.

3. Source the bridge_setup file from the bin subdirectory of the IDL
installation. If you use a C shell:

source IDL_DIR/bin/bridge_setup

where IDL_DIR is the path to your IDL installation. (There are
bridge_setup files for the C shell, korn shell, and bash shell. Use the proper
source command and bridge_setup file for your installation.)

4. Compile the IDLWindowExample.java file with the following command:
IDL Connectivity Bridges Drawable Object Canvas Examples

javascript:doIDL("idlitwindowexample__define")
javascript:doIDL(".edit idlitwindowexample__define.pro")

javascript:doIDL(".edit idlitwindowexample__define.pro")

268 Chapter 11: Writing IDL Objects for Exporting
javac IDLWindowExample.java

This command creates two class files: IDLWindow.class and
IDLWindowExample.class.

5. Execute the example code with the following command:

java IDLWindowExample <IDL_classname>

where <IDL_classname> is the name of one of the example classes
described above.

Note
The bridge_setup file sets your CLASSPATH environment variable to
include both the current directory (".") and the
IDL_DIR/resource/bridges/export/java/javaidlb.jar file. See
“Java Requirements” on page 143 for additional information about the class
path

For example, if you sourced the bridge_setup file and compiled the
IDLWindowExample.java file in the /tmp/idljavatest directory, the
following commands would execute the three examples described above:

java IDLWindowExample IDLgrWindowExample
java IDLWindowExample IDLitDirectWindowExample
java IDLWindowExample IDLitWindowExample

COM Wrapper Example

See “Tri-Window COM Export Example” on page 284 for the steps needed to include
controls based on the three drawable objects in a Visual Basic .NET Windows
application.
Drawable Object Canvas Examples IDL Connectivity Bridges

Chapter 12

Creating Custom
COM Export Objects
This chapter discusses the following topics.
About COM Export Object Examples 270
Nondrawable COM Export Example 272

Drawable COM Export Examples 276
IDL Connectivity Bridges 269

270 Chapter 12: Creating Custom COM Export Objects
About COM Export Object Examples

An IDL object can be wrapped for use in a COM application using the Export Bridge
Assistant as described in Chapter 7, “Using the Export Bridge Assistant”. This
chapter provides several Visual Basic .NET examples that use custom COM export
objects. These include:

• Nondrawable examples — show how to access the processing power of IDL in
a COM application by exchanging data with the IDL process, issuing IDL
commands, and accessing IDL output

• Drawable examples — contain the elements needed to create interactive IDL
drawing windows and to access keyboard and mouse events

Note
You can quickly incorporate the processing power of IDL in a COM application by
including the pre-built COM connector wrapper object in your external application.
Use this option if you do not need custom methods or an interactive drawing
surface. See Chapter 10, “Using the Connector Object” for examples.

The general process for each of these examples involves the following:

1. Create the object in IDL.

2. Export the object using the Export Bridge Assistant, which creates the .dll,
.tlb or .ocx files associated with the IDL object that is now wrapped in a
COM export object wrapper.

3. Register the .dll or .ocx file.

4. Reference the appropriate library in your COM application before attempting
to access the object functionality. This functionality automatically includes
stock methods and events (described in Chapter 8, “Using Exported COM
Objects”) in addition to custom methods you have chosen to export.

Note
See “Writing IDL Objects for Exporting” on page 261 for information on how to
create custom IDL objects that can be successfully exported using the Export
Bridge Assistant. There are important object method and data type requirements
that must be met.
About COM Export Object Examples IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 271
Note
When you distribute an application, you will also need to share:

– any application-specific .dll files generated during the build process
– the executable file (.exe)
– the .dll or .ocx files (generated by the Export Bridge Assistant)
– the .pro or .sav file that contains the custom object definition

Any .pro or .sav files included with your application must be located in the IDL
path.

Debugging Applications Using Export Objects

It can be challenging to determine what is happening in the IDL process associated
with a wrapper object without the debugging features of the IDL Workbench. For
access to valuable debug information, consider using the IDL_BRIDGE_DEBUG
environment variable, described in “Debugging” on page 213.
IDL Connectivity Bridges About COM Export Object Examples

272 Chapter 12: Creating Custom COM Export Objects
Nondrawable COM Export Example

Nondrawable objects provide access to the enormous processing power of IDL, but
do not provide IDL drawing capabilities. This is useful for applications that need the
data manipulation capabilities of IDL, but have no need for, or have independent
drawing capabilities.

Hello World COM Example with Custom Method

The following simple example creates an IDL object with a single function method
that accepts one argument, and walks through the process of exporting the object
using the Export Bridge Assistant. Once the export files are created, a simple Visual
Basic .NET console application shows how to access the object method and capture
its output.

Complete the following steps to duplicate this example.

1. In an IDL Editor window, copy in the following code and save the file as
helloworldex__define.pro in a directory in your IDL path:

; Method returns message based on presence or
; absence of argument.
FUNCTION helloworldex::HelloFrom, who
 IF (N_ELEMENTS(who) NE 0) THEN BEGIN
 message = "Hello World from " + who
 RETURN, message
 ENDIF ELSE BEGIN
 message = 'Hello World'
 RETURN, message
 ENDELSE
END

; Init returns object reference on successful
; initialization.
FUNCTION helloworldex::INIT

RETURN, 1
END

; Object definition.
PRO helloworldex__define
 struct = {helloworldex, $
 who: '' , $
 message: ' ' $
 }
END
Nondrawable COM Export Example IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 273
Note
It is a good idea to test the functionality of an object before exporting it. After
compiling the file, enter the following lines at the command line and make
sure the output is what is expected for this object.
ohello = OBJ_NEW("HELLOWORLDEX")
PRINT, ohello->HelloFrom()
PRINT, ohello->HelloFrom('Mr. Bill')

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a COM export object by selecting File → New Project →
COM and browse to select the helloworldex__define.pro file. Click
Open to load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in “Specifying Information for
Exporting” on page 164. Refer to that section if you need more information
about the following steps.

4. The top-level project entry in the left-hand tree panel is selected by default.
There is no need to modify the default properties shown in the right-hand
property panel, but you can enter different values if desired. Set other export
object characteristics as described in the following table. Select the tree view
item listed in the left column to configure the related properties in the right
column.

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

• Output classname

• Process name

• Output directory

helloworldex Drawable object equals False

Table 12-1: Example Export Object Parameters
IDL Connectivity Bridges Nondrawable COM Export Example

274 Chapter 12: Creating Custom COM Export Objects
5. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. For a nondrawable object, .tlb
and .dll files (named based on the object name) are created in the Output
directory.

8. Register the .dll using regsvr32 helloworldex.dll. See “COM
Registration Requirements” on page 143 for details if needed.

9. Create a new Visual Basic .NET console application and import a reference to
the COM library named helloworldexLib 1.0 Type Library.

10. Replace the default module code with the text in the file referenced below. See
code comments for details.

HELLOFROM method Output method name — accept the
default value, HELLOFROM

Return Type — BSTR since this
function method returns a string
message (as defined in the IDL object
definition structure)

Array — False since this method
returns a single string, not an array

Export — True

WHO argument Mutability — In since the argument is
not passed back to the caller

Type — BSTR since this argument is
defined as a string in the IDL object
definition

Array — False

Export — True

Tree View Item Parameter Configuration

Table 12-1: Example Export Object Parameters
Nondrawable COM Export Example IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 275
Example Code
The text file for this example, com_export_helloex_doc.txt, is located in the
examples/doc/bridges/COM subdirectory of the IDL distribution. This Visual
Basic .NET code can be copied from the text file and adopted for use in your COM
environment.

After building the solution and starting without debugging, the console window
appears with the output messages.
IDL Connectivity Bridges Nondrawable COM Export Example

276 Chapter 12: Creating Custom COM Export Objects
Drawable COM Export Examples

A COM export object that supports graphics must be based on a custom IDL object
that inherits from IDLgrWindow, IDLitWindow or IDLitDirectWindow (as described
in “Exporting Drawable Objects” on page 264). Additionally, your IDL object must
also implement a set of callback methods if you want to be able to respond to mouse
or keyboard events in the graphics window. These are described in “Event Handling”
on page 208. Examples in this section include:

• “COM IDLgrWindow Based Histogram Plot Generator” on page 277 —
provides an object based on IDLgrWindow that creates a histogram plot for a
selected image file and lets you change the plot linestyle property.

• “COM IDLitWindow Surface Manipulation” on page 281 — includes a
drawable IDLitWindow example with ISURFACE functionality and a custom
method lets you change the active manipulator. Delete key events are captured
and passed to a custom OnKeyboard method that deletes selected
visualizations.

• “Tri-Window COM Export Example” on page 284 — includes controls based
on the three types of drawable objects (IDLgrWindow, IDLitWindow, and
IDLitDirectWindow) in a single Visual Basic .NET Windows application. A
subprocedure captures IDLitComponent::NotifyBridge output and prints it to a
label on the form.
Drawable COM Export Examples IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 277
COM IDLgrWindow Based Histogram Plot Generator

This drawable object example inherits from IDLgrWindow and creates a histogram
plot for a selected monochrome or RGB image file. While this example does contain
several custom methods including those for opening a file, creating the plots, and
changing plot characteristics, it does not use keyboard or mouse events. See “COM
IDLitWindow Surface Manipulation” on page 281 for such an example.

Example Code
The object definition file, export_grwindow_doc__define.pro is located in
the examples/doc/bridges subdirectory of the IDL distribution. Run the
example procedure by entering export_grwindow_doc__define at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
export_grwindow_doc__define.pro.

Complete the following steps to duplicate this example.

1. In an IDL Editor window, open the object definition file by entering .EDIT
export_grwindow_doc__define.pro at the command prompt.

Note
It is a good idea to test the functionality of an object before exporting it. After
compiling the file, enter the following lines at the command line and make
sure the output is what is expected for this object.
oPlotWindow = OBJ_NEW("export_grwindow_doc")
oPlotWindow->CHANGELINE, 2

This will display a three channel histogram plot and change the plot linestyle
to dashed.

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a COM export object by selecting File → New Project →
COM and browse to select export_grwindow_doc__define.pro. Click
Open to load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in “Specifying Information for
Exporting” on page 164. Refer to that section if you need more information
about the following items.
IDL Connectivity Bridges COM IDLgrWindow Based Histogram Plot Generator

javascript:doIDL("export_grwindow_doc__define")
javascript:doIDL(".edit export_grwindow_doc__define.pro")

javascript:doIDL(".edit export_grwindow_doc__define.pro")

278 Chapter 12: Creating Custom COM Export Objects
4. Set export object characteristics as described in the following table. When you
select the tree view item listed in the left column, configure the related
properties as noted in the right column.

Note
Set the Export parameter to True for all items in this list unless otherwise
noted.

Tip
You can select multiple items in the tree view and set properties for the
group.

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make changes
as desired:

• Output classname

• Process name

• Output directory

export_grwindow_doc Drawable object equals True

OMODEL property

OVIEW property

OXAXIS property

OXTEXT property

OYAXIS property

OYTEXT property

Type — IUnknown*

Array — False

OPLOTCOLL property Type — IUnknown*

Array — True

SFILE property Type — BSTR

Array — False

CHANGELINE method Enter different name if desired and mark
Export as True

Table 12-2: Example Export Object Parameters
COM IDLgrWindow Based Histogram Plot Generator IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 279
5. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

STYLE argument Mutability — In

Type — Short

Array — False

CREATEPLOTS method Enter different name if desired and mark
Export as True

IMAGE argument

VROWS argument

VCOLS argument

Mutability — In

Type — Variant

Array — True

Convert majority — False

VRGB argument Mutability — In

Type — short

Array — False

OPEN method Enter different name if desired and mark
Export as True

SFILE argument Mutability — In

Type — BSTR

Array — False

NOTE: You can choose not to export this
parameter. If so, the method follows the
path for cases where no argument is
defined. (You will need to modify the
Visual Basic code to read
Me.Axexport_grwindow_doc1.OPEN()
instead of passing an argument.) If you do
choose to export this method, the argument
must either be a null string or a full file
path.

Tree View Item Property Configuration

Table 12-2: Example Export Object Parameters
IDL Connectivity Bridges COM IDLgrWindow Based Histogram Plot Generator

280 Chapter 12: Creating Custom COM Export Objects
6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. For a drawable object, .tlb and
.ocx files (named based on the object name) are created in the Output
directory.

8. Register the .ocx using regsvr32 export_grwindow_doc.ocx. See
“COM Registration Requirements” on page 143 for details if needed.

9. Create a new Visual Basic .NET Windows Application and add the
export_grwindow_doc Class file to the toolbox. Select View → Toolbox
and select the desired tab. Right-click and select Add/Remove Items. Click on
the COM Components tab, place a checkmark next to the class file and click
OK.

10. Add the IDL export_grwindow_doc control to your form.

11. Replace the default form code with the text in the file referenced below. See
code comments for details.

Example Code
The text file for this example, com_export_grwindow_doc.txt, is located in
the examples/doc/bridges/COM subdirectory of the IDL distribution. This
Visual Basic .NET code can be copied from the text file and adopted for use in your
COM environment.

After building and running the project, a Windows application interface will display a
histogram plot of an RGB image. You can change the linestyle of the plot by making
a selection from the listbox. You can also create a histogram plot for a new image by
clicking the button.
COM IDLgrWindow Based Histogram Plot Generator IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 281
COM IDLitWindow Surface Manipulation

This drawable object example inherits from IDLitWindow and creates an
ISURFACE display in a COM control. A listbox in a Visual Basic .NET Windows
application is populated with manipulator string values that, when selected, allow
you to draw annotations, rotate, or zoom within the exported IDLitWindow control.
You should avoid exposing any manipulator that has an associated widget interface
(such as a profile line manipulator) since such widget functionality is not supported
in objects that subclass from IDLitWindow.

Example Code
The object definition file, export_itwinmanip_doc__define.pro is located
in the examples/doc/bridges subdirectory of the IDL distribution. Run the
example procedure by entering export_itwinmanip_doc__define at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
export_itwinmanip_doc__define.pro.

Complete the following steps to duplicate this example:

1. In an IDL Editor window, open the object definition file by entering .EDIT
export_itwinmanip_doc__define.pro at the command prompt.

Note
It is a good idea to test the functionality of an object before exporting it. After
compiling the file, enter the following lines at the command line and make
sure the output is what is expected for this object.
oWin = OBJ_NEW("export_itwinmanip_doc")
oWin->CHANGEMANIPULATOR, "annotation/oval"

This will let you draw a oval annotation in the window. If you hit the Delete
key, the annotation will be removed. The available manipulator strings are
printed in the IDL output window.

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a COM export object by selecting File → New Project →
COM and browse to select export_itwinmanip_doc__define.pro.
Click Open to load the file into the Export Assistant.
IDL Connectivity Bridges COM IDLitWindow Surface Manipulation

javascript:doIDL("export_itwinmanip_doc__define")
javascript:doIDL(".edit export_itwinmanip_doc__define.pro")

javascript:doIDL(".edit export_itwinmanip_doc__define.pro")

282 Chapter 12: Creating Custom COM Export Objects
Note
Export Bridge Assistant details are available in “Specifying Information for
Exporting” on page 164. Refer to that section if you need more information
about the following items.

4. Set export object characteristics as described in the following table. When you
select the tree view item listed in the left column, configure the related
properties as noted in the right column.

5. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. For a drawable object, .tlb and
.ocx files (named based on the object name) are created in the Output
directory.

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

• Output classname

• Process name

• Output directory

export_itwinmanip_doc Drawable object equals True

CHANGEMANIPULATOR
method

Enter different name if desired and
mark Export as True

MANIPID argument Mutability — In

Type — BSTR

Array — False

Export — True

Table 12-3: Example Export Object Parameters
COM IDLitWindow Surface Manipulation IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 283
8. Register the .ocx using regsvr32 export_itwinmanip_doc.ocx. See
“COM Registration Requirements” on page 143 for details if needed.

9. Create a new Visual Basic .NET Windows Application and add the
export_itwinmanip_doc Class file to the toolbox. Select View →
Toolbox and select the desired tab. Right-click and select Add/Remove
Items. Select the COM Components tab, place a checkmark next to the class
file, and click OK.

10. Add the IDL export_itwinmanip_doc control to your form.

11. Replace the default form code with the text in the file referenced below. See
code comments for details.

Example Code
The text file for this example, com_export_itwinmanip_doc.txt, is located in
the examples/doc/bridges/COM subdirectory of the IDL distribution. This
Visual Basic .NET code can be copied from the text file and adopted for use in your
COM environment.

Note
This example exposes keyboard events. The value of the Delete key and other
standard keys are described in “Mouse and Keyboard Events in COM Export
Objects” on page 208.

Build and run the project. Select a manipulator from the listbox to use it in the
IDLitWindow display. If you hit the keyboard Delete key while visualizations are
selected, they will be removed from the view.
IDL Connectivity Bridges COM IDLitWindow Surface Manipulation

284 Chapter 12: Creating Custom COM Export Objects
Tri-Window COM Export Example

The examples/doc/bridges directory includes three object definition files that
inherit from the three types of drawable objects: IDLgrWindow, IDLitDirectWindow
and IDLitWindow. The following example uses the Export Bridge Assistant to create
ActiveX controls from these object definition files and then creates a Windows
application in Visual Basic .NET that includes the three controls.

Example Code
The object definition files, idlgrwindowexample__define.pro,
idlitdirectwindowexample__define.pro, and
idlitwindowexample__define.pro are located in the
examples/doc/bridges subdirectory of the IDL distribution.

Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the IDL
command line and then complete the following steps to export the three drawable
objects.

Note
Export Bridge Assistant details are available in “Specifying Information for
Exporting” on page 164. Refer to that section if you need more information about
the following items.

Wrap the IDLitDirectWindow Example

The object defined in idlitdirectwindowexample__define.pro inherits from
IDLitDirectWindow and creates a drawing canvas that you can write on using your
mouse.

1. Select File → New Project → COM, browse to select
idlitdirectwindowexample__define.pro from the
examples/doc/bridges directory, and click Open.

2. Set export object characteristics as described in the following table. When you
select the tree view item, listed in the left column, configure the related
properties as noted in the right column.
Tri-Window COM Export Example IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 285
3. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

4. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

5. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. For a drawable object, .tlb and
.ocx files (named based on the object name) are created in the Output
directory.

Wrap the IDLgrWindow Example

The object defined in idlgrwindowexample__define.pro inherits from
IDLgrWindow and displays a globe that can be rotated using your mouse.

1. Select File → New Project → COM, browse to select
idlgrwindowexample__define.pro from the examples/doc/bridges
directory, and click Open.

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

• Output classname

• Process name

• Output directory

idlitdirectwindowexample Drawable object equals True

WINDOW_INDEX property You do not need to export the
WINDOW_INDEX property as the
control will always know it’s own index
number. You can leave all fields
unchanged.

MAKECURRENT method Export — False. This is only used
within methods in the IDL source object
definition file.

Table 12-4: Example Export Object Parameters
IDL Connectivity Bridges Tri-Window COM Export Example

286 Chapter 12: Creating Custom COM Export Objects
2. Set export object characteristics as described in the following table. When you
select the tree view item, listed in the left column, configure the related
properties as noted in the right column.

3. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

4. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

5. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. For a drawable object, .tlb and
.ocx files (named based on the object name) are created in the Output
directory.

Wrap the IDLitWindow Example

The object defined in idlitwindowexample__define.pro inherits from
IDLitWindow and displays a surface in a view in which you can pan and zoom.

1. Select File → New Project → COM, browse to select
idlitwindowexample__define.pro from the examples/doc/bridges
directory, and click Open.

2. There are no export object characteristics that must be modified, but you can
make changes to the default items as described in the following table. When

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

• Output classname

• Process name

• Output directory

idlgrwindowexample Drawable object equals True

CREATEOBJECTS method Export — False. This method is not
called from the COM client.

Table 12-5: Example Export Object Parameters
Tri-Window COM Export Example IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 287
you select the tree view item, listed in the left column, configure the related
properties as noted in the right column.

3. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

4. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. For a drawable object, .tlb and
.ocx files (named based on the object name) are created in the Output
directory.

Register the Controls and Create the Application

1. Register the .ocx files generated by the Export Bridge Assistant using
regsvr32 (see “COM Registration Requirements” on page 143 for details if
needed). If you kept the default names, you will need to register
idlgrwindowexample.ocx, idlitdirectwindowexample.ocx, and
idlitwindowexample.ocx.

2. Create a new Visual Basic .NET Windows Application and add the
idlgrwindowexample Class, idlitdirectwindowexample Class,
and idlitwindowexample Class files to the toolbox. Select View →
Toolbox and select the desired tab. Right-click and select Add/Remove
Items. Select the COM Components tab, place a checkmark next to the class
files, and click OK.

3. Add the three controls IDL to your form in the order of
idlgrwindowexample Class, idlitdirectwindowexample Class
and idlitwindowexample Class from left to right.

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

• Output classname

• Process name

• Output directory

idlitwindowexample Drawable object equals True

Table 12-6: Example Export Object Parameters
IDL Connectivity Bridges Tri-Window COM Export Example

288 Chapter 12: Creating Custom COM Export Objects
4. Replace the default module code with the text in the file referenced below. See
code comments for details.

Example Code
The text file for this example, com_export_triwindow_doc.txt, is located in
the examples/doc/bridges/COM subdirectory of the IDL distribution. This
Visual Basic .NET code can be copied from the text file and adopted for use in your
COM environment.

Figure 12-1: Design-time View of Three Drawable Window Controls
Tri-Window COM Export Example IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 289
When you build and run the example, the output will appear similar to the following
figure.

Left-click and drag in the IDLgrWindow control to rotate the globe and follow the
instructions in the IDLitDirectWindow control to draw in the window. In the
IDLitWindow, left-click on the surface and drag the mouse cursor to reposition the
object, or left-click on one of the view handles and drag up or down to zoom in or
out. The bottom label text will change when you move your mouse into or out of the
IDLgrWindow- or IDLitDirectWindow-based controls as the label is updated with
the NotifyBridge output from the IDL object definition files.

Figure 12-2: Runtime View of Three Drawable Window Controls
IDL Connectivity Bridges Tri-Window COM Export Example

290 Chapter 12: Creating Custom COM Export Objects
Tri-Window COM Export Example IDL Connectivity Bridges

Chapter 13

Creating Custom
Java Export Objects
This chapter discusses the following topics.
About Java Export Object Examples 292
Nondrawable Java Export Example 294

Drawable Java Export Examples 298
IDL Connectivity Bridges 291

292 Chapter 13: Creating Custom Java Export Objects
About Java Export Object Examples

An IDL object can wrapped for use in a Java application using the Export Bridge
Assistant. For valuable information on the theory and architecture of a wrapper object
created by the Export Bridge Assistant, see Chapter 7, “Using the Export Bridge
Assistant”.

This chapter provides several Java examples that incorporate the use of Java export
objects. These include:

• Nondrawable examples — show how to access the processing power of IDL in
a Java application by exchanging data with the IDL process, issuing IDL
commands, accessing IDL output.

• Drawable examples — contain the elements needed to create interactive IDL
drawing windows and access to mouse events.

Note
You can quickly incorporate the processing power of IDL in a Java application by
including the pre-built Java connector wrapper object in your external application.
Use this option if you do not need custom methods or an interactive drawing
surface. See Chapter 10, “Using the Connector Object” for details and examples.

The general process for each of these examples involves the following:

1. Create the object in IDL.

2. Export the object using the Export Bridge Assistant, which creates the files
associated with the IDL object that is now wrapped in a Java export object
wrapper.

3. Access the object in a Java application.This functionality automatically
includes stock methods (described in Chapter 9, “Using Exported Java
Objects”) in addition to custom methods you have chosen to export.

4. Compile and execute the application with a classpath reference to
javaidlb.jar.

Note
See “Writing IDL Objects for Exporting” on page 261 for information on how to
create custom IDL objects that can be successfully exported using the Export
Bridge Assistant. There are important object method and data type requirements
that must be met.
About Java Export Object Examples IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 293
Note
When you distribute an application, you will also need to share:

– the executable (.class) file(s) including those generated by the Assistant
– the .pro or .sav file that contains the custom IDL object definition

Any .pro or .sav files included with your application must be located in the IDL
path. Also, IDL_DIR/resource/bridges/export/java/javaidlb.jar
must be in the Java classpath.

Note on Running the Java Examples

Examples in this chapter provide Windows-style compile javac (compile) and
java (run) commands. If you are running on a platform other than Windows, use
your platform’s path and directory separators and see “Java Requirements” on
page 143 for information about the bridge_setup file, which sets additional
information.

Debugging Applications Using Export Objects

It can be challenging to determine what is happening in the IDL process associated
with a wrapper object without the debugging features of the IDL Workbench. For
access to valuable debug information, consider using the IDL_BRIDGE_DEBUG
environment variable, described in “Debugging” on page 244.
IDL Connectivity Bridges About Java Export Object Examples

294 Chapter 13: Creating Custom Java Export Objects
Nondrawable Java Export Example

Nondrawable objects provide access to the enormous processing power of IDL, but
do not provide IDL drawing capabilities. This is useful for applications that need the
data manipulation capabilities of IDL, but have no need for, or have independent
drawing capabilities.

Hello World Java Example with Additional Method

The following simple example creates an IDL object with a single function method
that accepts one argument, and walks through the process of exporting the object
using the Export Bridge Assistant. Once the export files are created, a simple Java
application shows how to access the object method and capture its output.

Complete the following steps to duplicate this example.

1. In an IDL Editor window, copy in the following code and save the file as
helloworldex__define.pro in your working directory:

; Method returns message based on presence or
; absence of argument.
FUNCTION helloworldex::HelloFrom, who
 IF (N_ELEMENTS(who) NE 0) THEN BEGIN
 message = "Hello World from " + who
 RETURN, message
 ENDIF ELSE BEGIN
 message = 'Hello World'
 RETURN, message
 ENDELSE
END

; Init returns object reference on successful
; initialization.
FUNCTION helloworldex::INIT

RETURN, 1
END

; Object definition.
PRO helloworldex__define
 struct = {helloworldex, $
 who: '' , $
 message: ' ' $
 }
END
Nondrawable Java Export Example IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 295
Note
It is a good idea to test the functionality of an object before exporting it. After
compiling the file, enter the following lines at the command line and make
sure the output is what is expected for this object.
ohello = OBJ_NEW("HELLOWORLDEX")
PRINT, ohello->HelloFrom()
PRINT, ohello->HelloFrom('Mr. Bill')

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a Java export object by selecting File → New Project → Java
and browse to select the helloworldex__define.pro file. Click Open to
load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in “Specifying Information for
Exporting” on page 164. Refer to that section if you need more information
about the following steps.

4. The top-level project entry in the left-hand tree panel is selected by default.
There is no need to modify the default properties shown in the right-hand
property panel, but you can enter different values if desired. Set other export
object characteristics as described in the following table. Select the tree view
item listed in the left column to configure the related properties in the right
column.

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make changes:

• Output classname

• Process name

• Output directory

helloworldex Drawable object equals False

Package name helloworldex

Table 13-1: Example Export Object Parameters
IDL Connectivity Bridges Nondrawable Java Export Example

296 Chapter 13: Creating Custom Java Export Objects
5. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. A subdirectory, named
helloworldex (based on the object name), contains the .java and .class
files, and is located in the Output directory.

Using the Export Wrapper Object

The following simple Java application uses the wrapper object created in the previous
section.

Example Code
The file for this example, helloworldex_example.java, is located in the
examples/doc/bridges/java subdirectory of the IDL distribution.

HELLOFROM method Output method name — accept the default
value, HELLOFROM

Return Type — JIDLString since this function
method returns a string message (as defined in
the IDL object definition structure)

Array — False since this method returns a
single string, not an array

Export — True

WHO argument Mutability — In since the argument is not
passed back to the caller

Type — JIDLString since this argument is
defined as a string in the IDL object definition

Array — False

Export — True

Tree View Item Parameter Configuration

Table 13-1: Example Export Object Parameters
Nondrawable Java Export Example IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 297
1. Open the file named helloworldex_example.java in the previously
referenced directory and save the file in the helloworldex directory.

2. Open the Windows Command window by selecting Start → Run and enter
cmd in the textbox.

3. Use the cd command to change to the directory containing the
helloworldex directory.

4. Reference the classpath of javaidlb.jar in the compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing IDL_DIR with the IDL installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
helloworldex\helloworldex_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
helloworldex.helloworldex_example

Tip
See “Note on Running the Java Examples” on page 293 for information on
executing Java commands on a non-Windows platform.

After compiling and running the project, the output message will appear in the
command window.
IDL Connectivity Bridges Nondrawable Java Export Example

298 Chapter 13: Creating Custom Java Export Objects
Drawable Java Export Examples

A Java export object that supports graphics must be based on a custom IDL object
that inherits from IDLgrWindow, IDLitWindow, or IDLitDirectWindow (as
described in “Exporting Drawable Objects” on page 264). Additionally, your IDL
object must also implement a set of listeners if you want to be able to respond to
keyboard or mouse events in the graphics window. These are described in “Event
Handling” on page 232. Examples in this section include:

• “Java IDLgrWindow Based Histogram Plot Generator” on page 299 —
provides an object based on IDLgrWindow that creates a histogram plot for a
selected image file and lets you change the plot linestyle property.

• “Java IDLitWindow Surface Manipulation” on page 304 — includes a
drawable IDLitWindow example with ISURFACE functionality and a custom
method lets you change the active manipulator. The main class is subclassed to
pass key events to IDL. In the OnKeyboard method, Delete key events are
captured and selected visualizations are deleted.
Drawable Java Export Examples IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 299
Java IDLgrWindow Based Histogram Plot Generator

This drawable object example inherits from IDLgrWindow and creates a histogram
plot for a selected monochrome or RGB image file. While this example does contain
several custom methods including those for opening a file, creating the plots, and
changing plot characteristics, it does not use keyboard or mouse events. See “Java
IDLitWindow Surface Manipulation” on page 304 for such an example.

Example Code
The object definition file, export_grwindow_doc__define.pro is located in
the examples/doc/bridges subdirectory of the IDL distribution. Run the
example procedure by entering export_grwindow_doc__define at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
.EDIT export_grwindow_doc__define.pro.

Complete the following steps to duplicate this example.

1. In an IDL Editor window, open the object definition file by entering .EDIT
export_grwindow_doc__define.pro at the command prompt.

Note
It is a good idea to test the functionality of an object before exporting it. After
compiling the file, enter the following lines at the command line and make
sure the output is what is expected for this object.
oPlotWindow = OBJ_NEW("export_grwindow_doc")
oPlotWindow->CHANGELINE, 2

This will display a three channel histogram plot and change the plot linestyle
to dashed.

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a Java export object by selecting File → New Project → Java
and browse to select export_grwindow_doc__define.pro. Click Open to
load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in “Specifying Information for
Exporting” on page 164. Refer to that section if you need more information
about the following items.
IDL Connectivity Bridges Java IDLgrWindow Based Histogram Plot Generator

javascript:doIDL("export_grwindow_doc__define")
javascript:doIDL(".edit export_grwindow_doc__define.pro")

javascript:doIDL(".edit export_grwindow_doc__define.pro")

300 Chapter 13: Creating Custom Java Export Objects
4. Set export object characteristics as described in the following table. When you
select the tree view item listed in the left column, configure the related
properties as noted in the right column.

Note
Set the Export parameter to True for all items in this list unless otherwise
noted.

Tip
You can select multiple items in the tree view and set properties for the
group.

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make changes
as desired:

• Output classname

• Process name

• Output directory

export_grwindow_doc Drawable object equals True

Package name export_grwindow_doc

OMODEL property

OVIEW property

OXAXIS property

OXTEXT property

OYAXIS property

OYTEXT property

Type — JIDLObjectI

Array — False

OPLOTCOLL property Type — JIDLObjectI

Array — True

SFILE property Type — JIDLString

Array — False

Table 13-2: Example Export Object Parameters
Java IDLgrWindow Based Histogram Plot Generator IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 301
5. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

CHANGELINE method Enter different name if desired and mark
Export as True

STYLE argument Mutability — In

Type — JIDLNumber

Array — False

CREATEPLOTS method Enter different name if desired and mark
Export as True

IMAGE argument

VROWS argument

VCOLS argument

Mutability — In

Type — JIDLNumber

Array — True

Convert majority — False

VRGB argument Mutability — In

Type — JIDLNumber

Array — False

OPEN method Enter different name if desired and mark
Export as True

SFILE argument Mutability — In

Type — JIDLString

Array — False

NOTE: You can choose not to export this
parameter. If so, the method follows the
path for cases where no argument is
defined. (You will need to modify the Java
code to read
export_grwindow_doc.OPEN() instead
of passing an argument.) If you do choose
to export this method, the argument must
either be a null string or a full file path.

Tree View Item Property Configuration

Table 13-2: Example Export Object Parameters
IDL Connectivity Bridges Java IDLgrWindow Based Histogram Plot Generator

302 Chapter 13: Creating Custom Java Export Objects
6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. A subdirectory, named
export_grwindow_doc (based on the object name), contains the .java and
.class files, and is located in the Output directory.

Using the Java Export Object

The following section describes using the Java export object in a simple application.

Example Code
The file for this example, export_grwindow_doc_example.java, is located in
the examples/doc/bridges/java subdirectory of the IDL distribution.

1. Open the file named export_grwindow_doc_example.java in the
location referenced above and copy it to your <output
directory>/export_grwindow_doc directory where <output
directory> was the directory specified as the Output directory in the
Assistant.

2. Open the Windows Command window by selecting Start → Run and enter
cmd in the textbox.

3. Use the cd command to change to the directory containing the
export_grwindow_doc directory.

4. Reference the classpath of javaidlb.jar in the compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing IDL_DIR with the IDL installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
export_grwindow_doc\export_grwindow_doc_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
export_grwindow_doc.export_grwindow_doc_example

Tip
See “Note on Running the Java Examples” on page 293 for information on
executing Java commands on a non-Windows platform.
Java IDLgrWindow Based Histogram Plot Generator IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 303
After compiling and running the project, a Java interface will display a histogram plot
of an RGB image. You can change the linestyle of the plot by making a selection
from the listbox. You can also create a histogram plot for a new image by clicking the
button.
IDL Connectivity Bridges Java IDLgrWindow Based Histogram Plot Generator

304 Chapter 13: Creating Custom Java Export Objects
Java IDLitWindow Surface Manipulation

This drawable object example inherits from IDLitWindow and creates an
ISURFACE display in a Java application. A listbox is populated with manipulator
string values that, when selected, allow you to draw annotations, rotate, or zoom
within the exported IDLitWindow object. You should avoid exposing any
manipulator that has an associated widget interface (such as a profile line
manipulator) since such widget functionality is not supported in objects that subclass
from IDLitWindow.

Example Code
The object definition file, export_itwinmanip_doc__define.pro is located
in the examples/doc/bridges subdirectory of the IDL distribution. Run the
example procedure by entering export_itwinmanip_doc__define at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
export_itwinmanip_doc__define.pro.

Complete the following steps to duplicate this example.

1. In an IDL Editor window, open the object definition file by entering .EDIT
export_itwinmanip_doc__define.pro at the command prompt.

Note
It is a good idea to test the functionality of an object before exporting it. After
compiling the file, enter the following lines at the command line and make
sure the output is what is expected for this object.
oWin = OBJ_NEW("export_itwinmanip_doc")
oWin->CHANGEMANIPULATOR, "annotation/oval"

This will let you draw a oval annotation in the window. If you hit the Delete
key, the annotation will be removed. The available manipulator strings are
printed in the IDL output window.

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a Java export object by selecting File → New Project → Java
and browse to select export_itwinmanip_doc__define.pro. Click
Open to load the file into the Export Assistant.
Java IDLitWindow Surface Manipulation IDL Connectivity Bridges

javascript:doIDL("export_itwinmanip_doc__define")
javascript:doIDL(".edit export_itwinmanip_doc__define.pro")

javascript:doIDL(".edit export_itwinmanip_doc__define.pro")

Chapter 13: Creating Custom Java Export Objects 305
Note
Export Bridge Assistant details are available in “Specifying Information for
Exporting” on page 164. Refer to that section if you need more information
about the following items.

4. Set export object characteristics as described in the following table. When you
select the tree view item listed in the left column, configure the related
properties as noted in the right column.

5. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. A subdirectory, named

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

• Output classname

• Process name

• Output directory

export_itwinmanip_doc Drawable object equals True

Package name export_itwinmanip_doc

CHANGEMANIPULATOR
method

Enter different name if desired and
mark Export as True

MANIPID argument Mutability — In

Type — JIDLString

Array — False

Export — True

Table 13-3: Example Export Object Parameters
IDL Connectivity Bridges Java IDLitWindow Surface Manipulation

306 Chapter 13: Creating Custom Java Export Objects
export_itwinmanip_doc (based on the object name), contains the .java
and .class files, and is located in the Output directory.

Using the Java Export Object

The following section describes using the Java export object in a simple application.

Example Code
The files for this example, export_itwinmanip_doc_example.java, and
export_itwinmanip_delete.java, are located in the
examples/doc/bridges/java subdirectory of the IDL distribution.

In this example, the export_itwinmanip_doc_example.java file contains the
code to display the listbox and IDLitWindow drawing canvas. The
export_itwinmanip_delete.java file subclasses the previous file and handles
key press events, passing them on to the IDL object OnKeyboard method so that
selected visualizations can be deleted.

1. Open the files named export_itwinmanip_doc_example.java and
export_itwinmanip_delete.java in the location referenced above and
copy them to your <output directory>/export_itwinmanip_doc
directory where <output directory> was the directory specified as the
Output directory in the Assistant.

2. Open the Windows Command window by selecting Start → Run and enter
cmd in the textbox.

3. Use the cd command to change to the directory containing the
export_itwinmanip_doc directory.

4. Reference the classpath of javaidlb.jar in the compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing IDL_DIR with the IDL installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
export_itwinmanip_doc*.java

java -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
export_itwinmanip_doc.export_itwinmanip_doc_example

Tip
See “Note on Running the Java Examples” on page 293 for information on
executing Java commands on a non-Windows platform.
Java IDLitWindow Surface Manipulation IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 307
After compiling and running the project, a Java interface will display a a surface in an
IDLitWindow. Select a manipulator from the listbox to use it in the IDLitWindow
display. If you hit the keyboard Delete key while visualizations are selected, they will
be removed from the view.
IDL Connectivity Bridges Java IDLitWindow Surface Manipulation

308 Chapter 13: Creating Custom Java Export Objects
Java IDLitWindow Surface Manipulation IDL Connectivity Bridges

Part III: Appendices

Appendix A

IDL Java Object API
This chapter describes the IDL Java package interfaces, classes and errors.
Package Summary 312
IDL Connectivity Bridges 311

312 Appendix A: IDL Java Object API
Package Summary

This chapter describes the IDL Java Package in a format similar to JavaDoc.

Class Summary

Interfaces

JIDLComponentListener The listener interface for receiving component
events (expose, resize) on a JIDLCanvas.

JIDLKeyListener The listener interface for receiving keyboard
events (key pressed, key released) on a
JIDLCanvas.

JIDLMouseListener The listener interface for receiving mouse events
from IDL (press, release, enter, and exit) on a
JIDLCanvas.

JIDLMouseMotionListener The listener interface for receiving mouse motion
events from IDL (move and drag) on a
JIDLCanvas.

JIDLMouseWheelListener The listener interface for receiving mouse wheel
events from IDL on a JIDLCanvas.

JIDLNotifyListener The listener interface for receiving notify events
from IDL.

JIDLNumber The JIDLNumber class wraps a primitive java
number as a mutable object usable by the Java-
IDL Export bridge.

JIDLObjectI The interface that wrapped IDL objects must
implement.

JIDLOutputListener The listener interface for receiving output events
from IDL.

Classes

JIDLArray The JIDLArray class wraps a Java array as an
object usable by the Java-IDL Export bridge.
Package Summary IDL Connectivity Bridges

Appendix A: IDL Java Object API 313
JIDLBoolean The JIDLBoolean class wraps a boolean as a
mutable object usable by the Java-IDL Export
bridge.

JIDLByte The JIDLByte class wraps a byte as a mutable
object usable by the Java-IDL Export bridge.

JIDLCanvas This class wraps an IDL object of type
IDLitWindow in a java.awtCanvas providing
direct rendering of the object from IDL.

JIDLChar The JIDLChar class wraps a char as a mutable
object usable by the Java-IDL Export bridge.

JIDLConst Contains constants used by the Java-IDL wrapper
classes.

JIDLDouble The JIDLDouble class wraps a double as a
mutable object usable by the Java-IDL Export
bridge.

JIDLFloat The JIDLFloat class wraps a float as a mutable
object usable by the Java-IDL Export bridge.

JIDLInteger The JIDLInteger class wraps an int as a mutable
object usable by the Java-IDL Export bridge.

JIDLLong The JIDLLong class wraps a long as a mutable
object usable by the Java-IDL Export bridge.

JIDLObject This class wraps an IDL object.

JIDLProcessInitializer The JIDLProcessInitializer class provides a
mechanism to pass licensing initialization
parameters to the JIDLCanvas and JIDLObject
createObject methods.

JIDLShort The JIDLShort class wraps a short as a mutable
object usable by the Java-IDL Export bridge.

JIDLString The JIDLString class wraps a String as a mutable
object usable by the Java-IDL Export bridge.

Errors

Class Summary
IDL Connectivity Bridges Package Summary

314 Appendix A: IDL Java Object API
JIDLAbortedException Thrown when a call to IDL is interrupted by an
abort request.

JIDLBusyException Thrown when a call to IDL is not executed
because the current IDL process is busy.

JIDLException An unchecked exception thrown when a call to
IDL encounters an error.

Class Summary
Package Summary IDL Connectivity Bridges

Appendix A: IDL Java Object API 315
JIDLAbortedException

Declaration

public class JIDLAbortedException extends JIDLException
implements java.io.Serializable

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Error

|
+--com.idl.javaidl.JIDLException

|
+--com.idl.javaidl.JIDLAbortedException

All Implemented Interfaces:

java.io.Serializable

Description

An unchecked exception thrown when a call to IDL is interrupted by an abort request.

Inherited Member Summary

Methods inherited from interface JIDLException

getErrorCode(), toString()

Methods inherited from class Object
IDL Connectivity Bridges JIDLAbortedException

316 Appendix A: IDL Java Object API
equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(),
getMessage(), getStackTrace(), initCause(Throwable),
printStackTrace(PrintWriter),
printStackTrace(PrintWriter),
printStackTrace(PrintWriter),
setStackTrace(StackTraceElement[])

Inherited Member Summary
JIDLAbortedException IDL Connectivity Bridges

Appendix A: IDL Java Object API 317
JIDLArray

Declaration

public class JIDLArray implements java.io.Serializable

java.lang.Object
|
+--com.idl.javaidl.JIDLArray

All Implemented Interfaces:

java.io.Serializable

Description

The JIDLArray class wraps a Java array as an object usable by the Java-IDL Export
bridge.

Wraps arrays of type boolean, byte, char, short, int, long, float, double, String, and
JIDLObjectI.

When retrieving the object, the calling code must cast the Object wrapped by
JIDLArray to the proper * array type. For example:

int[] myNativeArray = ...;
// Create a wrapped array so it may be used in the bridge
JIDLArray arr = new JIDLArray(myNativeArray)
// ... do something in the bridge to modify the array ...

// Now cast the resultant array to the expected type
int[] newNative = (int[])arr.arrayValue();

Member Summary

Constructors

JIDLArray(java.lang.Object arr)

Construct a JIDLArray from a native array

Methods
IDL Connectivity Bridges JIDLArray

318 Appendix A: IDL Java Object API
Constructors

JIDLArray(Object)

public JIDLArray(java.lang.Object arr)

Construct a JIDLArray from a native array

Parameters:

arr - the native array to wrap for use in the export bridge (Must be an array of type
boolean, byte, char, short, int, long, float, double, String, or JIDLObjectI.)

Methods

arrayValue()

public java.lang.Object arrayValue()

 java.lang.Object arrayValue()

Get the native array that is wrapped by this object

 java.lang.String getClassName()

Get the classname of the wrapped array.

 java.lang.Object getValue()

Get the native array that is wrapped by this object

 void setValue(JIDLArray arr)

Set the native array that is wrapped by this object

 void setValue(java.lang.Object arr)

Set the native array that is wrapped by this object

 java.lang.String toString()

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Member Summary
JIDLArray IDL Connectivity Bridges

Appendix A: IDL Java Object API 319
Get the native array that is wrapped by this object

Returns:

the native array to wrap for use in the export bridge returned as an object. The array
will be of type boolean, byte, char, short, int, long, float, double, String, or
JIDLObjectI.

getClassName()

public java.lang.String getClassName()

Get the classname of the wrapped array.

Returns:

The classname of the wrapped array.

getValue()

public java.lang.Object getValue()

Get the native array that is wrapped by this object

Returns:

the native array to wrap for use in the export bridge returned as an object. The array
will be of type boolean, byte, char, short, int, long, float, double, String, or
JIDLObjectI.

setValue(JIDLArray)

public void setValue(com.idl.javaidl.JIDLArray arr)

Set the native array that is wrapped by this object

Parameters:

arr - the native array to wrap for use in the export bridge (Must be an array of type
boolean, byte, char, short, int, long, float, double, String, or JIDLObjectI.)

setValue(Object)

public void setValue(java.lang.Object arr)

Set the native array that is wrapped by this object

Parameters:

arr - the native array to wrap for use in the export bridge (Must be an array of type
boolean, byte, char, short, int, long, float, double, String, or JIDLObjectI.)
IDL Connectivity Bridges JIDLArray

320 Appendix A: IDL Java Object API
toString()

public java.lang.String toString()

Overrides:

toString in class Object
JIDLArray IDL Connectivity Bridges

Appendix A: IDL Java Object API 321
JIDLBoolean

Declaration

public class JIDLBoolean implements JIDLNumber,
java.io.Serializable

java.lang.Object
|
+--com.idl.javaidl.JIDLBoolean

All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description

The JIDLBoolean class wraps a boolean as a mutable object usable by the Java-IDL
Export bridge.

Member Summary

Constructors

JIDLBoolean(boolean value)

Construct a wrapper object.

JIDLBoolean(JIDLNumber value)

Construct a wrapper object.

Methods

 boolean booleanValue()

Return the value of the wrapped primitive

 byte byteValue()

Return the value of the wrapped primitive

 char charValue()

Return the value of the wrapped primitive

 double doubleValue()

Return the value of the wrapped primitive
IDL Connectivity Bridges JIDLBoolean

322 Appendix A: IDL Java Object API
Constructors

JIDLBoolean(boolean)

public JIDLBoolean(boolean value)

Construct a wrapper object.

Parameters:

value - value to wrap for use in the export bridge

JIDLBoolean(JIDLNumber)

public JIDLBoolean(com.idl.javaidl.JIDLNumber value)

Construct a wrapper object.

 float floatValue()

Return the value of the wrapped primitive

 int intValue()

Return the value of the wrapped primitive

 long longValue()

Return the value of the wrapped primitive

 void setValue(boolean value)

Change the value of the wrapper object

 void setValue(JIDLNumber value)

Change the value of the wrapper object

 short shortValue()

Return the value of the wrapped primitive

 java.lang.String toString()

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Member Summary
JIDLBoolean IDL Connectivity Bridges

Appendix A: IDL Java Object API 323
Parameters:

value - JIDLNumber to wrap for use in the export bridge

Methods

booleanValue()

public boolean booleanValue()

Return the value of the wrapped primitive

Specified By:

booleanValue in interface JIDLNumber

Returns:

value that is wrapped by this object

byteValue()

public byte byteValue()

Return the value of the wrapped primitive

Specified By:

byteValue in interface JIDLNumber

Returns:

value that is wrapped by this object

charValue()

public char charValue()

Return the value of the wrapped primitive

Specified By:

charValue in interface JIDLNumber

Returns:

value that is wrapped by this object

doubleValue()

public double doubleValue()
IDL Connectivity Bridges JIDLBoolean

324 Appendix A: IDL Java Object API
Return the value of the wrapped primitive

Specified By:

doubleValue in interface JIDLNumber

Returns:

value that is wrapped by this object

floatValue()

public float floatValue()

Return the value of the wrapped primitive

Specified By:

floatValue in interface JIDLNumber

Returns:

value that is wrapped by this object

intValue()

public int intValue()

Return the value of the wrapped primitive

Specified By:

intValue in interface JIDLNumber

Returns:

value that is wrapped by this object

longValue()

public long longValue()

Return the value of the wrapped primitive

Specified By:

longValue in interface JIDLNumber

Returns:

value that is wrapped by this object
JIDLBoolean IDL Connectivity Bridges

Appendix A: IDL Java Object API 325
setValue(boolean)

public void setValue(boolean value)

Change the value of the wrapper object

Parameters:

value - primitive value to wrap for use in the export bridge

setValue(JIDLNumber)

public void setValue(com.idl.javaidl.JIDLNumber value)

Change the value of the wrapper object

Specified By:

setValue in interface JIDLNumber

Parameters:

value - JIDLNumber to wrap for use in the export bridge

shortValue()

public short shortValue()

Return the value of the wrapped primitive

Specified By:

shortValue in interface JIDLNumber

Returns:

value that is wrapped by this object

toString()

public java.lang.String toString()

Overrides:

toString in class Object
IDL Connectivity Bridges JIDLBoolean

326 Appendix A: IDL Java Object API
JIDLBusyException

Declaration

public class JIDLBusyException extends JIDLException implements
java.io.Serializable

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Error

|
+--com.idl.javaidl.JIDLException

|
+--com.idl.javaidl.JIDLBusyException

All Implemented Interfaces:

java.io.Serializable

Description

An unchecked exception thrown when a call to IDL is not executed because the
current IDL process is busy.

Inherited Member Summary

Methods inherited from interface JIDLException

getErrorCode(), toString()

Methods inherited from class Object
JIDLBusyException IDL Connectivity Bridges

Appendix A: IDL Java Object API 327
equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(),
getMessage(), getStackTrace(), initCause(Throwable),
printStackTrace(PrintWriter),
printStackTrace(PrintWriter),
printStackTrace(PrintWriter),
setStackTrace(StackTraceElement[])

Inherited Member Summary
IDL Connectivity Bridges JIDLBusyException

328 Appendix A: IDL Java Object API
JIDLByte

Declaration

public class JIDLByte implements JIDLNumber,
java.io.Serializable

java.lang.Object
|
+--com.idl.javaidl.JIDLByte

All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description

The JIDLByte class wraps a byte as a mutable object usable by the Java-IDL Export
bridge.

Member Summary

Constructors

JIDLByte(byte value)

Construct a wrapper object.

JIDLByte(JIDLNumber value)

Construct a wrapper object.

Methods

 boolean booleanValue()

Return the value of the wrapped primitive.

 byte byteValue()

Return the value of the wrapped primitive

 char charValue()

Return the value of the wrapped primitive

 double doubleValue()

Return the value of the wrapped primitive
JIDLByte IDL Connectivity Bridges

Appendix A: IDL Java Object API 329
Constructors

JIDLByte(byte)

public JIDLByte(byte value)

Construct a wrapper object.

Parameters:

value - value to wrap for use in the export bridge

JIDLByte(JIDLNumber)

public JIDLByte(com.idl.javaidl.JIDLNumber value)

Construct a wrapper object.

 float floatValue()

Return the value of the wrapped primitive

 int intValue()

Return the value of the wrapped primitive

 long longValue()

Return the value of the wrapped primitive

 void setValue(byte value)

Change the value of the wrapper object

 void setValue(JIDLNumber value)

Change the value of the wrapper object

 short shortValue()

Return the value of the wrapped primitive

 java.lang.String toString()

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Member Summary
IDL Connectivity Bridges JIDLByte

330 Appendix A: IDL Java Object API
Parameters:

value - JIDLNumber to wrap for use in the export bridge

Methods

booleanValue()

public boolean booleanValue()

Return the value of the wrapped primitive.

Specified By:

booleanValue in interface JIDLNumber

Returns:

true if non-zero, false otherwise

byteValue()

public byte byteValue()

Return the value of the wrapped primitive

Specified By:

byteValue in interface JIDLNumber

Returns:

value that is wrapped by this object

charValue()

public char charValue()

Return the value of the wrapped primitive

Specified By:

charValue in interface JIDLNumber

Returns:

value that is wrapped by this object

doubleValue()

public double doubleValue()
JIDLByte IDL Connectivity Bridges

Appendix A: IDL Java Object API 331
Return the value of the wrapped primitive

Specified By:

doubleValue in interface JIDLNumber

Returns:

value that is wrapped by this object

floatValue()

public float floatValue()

Return the value of the wrapped primitive

Specified By:

floatValue in interface JIDLNumber

Returns:

value that is wrapped by this object

intValue()

public int intValue()

Return the value of the wrapped primitive

Specified By:

intValue in interface JIDLNumber

Returns:

value that is wrapped by this object

longValue()

public long longValue()

Return the value of the wrapped primitive

Specified By:

longValue in interface JIDLNumber

Returns:

value that is wrapped by this object
IDL Connectivity Bridges JIDLByte

332 Appendix A: IDL Java Object API
setValue(byte)

public void setValue(byte value)

Change the value of the wrapper object

Parameters:

value - primitive value to wrap for use in the export bridge

setValue(JIDLNumber)

public void setValue(com.idl.javaidl.JIDLNumber value)

Change the value of the wrapper object

Specified By:

setValue in interface JIDLNumber

Parameters:

value - JIDLNumber to wrap for use in the export bridge

shortValue()

public short shortValue()

Return the value of the wrapped primitive

Specified By:

shortValue in interface JIDLNumber

Returns:

value that is wrapped by this object

toString()

public java.lang.String toString()

Overrides:

toString in class Object
JIDLByte IDL Connectivity Bridges

Appendix A: IDL Java Object API 333
JIDLCanvas

Declaration

public abstract class JIDLCanvas extends java.awt.Canvas
implements JIDLObjectI, java.awt.event.ComponentListener,
java.awt.event.KeyListener, java.awt.event.MouseListener,
java.awt.event.MouseMotionListener, JIDLMouseListener,
JIDLMouseMotionListener, JIDLKeyListener, JIDLComponentListener,
JIDLCursorSupport

java.lang.Object
|
+--java.awt.Component

|
+--java.awt.Canvas

|
+--com.idl.javaidl.JIDLCanvas

All Implemented Interfaces:

javax.accessibility.Accessible,
java.awt.event.ComponentListener, java.util.EventListener,
java.awt.image.ImageObserver, JIDLComponentListener,
JIDLCursorSupport, JIDLKeyListener, JIDLMouseListener,
JIDLMouseMotionListener, JIDLObjectI,
java.awt.event.KeyListener, java.awt.MenuContainer,
java.awt.event.MouseListener,
java.awt.event.MouseMotionListener, java.io.Serializable

Description

This class wraps an IDL object of type IDLitWindow in a java.awtCanvas providing
direct rendering of the object from IDL.

Note
JIDLCanvas is not supported on Macintosh OS X.

In many of the methods of this class, one or more flags are required to be specified
for parameters being passed to or from the bridge. These flags follow the following
guidelines:

For all types of parameters (subclasses of JIDLNumber, JIDLString, JIDLObjectI
and JIDLArray), a flag should be set that determines whether the parameter is in-only
IDL Connectivity Bridges JIDLCanvas

334 Appendix A: IDL Java Object API
(const) or in-out (we expect it to be changed by IDL). The constants that determine
this are either JIDLConst.PARMFLAG_CONST or
JIDLConst.PARMFLAG_IN_OUT.

For parameters that are arrays, a flag should be set that tells the bridge whether the
array is to be convolved when passed to IDL. If the PARM_IN_OUT flag is set, this
flag will also tell the bridge whether to convolve the array when it is copied back to
Java. The constants that determine this are either
JIDLConst.PARMFLAG_CONVMAJORITY or
JIDLConst.PARMFLAG_NO_CONVMAJORITY.

For example, if the parameter in question is an array that is to be modified by IDL
(in-out) and needs to be convolved when passed to and from IDL, we would set its
argpal array member as follows:

argpal[2] = JIDLConst.PARMFLAG_IN_OUT | JIDLConst.PARMFLAG_CONV
MAJORITY;

Member Summary

Fields

static int IDL_SOFTWARE_RENDERER

Internal use

static int OPENGL_RENDERER

Internal use

Constructors

JIDLCanvas(java.lang.String sClass, int
iOPSFlags, java.lang.String sProcessName)

Construct a JIDLCanvas

JIDLCanvas(java.lang.String sClass,
java.lang.String sProcessName)

Construct a JIDLCanvas Note that constructing the
JIDLObject does NOT create the object on the IDL-side of
the bridge.

Methods

void abort()

Requests that the IDL process containing the underlying
IDL object abort its current activity.
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 335
void addIDLComponentListener(JIDLComponentListener
listener)

Adds the specified JIDLComponentListener to a list of
listeners that receive notification of Component events.

void addIDLKeyListener(JIDLKeyListener listener)

Adds the specified JIDLKeyListener to a list of listeners
that receive notification of Key events.

void addIDLMouseListener(JIDLMouseListener listener)

Adds the specified JIDLMouseListener to a list of listeners
that receive notification of Mouse events.

void addIDLMouseMotionListener
(JIDLMouseMotionListener listener)

Adds the specified JIDLMouseMotionListener to a list of
listeners that receive notification of MouseMotion events.

void addIDLMouseWheelListener
(JIDLMouseWheelListener listener)

Adds the specified JIDLMouseWheelListener to a list of
listeners that receive notification of MouseWheel events.

void addIDLNotifyListener(JIDLNotifyListener
listener)

Adds the specified IDL notify listener to receive IDL
notification events on this object.

void addIDLOutputListener(JIDLOutputListener
listener)

Adds the specified IDL output listener to receive IDL
output events on this object.

java.lang.Object callFunction(java.lang.String sMethodName, int
iPalFlag)

Call IDL function that accepts zero parameters.

java.lang.Object callFunction(java.lang.String sMethodName, int
argc, java.lang.Object argv, int[] argpal, int
iPalFlag)

Call IDL function.

void callProcedure(java.lang.String sMethodName)

Call IDL procedure that accepts zero parameters.

Member Summary
IDL Connectivity Bridges JIDLCanvas

336 Appendix A: IDL Java Object API
void callProcedure(java.lang.String sMethodName, int
argc, java.lang.Object argv, int[] argpal)

Call IDL procedure.

void componentHidden(java.awt.event.ComponentEvent
e)

Called when the component is hidden.

void componentMoved(java.awt.event.ComponentEvent e)

Called when the component is moved.

void componentResized(java.awt.event.ComponentEvent
e)

Internal use.

void componentShown(java.awt.event.ComponentEvent e)

Called when the component is shown.

void createObject()

Create the wrapped object by calling IDL’s ::INIT method.

void createObject(int argc, java.lang.Object argv,
int[] argpal)

Create the wrapped object by calling IDL’s ::INIT method.

void createObject(int argc, java.lang.Object argv,
int[] argpal,
com.idl.javaidl.JIDLProcessInitializer
initializer)

Create the wrapped object by calling IDL’s ::INIT method.

void createObject(com.idl.javaidl.JIDLProcessInitial
izer initializer)

Create the wrapped object by calling IDL’s ::INIT method.

void destroyObject()

Destroys the underlying IDL object associated with the
wrapper.

void draw()

Internal use.

void executeString(java.lang.String sCmd)

Execute the given command string in IDL.

java.lang.String getClassName()

Get the class name of the object.

Member Summary
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 337
long getCookie()

Internal use.

java.lang.String getIDLObjectClassName()

Retrieves the IDL object class name of the underlying IDL
object.

java.lang.String getIDLObjectVariableName()

When the underlying IDL object was created in the IDL
process, it was assigned a variable name.

java.lang.Object getIDLVariable(java.lang.String sVar)

Given a variable name, return the IDL variable.

java.lang.String getObjVariableName()

Get the IDL Variable name of the given object

java.lang.String getProcessName()

Returns the name of the process that contains the
underlying IDL object.

java.lang.Object getProperty(java.lang.String sProperty, int
iPalFlag)

Call IDL getProperty method to get named property.

void IDLcomponentExposed(JIDLObjectI obj)

Called when the JIDLCanvas is exposed.

void IDLcomponentResized(JIDLObjectI obj,
java.awt.event.ComponentEvent e)

Called when the JIDLCanvas is resized.

void IDLkeyPressed(JIDLObjectI obj,
java.awt.event.KeyEvent e, int x, int y)

Called when the JIDLCanvas has focus and a key is
pressed.

void IDLkeyReleased(JIDLObjectI obj,
java.awt.event.KeyEvent e, int x, int y)

Called when the JIDLCanvas has focus and a key is
released.

void IDLmouseDragged(JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse is dragged in a JIDLCanvas.

Member Summary
IDL Connectivity Bridges JIDLCanvas

338 Appendix A: IDL Java Object API
void IDLmouseEntered(JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse enters a JIDLCanvas.

void IDLmouseExited(JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse exits a JIDLCanvas.

void IDLmouseMoved(JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse is moved in a JIDLCanvas.

void IDLmousePressed(JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse is pressed in a JIDLCanvas.

void IDLmouseReleased(JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse is released in a JIDLCanvas.

void initListeners()

Initialize listeners.

boolean isFocusTraversable()

Internal use.

boolean isObjCreated()

Determine if object has been created successfully.

boolean isObjectCreated()

Determine if object has been created successfully.

boolean isObjectDisplayable()

void keyPressed(java.awt.event.KeyEvent e)

Internal use.

void keyReleased(java.awt.event.KeyEvent e)

Internal use.

void keyTyped(java.awt.event.KeyEvent e)

Internal use.

int mapIDLCursorToJavaCursor(java.lang.String
idlCursor)

Maps the IDL cursor to a suitable Java cursor.

Member Summary
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 339
void mouseClicked(java.awt.event.MouseEvent e)

Internal use.

void mouseDragged(java.awt.event.MouseEvent e)

Internal use.

void mouseEntered(java.awt.event.MouseEvent e)

Internal use.

void mouseExited(java.awt.event.MouseEvent e)

Internal use.

void mouseMoved(java.awt.event.MouseEvent e)

Internal use.

void mousePressed(java.awt.event.MouseEvent e)

Internal use.

void mouseReleased(java.awt.event.MouseEvent e)

Internal use.

void paint(java.awt.Graphics g)

Internal use.

void removeIDLComponentListener
(JIDLComponentListener listener)

Remove the specified JIDLComponentListener from a list
of listeners that receive notification of Component events.

void removeIDLKeyListener(JIDLKeyListener listener)

Removes the specified JIDLKeyListener from a list of
listeners that receive notification of Key events.

void removeIDLMouseListener(JIDLMouseListener
listener)

Removes the specified JIDLMouseListener from a list of
listeners that receive notification of Mouse events.

void removeIDLMouseMotionListener
(JIDLMouseMotionListener listener)

Removes the specified JIDLMouseMotionListener from a
list of listeners that receive notification of MouseMotion
events.

Member Summary
IDL Connectivity Bridges JIDLCanvas

340 Appendix A: IDL Java Object API
void removeIDLMouseWheelListener
(JIDLMouseWheelListener listener)

Removes the specified JIDLMouseWheelListener from a
list of listeners that receive notification of MouseWheel
events.

void removeIDLNotifyListener(JIDLNotifyListener
listener)

Removes the specified IDL notify listener so it no longer
receives IDL notifications.

void removeIDLOutputListener(JIDLOutputListener
listener)

Removes the specified IDL output listener on this object.

void setCursor(java.lang.String idlCursor)

Set the JIDLCanvas cursor.

void setIDLVariable(java.lang.String sVar,
java.lang.Object obj)

Set/Create an IDL variable of the given name and value.

void setProcessName(java.lang.String process)

Set the process name that the object will be created in.

void setProperty(java.lang.String sProperty,
java.lang.Object obj, int iPalFlag)

Call IDL setProperty method to set named property.

java.lang.String toString()

Returns a string representation of the object.

void update(java.awt.Graphics g)

Internal use.

Inherited Member Summary

Fields inherited from class Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT,
RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface ImageObserver

Member Summary
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 341
ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES,
SOMEBITS, WIDTH

Methods inherited from class Canvas

addNotify(), createBufferStrategy(int,
BufferCapabilities), createBufferStrategy(int,
BufferCapabilities), getAccessibleContext(),
getBufferStrategy()

Methods inherited from class Component

Inherited Member Summary
IDL Connectivity Bridges JIDLCanvas

342 Appendix A: IDL Java Object API
action(Event, Object), add(PopupMenu),
addComponentListener(ComponentListener),
addFocusListener(FocusListener),
addHierarchyBoundsListener(HierarchyBoundsListener),
addHierarchyListener(HierarchyListener),
addInputMethodListener(InputMethodListener),
addKeyListener(KeyListener),
addMouseListener(MouseListener),
addMouseMotionListener(MouseMotionListener),
addMouseWheelListener(MouseWheelListener),
addPropertyChangeListener(String,
PropertyChangeListener), addPropertyChangeListener(String,
PropertyChangeListener),
applyComponentOrientation(ComponentOrientation),
areFocusTraversalKeysSet(int), bounds(), checkImage(Image,
ImageObserver), checkImage(Image, ImageObserver),
contains(Point), contains(Point),
createImage(ImageProducer), createImage(ImageProducer),
createVolatileImage(int, int, ImageCapabilities),
createVolatileImage(int, int, ImageCapabilities),
deliverEvent(Event), disable(), dispatchEvent(AWTEvent),
doLayout(), enable(boolean), enable(boolean),
enableInputMethods(boolean), getAlignmentX(),
getAlignmentY(), getBackground(), getBounds(Rectangle),
getBounds(Rectangle), getColorModel(),
getComponentAt(Point), getComponentAt(Point),
getComponentListeners(), getComponentOrientation(),
getCursor(), getDropTarget(), getFocusCycleRootAncestor(),
getFocusListeners(), getFocusTraversalKeys(int),
getFocusTraversalKeysEnabled(), getFont(),
getFontMetrics(Font), getForeground(), getGraphics(),
getGraphicsConfiguration(), getHeight(),
getHierarchyBoundsListeners(), getHierarchyListeners(),
getIgnoreRepaint(), getInputContext(),
getInputMethodListeners(), getInputMethodRequests(),
getKeyListeners(), getListeners(Class), getLocale(),
getLocation(Point), getLocation(Point),
getLocationOnScreen(), getMaximumSize(), getMinimumSize(),
getMouseListeners(), getMouseMotionListeners(),
getMouseWheelListeners(), getName(), getParent(),
getPeer(), getPreferredSize(),
getPropertyChangeListeners(String),
getPropertyChangeListeners(String), getSize(Dimension),
getSize(Dimension), getToolkit(), getTreeLock(),
getWidth(), getX(), getY(), gotFocus(Event, Object),
handleEvent(Event), hasFocus(), hide(), imageUpdate(Image,

Inherited Member Summary
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 343
int, int, int, int, int), inside(int, int), invalidate(),
isBackgroundSet(), isCursorSet(), isDisplayable(),
isDoubleBuffered(), isEnabled(),
isFocusCycleRoot(Container), isFocusOwner(),
isFocusable(), isFontSet(), isForegroundSet(),
isLightweight(), isOpaque(), isShowing(), isValid(),
isVisible(), keyDown(Event, int), keyUp(Event, int),
layout(), list(PrintWriter, int), list(PrintWriter, int),
list(PrintWriter, int), list(PrintWriter, int),
list(PrintWriter, int), locate(int, int), location(),
lostFocus(Event, Object), minimumSize(), mouseDown(Event,
int, int), mouseDrag(Event, int, int), mouseEnter(Event,
int, int), mouseExit(Event, int, int), mouseMove(Event,
int, int), mouseUp(Event, int, int), move(int, int),
nextFocus(), paintAll(Graphics), postEvent(Event),
preferredSize(), prepareImage(Image, ImageObserver),
prepareImage(Image, ImageObserver), print(Graphics),
printAll(Graphics), remove(MenuComponent),
removeComponentListener(ComponentListener),
removeFocusListener(FocusListener),
removeHierarchyBoundsListener(HierarchyBoundsListener),
removeHierarchyListener(HierarchyListener),
removeInputMethodListener(InputMethodListener),
removeKeyListener(KeyListener),
removeMouseListener(MouseListener),
removeMouseMotionListener(MouseMotionListener),
removeMouseWheelListener(MouseWheelListener),
removeNotify(), removePropertyChangeListener(String,
PropertyChangeListener),
removePropertyChangeListener(String,
PropertyChangeListener), repaint(long, int, int, int,
int), repaint(long, int, int, int, int), repaint(long,
int, int, int, int), repaint(long, int, int, int, int),
requestFocus(), requestFocusInWindow(), reshape(int, int,
int, int), resize(Dimension), resize(Dimension),
setBackground(Color), setBounds(Rectangle),
setBounds(Rectangle),
setComponentOrientation(ComponentOrientation),
setCursor(Cursor), setDropTarget(DropTarget),
setEnabled(boolean), setFocusTraversalKeys(int, Set),
setFocusTraversalKeysEnabled(boolean),
setFocusable(boolean), setFont(Font),
setForeground(Color), setIgnoreRepaint(boolean),
setLocale(Locale), setLocation(Point), setLocation(Point),
setName(String), setSize(Dimension), setSize(Dimension),
setVisible(boolean), show(boolean), show(boolean), size(),

Inherited Member Summary
IDL Connectivity Bridges JIDLCanvas

344 Appendix A: IDL Java Object API
Fields

IDL_SOFTWARE_RENDERER

public static final int IDL_SOFTWARE_RENDERER

Internal use

OPENGL_RENDERER

public static final int OPENGL_RENDERER

Internal use

Constructors

JIDLCanvas(String, int, String)

public JIDLCanvas(java.lang.String sClass, int iOPSFlags,
java.lang.String sProcessName)

Deprecated.

Replaced by constructor taking 2 parameters

Construct a JIDLCanvas

Parameters:

sClass - IDL Class name

iOPSFlags - Unused. The process name determines the OPS flags.

sProcessName - The process name. If null or “”, in-process is used.

transferFocus(), transferFocusBackward(),
transferFocusUpCycle(), validate()

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Inherited Member Summary
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 345
JIDLCanvas(String, String)

public JIDLCanvas(java.lang.String sClass,
java.lang.String sProcessName)

Construct a JIDLCanvas Note that constructing the JIDLObject does NOT create the
object on the IDL-side of the bridge. This is done using the createObject method.

Parameters:

sClass - IDL Class name

sProcessName - The process name. If null or “”, in-process is used.

Methods

abort()

public void abort()

Requests that the IDL process containing the underlying IDL object abort its current
activity.

This is only a request and IDL may take a long time before it actually stops.

The client can only Abort the current IDL activity if that wrapper object is the current
“owner” of the underlying IDL.

Specified By:

abort in interface JIDLObjectI

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLAbortedException

addIDLComponentListener(JIDLComponentListener)

public void
addIDLComponentListener(com.idl.javaidl.JIDLComponentListener
listener)

Adds the specified JIDLComponentListener to a list of listeners that receive
notification of Component events.
IDL Connectivity Bridges JIDLCanvas

346 Appendix A: IDL Java Object API
Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener

See Also:

JIDLComponentListener

addIDLKeyListener(JIDLKeyListener)

public void addIDLKeyListener(com.idl.javaidl.JIDLKeyListener
listener)

Adds the specified JIDLKeyListener to a list of listeners that receive notification of
Key events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener

See Also:

JIDLKeyListener

addIDLMouseListener(JIDLMouseListener)

public void addIDLMouseListener(com.idl.javaidl.JIDLMouseListener
listener)

Adds the specified JIDLMouseListener to a list of listeners that receive notification
of Mouse events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener

See Also:

JIDLMouseListener
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 347
addIDLMouseMotionListener(JIDLMouseMotionListener)

public void
addIDLMouseMotionListener(com.idl.javaidl.JIDLMouseMotionListener
listener)

Adds the specified JIDLMouseMotionListener to a list of listeners that receive
notification of MouseMotion events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener

See Also:

JIDLMouseMotionListener

addIDLMouseWheelListener(JIDLMouseWheelListener)

public void
addIDLMouseWheelListener(com.idl.javaidl.JIDLMouseWheelListener
listener)

Adds the specified JIDLMouseWheelListener to a list of listeners that receive
notification of MouseWheel events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener

See Also:

JIDLMouseWheelListener

addIDLNotifyListener(JIDLNotifyListener)

public void
addIDLNotifyListener(com.idl.javaidl.JIDLNotifyListener listener)

Adds the specified IDL notify listener to receive IDL notification events on this
object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.
IDL Connectivity Bridges JIDLCanvas

348 Appendix A: IDL Java Object API
Specified By:

addIDLNotifyListener in interface JIDLObjectI

Parameters:

listener - the listener

addIDLOutputListener(JIDLOutputListener)

public void
addIDLOutputListener(com.idl.javaidl.JIDLOutputListener listener)

Adds the specified IDL output listener to receive IDL output events on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:

addIDLOutputListener in interface JIDLObjectI

Parameters:

listener - the listener

callFunction(String, int)

public java.lang.Object callFunction(java.lang.String
sMethodName, int iPalFlag)

Call IDL function that accepts zero parameters.

Parameters:

sMethodName - the function name

iPalFlag - a flag determining whether a returned array is convolved or not. If the
returned value is not an array, this value is zero. See class description for more
information.

Returns:

an Object of type JIDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 349
See Also:

callFunction(String, int, Object[], int[], int)

callFunction(String, int, Object[], int[], int)

public java.lang.Object callFunction(java.lang.String
sMethodName, int argc, java.lang.Object[] argv, int[] argpal,
int iPalFlag)

Call IDL function.

The argpal parameter is an array of flags created by OR-ing constants from class
JIDLConst. Each array element corresponds to the equivalent parameter in argv.

Specified By:

callFunction in interface JIDLObjectI

Parameters:

sMethodName - the procedure name

argc - the number of parameters

argv - array of Objects to be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObject, JIDLString or JIDLObject.

argpal - array of flags denoting whether each argv parameter passed to be bridge is
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length argc.

iPalFlag - a flag determining whether a returned array if convolved or not. If the
returned value is not an array, this value is zero.

Returns:

an Object of type JIDLNumber, JIDLString, JIDLObjectI or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type.

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLArray,
JIDLConst.PARMFLAG_CONST, JIDLConst.PARMFLAG_IN_OUT,
JIDLConst.PARMFLAG_CONVMAJORITY,
JIDLConst.PARMFLAG_NO_CONVMAJORITY
IDL Connectivity Bridges JIDLCanvas

350 Appendix A: IDL Java Object API
callProcedure(String)

public void callProcedure(java.lang.String sMethodName)

Call IDL procedure that accepts zero parameters.

Parameters:

sMethodName - the procedure name

Throws:

JIDLException - If IDL encounters an error.

See Also:

callProcedure(String, int, Object[], int[])

callProcedure(String, int, Object[], int[])

public void callProcedure(java.lang.String sMethodName,
int argc, java.lang.Object[] argv, int[] argpal)

Call IDL procedure.

The argpal parameter is an array of flags created by OR-ing constants from class
JIDLConst. Each array element corresponds to the equivalent parameter in argv.

Specified By:

callProcedure in interface JIDLObjectI

Parameters:

sMethodName - the procedure name

argc - the number of parameters

argv - array of Objects to be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObject, JIDLString or JIDLObject.

argpal - array of flags denoting whether each argv parameter passed to be bridge is
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length argc.

Throws:

JIDLException - If IDL encounters an error.
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 351
See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLArray,
JIDLConst.PARMFLAG_CONST, JIDLConst.PARMFLAG_IN_OUT,
JIDLConst.PARMFLAG_CONVMAJORITY,
JIDLConst.PARMFLAG_NO_CONVMAJORITY

componentHidden(ComponentEvent)

public void componentHidden(java.awt.event.ComponentEvent e)

Called when the component is hidden.

This method does nothing because IDL does not care about this event. This could be
overridden by a child of JIDLCanvas if these events were of interest to the client
application

Specified By:

componentHidden in interface ComponentListener

See Also:

java.awt.event.ComponentListener

componentMoved(ComponentEvent)

public void componentMoved(java.awt.event.ComponentEvent e)

Called when the component is moved.

This method does nothing because IDL does not care about this event. This could be
overridden by a child of JIDLCanvas if these events were of interest to the client
application

Specified By:

componentMoved in interface ComponentListener

See Also:

java.awt.event.ComponentListener

componentResized(ComponentEvent)

public final void
componentResized(java.awt.event.ComponentEvent e)

Internal use.

Called when the JIDLCanvas is resized.
IDL Connectivity Bridges JIDLCanvas

352 Appendix A: IDL Java Object API
If interested in resize events, use IDLcomponentResized. This method should NOT
be overridden by a child of JIDLCanvas.

Specified By:

componentResized in interface ComponentListener

See Also:

JIDLComponentListener, IDLcomponentResized(JIDLObjectI, ComponentEvent)

componentShown(ComponentEvent)

public void componentShown(java.awt.event.ComponentEvent e)

Called when the component is shown.

This method does nothing because IDL does not care about this event. This could be
overridden by a child of JIDLCanvas if these events were of interest to the client
application

Specified By:

componentShown in interface ComponentListener

See Also:

java.awt.event.ComponentListener

createObject()

public void createObject()

Create the wrapped object by calling IDL’s ::INIT method.

Used for ::INIT methods that take zero parameters.

Throws:

JIDLException - If IDL encounters an error.

See Also:

createObject(int, Object[], int[])

createObject(int, Object[], int[])

public void createObject(int argc, java.lang.Object[] argv,
int[] argpal)

Create the wrapped object by calling IDL’s ::INIT method.
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 353
Note that the GUI that this Canvas lives in must be exposed before the createObject
method is called.

createObject does the following:

• call IDL ::INIT

• attach the IDL Window to this Canvas

• call initListeners to hook up default event handling

• repaint the canvas

The argpal parameter is an array of flags created by OR-ing constants from class
JIDLConst. Each array element corresponds to the equivalent parameter in argv. See
the class description for more information.

Specified By:

createObject in interface JIDLObjectI

Parameters:

argc - the number of parameters

argv - array of Objects to be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObject, JIDLString or JIDLObject.

argpal - array of flags denoting whether each argv parameter passed to be bridge is
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length argc.

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLConst, initListeners()

createObject(int, Object[], int[], JIDLProcessInitializer)

public void createObject(int argc, java.lang.Object[] argv,
int[] argpal, com.idl.javaidl.JIDLProcessInitializer initializer)

Create the wrapped object by calling IDL’s ::INIT method.

Note that the GUI that this Canvas lives in must be exposed before the createObject
method is called.

createObject does the following:
IDL Connectivity Bridges JIDLCanvas

354 Appendix A: IDL Java Object API
• Calls ::Init method in the IDL object

• Calls the superclass initListeners method to initialize any event handlers. The
initListeners method has default behavior, which is different for graphical and
non-graphical objects. If the default behavior is not desired, a sub-class to
modify the listener initialization may override the initListeners method.

Specified By:

createObject in interface JIDLObjectI

Parameters:

argc - the number of parameters to be passed to INIT

argv - array of Objects to be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObject, JIDLString or JIDLArray.

argpal - array of flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

initializer - a JIDLProcessInitializer object that specifies IDL process
initialization parameters such as the licensing mode to be used. See “IDL Licensing
Modes” on page 134 for details on the default licensing mechanism used when no
JIDLProcessInitializer is specified.

Throws:

JIDLException - If IDL encounters an error.

createObject(JIDLProcessInitializer)

public void createObject(com.idl.javaidl.JIDLProcessInitializer
initializer)

Create the wrapped object by calling IDL’s ::INIT method.

Used for ::INIT methods that take zero parameters.

The initializer parameter is used to supply IDL process initialization values.

Note that the GUI that this Canvas lives in must be exposed before the createObject
method is called.

Parameters:

initializer - a JIDLProcessInitializer object that specifies IDL process
initialization parameters such as the licensing mode to be used. See “IDL Licensing
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 355
Modes” on page 134 for details on the default licensing mechanism used when no
JIDLProcessInitializer is specified.

Throws:

JIDLException - If IDL encounters an error.

destroyObject()

public void destroyObject()

Destroys the underlying IDL object associated with the wrapper.

If the object being destroyed is the last object within an OPS process, the OPS
process is also destroyed.

Note that this does not destroy the actual wrapper object. Because the wrapper object
is a Java object, it follows all the Java reference counting/garbage collection schemes.
Once all references to the wrapper object are released from Java code and once the
Java Virtual Machine calls the garbage collector, the wrapper object may be deleted
from memory.

Specified By:

destroyObject in interface JIDLObjectI

draw()

public void draw()

Internal use.

Call IDL to inform the Canvas has been exposed to cause a redraw.

This in turn calls all the JIDLComponentListeners. Should not be overridden.

executeString(String)

public void executeString(java.lang.String sCmd)

Execute the given command string in IDL.

Specified By:

executeString in interface JIDLObjectI

Parameters:

sCmd - the single-line command to execute in IDL.
IDL Connectivity Bridges JIDLCanvas

356 Appendix A: IDL Java Object API
Throws:

JIDLException - If IDL encounters an error.

getClassName()

public java.lang.String getClassName()

Deprecated.

Replaced by getIDLObjectClassName()

Get the class name of the object.

Returns:

class name (“” if object not created yet)

getCookie()

public long getCookie()

Internal use.

Specified By:

getCookie in interface JIDLObjectI

getIDLObjectClassName()

public java.lang.String getIDLObjectClassName()

Retrieves the IDL object class name of the underlying IDL object.

Specified By:

getIDLObjectClassName in interface JIDLObjectI

Returns:

the IDL object class name

getIDLObjectVariableName()

public java.lang.String getIDLObjectVariableName()

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. This method retrieves that name.

Specified By:

getIDLObjectVariableName in interface JIDLObjectI
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 357
Returns:

the variable name

getIDLVariable(String)

public java.lang.Object getIDLVariable(java.lang.String sVar)

Given a variable name, return the IDL variable.

Note that in the case of arrays, the array will ALWAYS be convolved when passed
between Java and IDL.

Specified By:

getIDLVariable in interface JIDLObjectI

Parameters:

sVar - The IDL variable name

Returns:

an Object of type JIDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

getObjVariableName()

public java.lang.String getObjVariableName()

Deprecated.

Replaced by getIDLObjectVariableName()

Get the IDL Variable name of the given object

Returns:

a String representing the IDL Variable name

getProcessName()

public java.lang.String getProcessName()

Returns the name of the process that contains the underlying IDL object. For an in-
process object, returns an empty string.
IDL Connectivity Bridges JIDLCanvas

358 Appendix A: IDL Java Object API
Specified By:

getProcessName in interface JIDLObjectI

Returns:

process name. Empty string if the process is in-process.

getProperty(String, int)

public java.lang.Object getProperty(java.lang.String
sProperty, int iPalFlag)

Call IDL getProperty method to get named property.

Specified By:

getProperty in interface JIDLObjectI

Parameters:

sProperty - the property name

iPalFlag - a flag determining whether a returned array will be convolved or not. If
the returned value is not is ignored.

Returns:

an Object of type JIDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLNumber, JIDLObjectI, JIDLString, JIDLArray,
JIDLConst.PARMFLAG_CONVMAJORITY,
JIDLConst.PARMFLAG_NO_CONVMAJORITY

IDLcomponentExposed(JIDLObjectI)

public void IDLcomponentExposed(com.idl.javaidl.JIDLObjectI obj)

Called when the JIDLCanvas is exposed.

The default behavior of this method is to lock the Canvas, pass the event on to IDL to
handle (i.e. redraw), and then unlock the Canvas.
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 359
The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to do something special before or after the redraw happens.
The method would be implemented as follows:

public class mySubClass extends JIDLCanvas {
public void IDLcomponentExposed() {

// do something here before IDL is called
super.IDLcomponentExposed();
// do something if desired afterwards

}
}

Specified By:

IDLcomponentExposed in interface JIDLComponentListener

See Also:

JIDLComponentListener, initListeners()

IDLcomponentResized(JIDLObjectI, ComponentEvent)

public void IDLcomponentResized(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.ComponentEvent e)

Called when the JIDLCanvas is resized.

The default behavior of this method is to send the resize event to IDL to handle.

Specified By:

IDLcomponentResized in interface JIDLComponentListener

See Also:

JIDLComponentListener, initListeners()

IDLkeyPressed(JIDLObjectI, KeyEvent, int, int)

public void IDLkeyPressed(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.KeyEvent e, int x, int y)

Called when the JIDLCanvas has focus and a key is pressed.

The default behavior of this method is pass the event to IDL which, if registered for
the event will call ::OnKeyboard.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
IDL Connectivity Bridges JIDLCanvas

360 Appendix A: IDL Java Object API
the method. Or the sub-class may do something special before or after the event
happens.

See IDLcomponentExposed for an example of how this would be done.

Specified By:

IDLkeyPressed in interface JIDLKeyListener

See Also:

JIDLKeyListener, IDLcomponentExposed(JIDLObjectI), initListeners()

IDLkeyReleased(JIDLObjectI, KeyEvent, int, int)

public void IDLkeyReleased(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.KeyEvent e, int x, int y)

Called when the JIDLCanvas has focus and a key is released.

The default behavior of this method is pass the event to IDL which, if registered for
the event will call ::OnKeyboard. The behavior may be changed by overriding this
method in a sub-class. For example, the sub-class may want to ignore the event by
providing an empty implementation of the method. Or the sub-class may do
something special before or after the event happens. See IDLcomponentExposed for
an example of how this would be done.

Specified By:

IDLkeyReleased in interface JIDLKeyListener

See Also:

JIDLKeyListener, IDLcomponentExposed(JIDLObjectI), initListeners()

IDLmouseDragged(JIDLObjectI, MouseEvent)

public void IDLmouseDragged(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse is dragged in a JIDLCanvas.

The default behavior of this method is pass the event to IDL which, if registered for
the event, will call ::OnMouseMotion.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
the method. Often our IDL IDLitWindow is only interested in one type of motion
event and not another. Or the sub-class may do something special before or after the
event happens.
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 361
See IDLcomponentExposed for an example of how this would be done.

Specified By:

IDLmouseDragged in interface JIDLMouseMotionListener

See Also:

JIDLMouseMotionListener, IDLcomponentExposed(JIDLObjectI), initListeners()

IDLmouseEntered(JIDLObjectI, MouseEvent)

public void IDLmouseEntered(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse enters a JIDLCanvas.

The default behavior of this method is to ignore the event.

The behavior may be changed by overriding this method in a sub-class.

Specified By:

IDLmouseEntered in interface JIDLMouseListener

See Also:

JIDLMouseListener, initListeners()

IDLmouseExited(JIDLObjectI, MouseEvent)

public void IDLmouseExited(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse exits a JIDLCanvas.

The default behavior of this method is to ignore the event.

The behavior may be changed by overriding this method in a sub-class.

Specified By:

IDLmouseExited in interface JIDLMouseListener

See Also:

JIDLMouseListener, initListeners()

IDLmouseMoved(JIDLObjectI, MouseEvent)

public void IDLmouseMoved(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent e)
IDL Connectivity Bridges JIDLCanvas

362 Appendix A: IDL Java Object API
Called when the mouse is moved in a JIDLCanvas.

The default behavior of this method is pass the event to IDL which, if registered for
the event, will call ::OnMouseMotion.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
the method. Often our IDL IDLitWindow is only interested in one type of motion
event and not another. Or the sub-class may do something special before or after the
event happens.

See IDLcomponentExposed for an example of how this would be done.

Specified By:

IDLmouseMoved in interface JIDLMouseMotionListener

See Also:

JIDLMouseMotionListener, IDLcomponentExposed(JIDLObjectI), initListeners()

IDLmousePressed(JIDLObjectI, MouseEvent)

public void IDLmousePressed(com.idl.javaidl.JIDLObjectI
obj, java.awt.event.MouseEvent e)

Called when the mouse is pressed in a JIDLCanvas.

The default behavior of this method is pass the event to IDL which, if registered for
the event, will call ::OnMouseDown.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
the method. Or the sub-class may do something special before or after the event
happens.

See IDLcomponentExposed for an example of how this would be done.

Specified By:

IDLmousePressed in interface JIDLMouseListener

See Also:

JIDLMouseListener, IDLcomponentExposed(JIDLObjectI), initListeners()

IDLmouseReleased(JIDLObjectI, MouseEvent)

public void IDLmouseReleased(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent e)
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 363
Called when the mouse is released in a JIDLCanvas.

The default behavior of this method is pass the event to IDL which, if registered for
the event, will call ::OnMouseUp.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
the method. Or the sub-class may do something special before or after the event
happens.

See IDLcomponentExposed for an example of how this would be done.

Specified By:

IDLmouseReleased in interface JIDLMouseListener

See Also:

JIDLMouseListener, IDLcomponentExposed(JIDLObjectI), initListeners()

initListeners()

public void initListeners()

Initialize listeners.

This method is always called by createObject. The JIDLCanvas listens to the
following events:

• JIDLComponentListener

• JIDLKeyListener

• JIDLMouseListener

• JIDLMouseMotionListener

The method may be overridden by sub-classes to initialize a different set of listeners
(or none at all). For example if a sub-class of JIDLCanvas only wished to listen to
key and component events, it would override initListeners as follows:

public void initListeners() {
addIDLComponentListener(this);
addIDLKeyListener(this);

}

As another example, if a sub-class of JIDLCanvas wished to listen to key events,
component events, and notify events, it would need to implement
JIDLNotifyListener and register to listen for these events in initListeners, as follows:
IDL Connectivity Bridges JIDLCanvas

364 Appendix A: IDL Java Object API
public class newCanvas extends JIDLCanvas implements JIDLNotifyLi
stener
{

public void initListeners() {
addIDLComponentListener(this);
addIDLKeyListener(this);
addIDLNotifyListener(this);

}
void OnIDLNotify(JIDLObjectI obj, String s1, String s2) {

// do something with the notify
}

}

Specified By:

initListeners in interface JIDLObjectI

See Also:

JIDLComponentListener, JIDLKeyListener, JIDLMouseListener,
JIDLMouseMotionListener, JIDLNotifyListener, JIDLOutputListener

isFocusTraversable()

public boolean isFocusTraversable()

Internal use.

Overrides:

isFocusTraversable in class Component

isObjCreated()

public boolean isObjCreated()

Deprecated.

Replaced by isObjectCreated()

Determine if object has been created successfully.

Returns:

true if object created successfully, or false if object not created or creation was
unsuccessful.

isObjectCreated()

public boolean isObjectCreated()
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 365
Determine if object has been created successfully.

Specified By:

isObjectCreated in interface JIDLObjectI

Returns:

true if object created successfully, or false if object not created, destroyed, or
creation was unsuccessful.

See Also:

createObject()

isObjectDisplayable()

public boolean isObjectDisplayable()

Specified By:

isObjectDisplayable in interface JIDLObjectI

keyPressed(KeyEvent)

public final void keyPressed(java.awt.event.KeyEvent e)

Internal use.

Called when a key is pressed when the JIDLCanvas has focus.

If interested in this event, use IDLkeyPressed. This method should NOT be
overridden by a child of JIDLCanvas.

Specified By:

keyPressed in interface KeyListener

See Also:

JIDLKeyListener, IDLkeyPressed(JIDLObjectI, KeyEvent, int, int)

keyReleased(KeyEvent)

public final void keyReleased(java.awt.event.KeyEvent e)

Internal use.

Called when a key is released when the JIDLCanvas has focus.

If interested in this event, use IDLkeyReleased. This method should NOT be
overridden by a child of JIDLCanvas.
IDL Connectivity Bridges JIDLCanvas

366 Appendix A: IDL Java Object API
Specified By:

keyReleased in interface KeyListener

See Also:

JIDLKeyListener, IDLkeyReleased(JIDLObjectI, KeyEvent, int, int)

keyTyped(KeyEvent)

public void keyTyped(java.awt.event.KeyEvent e)

Internal use.

Called when a key is typed.

This method does nothing because IDL does not care about this event, using
keyPressed to trigger its mouse events. This method should NOT be overridden by a
child of JIDLCanvas.

Specified By:

keyTyped in interface KeyListener

mapIDLCursorToJavaCursor(String)

public int mapIDLCursorToJavaCursor(java.lang.String idlCursor)

Maps the IDL cursor to a suitable Java cursor. This is called internally by setCursor
when the IDL drawable changes the cursor.

May be overridden to change the mapping. The default mapping is as follows:

• “ARROW” → Cursor.DEFAULT_CURSOR;

• “UP_ARROW” → Cursor.DEFAULT_CURSOR;

• “IBEAM” → Cursor.TEXT_CURSOR;

• “ICON” → Cursor.TEXT_CURSOR;

• “CROSSHAIR” → Cursor.CROSSHAIR_CURSOR;

• “ORIGINAL” → Cursor.CROSSHAIR_CURSOR;

• “HOURGLASS” → Cursor.WAIT_CURSOR;

• “MOVE” → Cursor.MOVE_CURSOR;

• “SIZE_NW” → Cursor.NW_RESIZE_CURSOR;

• “SIZE_SE” → Cursor.SE_RESIZE_CURSOR;

• “SIZE_NE” → Cursor.NE_RESIZE_CURSOR;
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 367
• “SIZE_SW” → Cursor.SW_RESIZE_CURSOR;

• “SIZE_EW” → Cursor.E_RESIZE_CURSOR;

• “SIZE_NS” → Cursor.N_RESIZE_CURSOR;

• otherwise → Cursor.DEFAULT_CURSOR;

Specified By:

mapIDLCursorToJavaCursor in interface JIDLCursorSupport

Parameters:

idlCursor - a String representing the IDL cursor

Returns:

the Cursor constant representing the Java Cursor style

See Also:

setCursor(String)

mouseClicked(MouseEvent)

public void mouseClicked(java.awt.event.MouseEvent e)

Internal use.

Called when the mouse is clicked.

This method does nothing because IDL does not care about this event, using
mousePressed to trigger its mouse events. This method should NOT be overridden by
a child of JIDLCanvas.

Specified By:

mouseClicked in interface MouseListener

mouseDragged(MouseEvent)

public final void mouseDragged(java.awt.event.MouseEvent e)

Internal use.

Called when the mouse is dragged in the JIDLCanvas.

If interested in this event, use IDLmouseDragged. This method should NOT be
overridden by a child of JIDLCanvas.
IDL Connectivity Bridges JIDLCanvas

368 Appendix A: IDL Java Object API
Specified By:

mouseDragged in interface MouseMotionListener

See Also:

JIDLMouseMotionListener, IDLmouseDragged(JIDLObjectI, MouseEvent)

mouseEntered(MouseEvent)

public final void mouseEntered(java.awt.event.MouseEvent e)

Internal use.

Called when the mouse enters the JIDLCanvas.

If interested in this event, use IDLmouseEntered. This method should NOT be
overridden by a child of JIDLCanvas.

Specified By:

mouseEntered in interface MouseListener

See Also:

JIDLMouseListener, IDLmouseEntered(JIDLObjectI, MouseEvent)

mouseExited(MouseEvent)

public final void mouseExited(java.awt.event.MouseEvent e)

Internal use.

Called when the mouse exits the JIDLCanvas.

If interested in this event, use IDLmouseExited. This method should NOT be
overridden by a child of JIDLCanvas.

Specified By:

mouseExited in interface MouseListener

See Also:

JIDLMouseListener, IDLmouseExited(JIDLObjectI, MouseEvent)

mouseMoved(MouseEvent)

public final void mouseMoved(java.awt.event.MouseEvent e)

Internal use.

Called when the mouse moves in the JIDLCanvas.
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 369
If interested in this event, use IDLmouseMoved. This method should NOT be
overridden by a child of JIDLCanvas.

Specified By:

mouseMoved in interface MouseMotionListener

See Also:

JIDLMouseMotionListener, IDLmouseMoved(JIDLObjectI, MouseEvent)

mousePressed(MouseEvent)

public final void mousePressed(java.awt.event.MouseEvent e)

Internal use.

Called when the mouse is pressed.

If interested in this event, use IDLmousePressed. This method should NOT be
overridden by a child of JIDLCanvas.

Specified By:

mousePressed in interface MouseListener

See Also:

JIDLMouseListener, IDLmousePressed(JIDLObjectI, MouseEvent)

mouseReleased(MouseEvent)

public final void mouseReleased(java.awt.event.MouseEvent e)

Internal use.

Called when the mouse is released.

If interested in this event, use IDLmouseReleased. This method should NOT be
overridden by a child of JIDLCanvas.

Specified By:

mouseReleased in interface MouseListener

See Also:

JIDLMouseListener, IDLmouseReleased(JIDLObjectI, MouseEvent)

paint(Graphics)

public void paint(java.awt.Graphics g)
IDL Connectivity Bridges JIDLCanvas

370 Appendix A: IDL Java Object API
Internal use. Paint the Canvas. (Do not override this method)

Overrides:

paint in class Canvas

removeIDLComponentListener(JIDLComponentListener)

public void
removeIDLComponentListener(com.idl.javaidl.JIDLComponentListener
listener)

Remove the specified JIDLComponentListener from a list of listeners that receive
notification of Component events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener

See Also:

JIDLComponentListener

removeIDLKeyListener(JIDLKeyListener)

public void removeIDLKeyListener(com.idl.javaidl.JIDLKeyListener
listener)

Removes the specified JIDLKeyListener from a list of listeners that receive
notification of Key events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener

See Also:

JIDLKeyListener

removeIDLMouseListener(JIDLMouseListener)

public void
removeIDLMouseListener(com.idl.javaidl.JIDLMouseListener listener)
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 371
Removes the specified JIDLMouseListener from a list of listeners that receive
notification of Mouse events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener

See Also:

JIDLMouseListener

removeIDLMouseMotionListener(JIDLMouseMotionListener)

public void
removeIDLMouseMotionListener(com.idl.javaidl.JIDLMouseMotionListen
er listener)

Removes the specified JIDLMouseMotionListener from a list of listeners that receive
notification of MouseMotion events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener

See Also:

JIDLMouseMotionListener

removeIDLMouseWheelListener(JIDLMouseWheelListener)

public void
removeIDLMouseWheelListener(com.idl.javaidl.JIDLMouseWheelListener
listener)

Removes the specified JIDLMouseWheelListener to a list of listeners that receive
notification of MouseWheel events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener
IDL Connectivity Bridges JIDLCanvas

372 Appendix A: IDL Java Object API
See Also:

JIDLMouseWheelListener

removeIDLNotifyListener(JIDLNotifyListener)

public void
removeIDLNotifyListener(com.idl.javaidl.JIDLNotifyListener
listener)

Removes the specified IDL notify listener so it no longer receives IDL notifications.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:

removeIDLNotifyListener in interface JIDLObjectI

Parameters:

listener - the listener

removeIDLOutputListener(JIDLOutputListener)

public void
removeIDLOutputListener(com.idl.javaidl.JIDLOutputListener
listener)

Removes the specified IDL output listener on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:

removeIDLOutputListener in interface JIDLObjectI

Parameters:

listener - the listener

setCursor(String)

public void setCursor(java.lang.String idlCursor)

Set the JIDLCanvas cursor. Called automatically when the IDL cursor changes. This
in turn calls mapIDLCursorToJavaCursor to map the IDL cursor name to a suitable
Java cursor type.
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 373
Specified By:

setCursor in interface JIDLCursorSupport

Parameters:

idlCursor - A String representing the IDL cursor name.

See Also:

mapIDLCursorToJavaCursor(String)

setIDLVariable(String, Object)

public void setIDLVariable(java.lang.String sVar,
java.lang.Object obj)

Set/Create an IDL variable of the given name and value.

Note that in the case of arrays, the array will ALWAYS be convolved when passed
between Java and IDL.

Specified By:

setIDLVariable in interface JIDLObjectI

Parameters:

sVar - the IDL variable name

obj - object to be passed to IDL. Should be an object of type JIDLNumber,
JIDLObject, JIDLString or JIDLArray.

Throws:

JIDLException - If IDL encounters an error.

setProcessName(String)

public void setProcessName(java.lang.String process)

Set the process name that the object will be created in.

The process name may only be set before createObject is called. If called after the
object has been created, this method call does nothing.

Specified By:

setProcessName in interface JIDLObjectI
IDL Connectivity Bridges JIDLCanvas

374 Appendix A: IDL Java Object API
Parameters:

process - Process name. Empty String means create in same process (in-process).

setProperty(String, Object, int)

public void setProperty(java.lang.String sProperty,
java.lang.Object obj, int iPalFlag)

Call IDL setProperty method to set named property.

The iPalFlag parameter is a set of flags that are or-ed together. Currently this
parameter is only used to specify whether a JIDLArray being passed in to IDL is
convolved or not. For arrays argpal should be set to either
JIDLConst.PARMFLAG_CONVMAJORITY or
JIDLConst.PARMFLAG_NO_CONVMAJORITY.

Specified By:

setProperty in interface JIDLObjectI

Parameters:

sProperty - the property name

obj - object to be passed to IDL. Should be an object of type JIDLNumber,
JIDLObject, JIDLString or JIDLObject.

iPalFlag - flag denoting whether the passed in parameter is convolved or not.
 Note: setProperty does not allow obj to be modified by IDL

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLArray,
JIDLConst.PARMFLAG_CONVMAJORITY,
JIDLConst.PARMFLAG_NO_CONVMAJORITY

toString()

public java.lang.String toString()

Returns a string representation of the object.

Overrides:

toString in class Component
JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 375
update(Graphics)

public void update(java.awt.Graphics g)

Internal use. Update the Canvas. (Do not override this method)

Overrides:

update in class Canvas
IDL Connectivity Bridges JIDLCanvas

376 Appendix A: IDL Java Object API
JIDLChar

Declaration

public class JIDLChar implements JIDLNumber,
java.io.Serializable

java.lang.Object
|
+--com.idl.javaidl.JIDLChar

All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description

The JIDLChar class wraps a char as a mutable object usable by the Java-IDL Export
bridge.

Member Summary

Constructors

JIDLChar(char value)

Construct a wrapper object.

JIDLChar(JIDLNumber value)

Construct a wrapper object.

Methods

 boolean booleanValue()

Return the value of the wrapped primitive.

 byte byteValue()

Return the value of the wrapped primitive

 char charValue()

Return the value of the wrapped primitive

 double doubleValue()

Return the value of the wrapped primitive

 float floatValue()

Return the value of the wrapped primitive
JIDLChar IDL Connectivity Bridges

Appendix A: IDL Java Object API 377
Constructors

JIDLChar(char)

public JIDLChar(char value)

Construct a wrapper object.

Parameters:

value - value to wrap for use in the export bridge

JIDLChar(JIDLNumber)

public JIDLChar(com.idl.javaidl.JIDLNumber value)

Construct a wrapper object.

 int intValue()

Return the value of the wrapped primitive

 long longValue()

Return the value of the wrapped primitive

 void setValue(char value)

Change the value of the wrapper object

 void setValue(JIDLNumber value)

Change the value of the wrapper object

 short shortValue()

Return the value of the wrapped primitive

 java.lang.String toString()

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Member Summary
IDL Connectivity Bridges JIDLChar

378 Appendix A: IDL Java Object API
Parameters:

value - JIDLNumber to wrap for use in the export bridge

Methods

booleanValue()

public boolean booleanValue()

Return the value of the wrapped primitive.

Specified By:

booleanValue in interface JIDLNumber

Returns:

true if non-zero, false otherwise

byteValue()

public byte byteValue()

Return the value of the wrapped primitive

Specified By:

byteValue in interface JIDLNumber

Returns:

value that is wrapped by this object

charValue()

public char charValue()

Return the value of the wrapped primitive

Specified By:

charValue in interface JIDLNumber

Returns:

value that is wrapped by this object

doubleValue()

public double doubleValue()
JIDLChar IDL Connectivity Bridges

Appendix A: IDL Java Object API 379
Return the value of the wrapped primitive

Specified By:

doubleValue in interface JIDLNumber

Returns:

value that is wrapped by this object

floatValue()

public float floatValue()

Return the value of the wrapped primitive

Specified By:

floatValue in interface JIDLNumber

Returns:

value that is wrapped by this object

intValue()

public int intValue()

Return the value of the wrapped primitive

Specified By:

intValue in interface JIDLNumber

Returns:

value that is wrapped by this object

longValue()

public long longValue()

Return the value of the wrapped primitive

Specified By:

longValue in interface JIDLNumber

Returns:

value that is wrapped by this object
IDL Connectivity Bridges JIDLChar

380 Appendix A: IDL Java Object API
setValue(char)

public void setValue(char value)

Change the value of the wrapper object

Parameters:

value - primitive value to wrap for use in the export bridge

setValue(JIDLNumber)

public void setValue(com.idl.javaidl.JIDLNumber value)

Change the value of the wrapper object

Specified By:

setValue in interface JIDLNumber

Parameters:

value - JIDLNumber to wrap for use in the export bridge

shortValue()

public short shortValue()

Return the value of the wrapped primitive

Specified By:

shortValue in interface JIDLNumber

Returns:

value that is wrapped by this object

toString()

public java.lang.String toString()

Overrides:

toString in class Object
JIDLChar IDL Connectivity Bridges

Appendix A: IDL Java Object API 381
JIDLComponentListener

Declaration

public interface JIDLComponentListener

All Known Implementing Classes:

JIDLCanvas

Description

The listener interface for receiving component events (expose, resize) on a
JIDLCanvas.

The class that is interested in handling these events implements this interface (and all
the methods it contains). The listener object created from that class is then registered
with the JIDLCanvas using the addIDLComponentListener method. The listener is
unregistered with the removeIDLComponentListener.

Component events are provided for notification purposes; the JIDLCanvas
automatically handles component redraws and resizes internally whether a program
registers an additional JIDLComponentListener or not. The JIDLCanvas is itself a
JIDLComponentListener and provides default behavior for expose and resize. For an
expose event, the default behavior is for the JIDLCanvas to call the IDL program’s
OnExpose method. For a resize, the default is to call the IDL program’s OnResize
method.

Note that clients should not register to listen to JIDLCanvas ComponentEvents using
a ComponentListener, preferring the JIDLComponentListener instead.

See Also:

java.awt.event.ComponentEvent,
java.awt.event.ComponentListener
IDL Connectivity Bridges JIDLComponentListener

382 Appendix A: IDL Java Object API
Methods

IDLcomponentExposed(JIDLObjectI)

public void IDLcomponentExposed(com.idl.javaidl.JIDLObjectI obj)

The IDL component (JIDLCanvas) has been exposed.

The default behavior of JIDLCanvas’s default IDLcomponentExposed is to the IDL
program’s OnExpose method.

Parameters:

obj - The object that has been resized

IDLcomponentResized(JIDLObjectI, ComponentEvent)

public void IDLcomponentResized(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.ComponentEvent event)

The IDL component (JIDLCanvas) has been resized.

The default behavior of JIDLCanvas’s default IDLcomponentResized is to call the
IDL program’s OnResize method.

Parameters:

obj - The object that has been resized

event - The Component event

Member Summary

Methods

 void IDLcomponentExposed(JIDLObjectI obj)

The IDL component (JIDLCanvas) has been exposed.

 void IDLcomponentResized(JIDLObjectI obj,
java.awt.event.ComponentEvent event)

The IDL component (JIDLCanvas) has been resized.
JIDLComponentListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 383
JIDLConst

Declaration

public class JIDLConst

java.lang.Object
|
+--com.idl.javaidl.JIDLConst

Description

Contains constants used by the Java-IDL wrapper classes.

Member Summary

Fields

static int CONTROL_INPROC

Control flag for determining object is to be
created in-process

static int CONTROL_OUTPROC

Control flag for determining object is to be
created out-of-process

static int IDL_ABORT_NOT_OWNER

Error code when an abort request is made, but the
calling object does not have permission to
request the abort.

static
java.lang.String

IDL_ABORT_NOT_OWNER_MESSAGE

Internal use.

static int IDL_ABORTED

Error code returned when IDL processing has
aborted due to an abort request.

static int IDL_BUSY

Error code returned if IDL is called while
processing another request.
IDL Connectivity Bridges JIDLConst

384 Appendix A: IDL Java Object API
Fields

CONTROL_INPROC

public static final int CONTROL_INPROC

Control flag for determining object is to be created in-process

static int IDL_NOTHING_TO_ABORT

Error code when an abort request is made, but
there is nothing to abort.

static
java.lang.String

IDL_NOTHING_TO_ABORT_MESSAGE

Internal use.

static int PARMFLAG_CONST

Parameter associated with this flag and passed to
IDL is const (in-only).

static int PARMFLAG_CONVMAJORITY

Parameter associated with this flag and passed to
IDL is an array whose majority will be
convolved.

static int PARMFLAG_IN_OUT

Parameter associated with this flag and passed to
IDL is in-out (mutable).

static int PARMFLAG_NO_CONVMAJORITY

Parameter associated with this flag and passed to
IDL is an array whose majority will NOT be
convolved.

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), toString(), wait(long, int), wait(long, int),
wait(long, int)

Member Summary
JIDLConst IDL Connectivity Bridges

Appendix A: IDL Java Object API 385
CONTROL_OUTPROC

public static final int CONTROL_OUTPROC

Control flag for determining object is to be created out-of-process

IDL_ABORT_NOT_OWNER

public static final int IDL_ABORT_NOT_OWNER

Error code when an abort request is made, but the calling object does not have
permission to request the abort.

Note that when this error occurs, a JIDLException is thrown to the calling client with
this value as its error code.

See Also:

JIDLException, JIDLObjectI.abort()

IDL_ABORT_NOT_OWNER_MESSAGE

public static final java.lang.String IDL_ABORT_NOT_OWNER_MESSAGE

Internal use. Error message when an abort request is made, but the calling object does
not have permission to request the abort.

IDL_ABORTED

public static final int IDL_ABORTED

Error code returned when IDL processing has aborted due to an abort request.

Note that when this error occurs, a JIDLAbortedException is thrown to the calling
client with this value as its error code.

See Also:

JIDLAbortedException, JIDLException, JIDLObjectI.abort()

IDL_BUSY

public static final int IDL_BUSY

Error code returned if IDL is called while processing another request.

Note that when this error occurs, a JIDLBusyException is thrown to the calling client
with this value as its error code.
IDL Connectivity Bridges JIDLConst

386 Appendix A: IDL Java Object API
See Also:

JIDLBusyException, JIDLException, JIDLObjectI.abort()

IDL_NOTHING_TO_ABORT

public static final int IDL_NOTHING_TO_ABORT

Error code when an abort request is made, but there is nothing to abort.

Note that when this error occurs, a JIDLException is thrown to the calling client with
this value as its error code.

See Also:

JIDLException, JIDLObjectI.abort()

IDL_NOTHING_TO_ABORT_MESSAGE

public static final java.lang.String
IDL_NOTHING_TO_ABORT_MESSAGE

Internal use. Error message when an abort request is made, but there is nothing to
abort.

PARMFLAG_CONST

public static final int PARMFLAG_CONST

Parameter associated with this flag and passed to IDL is const (in-only). It is expected
IDL will not change this parameter. Any changes that happened in IDL will be
ignored.

See Also:

PARMFLAG_IN_OUT

PARMFLAG_CONVMAJORITY

public static final int PARMFLAG_CONVMAJORITY

Parameter associated with this flag and passed to IDL is an array whose majority will
be convolved.

Note that if set, the array will be convolved when passed from Java to IDL, and
convolved again in the in-out case, when passed back to Java.

See Also:

PARMFLAG_NO_CONVMAJORITY
JIDLConst IDL Connectivity Bridges

Appendix A: IDL Java Object API 387
PARMFLAG_IN_OUT

public static final int PARMFLAG_IN_OUT

Parameter associated with this flag and passed to IDL is in-out (mutable). It is
expected IDL may change this parameter and on return from IDL the data will be
copied back to the Java object.

See Also:

PARMFLAG_CONST

PARMFLAG_NO_CONVMAJORITY

public static final int PARMFLAG_NO_CONVMAJORITY

Parameter associated with this flag and passed to IDL is an array whose majority will
NOT be convolved.

Note that for arrays of dimensions 2 throught 8, this may be quicker than
PARMFLAG_CONVMAJORITY because the array doesn’t need to be re-ordered
when passed between Java and IDL memory space.

See Also:

PARMFLAG_CONVMAJORITY
IDL Connectivity Bridges JIDLConst

388 Appendix A: IDL Java Object API
JIDLDouble

Declaration

public class JIDLDouble implements JIDLNumber,
java.io.Serializable

java.lang.Object
|
+--com.idl.javaidl.JIDLDouble

All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description

The JIDLDouble class wraps a double as a mutable object usable by the Java-IDL
Export bridge.

Member Summary

Constructors

JIDLDouble(double value)

Construct a wrapper object.

JIDLDouble(JIDLNumber value)

Construct a wrapper object.

Methods

 boolean booleanValue()

Return the value of the wrapped primitive.

 byte byteValue()

Return the value of the wrapped primitive

 char charValue()

Return the value of the wrapped primitive

 double doubleValue()

Return the value of the wrapped primitive

 float floatValue()

Return the value of the wrapped primitive
JIDLDouble IDL Connectivity Bridges

Appendix A: IDL Java Object API 389
Constructors

JIDLDouble(double)

public JIDLDouble(double value)

Construct a wrapper object.

Parameters:

value - value to wrap for use in the export bridge

JIDLDouble(JIDLNumber)

public JIDLDouble(com.idl.javaidl.JIDLNumber value)

Construct a wrapper object.

 int intValue()

Return the value of the wrapped primitive

 long longValue()

Return the value of the wrapped primitive

 void setValue(double value)

Change the value of the wrapper object

 void setValue(JIDLNumber value)

Change the value of the wrapper object

 short shortValue()

Return the value of the wrapped primitive

 java.lang.String toString()

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Member Summary
IDL Connectivity Bridges JIDLDouble

390 Appendix A: IDL Java Object API
Parameters:

value - JIDLNumber to wrap for use in the export bridge

Methods

booleanValue()

public boolean booleanValue()

Return the value of the wrapped primitive.

Specified By:

booleanValue in interface JIDLNumber

Returns:

true if non-zero, false otherwise

byteValue()

public byte byteValue()

Return the value of the wrapped primitive

Specified By:

byteValue in interface JIDLNumber

Returns:

value that is wrapped by this object

charValue()

public char charValue()

Return the value of the wrapped primitive

Specified By:

charValue in interface JIDLNumber

Returns:

value that is wrapped by this object

doubleValue()

public double doubleValue()
JIDLDouble IDL Connectivity Bridges

Appendix A: IDL Java Object API 391
Return the value of the wrapped primitive

Specified By:

doubleValue in interface JIDLNumber

Returns:

value that is wrapped by this object

floatValue()

public float floatValue()

Return the value of the wrapped primitive

Specified By:

floatValue in interface JIDLNumber

Returns:

value that is wrapped by this object

intValue()

public int intValue()

Return the value of the wrapped primitive

Specified By:

intValue in interface JIDLNumber

Returns:

value that is wrapped by this object

longValue()

public long longValue()

Return the value of the wrapped primitive

Specified By:

longValue in interface JIDLNumber

Returns:

value that is wrapped by this object
IDL Connectivity Bridges JIDLDouble

392 Appendix A: IDL Java Object API
setValue(double)

public void setValue(double value)

Change the value of the wrapper object

Parameters:

value - primitive value to wrap for use in the export bridge

setValue(JIDLNumber)

public void setValue(com.idl.javaidl.JIDLNumber value)

Change the value of the wrapper object

Specified By:

setValue in interface JIDLNumber

Parameters:

value - JIDLNumber to wrap for use in the export bridge

shortValue()

public short shortValue()

Return the value of the wrapped primitive

Specified By:

shortValue in interface JIDLNumber

Returns:

value that is wrapped by this object

toString()

public java.lang.String toString()

Overrides:

toString in class Object
JIDLDouble IDL Connectivity Bridges

Appendix A: IDL Java Object API 393
JIDLException

Declaration

public class JIDLException extends java.lang.Error implements
java.io.Serializable

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Error

|
+--com.idl.javaidl.JIDLException

All Implemented Interfaces:

java.io.Serializable

Direct Known Subclasses:

JIDLAbortedException, JIDLBusyException

Description

An unchecked exception thrown when a call to IDL encounters an error.

Member Summary

Methods

 long getErrorCode()

Get the IDL error code associated with the IDL error.

 java.lang.String toString()
IDL Connectivity Bridges JIDLException

394 Appendix A: IDL Java Object API
Methods

getErrorCode()

public long getErrorCode()

Get the IDL error code associated with the IDL error.

toString()

public java.lang.String toString()

Overrides:

toString in class Throwable

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(),
getMessage(), getStackTrace(), initCause(Throwable),
printStackTrace(PrintWriter),
printStackTrace(PrintWriter),
printStackTrace(PrintWriter),
setStackTrace(StackTraceElement[])
JIDLException IDL Connectivity Bridges

Appendix A: IDL Java Object API 395
JIDLFloat

Declaration

public class JIDLFloat implements JIDLNumber,
java.io.Serializable

java.lang.Object
|
+--com.idl.javaidl.JIDLFloat

All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description

The JIDLFloat class wraps a float as a mutable object usable by the Java-IDL Export
bridge.

Member Summary

Constructors

JIDLFloat(float value)

Construct a wrapper object.

JIDLFloat(JIDLNumber value)

Construct a wrapper object.

Methods

 boolean booleanValue()

Return the value of the wrapped primitive.

 byte byteValue()

Return the value of the wrapped primitive

 char charValue()

Return the value of the wrapped primitive

 double doubleValue()

Return the value of the wrapped primitive
IDL Connectivity Bridges JIDLFloat

396 Appendix A: IDL Java Object API
Constructors

JIDLFloat(float)

public JIDLFloat(float value)

Construct a wrapper object.

Parameters:

value - value to wrap for use in the export bridge

JIDLFloat(JIDLNumber)

public JIDLFloat(com.idl.javaidl.JIDLNumber value)

Construct a wrapper object.

 float floatValue()

Return the value of the wrapped primitive

 int intValue()

Return the value of the wrapped primitive

 long longValue()

Return the value of the wrapped primitive

 void setValue(float value)

 void setValue(JIDLNumber value)

Change the value of the wrapper object

 short shortValue()

Return the value of the wrapped primitive

 java.lang.String toString()

Return the value of the wrapped primitive

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Member Summary
JIDLFloat IDL Connectivity Bridges

Appendix A: IDL Java Object API 397
Parameters:

value - JIDLNumber to wrap for use in the export bridge

Methods

booleanValue()

public boolean booleanValue()

Return the value of the wrapped primitive.

Specified By:

booleanValue in interface JIDLNumber

Returns:

true if non-zero, false otherwise

byteValue()

public byte byteValue()

Return the value of the wrapped primitive

Specified By:

byteValue in interface JIDLNumber

Returns:

value that is wrapped by this object

charValue()

public char charValue()

Return the value of the wrapped primitive

Specified By:

charValue in interface JIDLNumber

Returns:

value that is wrapped by this object

doubleValue()

public double doubleValue()
IDL Connectivity Bridges JIDLFloat

398 Appendix A: IDL Java Object API
Return the value of the wrapped primitive

Specified By:

doubleValue in interface JIDLNumber

Returns:

value that is wrapped by this object

floatValue()

public float floatValue()

Return the value of the wrapped primitive

Specified By:

floatValue in interface JIDLNumber

Returns:

value that is wrapped by this object

intValue()

public int intValue()

Return the value of the wrapped primitive

Specified By:

intValue in interface JIDLNumber

Returns:

value that is wrapped by this object

longValue()

public long longValue()

Return the value of the wrapped primitive

Specified By:

longValue in interface JIDLNumber

Returns:

value that is wrapped by this object
JIDLFloat IDL Connectivity Bridges

Appendix A: IDL Java Object API 399
setValue(float)

public void setValue(float value)

setValue(JIDLNumber)

public void setValue(com.idl.javaidl.JIDLNumber value)

Change the value of the wrapper object

Specified By:

setValue in interface JIDLNumber

Parameters:

value - primitive value to wrap for use in the export bridge

shortValue()

public short shortValue()

Return the value of the wrapped primitive

Specified By:

shortValue in interface JIDLNumber

Returns:

value that is wrapped by this object

toString()

public java.lang.String toString()

Return the value of the wrapped primitive

Overrides:

toString in class Object

Returns:

value that is wrapped by this object
IDL Connectivity Bridges JIDLFloat

400 Appendix A: IDL Java Object API
JIDLInteger

Declaration

public class JIDLInteger implements JIDLNumber,
java.io.Serializable

java.lang.Object
|
+--com.idl.javaidl.JIDLInteger

All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description

The JIDLInteger class wraps an int as a mutable object usable by the Java-IDL
Export bridge.

Member Summary

Constructors

JIDLInteger(int value)

Construct a wrapper object.

JIDLInteger(JIDLNumber value)

Construct a wrapper object.

Methods

 boolean booleanValue()

Return the value of the wrapped primitive.

 byte byteValue()

Return the value of the wrapped primitive

 char charValue()

Return the value of the wrapped primitive

 double doubleValue()

Return the value of the wrapped primitive
JIDLInteger IDL Connectivity Bridges

Appendix A: IDL Java Object API 401
Constructors

JIDLInteger(int)

public JIDLInteger(int value)

Construct a wrapper object.

Parameters:

value - value to wrap for use in the export bridge

JIDLInteger(JIDLNumber)

public JIDLInteger(com.idl.javaidl.JIDLNumber value)

 float floatValue()

Return the value of the wrapped primitive

 int intValue()

Return the value of the wrapped primitive

 long longValue()

Return the value of the wrapped primitive

 void setValue(int value)

Change the value of the wrapper object

 void setValue(JIDLNumber value)

Change the value of the wrapper object

 short shortValue()

Return the value of the wrapped primitive

 java.lang.String toString()

Return the value of the wrapped primitive

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Member Summary
IDL Connectivity Bridges JIDLInteger

402 Appendix A: IDL Java Object API
Construct a wrapper object.

Parameters:

value - JIDLNumber to wrap for use in the export bridge

Methods

booleanValue()

public boolean booleanValue()

Return the value of the wrapped primitive.

Specified By:

booleanValue in interface JIDLNumber

Returns:

true if non-zero, false otherwise

byteValue()

public byte byteValue()

Return the value of the wrapped primitive

Specified By:

byteValue in interface JIDLNumber

Returns:

value that is wrapped by this object

charValue()

public char charValue()

Return the value of the wrapped primitive

Specified By:

charValue in interface JIDLNumber

Returns:

value that is wrapped by this object
JIDLInteger IDL Connectivity Bridges

Appendix A: IDL Java Object API 403
doubleValue()

public double doubleValue()

Return the value of the wrapped primitive

Specified By:

doubleValue in interface JIDLNumber

Returns:

value that is wrapped by this object

floatValue()

public float floatValue()

Return the value of the wrapped primitive

Specified By:

floatValue in interface JIDLNumber

Returns:

value that is wrapped by this object

intValue()

public int intValue()

Return the value of the wrapped primitive

Specified By:

intValue in interface JIDLNumber

Returns:

value that is wrapped by this object

longValue()

public long longValue()

Return the value of the wrapped primitive

Specified By:

longValue in interface JIDLNumber
IDL Connectivity Bridges JIDLInteger

404 Appendix A: IDL Java Object API
Returns:

value that is wrapped by this object

setValue(int)

public void setValue(int value)

Change the value of the wrapper object

Parameters:

value - primitive value to wrap for use in the export bridge

setValue(JIDLNumber)

public void setValue(com.idl.javaidl.JIDLNumber value)

Change the value of the wrapper object

Specified By:

setValue in interface JIDLNumber

Parameters:

value - JIDLNumber to wrap for use in the export bridge

shortValue()

public short shortValue()

Return the value of the wrapped primitive

Specified By:

shortValue in interface JIDLNumber

Returns:

value that is wrapped by this object

toString()

public java.lang.String toString()

Return the value of the wrapped primitive

Overrides:

toString in class Object
JIDLInteger IDL Connectivity Bridges

Appendix A: IDL Java Object API 405
Returns:

value that is wrapped by this object
IDL Connectivity Bridges JIDLInteger

406 Appendix A: IDL Java Object API
JIDLKeyListener

Declaration

public interface JIDLKeyListener

All Known Implementing Classes:

JIDLCanvas

Description

The listener interface for receiving keyboard events (key pressed, key released) on a
JIDLCanvas.

The class that is interested in handling these events implements this interface (and all
the methods it contains). The listener object created from that class is then registered
with the JIDLCanvas using the addIDLKeyListener method. The listener is
unregistered with the removeIDLKeyListener.

The JIDLCanvas automatically handles key events whether a program registers an
additional JIDLKeyListener or not. The JIDLCanvas is itself a JIDLKeyListener and
provides default behavior for press and release. For a key press or key release, the
default behavior is for the JIDLCanvas to call the IDL program’s OnKeyboard
method.

Note that clients should not register to listen to JIDLCanvas KeyEvents using a
KeyListener, preferring the JIDLKeyListener instead.

See Also:

JIDLCanvas, java.awt.event.KeyEvent,
java.awt.event.KeyListener
JIDLKeyListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 407
Methods

IDLkeyPressed(JIDLObjectI, KeyEvent, int, int)

public void IDLkeyPressed(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.KeyEvent event, int x, int y)

A key press has occurred inside the JIDLCanvas.

The default behavior of JIDLCanvas’s default implementation is to call the IDL
program’s OnKeyboard method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The key event

x - The x pixel location in the canvas where the event occurred

y - The y pixel location in the canvas where the event occurred

IDLkeyReleased(JIDLObjectI, KeyEvent, int, int)

public void IDLkeyReleased(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.KeyEvent event, int x, int y)

A key release has occurred inside the JIDLCanvas.

The default behavior of JIDLCanvas’s default implementation is to call the IDL
program’s OnKeyboard method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

Member Summary

Methods

 void IDLkeyPressed(JIDLObjectI obj,
java.awt.event.KeyEvent event, int x, int y)

A key press has occurred inside the JIDLCanvas.

 void IDLkeyReleased(JIDLObjectI obj,
java.awt.event.KeyEvent event, int x, int y)

A key release has occurred inside the JIDLCanvas.
IDL Connectivity Bridges JIDLKeyListener

408 Appendix A: IDL Java Object API
event - The key event

x - The x pixel location in the canvas where the event occurred

y - The y pixel location in the canvas where the event occurred
JIDLKeyListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 409
JIDLLong

Declaration

public class JIDLLong implements JIDLNumber,
java.io.Serializable

java.lang.Object
|
+--com.idl.javaidl.JIDLLong

All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description

The JIDLLong class wraps a long as a mutable object usable by the Java-IDL Export
bridge.

Member Summary

Constructors

JIDLLong(JIDLNumber value)

Construct a wrapper object.

JIDLLong(long value)

Construct a wrapper object.

Methods

 boolean booleanValue()

Return the value of the wrapped primitive.

 byte byteValue()

Return the value of the wrapped primitive

 char charValue()

Return the value of the wrapped primitive

 double doubleValue()

Return the value of the wrapped primitive
IDL Connectivity Bridges JIDLLong

410 Appendix A: IDL Java Object API
Constructors

JIDLLong(JIDLNumber)

public JIDLLong(com.idl.javaidl.JIDLNumber value)

Construct a wrapper object.

Parameters:

value - JIDLNumber to wrap for use in the export bridge

JIDLLong(long)

public JIDLLong(long value)

 float floatValue()

Return the value of the wrapped primitive

 int intValue()

Return the value of the wrapped primitive

 long longValue()

Return the value of the wrapped primitive

 void setValue(JIDLNumber value)

Change the value of the wrapper object

 void setValue(long value)

Change the value of the wrapper object

 short shortValue()

Return the value of the wrapped primitive

java.lang.String

toString()

Return the value of the wrapped primitive

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Member Summary
JIDLLong IDL Connectivity Bridges

Appendix A: IDL Java Object API 411
Construct a wrapper object.

Parameters:

value - value to wrap for use in the export bridge

Methods

booleanValue()

public boolean booleanValue()

Return the value of the wrapped primitive.

Specified By:

booleanValue in interface JIDLNumber

Returns:

true if non-zero, false otherwise

byteValue()

public byte byteValue()

Return the value of the wrapped primitive

Specified By:

byteValue in interface JIDLNumber

Returns:

value that is wrapped by this object

charValue()

public char charValue()

Return the value of the wrapped primitive

Specified By:

charValue in interface JIDLNumber

Returns:

value that is wrapped by this object
IDL Connectivity Bridges JIDLLong

412 Appendix A: IDL Java Object API
doubleValue()

public double doubleValue()

Return the value of the wrapped primitive

Specified By:

doubleValue in interface JIDLNumber

Returns:

value that is wrapped by this object

floatValue()

public float floatValue()

Return the value of the wrapped primitive

Specified By:

floatValue in interface JIDLNumber

Returns:

value that is wrapped by this object

intValue()

public int intValue()

Return the value of the wrapped primitive

Specified By:

intValue in interface JIDLNumber

Returns:

value that is wrapped by this object

longValue()

public long longValue()

Return the value of the wrapped primitive

Specified By:

longValue in interface JIDLNumber
JIDLLong IDL Connectivity Bridges

Appendix A: IDL Java Object API 413
Returns:

value that is wrapped by this object

setValue(JIDLNumber)

public void setValue(com.idl.javaidl.JIDLNumber value)

Change the value of the wrapper object

Specified By:

setValue in interface JIDLNumber

Parameters:

value - JIDLNumber to wrap for use in the export bridge

setValue(long)

public void setValue(long value)

Change the value of the wrapper object

Parameters:

value - primitive value to wrap for use in the export bridge

shortValue()

public short shortValue()

Return the value of the wrapped primitive

Specified By:

shortValue in interface JIDLNumber

Returns:

value that is wrapped by this object

toString()

public java.lang.String toString()

Return the value of the wrapped primitive

Overrides:

toString in class Object
IDL Connectivity Bridges JIDLLong

414 Appendix A: IDL Java Object API
Returns:

value that is wrapped by this object
JIDLLong IDL Connectivity Bridges

Appendix A: IDL Java Object API 415
JIDLMouseListener

Declaration

public interface JIDLMouseListener

All Known Implementing Classes:

JIDLCanvas

Description

The listener interface for receiving mouse events from IDL (press, release, enter, and
exit) on a JIDLCanvas. A mouse event is generated when the mouse is pressed,
released, the mouse cursor enters or leaves the JIDLCanvas component.

Note: Mouse moves and drags are tracked using JIDLMouseMotionListener.

The class that is interested in processing an IDL mouse event implements this
interface (and all the methods it contains). The listener object created from that class
is then registered with the JIDLCanvas using the addIDLMouseListener method. The
listener is unregistered with the removeIDLMouseListener.

The JIDLCanvas automatically handles mouse events whether a program registers an
additional JIDLMouseListener or not. The JIDLCanvas is itself a
JIDLMouseListener and provides default behavior for the 4 events, as denoted in the
specific methods below.

Note that clients should not register to listen to JIDLCanvas MouseEvents using a
MouseListener, preferring the JIDLMouseListener instead.

See Also:

JIDLCanvas, JIDLMouseMotionListener, java.awt.event.MouseEvent,
java.awt.event.MouseListener
IDL Connectivity Bridges JIDLMouseListener

416 Appendix A: IDL Java Object API
Methods

IDLmouseEntered(JIDLObjectI, MouseEvent)

public void IDLmouseEntered(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent event)

The mouse has entered the JIDLCanvas.

The default behavior of JIDLCanvas’s default implementation is to call the IDL
program’s OnEnter method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse event

IDLmouseExited(JIDLObjectI, MouseEvent)

public void IDLmouseExited(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent event)

The mouse has exiting the JIDLCanvas.

The default behavior of JIDLCanvas’s default implementation is to call the IDL
program’s OnExit method.

Member Summary

Methods

 void IDLmouseEntered(JIDLObjectI obj,
java.awt.event.MouseEvent event)

The mouse has entered the JIDLCanvas.

 void IDLmouseExited(JIDLObjectI obj,
java.awt.event.MouseEvent event)

The mouse has exiting the JIDLCanvas.

 void IDLmousePressed(JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse button was pressed inside the JIDLCanvas.

 void IDLmouseReleased(JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse button was released inside the JIDLCanvas.
JIDLMouseListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 417
Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse event

IDLmousePressed(JIDLObjectI, MouseEvent)

public void IDLmousePressed(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse button was pressed inside the JIDLCanvas.

The default behavior of JIDLCanvas’s default implementation is to call the IDL
program’s OnMouseDown method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse event

IDLmouseReleased(JIDLObjectI, MouseEvent)

public void IDLmouseReleased(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse button was released inside the JIDLCanvas.

The default behavior of JIDLCanvas’s default implementation is to call the IDL
program’s OnMouseUp method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse event
IDL Connectivity Bridges JIDLMouseListener

418 Appendix A: IDL Java Object API
JIDLMouseMotionListener

Declaration

public interface JIDLMouseMotionListener

All Known Implementing Classes:

JIDLCanvas

Description

The listener interface for receiving mouse motion events from IDL (move and drag)
on a JIDLCanvas. (Mouse presses, releases, enter and exits are tracked using
JIDLMouseListener.)

The class that is interested in processing an IDL mouse motion event implements this
interface (and all the methods it contains). The listener object created from that class
is then registered with the JIDLCanvas using the addIDLMouseMotionListener
method. The listener is unregistered with the removeIDLMouseMotionListener.

The JIDLCanvas automatically handles mouse motion events whether a program
registers an additional JIDLMouseMotionListener or not. The JIDLCanvas is itself a
JIDLMouseMotionListener and provides default behavior which is to call the IDL
object’s OnMouseMotion method.

Note that clients should not register to listen to JIDLCanvas mouse motion events
using a MouseMotionListener, preferring the JIDLMouseMotionListener instead.

See Also:

JIDLCanvas, JIDLMouseListener, java.awt.event.MouseEvent,
java.awt.event.MouseMotionListener
JIDLMouseMotionListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 419
Methods

IDLmouseDragged(JIDLObjectI, MouseEvent)

public void IDLmouseDragged(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse was dragged inside the JIDLCanvas.

The default behavior of JIDLCanvas’s default implementation is to call the IDL
program’s OnMouseMotion method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse event

IDLmouseMoved(JIDLObjectI, MouseEvent)

public void IDLmouseMoved(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse was moved inside the JIDLCanvas.

The default behavior of JIDLCanvas’s default implementation is to call the IDL
program’s OnMouseMotion method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse event

Member Summary

Methods

 void IDLmouseDragged(JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse was dragged inside the JIDLCanvas.

 void IDLmouseMoved(JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse was moved inside the JIDLCanvas.
IDL Connectivity Bridges JIDLMouseMotionListener

420 Appendix A: IDL Java Object API
JIDLMouseWheelListener

Declaration

public interface JIDLMouseWheelListener

All Known Implementing Classes:

JIDLCanvas

Description

The listener interface for receiving mouse wheel events on a JIDLCanvas.

The class that is interested in processing an IDL mouse wheel event implements this
interface. The listener object created from that class is then registered with the
JIDLCanvas using the addIDLMouseWheelListener method. The listener is
unregistered with the removeIDLMouseWheelListener.

The JIDLCanvas automatically handles mouse wheel events whether a program
registers an additional JIDLMouseWheelListener or not. The JIDLCanvas is itself a
JIDLMouseWheelListener and provides default behavior for the event.

Note that clients should not register to listen to JIDLCanvas MouseWheelEvents
using a MouseWheelListener, preferring the JIDLMouseWheelListener instead.

Note
The Java convention for mouse wheel direction is the opposite of IDL’s. This is
transparent to IDL applications because when the MouseWheelEvent is passed to
IDL, the sign is flipped.

See Also:

JIDLCanvas, JIDLMouseListener, java.awt.event.MouseWheelEvent,
java.awt.event.MouseWheelListener
JIDLMouseWheelListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 421
Methods

IDLmouseWheelMoved(JIDLObjectI, MouseWheelEvent)

public void IDLmouseWheelMoved(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseWheelEvent event)

A mouse wheel was moved inside the JIDLCanvas.

The default behavior of JIDLCanvas’s default implementation is to call the IDL
program’s OnWheel method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse wheel event

Member Summary

Methods

 void IDLmouseWheelMoved(JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse wheel was moved inside the JIDLCanvas.
IDL Connectivity Bridges JIDLMouseWheelListener

422 Appendix A: IDL Java Object API
JIDLNotifyListener

Declaration

public interface JIDLNotifyListener

Description

The listener interface for receiving notify events from IDL.

IDL objects that sub-class itComponent may trigger a notification by calling
IDLitComponent::Notify. Both drawable (JIDLCanvas) and non-drawable
(JIDLObject) wrapper objects may be listened to. However by default, JIDLObject
and JIDLCanvas objects do NOT listen to their output events.

The class that is interested in receiving IDL notify events of a particular object *
implements this interface. The listener object created from that class is registered
with the JIDLObjectI using the addIDLNotifyListener method. The listener is
unregistered with the removeIDLNotifyListener.

See Also:

JIDLCanvas, JIDLObject, JIDLObjectI

Methods

OnIDLNotify(JIDLObjectI, String, String)

public void OnIDLNotify(com.idl.javaidl.JIDLObjectI obj,
java.lang.String s1, java.lang.String s2)

An IDL notify has occurred.

Member Summary

Methods

 void OnIDLNotify(JIDLObjectI obj, java.lang.String
s1, java.lang.String s2)

An IDL notify has occurred.
JIDLNotifyListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 423
Parameters:

obj - The JIDLObjectI in which the event occurred.

s1 - The first string parameter sent via IdlIComponent:Notify

s2 - The second string parameter sent via IdlIComponent:Notify
IDL Connectivity Bridges JIDLNotifyListener

424 Appendix A: IDL Java Object API
JIDLNumber

Declaration

public interface JIDLNumber

All Known Implementing Classes:

JIDLShort, JIDLLong, JIDLInteger, JIDLFloat, JIDLDouble, JIDLChar, JIDLByte,
JIDLBoolean

Description

The JIDLNumber class wraps a primitive java number as a mutable object usable by
the Java-IDL Export bridge.

Member Summary

Methods

 boolean booleanValue()

Return the value of the wrapped primitive.

 byte byteValue()

Return the value of the wrapped primitive.

 char charValue()

Return the value of the wrapped primitive.

 double doubleValue()

Return the value of the wrapped primitive.

 float floatValue()

Return the value of the wrapped primitive.

 int intValue()

Return the value of the wrapped primitive.
JIDLNumber IDL Connectivity Bridges

Appendix A: IDL Java Object API 425
Methods

booleanValue()

public boolean booleanValue()

Return the value of the wrapped primitive.

Returns:

true if non-zero, false otherwise

byteValue()

public byte byteValue()

Return the value of the wrapped primitive.

Returns:

value that is wrapped by this object

charValue()

public char charValue()

Return the value of the wrapped primitive.

Returns:

value that is wrapped by this object

doubleValue()

public double doubleValue()

Return the value of the wrapped primitive.

 long longValue()

Return the value of the wrapped primitive.

 void setValue(JIDLNumber value)

Change the value of the wrapper object

 short shortValue()

Return the value of the wrapped primitive.

Member Summary
IDL Connectivity Bridges JIDLNumber

426 Appendix A: IDL Java Object API
Returns:

value that is wrapped by this object

floatValue()

public float floatValue()

Return the value of the wrapped primitive.

Returns:

value that is wrapped by this object

intValue()

public int intValue()

Return the value of the wrapped primitive.

Returns:

value that is wrapped by this object

longValue()

public long longValue()

Return the value of the wrapped primitive.

Returns:

value that is wrapped by this object

setValue(JIDLNumber)

public void setValue(com.idl.javaidl.JIDLNumber value)

Change the value of the wrapper object

Parameters:

value - JIDLNumber to wrap for use in the export bridge

shortValue()

public short shortValue()

Return the value of the wrapped primitive.
JIDLNumber IDL Connectivity Bridges

Appendix A: IDL Java Object API 427
Returns:

value that is wrapped by this object
IDL Connectivity Bridges JIDLNumber

428 Appendix A: IDL Java Object API
JIDLObject

Declaration

public class JIDLObject implements JIDLObjectI,
java.io.Serializable

java.lang.Object
|
+--com.idl.javaidl.JIDLObject

All Implemented Interfaces:

JIDLObjectI, java.io.Serializable

Description

This class wraps an IDL object.

In many of the methods of this class, one or more flags are required to be specified
for parameters being passed to or from the bridge. These flags follow the following
guidelines:

For all types of parameters (subclasses of JIDLNumber, JIDLString, JIDLObjectI
and JIDLArray), a flag should be set that determines whether the parameter is in-only
(const) or in-out (we expect it to be changed by IDL). The constants that determine
this are either JIDLConst.PARMFLAG_CONST or
JIDLConst.PARMFLAG_IN_OUT.

For parameters that are arrays, a flag should be set that tells the bridge whether the
array is to be convolved when passed to IDL. If the PARM_IN_OUT flag is set, this
flag will also tell the bridge whether to convolve the array when it is copied back to
Java. The constants that determine this are either
JIDLConst.PARMFLAG_CONVMAJORITY or
JIDLConst.PARMFLAG_NO_CONVMAJORITY.

For example, if the parameter in question is an array that is to be modified by IDL
(in-out) and needs to be convolved when passed to and from IDL, we would set its
argpal array member as follows:

argpal[2] = JIDLConst.PARMFLAG_IN_OUT | JIDLConst.PARMFLAG_CONV
MAJORITY;
JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 429
Member Summary

Methods

 void abort()

Requests that the IDL process containing the
underlying IDL object abort its current activity.

 void addIDLNotifyListener(JIDLNotifyListener
listener)

Adds the specified IDL notify listener to receive IDL
notification events on this object.

 void addIDLOutputListener(JIDLOutputListener
listener)

Adds the specified IDL output listener to receive IDL
output events on this object.

 java.lang.Object callFunction(java.lang.String sMethodName,
int iPalFlag)

Call IDL function that accepts zero parameters.

 java.lang.Object callFunction(java.lang.String sMethodName,
int argc, java.lang.Object argv, int[]
argpal, int iPalFlag)

Call IDL function.

 void callProcedure(java.lang.String sMethodName)

Call IDL procedure that accepts zero parameters.

 void callProcedure(java.lang.String sMethodName,
int argc, java.lang.Object argv, int[]
argpal)

Call IDL procedure.

 void createObject()

Create the wrapped object by calling IDL’s ::INIT
method.

 void createObject(int argc, java.lang.Object
argv, int[] argpal)

Create the wrapped object by calling IDL’s ::INIT
method.
IDL Connectivity Bridges JIDLObject

430 Appendix A: IDL Java Object API
void createObject(int argc, java.lang.Object
argv, int[] argpal,
com.idl.javaidl.JIDLProcessInitializer
initializer)

Create the wrapped object by calling IDL’s ::INIT
method.

void createObject(com.idl.javaidl.JIDLProcessInit
ializer initializer)

Create the wrapped object by calling IDL’s ::INIT
method.

 void destroyObject()

Destroys the underlying IDL object associated with the
wrapper.

 void executeString(java.lang.String sCmd)

Execute the given command string in IDL.

 java.lang.String getClassName()

Get the class name of the object.

 long getCookie()

Internal use.

 java.lang.String getIDLObjectClassName()

Retrieves the IDL object class name of the underlying
IDL object.

 java.lang.String getIDLObjectVariableName()

When the underlying IDL object was created in the
IDL process, it was assigned a variable name.

 java.lang.Object getIDLVariable(java.lang.String sVar)

Given a variable name, return the IDL variable.

 java.lang.String getObjVariableName()

Get the IDL Variable name of the given object

 java.lang.String getProcessName()

Returns the name of the process that contains the
underlying IDL object.

 java.lang.Object getProperty(java.lang.String sProperty, int
iPalFlag)

Call IDL getProperty method to get named property.

Member Summary
JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 431
 void initListeners()

Initialize listeners.

 boolean isObjCreated()

Determine if object has been created successfully.

 boolean isObjectCreated()

Determine if object has been created successfully.

 boolean isObjectDisplayable()

 void removeIDLNotifyListener(JIDLNotifyListener
listener)

Removes the specified IDL notify listener so it no
longer receives IDL notifications.

 void removeIDLOutputListener(JIDLOutputListener
listener)

Removes the specified IDL output listener on this
object.

 void setIDLVariable(java.lang.String sVar,
java.lang.Object obj)

Set/Create an IDL variable of the given name and
value.

 void setProcessName(java.lang.String process)

Set the process name that the object will be created in.

 void setProperty(java.lang.String sProperty,
java.lang.Object obj, int iPalFlag)

Call IDL setProperty method to set named property.

 java.lang.String toString()

Returns a string representation of the object.

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Member Summary
IDL Connectivity Bridges JIDLObject

432 Appendix A: IDL Java Object API
Methods

abort()

public void abort()

Requests that the IDL process containing the underlying IDL object abort its current
activity.

This is only a request and IDL may take a long time before it actually stops.

The client can only Abort the current IDL activity if that wrapper object is the current
“owner” of the underlying IDL.

Specified By:

abort in interface JIDLObjectI

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLAbortedException

addIDLNotifyListener(JIDLNotifyListener)

public void
addIDLNotifyListener(com.idl.javaidl.JIDLNotifyListener listener)

Adds the specified IDL notify listener to receive IDL notification events on this
object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:

addIDLNotifyListener in interface JIDLObjectI

Parameters:

listener - the listener

addIDLOutputListener(JIDLOutputListener)

public void
addIDLOutputListener(com.idl.javaidl.JIDLOutputListener listener)

Adds the specified IDL output listener to receive IDL output events on this object.
JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 433
Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:

addIDLOutputListener in interface JIDLObjectI

Parameters:

listener - the listener

callFunction(String, int)

public java.lang.Object callFunction(java.lang.String
sMethodName, int iPalFlag)

Call IDL function that accepts zero parameters.

Parameters:

sMethodName - the function name

iPalFlag - a flag determining whether a returned array if convolved or not. If the
returned value is not an array, this value is zero. See class description for more
information.

Returns:

an Object of type JIDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLObjectI.callFunction(String, int, Object[], int[], int)

callFunction(String, int, Object[], int[], int)

public java.lang.Object callFunction(java.lang.String
sMethodName, int argc, java.lang.Object[] argv, int[] argpal,
int iPalFlag)

Call IDL function.

The argpal parameter is an array of flags created by OR-ing constants from class
JIDLConst. Each array element corresponds to the equivalent parameter in argv.
IDL Connectivity Bridges JIDLObject

434 Appendix A: IDL Java Object API
Specified By:

callFunction in interface JIDLObjectI

Parameters:

sMethodName - the procedure name

argc - the number of parameters

argv - array of Objects to be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObject, JIDLString or JIDLObject.

argpal - array of flags denoting whether each argv parameter passed to be bridge is
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length argc.

iPalFlag - a flag determining whether a returned array if convolved or not. If the
returned value is not an array, this value is zero.

Returns:

an Object of type JIDLNumber, JIDLString, JIDLObjectI or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type.

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLArray,
JIDLConst.PARMFLAG_CONST, JIDLConst.PARMFLAG_IN_OUT,
JIDLConst.PARMFLAG_CONVMAJORITY,
JIDLConst.PARMFLAG_NO_CONVMAJORITY

callProcedure(String)

public void callProcedure(java.lang.String sMethodName)

Call IDL procedure that accepts zero parameters.

Parameters:

sMethodName - the procedure name

Throws:

JIDLException - If IDL encounters an error.
JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 435
See Also:

callProcedure(String, int, Object[], int[])

callProcedure(String, int, Object[], int[])

public void callProcedure(java.lang.String sMethodName,
int argc, java.lang.Object[] argv, int[] argpal)

Call IDL procedure.

The argpal parameter is an array of flags created by OR-ing constants from class
JIDLConst. Each array element corresponds to the equivalent parameter in argv.

Specified By:

callProcedure in interface JIDLObjectI

Parameters:

sMethodName - the procedure name

argc - the number of parameters

argv - array of Objects to be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObject, JIDLString or JIDLObject.

argpal - array of flags denoting whether each argv parameter passed to be bridge is
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length argc.

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLArray,
JIDLConst.PARMFLAG_CONST, JIDLConst.PARMFLAG_IN_OUT,
JIDLConst.PARMFLAG_CONVMAJORITY,
JIDLConst.PARMFLAG_NO_CONVMAJORITY

createObject()

public void createObject()

Create the wrapped object by calling IDL’s ::INIT method.

Used for ::INIT methods that take zero parameters. Assumes a default
JIDLProcessInitializer.
IDL Connectivity Bridges JIDLObject

436 Appendix A: IDL Java Object API
Throws:

JIDLException - If IDL encounters an error.

See Also:

createObject(int, Object[], int[])

createObject(int, Object[], int[])

public void createObject(int argc, java.lang.Object[] argv,
int[] argpal)

Create the wrapped object by calling IDL’s ::INIT method.

The argc, argv, argpal parameters are used to supply parameters to the underlying
IDL object’s ::Init method.

If the ::Init method does not have any parameters, the caller sets argc, argv, argpal to
0, null, null, respectively.

createObject does the following:

• Calls ::Init method in the IDL object

• Calls the superclass initListeners method to initialize any event handlers. The
initListeners method has default behavior, which is different for graphical and
non-graphical objects. If the default behavior is not desired, a sub-class to
modify the listener initialization may override the initListeners method.

Specified By:

createObject in interface JIDLObjectI

Parameters:

argc - the number of parameters to be passed to INIT

argv - array of Objects to be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObject, JIDLString or JIDLArray.

argpal - array of flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

Throws:

JIDLException - If IDL encounters an error.
JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 437
createObject(int, Object[], int[], JIDLProcessInitializer)

public void createObject(int argc, java.lang.Object[] argv,
int[] argpal, com.idl.javaidl.JIDLProcessInitializer initializer)

Create the wrapped object by calling IDL’s ::INIT method.

The argc, argv, argpal parameters are used to supply parameters to the underlying
IDL object’s ::Init method The initializer parameter is used to supply IDL process
initialization values.

If the ::Init method does not have any parameters, the caller sets argc, argv, argpal to
0, null, null, respectively.

createObject does the following:

• Calls ::Init method in the IDL object

• Calls the superclass initListeners method to initialize any event handlers. The
initListeners method has default behavior, which is different for graphical and
non-graphical objects. If the default behavior is not desired, a sub-class to
modify the listener initialization may override the initListeners method.

Specified By:

createObject in interface JIDLObjectI

Parameters:

argc - the number of parameters to be passed to INIT

argv - array of Objects to be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObject, JIDLString or JIDLArray.

argpal - array of flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

initializer - a JIDLProcessInitializer object that specifies IDL process
initialization parameters such as the licensing mode to be used. See “IDL Licensing
Modes” on page 134 for details on the default licensing mechanism used when no
JIDLProcessInitializer is specified.

Throws:

JIDLException - If IDL encounters an error.
IDL Connectivity Bridges JIDLObject

438 Appendix A: IDL Java Object API
createObject(JIDLProcessInitializer)

public void createObject(com.idl.javaidl.JIDLProcessInitializer
initializer)

Create the wrapped object by calling IDL’s ::INIT method.

Used for ::INIT methods that take zero parameters.

The initializer parameter is used to supply IDL process initialization values.

Parameters:

initializer - a JIDLProcessInitializer object that specifies IDL process
initialization parameters such as the licensing mode to be used. See “IDL Licensing
Modes” on page 134 for details on the default licensing mechanism used when no
JIDLProcessInitializer is specified.

Throws:

JIDLException - If IDL encounters an error.

destroyObject()

public void destroyObject()

Destroys the underlying IDL object associated with the wrapper.

If the object being destroyed is the last object within an OPS process, the OPS
process is also destroyed.

Note that this does not destroy the actual wrapper object. Because the wrapper object
is a Java object, it follows all the Java reference counting/garbage collection schemes.
Once all references to the wrapper object are released from Java code and once the
Java Virtual Machine calls the garbage collector, the wrapper object may be deleted
from memory.

Specified By:

destroyObject in interface JIDLObjectI

executeString(String)

public void executeString(java.lang.String sCmd)

Execute the given command string in IDL.

Specified By:

executeString in interface JIDLObjectI
JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 439
Parameters:

sCmd - the single-line command to execute in IDL.

Throws:

JIDLException - If IDL encounters an error.

getClassName()

public java.lang.String getClassName()

Deprecated.

Replaced by getIDLObjectClassName()

Get the class name of the object.

Returns:

class name (“” if object not created yet)

getCookie()

public long getCookie()

Internal use.

Specified By:

getCookie in interface JIDLObjectI

getIDLObjectClassName()

public java.lang.String getIDLObjectClassName()

Retrieves the IDL object class name of the underlying IDL object.

Specified By:

getIDLObjectClassName in interface JIDLObjectI

Returns:

the IDL object class name

getIDLObjectVariableName()

public java.lang.String getIDLObjectVariableName()

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. This method retrieves that name.
IDL Connectivity Bridges JIDLObject

440 Appendix A: IDL Java Object API
Specified By:

getIDLObjectVariableName in interface JIDLObjectI

Returns:

the variable name

getIDLVariable(String)

public java.lang.Object getIDLVariable(java.lang.String sVar)

Given a variable name, return the IDL variable.

Note that in the case of arrays, the array will ALWAYS be convolved when passed
between Java and IDL.

Specified By:

getIDLVariable in interface JIDLObjectI

Parameters:

sVar - The IDL variable name

Returns:

an Object of type JIDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

getObjVariableName()

public java.lang.String getObjVariableName()

Deprecated.

Replaced by getIDLObjectVariableName()

Get the IDL Variable name of the given object

Returns:

a String representing the IDL Variable name

getProcessName()

public java.lang.String getProcessName()
JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 441
Returns the name of the process that contains the underlying IDL object. For an in-
process object, returns an empty string.

Specified By:

getProcessName in interface JIDLObjectI

Returns:

process name. Empty string if the process is in-process.

getProperty(String, int)

public java.lang.Object getProperty(java.lang.String
sProperty, int iPalFlag)

Call IDL getProperty method to get named property.

Specified By:

getProperty in interface JIDLObjectI

Parameters:

sProperty - the property name

iPalFlag - a flag determining whether a returned array will be convolved or not. If
the returned value is not is ignored.

Returns:

an Object of type JIDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLNumber, JIDLObjectI, JIDLString, JIDLArray,
JIDLConst.PARMFLAG_CONVMAJORITY,
JIDLConst.PARMFLAG_NO_CONVMAJORITY

initListeners()

public void initListeners()

Initialize listeners.
IDL Connectivity Bridges JIDLObject

442 Appendix A: IDL Java Object API
This method is always called by createObject. The JIDLObject listens to no events,
but this method may be overridden by sub-classes to initialize a different set of
listeners (or none at all).

For example if a sub-class of JIDLObject wished to listen to IDL output events, it
would need to implement JIDLOutputListener and register to listen for these events
in initListeners, as follows:

public class newObject extends JIDLObject implements JIDLOutputLi
stener
{

public void initListeners() {
addIDLOutputListener(this);

}
void IDLoutput(JIDLObjectI obj, String s) {

// do something with the output
}

}

Specified By:

initListeners in interface JIDLObjectI

See Also:

JIDLNotifyListener, JIDLOutputListener

isObjCreated()

public boolean isObjCreated()

Deprecated.

Replaced by isObjectCreated()

Determine if object has been created successfully.

Returns:

true if object created successfully, or falseif object not created or creation was
unsuccessful.

isObjectCreated()

public boolean isObjectCreated()

Determine if object has been created successfully.
JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 443
Specified By:

isObjectCreated in interface JIDLObjectI

Returns:

true if object created successfully, or false if object not created, destroyed, or
creation was unsuccessful.

See Also:

createObject()

isObjectDisplayable()

public boolean isObjectDisplayable()

Specified By:

isObjectDisplayable in interface JIDLObjectI

removeIDLNotifyListener(JIDLNotifyListener)

public void
removeIDLNotifyListener(com.idl.javaidl.JIDLNotifyListener
listener)

Removes the specified IDL notify listener so it no longer receives IDL notifications.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:

removeIDLNotifyListener in interface JIDLObjectI

Parameters:

listener - the listener

removeIDLOutputListener(JIDLOutputListener)

public void
removeIDLOutputListener(com.idl.javaidl.JIDLOutputListener
listener)

Removes the specified IDL output listener on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.
IDL Connectivity Bridges JIDLObject

444 Appendix A: IDL Java Object API
Specified By:

removeIDLOutputListener in interface JIDLObjectI

Parameters:

listener - the listener

setIDLVariable(String, Object)

public void setIDLVariable(java.lang.String sVar,
java.lang.Object obj)

Set/Create an IDL variable of the given name and value.

Note that in the case of arrays, the array will ALWAYS be convolved when passed
between Java and IDL.

Specified By:

setIDLVariable in interface JIDLObjectI

Parameters:

sVar - the IDL variable name

obj - object to be passed to IDL. Should be an object of type JIDLNumber,
JIDLObject, JIDLString or JIDLArray.

Throws:

JIDLException - If IDL encounters an error.

setProcessName(String)

public void setProcessName(java.lang.String process)

Set the process name that the object will be created in.

The process name may only be set before createObject is called. If called after the
object has been created, this method call does nothing.

Specified By:

setProcessName in interface JIDLObjectI

Parameters:

process - Process name. Empty String means create in same process (in-process).
JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 445
setProperty(String, Object, int)

public void setProperty(java.lang.String sProperty,
java.lang.Object obj, int iPalFlag)

Call IDL setProperty method to set named property.

The iPalFlag parameter is a set of flags that are or-ed together. Currently this
parameter is only used to specify whether a JIDLArray being passed in to IDL is
convolved or not. For arrays argpal should be set to either
JIDLConst.PARMFLAG_CONVMAJORITY or
JIDLConst.PARMFLAG_NO_CONVMAJORITY.

Specified By:

setProperty in interface JIDLObjectI

Parameters:

sProperty - the property name

obj - object to be passed to IDL. Should be an object of type JIDLNumber,
JIDLObject, JIDLString or JIDLObject.

iPalFlag - flag denoting whether the passed in parameter is convolved or not.
 Note: setProperty does not allow obj to be modified by IDL

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLArray,
JIDLConst.PARMFLAG_CONVMAJORITY,
JIDLConst.PARMFLAG_NO_CONVMAJORITY

toString()

public java.lang.String toString()

Returns a string representation of the object.

Overrides:

toString in class Object
IDL Connectivity Bridges JIDLObject

446 Appendix A: IDL Java Object API
JIDLObjectI

Declaration

public interface JIDLObjectI

All Known Implementing Classes:

JIDLObject, JIDLCanvas

Description

The interface that wrapped IDL objects must implement. Both non-drawable and
drawable IDL objects implement this interface.

In many of the methods of this class, one or more flags are required to be specified
for parameters being passed to or from the bridge. These flags follow the following
guidelines:

For all types of parameters (subclasses of JIDLNumber, JIDLString, JIDLObjectI
and JIDLArray), a flag should be set that determines whether the parameter is in-only
(const) or in-out (we expect it to be changed by IDL). The constants that determine
this are either JIDLConst.PARMFLAG_CONST or
JIDLConst.PARMFLAG_IN_OUT.

For parameters that are arrays, a flag should be set that tells the bridge whether the
array is to be convolved when passed to IDL. If the PARM_IN_OUT flag is set, this
flag will also tell the bridge whether to convolve the array when it is copied back to
Java. The constants that determine this are either
JIDLConst.PARMFLAG_CONVMAJORITY or
JIDLConst.PARMFLAG_NO_CONVMAJORITY.

For example, if the parameter in question is an array that is to be modified by IDL
(in-out) and needs to be convolved when passed to and from IDL, we would set its
argpal array member as follows:

argpal[2] = JIDLConst.PARMFLAG_IN_OUT | JIDLConst.PARMFLAG_CONV
MAJORITY;
JIDLObjectI IDL Connectivity Bridges

Appendix A: IDL Java Object API 447
Member Summary

Methods

 void abort()

Requests that the IDL process containing the
underlying IDL object abort its current activity.

 void addIDLNotifyListener(JIDLNotifyListener
listener)

Adds the specified IDL notify listener to receive IDL
notification events on this object.

 void addIDLOutputListener(JIDLOutputListener
listener)

Adds the specified IDL output listener to receive IDL
output events on this object.

 java.lang.Object callFunction(java.lang.String sMethodName,
int argc, java.lang.Object argv, int[]
argpal, int iPalFlag)

Call IDL function.

 void callProcedure(java.lang.String sMethodName,
int argc, java.lang.Object argv, int[]
argpal)

Call IDL procedure.

 void createObject(int argc, java.lang.Object
argv, int[] argpal,
com.idl.idljava.JIDLProcessInitializer
initializer)

Creates the underlying IDL object.

 void destroyObject()

Destroys the underlying IDL object associated with the
wrapper.

 void executeString(java.lang.String sCmd)

Execute the given command string in IDL.

 long getCookie()

Internal use.

 java.lang.String getIDLObjectClassName()

Retrieves the IDL object class name of the underlying
IDL object.
IDL Connectivity Bridges JIDLObjectI

448 Appendix A: IDL Java Object API
 java.lang.String getIDLObjectVariableName()

When the underlying IDL object was created in the IDL
process, it was assigned a variable name.

 java.lang.Object getIDLVariable(java.lang.String sVar)

Given a variable name, return the IDL variable.

 java.lang.String getProcessName()

Returns the name of the process that contains the
underlying IDL object.

 java.lang.Object getProperty(java.lang.String sProperty, int
iPalFlag)

Call IDL getProperty method to get named property.

 void initListeners()

Initialize any listeners.

 boolean isObjectCreated()

Determine if object has been created successfully.

 boolean isObjectDisplayable()

 void removeIDLNotifyListener(JIDLNotifyListener
listener)

Removes the specified IDL notify listener so it no
longer receives IDL notifications.

 void removeIDLOutputListener(JIDLOutputListener
listener)

Removes the specified IDL output listener on this
object.

 void setIDLVariable(java.lang.String sVar,
java.lang.Object obj)

Set/Create an IDL variable of the given name and
value.

 void setProcessName(java.lang.String process)

Set the process name that the object will be created in.

 void setProperty(java.lang.String sProperty,
java.lang.Object obj, int iPalFlag)

Call IDL setProperty method to set named property.

Member Summary
JIDLObjectI IDL Connectivity Bridges

Appendix A: IDL Java Object API 449
Methods

abort()

public void abort()

Requests that the IDL process containing the underlying IDL object abort its current
activity.

This is only a request and IDL may take a long time before it actually stops.

The client can only Abort the current IDL activity if that wrapper object is the current
“owner” of the underlying IDL.

Throws:

JIDLExceptions - If IDL encounters an error.

See Also:

JIDLAbortedException

addIDLNotifyListener(JIDLNotifyListener)

public void
addIDLNotifyListener(com.idl.javaidl.JIDLNotifyListener listener)

Adds the specified IDL notify listener to receive IDL notification events on this
object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener

addIDLOutputListener(JIDLOutputListener)

public void
addIDLOutputListener(com.idl.javaidl.JIDLOutputListener listener)

Adds the specified IDL output listener to receive IDL output events on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener
IDL Connectivity Bridges JIDLObjectI

450 Appendix A: IDL Java Object API
callFunction(String, int, Object[], int[], int)

public java.lang.Object callFunction(java.lang.String
sMethodName, int argc, java.lang.Object[] argv, int[] argpal,
int iPalFlag)

Call IDL function.

The argpal parameter is an array of flags created by OR-ing constants from class
JIDLConst. Each array element corresponds to the equivalent parameter in argv.

Parameters:

sMethodName - the procedure name

argc - the number of parameters

argv - array of Objects to be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObject, JIDLString or JIDLObject.

argpal - array of flags denoting whether each argv parameter passed to be bridge is
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length argc.

iPalFlag - a flag determining whether a returned array if convolved or not. If the
returned value is not an array, this value is zero.

Returns:

an Object of type JIDLNumber, JIDLString, JIDLObjectI or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type.

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLArray,
JIDLConst.PARMFLAG_CONST, JIDLConst.PARMFLAG_IN_OUT,
JIDLConst.PARMFLAG_CONVMAJORITY,
JIDLConst.PARMFLAG_NO_CONVMAJORITY

callProcedure(String, int, Object[], int[])

public void callProcedure(java.lang.String sMethodName,
int argc, java.lang.Object[] argv, int[] argpal)

Call IDL procedure.
JIDLObjectI IDL Connectivity Bridges

Appendix A: IDL Java Object API 451
The argpal parameter is an array of flags created by OR-ing constants from class
JIDLConst. Each array element corresponds to the equivalent parameter in argv.

Parameters:

sMethodName - the procedure name

argc - the number of parameters

argv - array of Objects to be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObject, JIDLString or JIDLObject.

argpal - array of flags denoting whether each argv parameter passed to be bridge is
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length argc.

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLArray,
JIDLConst.PARMFLAG_CONST, JIDLConst.PARMFLAG_IN_OUT,
JIDLConst.PARMFLAG_CONVMAJORITY,
JIDLConst.PARMFLAG_NO_CONVMAJORITY

createObject(int, Object[], int[], JIDLProcessInitializer)

public void createObject(int argc, java.lang.Object[] argv,
int[] argpal, com.idl.javaidl.JIDLProcessInitializer initializer)

Creates the underlying IDL object. The argc, argv, argpal parameters are used to
supply parameters to the underlying IDL object’s ::Init method. If the ::Init method
does not have any parameters, the caller sets argc, argv, and argpal to 0, null, and
null, respectively. createObject does the following:

• Calls ::Init method in the IDL object

• Calls the superclass initListeners method to initialize any event handlers. The
initListeners method has default behavior, which is different for graphical and
non-graphical objects. If the default behavior is not desired, a sub-class to
modify the listener initialization may override the initListeners method.

Parameters:

argc - the number of parameters to be passed to INIT

argv - array of Objects to be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObject, JIDLString or JIDLArray.
IDL Connectivity Bridges JIDLObjectI

452 Appendix A: IDL Java Object API
argpal - array of flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

initializer - a JIDLProcessInitializer object that specifies IDL process
initialization parameters such as the licensing mode to be used.

Throws:

JIDLException - If IDL encounters an error.

destroyObject()

public void destroyObject()

Destroys the underlying IDL object associated with the wrapper.

If the object being destroyed is the last object within an OPS process, the OPS
process is also destroyed.

Note that this does not destroy the actual wrapper object. Because the wrapper object
is a Java object, it follows all the Java reference counting/garbage collection schemes.
Once all references to the wrapper object are released from Java code and once the
Java Virtual Machine calls the garbage collector, the wrapper object may be deleted
from memory.

executeString(String)

public void executeString(java.lang.String sCmd)

Execute the given command string in IDL.

Parameters:

sCmd - the single-line command to execute in IDL.

Throws:

JIDLException - If IDL encounters an error.

getCookie()

public long getCookie()

Internal use.

getIDLObjectClassName()

public java.lang.String getIDLObjectClassName()

Retrieves the IDL object class name of the underlying IDL object.
JIDLObjectI IDL Connectivity Bridges

Appendix A: IDL Java Object API 453
Returns:

the IDL object class name

getIDLObjectVariableName()

public java.lang.String getIDLObjectVariableName()

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. This method retrieves that name.

Returns:

the variable name

getIDLVariable(String)

public java.lang.Object getIDLVariable(java.lang.String sVar)

Given a variable name, return the IDL variable.

Note that in the case of arrays, the array will ALWAYS be convolved when passed
between Java and IDL.

Parameters:

sVar - The IDL variable name

Returns:

an Object of type JIDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

getProcessName()

public java.lang.String getProcessName()

Returns the name of the process that contains the underlying IDL object. For an in-
process object, returns an empty string.

Returns:

process name. EMpty string if the process is in-process.
IDL Connectivity Bridges JIDLObjectI

454 Appendix A: IDL Java Object API
getProperty(String, int)

public java.lang.Object getProperty(java.lang.String
sProperty, int iPalFlag)

Call IDL getProperty method to get named property.

Parameters:

sProperty - the property name

iPalFlag - a flag determining whether a returned array will be convolved or not. If
the returned value is not is ignored.

Returns:

an Object of type JIDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

See Also:

JIDLNumber, JIDLObjectI, JIDLString, JIDLArray,
JIDLConst.PARMFLAG_CONVMAJORITY,
JIDLConst.PARMFLAG_NO_CONVMAJORITY

initListeners()

public void initListeners()

Initialize any listeners.

This method is always called by the JIDLObject and JIDLCanvas createObject
methods.

The method may be overridden by sub-classes to initialize a different set of listeners
(or none at all).

isObjectCreated()

public boolean isObjectCreated()

Determine if object has been created successfully.
JIDLObjectI IDL Connectivity Bridges

Appendix A: IDL Java Object API 455
Returns:

true if object created successfully, or false if object not created or creation was
unsuccessful.

isObjectDisplayable()

public boolean isObjectDisplayable()

removeIDLNotifyListener(JIDLNotifyListener)

public void
removeIDLNotifyListener(com.idl.javaidl.JIDLNotifyListener
listener)

Removes the specified IDL notify listener so it no longer receives IDL notifications.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener

removeIDLOutputListener(JIDLOutputListener)

public void
removeIDLOutputListener(com.idl.javaidl.JIDLOutputListener
listener)

Removes the specified IDL output listener on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - the listener

setIDLVariable(String, Object)

public void setIDLVariable(java.lang.String sVar,
java.lang.Object obj)

Set/Create an IDL variable of the given name and value.

Note that in the case of arrays, the array will ALWAYS be convolved when passed
between Java and IDL.
IDL Connectivity Bridges JIDLObjectI

456 Appendix A: IDL Java Object API
Parameters:

sVar - the IDL variable name

obj - object to be passed to IDL. Should be an object of type JIDLNumber,
JIDLObject, JIDLString or JIDLArray.

Throws:

JIDLException - If IDL encounters an error.

setProcessName(String)

public void setProcessName(java.lang.String process)

Set the process name that the object will be created in.

The process name may only be set before createObject is called. If called after the
object has been created, this method call does nothing.

Parameters:

process - Process name. Empty String means create in same process (in-process).

setProperty(String, Object, int)

public void setProperty(java.lang.String sProperty,
java.lang.Object obj, int iPalFlag)

Call IDL setProperty method to set named property.

The iPalFlag parameter is a set of flags that are or-ed together. Currently this
parameter is only used to specify whether a JIDLArray being passed in to IDL is
convolved or not. For arrays argpal should be set to either
JIDLConst.PARMFLAG_CONVMAJORITY or
JIDLConst.PARMFLAG_NO_CONVMAJORITY.

Parameters:

sProperty - the property name

obj - object to be passed to IDL. Should be an object of type JIDLNumber,
JIDLObject, JIDLString or JIDLObject.

iPalFlag - flag denoting whether the passed in parameter is convolved or not.
 Note: setProperty does not allow obj to be modified by IDL

Throws:

JIDLException - If IDL encounters an error.
JIDLObjectI IDL Connectivity Bridges

Appendix A: IDL Java Object API 457
See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLArray,
JIDLConst.PARMFLAG_CONVMAJORITY,
JIDLConst.PARMFLAG_NO_CONVMAJORITY
IDL Connectivity Bridges JIDLObjectI

458 Appendix A: IDL Java Object API
JIDLOutputListener

Declaration

public interface JIDLOutputListener

Description

The listener interface for receiving output events from IDL.

Both drawable (JIDLCanvas) and non-drawable (JIDLObject) wrapper objects may
be listened to. However by default, JIDLObject and JIDLCanvas objects do NOT
listen to their output events.

The class that is interested in receiving IDL output events on a particular object
implements this interface. The listener object created from that class is registered
with the JIDLObjectI using the addIDLOutputListener method. The listener is
unregistered with the removeIDLOutputListener.

See Also:

JIDLCanvas, JIDLObject, JIDLObjectI

Methods

IDLoutput(JIDLObjectI, String)

public void IDLoutput(com.idl.javaidl.JIDLObjectI obj,
java.lang.String s)

An IDL output has occurred

Parameters:

obj - The JIDLObjectI in which the event occurred.

Member Summary

Methods

 void IDLoutput(JIDLObjectI obj, java.lang.String s)

An IDL output has occurred
JIDLOutputListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 459
s - The output string
IDL Connectivity Bridges JIDLOutputListener

460 Appendix A: IDL Java Object API
JIDLProcessInitializer

Declaration

public class JIDLProcessInitializer

java.lang.Object

|
+--com.idl.javaidl.JIDLProcessInitializer

Description

When a client calls the createObject method of either the JIDLCanvas or JIDLObject
class, the JIDLProcessInitializer object can be passed in to control IDL process
creation. Currently, this object controls the licensing mode of the IDL Process. See
“IDL Licensing Modes” on page 134 for details on the default licensing mechanism
used when no JIDLProcessInitializer is specified.

Member Summary

Fields

static int LICENSING_FULL

The IDL process requires a full license.

static int LICENSING_LICENSED_SAV

The IDL process launches a SAVE file with an
embedded license.

static int LICENSING_RUNTIME

The IDL process requires a runtime license.

static int LICENSING_VM

The IDL process runs in Virtual Machine
mode.

Constructors

JIDLProcessInitializer()

Construct a process initializer object.

JIDLProcessInitializer(int)

Construct a process initializer object.
JIDLProcessInitializer IDL Connectivity Bridges

Appendix A: IDL Java Object API 461
Fields

LICENSING_FULL

public static final int LICENSING_FULL

If this flag is set, the Java application requires that a licensed copy of IDL be installed
on the local machine. If IDL is installed but no license is available, the application
will run in IDL Demo (7-minute) mode.

LICENSING_LICENSED_SAV

public static final int LICENSING_LICENSED_SAV

If this flag is set, the Java application looks for an embedded license in the save file
being restored.

LICENSING_RUNTIME

public static final int LICENSING_RUNTIME

If this flag is set, the Java application looks for a runtime IDL license. If no runtime
license is available, the application will run in Virtual Machine mode.

LICENSING_VM

public static final int LICENSING_VM

Methods

 int getLicenseMode()

Retrieve the current licensing mode.

 void setLicenseMode(int)

Set the licensing mode.

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(long, int), wait(long, int), wait(long, int)

Member Summary
IDL Connectivity Bridges JIDLProcessInitializer

462 Appendix A: IDL Java Object API
If this flag is set, the Java application will run in Virtual Machine mode.

Constructors

JIDLProcessInitializer()

public JIDLProcessInitializer()

JIDLProcessInitializer(int)

public JIDLProcessInitializer(int licenseMode)

Methods

getLicenseMode()

public int getLicenseMode()

Returns:

The current licensing mode.

setLicenseMode(int)

public void setLicenseMode(int licenseMode)
JIDLProcessInitializer IDL Connectivity Bridges

Appendix A: IDL Java Object API 463
JIDLShort

Declaration

public class JIDLShort implements JIDLNumber,
java.io.Serializable

java.lang.Object
|
+--com.idl.javaidl.JIDLShort

All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description

The JIDLShort class wraps a short as a mutable object usable by the Java-IDL Export
bridge.

Member Summary

Constructors

JIDLShort(JIDLNumber value)

Construct a wrapper object.

JIDLShort(short value)

Construct a wrapper object.

Methods

 boolean booleanValue()

Return the value of the wrapped primitive.

 byte byteValue()

Return the value of the wrapped primitive

 char charValue()

Return the value of the wrapped primitive

 double doubleValue()

Return the value of the wrapped primitive

 float floatValue()

Return the value of the wrapped primitive
IDL Connectivity Bridges JIDLShort

464 Appendix A: IDL Java Object API
Constructors

JIDLShort(JIDLNumber)

public JIDLShort(com.idl.javaidl.JIDLNumber value)

Construct a wrapper object.

Parameters:

value - JIDLNumber to wrap for use in the export bridge

JIDLShort(short)

public JIDLShort(short value)

Construct a wrapper object.

 int intValue()

Return the value of the wrapped primitive

 long longValue()

Return the value of the wrapped primitive

 void setValue(JIDLNumber value)

Change the value of the wrapper object

 void setValue(short value)

Change the value of the wrapper object

 short shortValue()

Return the value of the wrapped primitive

 java.lang.String toString()

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Member Summary
JIDLShort IDL Connectivity Bridges

Appendix A: IDL Java Object API 465
Parameters:

value - value to wrap for use in the export bridge

Methods

booleanValue()

public boolean booleanValue()

Return the value of the wrapped primitive.

Specified By:

booleanValue in interface JIDLNumber

Returns:

true if non-zero, false otherwise

byteValue()

public byte byteValue()

Return the value of the wrapped primitive

Specified By:

byteValue in interface JIDLNumber

Returns:

value that is wrapped by this object

charValue()

public char charValue()

Return the value of the wrapped primitive

Specified By:

charValue in interface JIDLNumber

Returns:

value that is wrapped by this object

doubleValue()

public double doubleValue()
IDL Connectivity Bridges JIDLShort

466 Appendix A: IDL Java Object API
Return the value of the wrapped primitive

Specified By:

doubleValue in interface JIDLNumber

Returns:

value that is wrapped by this object

floatValue()

public float floatValue()

Return the value of the wrapped primitive

Specified By:

floatValue in interface JIDLNumber

Returns:

value that is wrapped by this object

intValue()

public int intValue()

Return the value of the wrapped primitive

Specified By:

intValue in interface JIDLNumber

Returns:

value that is wrapped by this object

longValue()

public long longValue()

Return the value of the wrapped primitive

Specified By:

longValue in interface JIDLNumber

Returns:

value that is wrapped by this object
JIDLShort IDL Connectivity Bridges

Appendix A: IDL Java Object API 467
setValue(JIDLNumber)

public void setValue(com.idl.javaidl.JIDLNumber value)

Change the value of the wrapper object

Specified By:

setValue in interface JIDLNumber

Parameters:

value - JIDLNumber to wrap for use in the export bridge

setValue(short)

public void setValue(short value)

Change the value of the wrapper object

Parameters:

value - primitive value to wrap for use in the export bridge

shortValue()

public short shortValue()

Return the value of the wrapped primitive

Specified By:

shortValue in interface JIDLNumber

Returns:

value that is wrapped by this object

toString()

public java.lang.String toString()

Overrides:

toString in class Object
IDL Connectivity Bridges JIDLShort

468 Appendix A: IDL Java Object API
JIDLString

Declaration

public class JIDLString implements java.io.Serializable

java.lang.Object
|
+--com.idl.javaidl.JIDLString

All Implemented Interfaces:

java.io.Serializable

Description

The JIDLString class wraps a String as a mutable object usable by the Java-IDL
Export bridge.

Member Summary

Constructors

JIDLString(JIDLString value)

Construct a wrapper object.

JIDLString(java.lang.String value)

Construct a wrapper object.

Methods

 void setValue(JIDLString value)

Change the value of the wrapper object

 void setValue(java.lang.String value)

Change the value of the wrapper object

 java.lang.String stringValue()

Return the value of the wrapped primitive

 java.lang.String toString()
JIDLString IDL Connectivity Bridges

Appendix A: IDL Java Object API 469
Constructors

JIDLString(JIDLString)

public JIDLString(com.idl.javaidl.JIDLString value)

Construct a wrapper object.

Parameters:

value - value to wrap for use in the export bridge

JIDLString(String)

public JIDLString(java.lang.String value)

Construct a wrapper object.

Parameters:

value - value to wrap for use in the export bridge

Methods

setValue(JIDLString)

public void setValue(com.idl.javaidl.JIDLString value)

Change the value of the wrapper object

Parameters:

value - primitive value to wrap for use in the export bridge

setValue(String)

public void setValue(java.lang.String value)

Change the value of the wrapper object

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)
IDL Connectivity Bridges JIDLString

470 Appendix A: IDL Java Object API
Parameters:

value - primitive value to wrap for use in the export bridge

stringValue()

public java.lang.String stringValue()

Return the value of the wrapped primitive

Returns:

value that is wrapped by this object

toString()

public java.lang.String toString()

Overrides:

toString in class Object
JIDLString IDL Connectivity Bridges

Appendix B

COM Object Creation
The following topics in this appendix show how to create a custom IDL wrapper object (initialized
with and without parameters) from several COM programming languages:
Sample IDL Object 472
Visual Basic .NET Code Sample 475
C++ Client Code Sample 477

C# Code Sample . 479
Visual Basic 6 Code Sample 481
IDL Connectivity Bridges 471

472 Appendix B: COM Object Creation
Sample IDL Object

The COM CreateObject method creates an instance of an underlying IDL object and
calls its Init method with any specified parameters (see “CreateObject” on page 194
for details). Through this object instance, you have access to the properties and
methods of the object as well as the underlying IDL process.

The following samples rely upon an IDL object named idlexfoo__define.pro
containing the following code:

; The Init method expects three parameters:
; a string, a 32-bit long, and an array which has
; 2 rows & 3 columns, containing 32-bit long values.
; The ::Init method can also be called without any parameters.

FUNCTION idlexfoo::Init, parmStr, parmVal, parmArr, _EXTRA=e

 IF (N_ELEMENTS(parmStr) EQ 1) THEN BEGIN
 IF (SIZE(parmStr,/type) NE 7) THEN BEGIN
 PRINT, 'IDLexFoo::Init, parmStr is not a STRING'
 HELP, parmStr
 RETURN, 0
 ENDIF
 ENDIF

 IF (N_ELEMENTS(parmVal) EQ 1) THEN BEGIN
 IF ((SIZE(parmVal,/type) NE 3)) THEN BEGIN
 PRINT, 'IDLexFoo::Init, parmVal is not a LONG'
 HELP, parmVal
 RETURN, 0
 ENDIF
 ENDIF

 nElms = N_ELEMENTS(parmArr)
 IF (nElms GT 0) THEN BEGIN
 IF ((nElms NE 6) OR (size(parmArr,/type) NE 3)) THEN BEGIN
 PRINT, 'IDLexFoo::Init, parmArr is not a ARR(3,2) of
LONG)'
 HELP, parmArr
 RETURN, 0
 ENDIF
 ENDIF

 RETURN, 1
END
Sample IDL Object IDL Connectivity Bridges

Appendix B: COM Object Creation 473
; Object definition.
PRO idlexfoo__define
 ; Create [col, row] 32-bit long array.
 initArr = LONARR(3,2)
 struct = {idlexfoo, $
 parmStr: '', $
 parmVal: 0L, $
 parmArr: initArr $

}
END

Export the Sample IDL Object

You will need to create the necessary wrapper object files by using the Export Bridge
Assistant to generate them. Once you have created the object definition file,
idlexfoo__define.pro, complete the following steps:

1. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

2. Select to create a COM export object by selecting File → New Project →
COM and browse to select the idlexfoo__define.pro file. Click Open to
load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in Chapter 7, “Using the Export
Bridge Assistant”. Refer to that section if you need more information about
the following steps.

3. The top-level project entry in the left tree panel is selected by default. There is
no need to modify the default properties shown in the right-hand property
panel, but you can enter different values if desired. There are no other
parameters that need to be defined for this object.
IDL Connectivity Bridges Sample IDL Object

474 Appendix B: COM Object Creation
4. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

5. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. For a nondrawable object, .tlb
and .dll files (named based on the object name) are created in the Output
directory.

6. Register the .dll using regsvr32 idlexfoo.dll. See “COM Registration
Requirements” on page 143 for details if needed.

See the language-specific section for information on how to create this object in your
application:

• “Visual Basic .NET Code Sample” on page 475

• “C++ Client Code Sample” on page 477

• “C# Code Sample” on page 479

• “Visual Basic 6 Code Sample” on page 481

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

• Output classname

• Process name

• Output directory

helloworldex Drawable object equals False

Table B-4: Example Export Object Parameters
Sample IDL Object IDL Connectivity Bridges

Appendix B: COM Object Creation 475
Visual Basic .NET Code Sample

Within Visual Studio .NET, select Project → Add Reference…. This brings up a
dialog. Select the COM tab, then Browse, and change the path to the
idlexfoo.dll. This imports the object reference into the project.

Within the project that will use the wrapper object, include the following line at the
top of the form:

Imports IDLexFooLib

Initiation Without Parameters in Visual Basic .NET

Use the following code to initialize the object with no parameters.

Private Sub Button1_Click(...)

Dim oFoo As New IDLexFooClass()

Try
oFoo.CreateObject(0, 0, 0)

Catch ex As Exception
Debug.WriteLine(oFoo.GetLastError())
Return

End Try

' use object here...

End Sub

Initiation with Parameters in Visual Basic .NET

Use the following code to initialize the object with its three parameters (a string, a
32-bit long value, and an array that has two rows and three columns, containing 32-
bit long values).

Inside the Public Class definition for the form and before any subroutines, you must
add the following two lines:

Const PARMFLAG_CONST As Integer = &H1
Const PARMFLAG_CONV_MAJORITY As Integer = &H4000

Then create the object within your program:

Private Sub Button1_Click(...)

Dim oFoo As New IDLexFooClass
IDL Connectivity Bridges Visual Basic .NET Code Sample

476 Appendix B: COM Object Creation
Dim parmStr As String = "I am a string parameter"
Dim parmVal As Int32 = 24
Dim parmArr As Int32(,) = {{10, 11, 12}, {20, 21, 22}}

Dim argc As Int32 = 3
Dim argval As Object() = {parmStr, parmVal, parmArr}
Dim argpal As Int32() = {PARMFLAG_CONST, PARMFLAG_CONST, _

(PARMFLAG_CONST + PARMFLAG_CONV_MAJORITY)}

Try
oFoo.CreateObject(argc, argval, argpal)

Catch ex As Exception
Debug.WriteLine(oFoo.GetLastError())
Return

End Try

' use object here...

End Sub
Visual Basic .NET Code Sample IDL Connectivity Bridges

Appendix B: COM Object Creation 477
C++ Client Code Sample

The C++ project must somewhere include the following line, in order to pull in the
CoClass and Interface definitions for the wrapper object:

#import "IDLexFoo.tlb" no_namespace no_implementation \
raw_interfaces_only named_guids

For details about the object parameters, see “Sample IDL Object” on page 472.

Initiation Without Parameters in C++

Use the following code to initialize the object with no parameters.

CComPtr<IIDLexFoo> spFoo;

if (FAILED(spFoo.CoCreateInstance(__uuidof(IDLexFoo)) || !spFoo)
)
return E_FAIL;

CComVariant vtNULL(0);
HRESULT hr = spFoo->CreateObject(0,vtNULL,vtNULL);
if (FAILED(hr))
{

CComBSTR bstrErr;
spFoo->GetLastError(&bstrErr);

return E_FAIL;
}

Initiation with Parameters in C++

Use the following code to initialize the object with its three parameters (a string, a
32-bit long value, and an array that has two rows and three columns, containing 32-
bit long values).

CComPtr<IIDLexFoo> spFoo;

if (FAILED(spFoo.CoCreateInstance(__uuidof(IDLexFoo)) || !spFoo)
)
return E_FAIL;

CComSafeArrayBound bound[2];
bound[0].SetLowerBound(0); bound[0].SetCount(2); // two rows
bound[1].SetLowerBound(0); bound[1].SetCount(3); // three cols

CComSafeArray<VARIANT> parmArr(bound,2);
IDL Connectivity Bridges C++ Client Code Sample

478 Appendix B: COM Object Creation
long ndx[2];
long lData[2][3] = { {10, 11, 12}, {20, 21, 22} };

for (int i = 0; i < 2; i++) { // row
for (int j = 0; j < 3; j++) { // col

ndx[0] = i; ndx[1] = j;
parmArr.MultiDimSetAt(ndx, CComVariant(lData[i][j]));

}
}

CComBSTR parmStr = "I am a string parameter";
CComVariant parmVal = (long)24;

CComSafeArray<VARIANT> argval(3);
CComSafeArray<long> argpal(3);

argval[0] = parmStr; argpal[0] = IDLBML_PARMFLAG_CONST;
argval[1] = parmVal; argpal[1] = IDLBML_PARMFLAG_CONST;
argval[2] = parmArr; argpal[2] =

IDLBML_PARMFLAG_CONST | IDLBML_PARMFLAG_CONVMAJORITY;

long argc = 3;
CComVariant vargval = argval;
CComVariant vargpal = argpal;

HRESULT hr = spFoo->CreateObject(argc,vargval,vargpal);
if (FAILED(hr))
{

CComBSTR bstrErr;
spFoo->GetLastError(&bstrErr);

return E_FAIL;
}

C++ Client Code Sample IDL Connectivity Bridges

Appendix B: COM Object Creation 479
C# Code Sample

Within Visual Studio .NET, in the Solution Explorer window, underneath the project
that will use the wrapper object, right-click on the References item, then select Add
Reference…. This brings up a dialog. Select the COM tab, then Browse, and change
the path to the wrapper .dll. This imports the object reference into the project.

Then, within the project that will use the wrapper object, include the following line at
the top, outside of the namespace for the class:

using IDLexFooLib;

Initiation Without Parameters in C#

Use the following code to initialize the object with no parameters.

private void button1_Click(...)
{

IDLexFooClass oFoo = new IDLexFooClass();

try {
oFoo.CreateObject(0, 0, 0);

}
catch {

Debug.WriteLine(oFoo.GetLastError());
return;

}

// Use object here...
}

Initiation with Parameters in C#

Use the following code to initialize the object with its three parameters (a string, a
32-bit long value, and an array that has two rows and three columns, containing 32-
bit long values).

private void button1_Click(...)
{

const int PARMFLAG_CONST = 0x0001;
const int PARMFLAG_CONV_MAJORITY = 0x4000;

IDLexFooClass oFoo = new IDLexFooClass();

string parmStr = "I am a string parameter";
int parmVal = 24;
IDL Connectivity Bridges C# Code Sample

480 Appendix B: COM Object Creation
int[,] parmArr = {{10, 11, 12}, {20, 21, 22}};

int argc = 3;
object[] argval = {parmStr, parmVal, parmArr};
int[] argpal = {PARMFLAG_CONST, PARMFLAG_CONST,
PARMFLAG_CONST | PARMFLAG_CONV_MAJORITY};

try {
oFoo.CreateObject(argc, argval, argpal);

}
catch {

Debug.WriteLine(oFoo.GetLastError());
return;

}

// Use object here...
}

C# Code Sample IDL Connectivity Bridges

Appendix B: COM Object Creation 481
Visual Basic 6 Code Sample

Within Visual Basic 6, select Project → Components, then Browse for the .dll of
the wrapper object in order to include the objects definition in the project.

For details about the object parameters, see “Sample IDL Object” on page 472.

Initiation Without Parameters in Visual Basic 6

Use the following code to initialize the object with no parameters.

Private Sub MyRoutine

Dim oFoo As IDLexFoo
Set oFoo = New IDLexFoo

On Error GoTo ErrorHandler

oFoo.CreateObject 0, 0, 0
' use object here...

Return

ErrorHandler:

If Not oFoo Is Nothing Then
Debug.Print oFoo.GetLastError

End If

End Sub

Initiation with Parameters in Visual Basic 6

Use the following code to initialize the object with its three parameters (a string, a
32-bit long value, and an array which has two rows and three columns, containing 32-
bit long values).

Const PARMFLAG_CONST As Integer = &H1
Const PARMFLAG_CONV_MAJORITY As Integer = &H4000

Private Sub MyRoutine

Dim oFoo As IDLexFoo

Dim parmStr As String
Dim parmVal As Long
Dim parmArr(1, 2) As Long

Dim argc As Long
IDL Connectivity Bridges Visual Basic 6 Code Sample

482 Appendix B: COM Object Creation
Dim argv(2) As Variant
Dim argpal(2) As Long

parmStr = "I am a string parameter"
parmVal = 24
parmArr(0, 0) = 10: parmArr(0, 1) = 11: parmArr(0, 2) = 12
parmArr(1, 0) = 20: parmArr(1, 1) = 21: parmArr(1, 2) = 22

argc = 3
argv(0) = parmStr: argpal(0) = PARMFLAG_CONST
argv(1) = parmVal: argpal(1) = PARMFLAG_CONST
argv(2) = parmArr: argpal(2) = PARMFLAG_CONST + _

PARMFLAG_CONV_MAJORITY

Set oFoo = New IDLexFoo

On Error GoTo ErrorHandler

oFoo.CreateObject argc, argv, argpal
' use object here...

Return

ErrorHandler:
If Not oFoo Is Nothing Then

Debug.Print oFoo.GetLastError
End If

End Sub
Visual Basic 6 Code Sample IDL Connectivity Bridges

Appendix C

Java Object Creation
The following topics in this appendix show how to create a custom IDL wrapper object (initialized
with and without parameters) in Java:
Sample IDL Object 484
Java Object Initiation Without Parameters 487

Java Object Initiation with Parameters . . . 489
IDL Connectivity Bridges 483

484 Appendix C: Java Object Creation
Sample IDL Object

The Java createObject method creates an instance of an underlying IDL object and
calls its Init method with any specified parameters (see “createObject” on page 220
for details). Through this object instance, you have access to the properties and
methods of the object as well as the underlying IDL process.

The following samples rely upon an IDL object contained in file named
idlexfoo__define.pro. This file must be in the IDL path and needs to contain
the following code:

; The Init method expects three parameters:
; a string, a 32-bit long, and an array which has
; 2 rows & 3 columns, containing 32-bit long values.
; The ::Init method can also be called without any parameters.

FUNCTION idlexfoo::Init, parmStr, parmVal, parmArr, _EXTRA=e

 IF (N_ELEMENTS(parmStr) EQ 1) THEN BEGIN
 IF (SIZE(parmStr,/type) NE 7) THEN BEGIN
 PRINT, 'IDLexFoo::Init, parmStr is not a STRING'
 HELP, parmStr
 RETURN, 0
 ENDIF
 ENDIF

 IF (N_ELEMENTS(parmVal) EQ 1) THEN BEGIN
 IF ((SIZE(parmVal,/type) NE 3)) THEN BEGIN
 PRINT, 'IDLexFoo::Init, parmVal is not a LONG'
 HELP, parmVal
 RETURN, 0
 ENDIF
 ENDIF

 nElms = N_ELEMENTS(parmArr)
 IF (nElms GT 0) THEN BEGIN
 IF ((nElms NE 6) OR (size(parmArr,/type) NE 3)) THEN BEGIN

PRINT, 'IDLexFoo::Init, parmArr is not a ARR(3,2) ' $
 + 'of LONG)'
 HELP, parmArr
 RETURN, 0
 ENDIF
 ENDIF

 RETURN, 1
END
Sample IDL Object IDL Connectivity Bridges

Appendix C: Java Object Creation 485
; Object definition.
PRO idlexfoo__define
 ; Create [col, row] 32-bit long array.
 initArr = LONARR(3,2)
 struct = {idlexfoo, $
 parmStr: '', $
 parmVal: 0L, $
 parmArr: initArr $

}
END

Export the Sample IDL Object

You will need to create the necessary wrapper object files by using the Export Bridge
Assistant to generate them. Once you have created the object definition file,
idlexfoo__define.pro, complete the following steps:

1. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

2. Select to create a Java export object by selecting File → New Project → Java
and browse to select the idlexfoo__define.pro file. Click Open to load
the file into the Export Assistant.

Note
Export Bridge Assistant details are available in Chapter 7, “Using the Export
Bridge Assistant”. Refer to that section if you need more information about
the following steps.

3. The top-level project entry in the left tree panel is selected by default. There is
no need to modify the default properties shown in the right-hand property
panel, but you can enter different values if desired. There are no other
parameters that need to be defined for this object.
IDL Connectivity Bridges Sample IDL Object

486 Appendix C: Java Object Creation
4. Save the project by selecting File → Save project. Accept the default name
and location or make changes as desired.

5. Build the export object by selecting Build → Build object. The Build log
panel shows the results of the build process. A subdirectory, named idlexfoo
(based on the object name), contains the .java and .class files, and is
located in the Output directory.

See the following for information on how to create this object in your application:

• “Java Object Initiation Without Parameters” on page 487

• “Java Object Initiation with Parameters” on page 489

Note on Running the Java Examples

Examples in this appendix provide Windows-style compile javac (compile) and
java (run) commands. If you are running on a platform other than Windows, use
your platform’s path and directory separators and see “Java Requirements” on
page 143 for information about the bridge_setup file, which sets additional
information.

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

• Output classname

• Process name

• Output directory

• Package name

idlexfoo Drawable object equals False

Table C-5: Example Export Object Parameters
Sample IDL Object IDL Connectivity Bridges

Appendix C: Java Object Creation 487
Java Object Initiation Without Parameters

To initialize an instance of the newly created wrapper object (based on the IDL object
described in “Sample IDL Object” on page 484) using createObject, complete the
following steps:

1. Create a Java file named idlexfoo_example.java and save it in the
Export directory created by the Assistant. Include the following lines of code
in the file:

// Reference the default package generated by the Assistant.
package idlexfoo;

// Reference the javaidl export bridge classes.
import com.idl.javaidl.*;

//Create main class, subclassing from object created by
//Bridge Assistant. You can either subclass or create a
//member variable of the object.
public class idlexfoo_example extends idlexfoo
implements JIDLOutputListener
{
 //Create a variable referencing the exported object
 private idlexfoo fooObj;

 // Constructor.
 public idlexfoo_example() {

 // Create the wrapper object
 fooObj = new idlexfoo();

 // Add output listener to access IDL output.
 fooObj.addIDLOutputListener(this);

 // Create the underlying IDL object and call
 // its ::Init method with parameters
 fooObj.createObject();
 fooObj.executeString("PRINT, 'Created object'");
 }

 // Implement JIDLOutputListener
 public void IDLoutput(JIDLObjectI obj, String sMessage) {
 System.out.println("IDL: "+sMessage);
 }

//Instantiate a member of the class.
 public static void main(String[] argv) {
IDL Connectivity Bridges Java Object Initiation Without Parameters

488 Appendix C: Java Object Creation
 idlexfoo_example exampleObj =
 new idlexfoo_example();
 }
}

2. Open the Windows Command window by selecting Start → Run and enter
cmd in the textbox.

3. Use the cd command to change to the directory containing the idlexfoo
directory.

4. Reference the classpath of javaidlb.jar in the compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing <IDL_DIR> with the IDL installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
idlexfoo\idlexfoo_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
idlexfoo.idlexfoo_example

Tip
See “Note on Running the Java Examples” on page 486 for information on non-
Windows-style compile and execution commands.

After compiling and running the project, the output message will appear in the
command window.
Java Object Initiation Without Parameters IDL Connectivity Bridges

Appendix C: Java Object Creation 489
Java Object Initiation with Parameters

Use the following code to initialize the newly created Java wrapper object (based on
the IDL object described in “Sample IDL Object” on page 484) with its three
parameters:

• A string

• A 32-bit long value

• An array that has two rows and three columns, containing 32-bit long values

See createObject for more information about object parameters. See Appendix A,
“IDL Java Object API” for information on JIDL* objects.

1. Create a Java file named idlexfoo_example.java and save it in the
Export directory created by the Assistant. Include the following lines of code
in the file:

// Reference the default package generated by the Assistant.
package idlexfoo;

// Reference the javaidl export bridge classes.
import com.idl.javaidl.*;

//Create main class, subclassing from object created by
//Bridge Assistant. You can either subclass or create a
//member variable of the object.
public class idlexfoo_example extends idlexfoo
implements JIDLOutputListener
{

//Create a variable referencing the exported object
private idlexfoo fooObj;

// Constructor.
public idlexfoo_example() {

// These are the parameters we want to pass to
// the ::Init method
String str = "I am a string parameter";
int var = 24;
int[][] array = {{10, 11, 12}, {20, 21, 22}};

// Wrap the Java types using Export Bridge data types
JIDLString parmStr = new JIDLString(str);
JIDLInteger parmVar = new JIDLInteger(var);
JIDLArray parmArray = new JIDLArray(array);
IDL Connectivity Bridges Java Object Initiation with Parameters

490 Appendix C: Java Object Creation
// Create the wrapper object
fooObj = new idlexfoo();

// Set up parameters to pass to createObject
final int ARGC = 3;
Object[] argv = new Object[ARGC];
int[] argp = new int[ARGC];

// NOTE: JIDLConst.PARMFLAG_CONST indicates
// "in-only" parameter
argv[0] = parmStr;
argp[0] = JIDLConst.PARMFLAG_CONST; //
argv[1] = parmVar;
argp[1] = JIDLConst.PARMFLAG_CONST;
argv[2] = parmArray;
argp[2] = JIDLConst.PARMFLAG_CONST;

// Add output listener to access IDL output.
fooObj.addIDLOutputListener(this);

// Create the underlying IDL object and call
// its ::Init method with parameters
fooObj.createObject(ARGC, argv, argp);
fooObj.executeString("PRINT, 'Created object'");

}

// implement JIDLOutputListener
public void IDLoutput(JIDLObjectI obj, String sMessage) {

System.out.println("IDL: "+sMessage);
}

//Instantiate a member of the class.
public static void main(String[] argv) {

idlexfoo_example exampleObj =
new idlexfoo_example();

}
}

2. Open the Windows Command window by selecting Start → Run and enter
cmd in the textbox.

3. Use the cd command to change to the directory containing the idlexfoo
directory.
Java Object Initiation with Parameters IDL Connectivity Bridges

Appendix C: Java Object Creation 491
4. Reference the classpath of javaidlb.jar in the compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing IDL_DIR with the IDL installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
idlexfoo\idlexfoo_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\java\javaidlb.jar"
idlexfoo.idlexfoo_example

Tip
See “Note on Running the Java Examples” on page 486 for information on non-
Windows-style compile and execution commands.

After compiling and running the project, the output message will appear in the
command window.
IDL Connectivity Bridges Java Object Initiation with Parameters

492 Appendix C: Java Object Creation
Java Object Initiation with Parameters IDL Connectivity Bridges

Appendix D

Multidimensional Array
Storage and Access
This appendix discusses the following topics.
Overview . 494
Why Storage and Access Matter 495

Storage and Access in COM and IDL . . . 496
2D Array Examples 498
IDL Connectivity Bridges 493

494 Appendix D: Multidimensional Array Storage and Access
Overview

This appendix is designed to explain how multidimensional arrays are stored and
accessed, with specific relevance to marshaling arrays between COM clients and
IDL.

Please note that if you use the Convert Majority property in the Export Bridge
Assistant on exported property or method parameters (described in “Converting
Array Majority” on page 165), you do not have to worry about the information or
examples in this appendix. For more information, see Table 7-8 in “Property
Information” on page 171.

A linear, one-dimensional (1D) vector is a contiguous list of items in memory. There
is no room for misinterpreting what order the items are stored and accessed.
However, moving beyond 1D can introduce contradictory definitions and
connotations, depending on the source consulted and the programming language in
question.

Accordingly, we will stay away from words of strong and conflicting meaning, such
as “column majority” and “row majority.” (You can read “Columns, Rows, and Array
Majority” (Chapter 15, Application Programming) for more information on those
terms.) What matters more than vocabulary is how multidimensional arrays are stored
in physical memory (linear memory) and how they are accessed. For brevity’s sake,
we will use two-dimensional arrays (2D) to illustrate storage, and focus on Visual
Basic, C++, Win32 APIs, and IDL pro code for how the arrays are accessed.

Note
Java has the same issues as COM with multidimensional array storage and access.
You can assume that this appendix addresses both external languages, although it
names only COM.
Overview IDL Connectivity Bridges

Appendix D: Multidimensional Array Storage and Access 495
Why Storage and Access Matter

Clients that need to pass an array to IDL need to understand the memory layouts of
the arrays in order to know if they should convert arrays from one format to the other.
Simply trying to understand which format is “row” and which is “column” major is
not enough because the definitions of those terms can differ in context.

Understanding these distinctions are critical when programming in Visual Basic and
C++ as each language natively stores arrays differently. However, using the Win32
Safearray APIs, either directly or indirectly through the ATL wrapper classes, allows
C++ code to create safe arrays in the same order as Visual Basic. However, C++ has
the flexibility to create safe arrays ordered differently, which is useful for testing.

In summary:

• SAFEARRAYs and IDL arrays are stored differently and must be converted to
be used by each other

• Multidimensional SAFEARRAYs are stored as “column major” in linear
memory (i.e., a column is stored contiguously in memory)

• IDL stores multidimensional arrays as “scanline major” (i.e., stores each
scanline contiguously in memory)

• All the Win32 APIs and ATL safe array wrapper classes access SAFEARRAYs
in column major

• Visual Basic accesses SAFEARRAYS as “column major”

• Native C++ arrays are stored and accessed as “row major”
IDL Connectivity Bridges Why Storage and Access Matter

496 Appendix D: Multidimensional Array Storage and Access
Storage and Access in COM and IDL

There is a difference between storage and access. Storage focuses on the way a
multidimensional array of items gets arranged in linear memory. Since all memory is
linear memory, it is paramount to understand how arrays are arranged in linear
memory. Access is the way a language allows interaction with a multidimensional
array.

Since we are creating and reading arrays from a computer language, we must
understand the language’s perspective on the array and how to access it.

Arrays in COM

In order to move an array around within the COM world, it must be described by a
SAFEARRAY descriptor whose dimensions are defined by SAFEARRAYBOUND
descriptors.

SAFEARRAY Descriptors

The SAFEARRAY descriptor has the following definition:

typedef struct SAFEARRAY
{

USHORT cDims;
USHORT fFeatures;
ULONG cbElements;
ULONG cLocks;
PVOID pvData;
SAFEARRAYBOUND rgsabound[1];

} SAFEARRAY;

This structure describes different aspects of the safe array, such as total number of
dimensions, cDims, flags indicating if the array is fixed and cannot be resized,
fFeatures, if there are any locks on the array, cLocks, and then a pointer to the
actual array data itself, pvData.

Usually, the SAFEARRAY descriptor is wrapped by the OLE Automation data type
Variant, and the Variant itself is passed around as the data type in method calls.
Either way, an array must be wrapped by a SAFEARRAY before it can be marshaled.

SAFEARRAYBOUND Descriptors

A SAFEARRAY can have an unlimited number of dimensions, whose dimension
count is stored in cDims. For each dimension, there must an element of type
Storage and Access in COM and IDL IDL Connectivity Bridges

Appendix D: Multidimensional Array Storage and Access 497
SAFEARRAYBOUND, which stores the lower bound and number of elements in the
dimension, as given by the structure:

typedef struct SAFEARRAYBOUND
{

ULONG cElements;
LONG lLbound;

} SAFEARRAYBOUND;

The SAFEARRAY descriptor member rgsabound[] is an array of
SAFEARRAYBOUND elements. (Visual Basic lets you define an element range such
as “10 to 20” or “-10 to 10” such that the lLbound item on the dimension is not zero,
but 10 and –10, respectively. For all of our examples, we assume the lower bound is
zero.)

Note that in COM, items are frequently in reverse order than what you would expect,
which is the case with the SAFEARRAY descriptor’s rgsabound[] member array.
You must specify the dimensions in reverse order. For example, if you are
constructing an array of 3 rows by 5 columns (3x5), the first SAFEARRAYBOUND
array item would have its cElements member set to 5, and the second item
rgsabound[] array item would have its cElements member set to 3.

However, you rarely set rgsabound[] yourself. All the Win32 API calls to create
safe arrays set these values for you, from information specified in the expected order
(i.e., 3 and 5). Do be aware that if you look in memory at the actual SAFEARRAY
descriptor data, you will see the rgsabound[] member array in reverse order.

Arrays in IDL

IDL arrays are stored in “scanline majority,” meaning that each scanline is
contiguous in memory. Additionally, the dimensions are listed backwards from
standard computer-science notation.

For example, if you want to create an array of bytes with 5 columns and 3 rows, you
use the following code:

myarr = BYTARR(5,3)

Simply put: SAFEARRAYs and IDL arrays are arranged differently in linear
memory. Thus, when you create an array in the COM world that you want to give to
IDL, you must “convert the majority.” For how to do so in three programming
languages, see “2D Array Examples” on page 498.
IDL Connectivity Bridges Storage and Access in COM and IDL

498 Appendix D: Multidimensional Array Storage and Access
2D Array Examples

Let’s create a 2D array that has 3 rows by 5 columns (3x5). Since the ultimate goal is
to give the array to IDL for processing, let’s pretend it is an “image.” We will set the
first row to all red, the second row to all green, and the third row to all blue. Here’s
the conceptual layout of our array

rrrrr
ggggg
bbbbb

We will see shortly that even though the conceptual 2D layout is the above, the actual
layout in linear memory is quite different between SAFEARRAYs and IDL.

Note
In the examples below, the “red” value is really the ASCII character ‘r’, “green” is
the ASCII character ‘g’, and so on. We use this scheme so when you look at the
actual memory, you’ll see the letters “rgb”, which makes for easy reading. It is
much less confusing than using the cardinal numbers 1, 2, 3, when you are also
talking about ordinal numbering involving 1, 2, 3.

Note
These examples illustrate how different languages store data. You should not need
to include such code in your applications to make them work; the wrapper does the
conversion for you.

Visual Basic

Here is how to create the RGB array (matrix) in Visual Basic. This example, by
default, creates a valid SAFEARRAY that is compliant with the information above,
and stored within a Variant when passed as a parameter in a method call (not shown).

Const RED As Byte = 114
Const GREEN As Byte = 103
Const BLUE As Byte = 98
‘ This creates an array with dimension indices 0..2 & 0..4
‘ inclusive:
‘ i.e., it creates a 3x5 array; with “lower bounds” set to 0.
Dim m(2, 4) As Byte
For I = 0 To 4
m(0, I) = RED
m(1, I) = GREEN
m(2, I) = BLUE
Next I
2D Array Examples IDL Connectivity Bridges

Appendix D: Multidimensional Array Storage and Access 499
Resulting linear memory:

rgbrgbrgbrgbrgb

Resulting SAFEARRAY.rgsabounds:

[0,5], [0,3]

Note the reversed order!

C++ Using ATL SAFEARRAY Wrapper Objects

This example uses the ATL Safearray wrapper objects: CComSafeArrayBound and
CComSafeArray, which simply wraps the calls to the native Win32 Safearray API
calls.

CComSafeArrayBound bound[2];
bound[0].SetCount(3); // 3 rows
bound[1].SetCount(5); // 5 columns
CComSafeArray<byte> matx(bound,2);
long ndx[2];
for (int i = 0; i < 5; i++)
{

ndx[0] = 0; ndx[1] = i;
matx.MultiDimSetAt(ndx,'r');
ndx[0] = 1; ndx[1] = i;
matx.MultiDimSetAt(ndx,'g');
ndx[0] = 2; ndx[1] = i;
matx.MultiDimSetAt(ndx,'b');

}

Resulting linear memory:

rgbrgbrgbrgbrgb

Resulting SAFEARRAY.rgsabounds:

[0,5], [0,3]

Observe that when the CComSafeArrayBound array is created, it is initialized in the
conceptually correct order (i.e., specifying the “3 rows” by “5 columns”). But, if you
look at the actual SAFEARRAY.rgsabounds[] element in memory, you see that
they were reversed when the array was created.

C++ Using SAFEARRAY API Calls and Creating
Different Memory Layout

C++ has the flexibility to create SAFEARRAYs in many different ways. By calling
the SAFEARRAY API calls directly and judiciously, you can create a SAFEARRAY
IDL Connectivity Bridges 2D Array Examples

500 Appendix D: Multidimensional Array Storage and Access
with data in a different order than what is normally expected. IDL and traditional
SAFEARRAY data ordering are different. This example puts the data into the
SAFEARRAY in the same order as IDL expects it. In other words, it puts the data in
the opposite order that is used for SAFEARRAYs when you use the API calls to set
individual data elements.

But first, we must step back and see how the C++ language stores multidimensional
arrays. If you have the following declaration:

byte data[3][5] = {
'r','r','r','r','r',
'g','g','g','g','g',
'b','b','b','b','b' };

the resulting linear memory looks like this:

rrrrrgggggbbbbb

This is the same order that IDL expects. However, C++ accesses the memory in the
opposite way that IDL would access the same data. For example, if you wanted to set
the kth element of the first row (0-indexed), here’s how the two languages compare:

C++:

data[0][k] = value;

IDL:

Data[k,0] = value

However, the resulting linear memory layout is the same.

This example creates the 2D RGB array in C++ using the SAFEARRAY API calls
and arranging memory in the same layout as IDL.

// First, create the linear memory in the format: rrrrrgggggbbbbb
byte data[3][5];
for (int i = 0; i < 5; i++)
{

data[0][i] = 'r';
data[1][i] = 'g';
data[2][i] = 'b';

}
SAFEARRAYBOUND sab[2];
sab[0].lLbound = 0;
sab[0].cElements = 3; // 3 rows
sab[1].lLbound = 0;
sab[1].cElements = 5; // 5 columns
SAFEARRAY* psa = SafeArrayCreateEx(VT_UI1, 2, sab, NULL);
// By copying the source data into the safearray data area,
// we can create the data in a different order. Since the
2D Array Examples IDL Connectivity Bridges

Appendix D: Multidimensional Array Storage and Access 501
// source data is in the same order as IDL expects, this creates
// a SAFEARRAY with a non-standard ordering.
//
memcpy(psa->pvData, data, sizeof(data));

Resulting linear memory:

rrrrrgggggbbbbb

Resulting SAFEARRAY.rgsabounds:

[0,5], [0,3]

The consumer of this array needs some indication that the order is different than
standard SAFEARRAYs and that it would not need to be converted before passing off
to IDL.

Here is how to create the 2D RGB array in IDL pro code:

arr = BYTARR(5, 3)
for i=0,4 do begin

arr[i,0] = 114B
arr[i,1] = 103B
arr[i,2] = 98B

endfor

Resulting linear memory:

rrrrrgggggbbbbb

Calling help, arr gives the following information:

ARR BYTE = Array[5, 3]
IDL Connectivity Bridges 2D Array Examples

502 Appendix D: Multidimensional Array Storage and Access
2D Array Examples IDL Connectivity Bridges

Index

A
abort method

COM connector, 193
Java connector, 219

ActiveX controls
class ID, 52
destroying, 60
example IDL code, 61, 65
IDL object wrapper, 191
IDLcomActiveX object references, 55
inserting into IDL widget hierarchy, 18, 53
method calls, 55
naming scheme, 52
overview, 16
program ID, 52
properties, 56
registering, 50

skills required, 19
using in IDL, 50
widget events, 57
WIDGET_ACTIVEX, 18

ActiveXCal.pro, 61
ActiveXExcel.pro, 65
allprops.pro, 89
arraydemo.pro, 99
arrays

converting majority in Export Bridge, 165
multidimensional storage and access, 494
passing

by reference, 40
by value, 40

See also multidimensional arrays
arrays_example.java, 256
arrray2d.java, 99
IDL Connectivity Bridges 503

504
B
bridge_setup script, 144
bridge_version.pro, 95
bridges

definition, 10
Export

about, 12
Export Bridge Assistant, 148
supported data types, 166

Import, 11
by reference array passing, 40
by value array passing, 40

C
classes

Java
data members, 89
methods, 87
names, 84
path, 75
properties, 89
static, 85

COM
Program ID, 156

COM connector
about, 246
debugging, 213
error handling, 211
event handling, 208
examples, 249
methods

Abort, 193
CreateObject, 194
CreateObjectEx, 196
DestroyObject, 199
ExecuteString, 200
GetIDLObjectClassName, 201
GetIDLObjectVariableName, 202
GetIDLVariable, 203

GetLastError, 204
GetProcessName, 205
SetIDLVariable, 206
SetIProcessName, 207

reference, 189
using, 247

COM export bridge
about wrapper objects, 191
methods, 192
reference, 189

COM objects
array passing by reference, 40
class ID, 24
creating IDLcomIDispatch objects, 28
data type mapping, 44
data types, 30
definition, 16
destroying, 43
example IDL code, 46
exposing as IDLcomIDispatch objects, 18
in IDL, 22
method calls, 29
Microsoft Object Viewer, 26
optional method arguments, 30
overview, 16
program ID, 25
properties, 37
See also ActiveX
See also IDLcomIDispatch objects
skills required, 19

com.idl.javaidl
import statement, 144
package, 312

com_export_arrays_doc.txt, 251
com_export_commandline_doc.txt, 252
com_export_grwindow_doc.txt, 280
com_export_hello_doc.txt, 250
com_export_helloex_doc.txt, 275
com_export_itwinmanip_doc.txt, 283
com_export_triwindow_doc.txt, 288
configuring the IDL-Java bridge, 75
Index IDL Connectivity Bridges

505
connecting
to Java objects, 72

connector object. See Java connector object or
COM connector object

copyrights, 2
createObject method

COM connector, 194
Java connector, 220

createObjectEx method
COM connector, 196

creating
IDL object in COM, 194, 196
IDL object in Java, 220
Java object in IDL, 84

D
data types

IDL and Java, 80
IDL-Java bridge conversion, 82
Java and IDL, 78
supported by Export Bridge, 166

destroyObject method
COM connector, 199
Java connector, 223

drawable objects, 264

E
environment variables

IDL_PREFER_64, 144
errors

handling
COM wrapper objects, 211
IDL-Java bridge, 96
Java wrapper objects, 242

Java exceptions, 96
examples

ActiveX
ActiveXCal.pro, 61

ActiveXExcel.pro, 65
including controls, 65

bridges
See also examples

COM.
Java.

export_grwindow_doc__define.pro, 277,
299

export_itwinmanip_doc__define.pro, 281,
304

helloworld__define.pro, 182
helloworldex__define.pro, 272, 294
IDispatchDemo.pro, 46
idlgrwindowexample__define.pro, 266,

284
idlitdirectwindowexample__define.pro,

266, 284
idlitwindowexample__define.pro, 266,

284
COM

export
com_export_arrays_doc.txt, 251
com_export_commandline_doc.txt, 252
com_export_grwindow_doc.txt, 280
com_export_hello_doc.txt, 250
com_export_helloex_doc.txt, 275
com_export_itwinmanip_doc.txt, 283
com_export_triwindow_doc.txt, 288

import
ActiveXCal.pro, 61
ActiveXExcel.pro, 65
IDispatchDemo.pro, 46, 46

Java
export

arrays_example.java, 256
export_grwindow_doc_example.java,

302
export_itwinmanip_delete.java, 306
export_itwinmanip_doc_example.java,

306
hello_example.java, 254
IDL Connectivity Bridges Index

506
helloworldex_example.java, 296
JIDLCommandLine.java, 258

import
allprops.pro, 89
array2d.java, 99
arraydemo.pro, 99
bridge_version.pro, 95
exception.pro, 97
GreyBandsImage.java, 104
helloJava.java, 92
hellojava.pro, 84
hellojava2.pro, 92
javaprops.pro, 85
jbexamples.jar, 108
publicmembers.pro, 89
showexcept.pro, 97
showgreyimage.pro, 104
urlread.pro, 102
URLReader.java, 102

using COM objects, 46
wrapper objects

COM, 182
Java, 184

exception.pro, 97
executeString method

COM connector, 200
Java connector, 224

Export Bridge
IDL object requirements, 261
Java setup script, 144
overview, 12
programming limitations, 263

Export Bridge Assistant
building wrapper objects, 161
examples

COM, 182, 270
Java, 184, 292

exporting wrapper objects
bridge information, 167
converting array majority, 165
skipped information, 178

source object
method information, 173
modification, 181
object information, 170
parameter information, 176
property information, 171
states, 162
superclasses, 180

specifying information, 164
supported data types, 166

interface
logs panel, 154
menu bar, 151
property sheet view, 154
toolbar, 152

logs
build, 155
change, 154
export, 155

output destinations, 141
projects

bridge information, 167
opening, 157
saving, 157
updating, 158

running
in different IDL modes, 141

supported platforms and compilers, 140
Update dialog, 159
using, 150

export_grwindow_doc__define.pro, 277, 299
export_grwindow_doc_example.java, 302
export_itwinmanip_delete.java, 306
export_itwinmanip_doc__define.pro, 281, 304
export_itwinmanip_doc_example.java, 306
exporting

IDL objects to COM, 148
IDL objects to Java, 148

exporting drawable objects
examples, 266
requirements, 264
Index IDL Connectivity Bridges

507
F
file

IDL-Java, 75

G
getIDLObjectClassName method

COM connector, 201
Java connector, 225

getIDLObjectVariableName method
COM connector, 202
Java connector, 226

getIDLVariable method
COM connector, 203
Java connector, 227

GetLastError method
COM connector, 204

getProcessName method
COM connector, 205
Java connector, 228

GreyBandsImage.java, 104

H
handling Java exceptions, 96
hello_example.java, 254
helloJava.java, 92
hellojava.pro, 84
hellojava2.pro, 92
helloworld__define.pro, 182
helloworldex__define.pro, 272, 294
helloworldex_example.java, 296

I
IDispatchDemo.pro, 46, 46, 46
IDL Java Package, 312
IDL_PREFER_64 environment variable, 144
IDLcomActiveX object

see ActiveX controls
IDLcomIDispatch objects

creating, 28
destroying, 43
method calls, 29
naming scheme, 24
overview, 18, 22

idlgrwindowexample__define.pro, 266, 284
idlitdirectwindowexample__define.pro, 266,

284
idlitwindowexample__define.pro, 266, 284
IDL-Java bridge. See Java Import Bridge
Import Bridge overview, 11
initListeners method, 220, 239
isObjectCreated method

Java connector, 229

J
Java connector

about, 246
debugging, 244
error handling, 242
event handling, 232
examples, 253
methods

abort, 219
createObject, 220
destroyObject, 223
executeString, 224
getIDLObjectClassName, 225
getIDLObjectVariableName, 226
getIDLVariable, 227
getProcessName, 228
isObjectCreated, 229
setIDLVariable, 230
setIProcessName, 231

reference, 215
using, 247

Java Export Bridge
about wrapper objects, 217
IDL Connectivity Bridges Index

508
methods, 218
reference, 215
runtime environment (JRE) requirements,

140
Java Import Bridge

class name in IDL, 84
classes

data members, 89
methods, 87
names, 84
path, 75
properties, 89
static, 85

configuration, 75
converting data types with IDL, 82
creating IDL-Java bridge objects, 84
destroying objects, 91
IDL data types, 78
Java data types, 80
Native Interface (JNI), 73
objects, 72
runtime environment (JRE) requirements, 72
session object, 94
static

classes, 85
data members, 85
methods, 85

version, 94
javaprops.pro, 85
jbexamples.jar, 108
JIDL (IDL Java) package

classes
JIDLArray, 317
JIDLBoolean, 321
JIDLByte, 328
JIDLCanvas, 333
JIDLChar, 376
JIDLConst, 383
JIDLDouble, 388
JIDLFloat, 395
JIDLInteger, 400
JIDLLong, 409

JIDLObject, 428
JIDLProcessInitializer, 460
JIDLShort, 463
JIDLString, 468

errors
JIDLAbortedException, 315
JIDLBusyException, 326
JIDLException, 393

interfaces
JIDLComponentListener, 381
JIDLKeyListener, 406
JIDLMouseListener, 415
JIDLMouseMotionListener, 418
JIDLNotifyListener, 422
JIDLNumber, 424
JIDLObjectI, 446
JIDLOutputListener, 458

JIDL Package class summary, 312
JIDLAbortedException, 315
JIDLArray, 317
JIDLBoolean, 321
JIDLBusyException, 326
JIDLByte, 328
JIDLCanvas, 333
JIDLChar, 376
JIDLCommandLine.java, 258
JIDLComponentListener, 381
JIDLConst, 383
JIDLDouble, 388
JIDLException, 393
JIDLFloat, 395
JIDLInteger, 400
JIDLKeyListener, 406
JIDLLong, 409
JIDLMouseListener, 415
JIDLMouseMotionListener, 418
JIDLNotifyListener, 422
JIDLNumber, 424
JIDLObject, 428
JIDLObjectI, 446
JIDLOutputListener, 458
JIDLProcessInitializer, 460
Index IDL Connectivity Bridges

509
JIDLShort, 463
JIDLString, 468

L
legalities, 2
licensing

exported COM objects, 134
exported Java objects, 134
Java export bridge, 221

M
method calls

ActiveX controls, 55
COM objects, 29

Microsoft Object Viewer, 26
multidimensional arrays

2D examples, 498
storage and access, 494

COM, 496
IDL, 497

O
object properties

COM, 37
Object Viewer, 26
objects

IDL-Java bridge session
exceptions, 96
parameters, 94

Java classes
IDL-Java bridge, 72
path, 75

OLE/COM Object Viewer, 26, 32, 52

P
package

com.idl.javaidl, 312
ProgID, 156
Program ID, 156
properties

ActiveX controls, 56
COM objects, 37

publicmembers.pro, 89

S
session object

IDL-Java bridge exceptions, 96
IDL-Java bridge parameters, 94

setIDLVariable method
COM connector, 206
Java connector, 230

setProcessName method
COM connector, 207
Java connector, 231

showexcept.pro, 97
showgreyimage.pro, 104

T
trademarks, 2

U
urlread.pro, 102
URLReader.java, 102

V
Virtual Machine

Java (JRE) requirements, 72, 140
IDL Connectivity Bridges Index

510
W
widget events

ActiveX, 57
WIDGET_ACTIVEX function

using, 18
widgets

WIDGET_ACTIVEX function
using, 18

wrapper objects
about, 127
building in the Export Bridge Assistant, 161
converting array majority, 165
debugging

COM, 213

Java, 244
error handling

COM, 211
Java, 242

event handling
COM, 208
Java, 232

examples
COM, 182, 249, 270
Java, 184, 253, 292

exporting, 162
exporting drawable objects, 264
supported data types, 166
Index IDL Connectivity Bridges

	Online Manuals
	IDL Documentation
	What's New in IDL 7.0
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Analyst Reference Guide
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	IDL Connectivity Bridges
	Contents
	About the IDL Bridges
	What Is a Bridge?
	IDL Import Bridge
	IDL Export Bridge

	Part I: Importing into IDL
	Overview: COM and ActiveX in IDL
	COM Objects and IDL
	Using COM Objects with IDL
	Skills Required to Use COM Objects

	Using COM Objects in IDL
	About Using COM Objects in IDL
	IDLcomIDispatch Object Naming Scheme
	Creating IDLcomIDispatch Objects
	Method Calls on IDLcomIDispatch Objects
	Managing COM Object Properties
	Passing Parameter Arrays by Reference
	References to Other COM Objects
	Destroying IDLcomIDispatch Objects
	COM-IDL Data Type Mapping
	Example: RSIDemoComponent

	Using ActiveX Controls in IDL
	About Using ActiveX Controls in IDL
	ActiveX Control Naming Scheme
	Creating ActiveX Controls
	Method Calls on ActiveX Controls
	Managing ActiveX Control Properties
	ActiveX Widget Events
	Destroying ActiveX Controls
	Example: Calendar Control
	Example: Spreadsheet Control

	Using Java Objects in IDL
	Overview of Using Java Objects
	Initializing the IDL-Java Bridge
	IDL-Java Bridge Data Type Mapping
	Creating IDL-Java Objects
	Method Calls on IDL-Java Objects
	Managing IDL-Java Object Properties
	Destroying IDL-Java Objects
	Showing IDL-Java Output in IDL
	The IDLJavaBridgeSession Object
	Java Exceptions
	IDL-Java Bridge Examples
	Troubleshooting Your Bridge Session

	Part II: Exporting from IDL
	Exporting IDL Objects
	Overview of Exporting IDL Objects
	Wrapper Objects
	Object Lifecycle
	IDL Access
	Parameter Passing and Type Conversion
	Event Handling
	Supported Platforms and IDL Modes
	Configuring Build and Client Machines

	Using the Export Bridge Assistant
	Export Bridge Assistant Overview
	Running the Assistant
	Using the Assistant
	Working with a Project
	Building an Object
	Exporting an Object
	Specifying Information for Exporting
	Bridge Information
	Source Object Information
	Property Information
	Method Information
	Parameter Information

	Information Skipped During Export
	Exporting a Source Object’s Superclasses
	Modifying a Source Object After Export
	Wrapper Generation Example

	Using Exported COM Objects
	Overview of COM Export Objects
	COM Wrapper Objects
	Stock COM Wrapper Methods
	Abort
	CreateObject
	CreateObjectEx
	DestroyObject
	ExecuteString
	GetIDLObjectClassName
	GetIDLObjectVariableName
	GetIDLVariable
	GetLastError
	GetProcessName
	SetIDLVariable
	SetProcessName

	Event Handling
	Error Handling
	Debugging

	Using Exported Java Objects
	Overview of Java Export Objects
	Java Wrapper Objects
	Stock Java Wrapper Methods
	abort
	createObject
	destroyObject
	executeString
	getIDLObjectClassName
	getIDLObjectVariableName
	getIDLVariable
	getProcessName
	isObjectCreated
	setIDLVariable
	setProcessName

	Event Handling
	Error Handling
	Debugging

	Using the Connector Object
	About the IDL Connector Object
	Preparing to Use the IDL Connector Object
	Connector Object COM Examples
	Hello World Example with a COM Connector Object
	Data Manipulation with a COM Connector Object
	IDL Command Line with a COM Connector Object

	Connector Object Java Examples
	Hello World Example with a Java Connector Object
	Data Manipulation with a Java Connector Object
	IDL Command Line with Java Connector Object

	Writing IDL Objects for Exporting
	Overview
	Programming Limitations
	Exporting Drawable Objects
	Drawable Object Canvas Examples

	Creating Custom COM Export Objects
	About COM Export Object Examples
	Nondrawable COM Export Example
	Drawable COM Export Examples
	COM IDLgrWindow Based Histogram Plot Generator
	COM IDLitWindow Surface Manipulation
	Tri-Window COM Export Example

	Creating Custom Java Export Objects
	About Java Export Object Examples
	Nondrawable Java Export Example
	Drawable Java Export Examples
	Java IDLgrWindow Based Histogram Plot Generator
	Java IDLitWindow Surface Manipulation

	Part III: Appendices
	IDL Java Object API
	Package Summary
	JIDLAbortedException
	JIDLArray
	JIDLBoolean
	JIDLBusyException
	JIDLByte
	JIDLCanvas
	JIDLChar
	JIDLComponentListener
	JIDLConst
	JIDLDouble
	JIDLException
	JIDLFloat
	JIDLInteger
	JIDLKeyListener
	JIDLLong
	JIDLMouseListener
	JIDLMouseMotionListener
	JIDLMouseWheelListener
	JIDLNotifyListener
	JIDLNumber
	JIDLObject
	JIDLObjectI
	JIDLOutputListener
	JIDLProcessInitializer
	JIDLShort
	JIDLString

	COM Object Creation
	Sample IDL Object
	Visual Basic .NET Code Sample
	C++ Client Code Sample
	C# Code Sample
	Visual Basic 6 Code Sample

	Java Object Creation
	Sample IDL Object
	Java Object Initiation Without Parameters
	Java Object Initiation with Parameters

	Multidimensional Array Storage and Access
	Overview
	Why Storage and Access Matter
	Storage and Access in COM and IDL
	2D Array Examples

	Index

