IDL
Connectivity

Bridges

IDL Version 7.0

November 2007 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

11071DL70CB

Restricted Rights Notice

The IDL®, IDL Analyst™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures, functions, and
documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the
restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document at
any time and without notice.

Limitation of Warranty

ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information

This software and its associated documentation are subject to the controls of the Export Administration Regulations (EAR). It has
been determined that this software is classified as EAR99 under U.S. Export Control laws and regulations, and may not be re-
transferred to any destination expressy prohibited by U.S. laws and regulations. The recipient isresponsible for ensuring compliance
to all applicable U.S. Export Control laws and regulations.

Acknowledgments

ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, |ON Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.
NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.
This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has acommercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN islicensed from the United States of Americaunder U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.
FLAASH islicensed from Spectral Sciences, Inc. under a U.S. Patent Pending.

Portions of this software are copyrighted by Merge Technologies I ncorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.
IMSL isatrademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visua Numerics, Inc. All Rights Reserved.
Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents

Chapter 1

ADOUL the IDL BrIOQES ..coiiiieeeei ettt 9
LTAY = A K= N =] o o 1= 10
T I g oo =T o o= 11
T Tt oo =T 4 o o = 12

Part I: Importing into IDL

Chapter 2

Overview: COM and ActiveX iN IDLccooeeiiiiiiiiiiieieeiee e 15
({0 1Y @ o] 1= o1 13 o I 1 5 S SUPPRIN 16
Using COM ObJeCtSWIth IDLoceeeeiie ettt e e 18
Skills Required to USe COM ODJECESeeiiiiiieiieeieesiieses e esiesae st sessessree s seessessreens 19

IDL Connectivity Bridges 3

Chapter 3

Using COM Objects

T P 21
About Using COM OBJECES INIDL ...ocvviueeieiececeee ettt 22
IDLcomIDispatch Object Naming SCheme ..o 24
Creating IDLcomIDispatch ODJECESooviiiiiieieie ettt st 28
Method Calls on IDLcomIDispatch ODJECEScccevveeeeiererereeese e 29
Managing COM ODbjECt PrOPENtIESccvieiieieie ettt 37
Passing Parameter ArrayS by REFEIENCEccuiiiviei et 40
References to Other COM ODJECESocvviiieeieie et 42
Destroying IDLcomIDispatch ODJECLScoviiiiiieiir e 43
COM-IDL Data TYPe MaPPING ...eccveierrieeeeesteieiseessesiesteesessessesseeseessessesssssssssessessessesses 44
Example: RSIDEMOCOMPONENTcceeiieeiiesieeseesieesieerieesteesteeee e teese e e snresseeseesneeenessnes 46
Chapter 4

Using ActiveX Controls iN IDLcooiiiiiiiiiee e 49
About Using ActiveX ControlSin IDLccccoieeoeieieee e 50
ActiveX Control Naming SChemE ... s 52
Creating ACHIVEX CONIOIS ..iccieiiieiecieeieeier e ere et e e e re e s s e e s re e sreesre e sae e reesreesre e e 53
Method Calls 0N ACHIVEX CONIOISoveeeiiriiriireeeeere e 55
Managing ActiveX Control PrOPETIESccccueiievier et see ettt ere e 56
ACHVEX WIAQEL EVENLSviivicieceecese ettt sttt sttt sttt sreere e s ne e 57
Destroying ACtVEX CONEIOISicvieceicie e te e te e e e et sre e re e sre e 60
Example: Calendar CONLIOLcccveeciereieiiese st s se e s ne e b ne e 61
Example: Spreadsheet CONLrolcocvier et 65
Chapter 5

Using Java ObjJectS iN IDLuuueiiiiiieee et a e 71
Overview of USINg JAVA ODJECEScceceeiiie et st 72
Initializing the IDL-JaVaBIidgeccccieiieiieiie et ete ettt se e e e ee e s 75
IDL-JavaBridge Data TYPe MapPiNgccceeveeeereerreireerieieesiesieseessesaesseeneesessessesseessensenns 78
Creating IDL-JaVa ODJECLScocuiiiiiciececse e st sre e 84
Method Calls 0N IDL-Java ObJECLScceieiieie ettt s 87
Managing IDL-Java ObjECt PrOPErtiESccceveeiieiie e ceesee s ertee s ee st ete et e re e 89
Destroying IDL-Java ODJECESceccueeeiieiiiiesiesie e eeeee sttt st se et ene e et s 91
Showing IDL-Java OULPUL TN TDL ...ccueecieccee et etee e et see e 92
The IDLJavaBridgeSession ODJECLccccvviiieieiesesieeie st ste sttt sresre s 94

Contents IDL Connectivity Bridges

Y N o= o) 0] SOOI 96
IDL-Java Bridge EXaMPIEScooeiiieeeeerese ettt 99
Troubleshooting Y our Bridge SESSIONccccceieeeereseseeeeseste et ae e 118

Part II: Exporting from IDL

Chapter 6

EXPOrting IDL ODJECES .ooiiieiiiieeeeeeee e 125
Overview of EXporting IDL ODJECEScecveierieeeieeeseeee et 126
QY= o) 0= G @ o =T £ 127
(@ o 1= o] =03/ o = U 130
DL ACCCESS ..uteeutietieiie ettt ettt st eh e bt e s b e s a e b e e s Re e b e e she e she e Re e neene e nneereerea 132
Parameter Passing and TYPe CONVEISIONccecceeieeiieeneseesieesiesseesteesseeseessesssesnsesssens 136
V1= i =T 1 o P 139
Supported Platforms and IDL MOUEScoceeveeiiiieesee et see et 140
Configuring Build and Client MachingSccceeeeiiiieiciee et 142
Chapter 7

Using the Export Bridge ASSIStantccooooviiiiiiiiiiiiiiiiccne e 147
Export Bridge ASSIStaNt OVEINVIEWcceveieiiereniesieeieeeese e seeeeee e esneesee e sseeneens 148
RUNNING thE ASSISIANTveceiceeeciece ettt st s re st e e e e nbenreas 149
UL T Tl AN S L = | 150
WOrKing With @PIOJECLccveieieee et 157
20T Lo [HqTe = g @ o ox S 161
EXPOrting @an ODJECLcviiiiiicieceee ettt s ee e n e 162
Specifying Information for EXPOrtingc.ccoeveeveeiieeniee e cse e eeeses e sree e e e sree e 164
Information Skipped DUriNg EXPOItcccveveiiiireese s 178
Exporting a Source Object’S SUPEICIASSEScccieeieiieeiieiiecesee e see e see e neea 180
Modifying a Source Object After EXPOITccvieeveieieeece et 181
Wrapper Generation EXAMPIEcuecceiiriie e siee e see e e e se e ste s re e et e e aeerens 182
Chapter 8

Using Exported COM ODJECESuuuiiiiiiiiiiiiiiiiieeeeee e 189
Overview of COM EXPOrt ODJECEScoueeeiieii e 190
COM Wrapper ODJECESccveiveieeeriesiesesteeeeseste e eee e s e sreseestesresseeaensestessesssensesresseeneas 191
V=T 1 = T o 208
g o =TT | 1T o T 211
1= o0 To o1 oo RS 213

IDL Connectivity Bridges Contents

Chapter 9

Using Exported Java ODJECEScccovveeiiiieiiieeeeece e 215
Overview of Java EXPOrt ODJECEScccveiiiiiiieiiie e 216
JAVAWTIEPPEN ODJECES ...o.eeeieieeie ettt ettt eseestesneeeeneeseeeneeneenaesneas 217
Y= =g o 1 oo 232
g0 F= 0T | 1T T 242
)= T8 o o 1 oo PO 244
Chapter 10

Using the ConNector ODJECTccooviiiiiiiiii e 245
About the IDL ConNECLOr OBJECEcccveiieriecie e ste e sre e sre e sre e e 246
Preparing to Use the IDL Connector ODJECLccceeieeieiecineee et 247
Connector Object COM EXAMPIESccvoiiiiiieiiieseeee e 249
Connector Object Java EXaMPIESccveiiiiiieieie e 253
Chapter 11

Writing IDL Objects for EXPOrtingcceeeevieeieeieiieeeeeeeieccee e 261
(@Y7 V1= T TSRS 262
Programming LIMItationscccociiiiiieiie s see st et ene e e s 263
Exporting Drawable ODJECEScceeceieiece e 264
Drawable Object Canvas EXAMPIEScccoiciiieiiie e 266
Chapter 12

Creating Custom COM EXpPOrt ODJECtSccevvvvvvuiiiiiiiieieeeeeeeeeeeeeeinnns 269
About COM EXxport Object EXaMPIEScceeviiiiiicieseece et 270
Nondrawable COM EXPort EXaMPIEcocoieeiiirieeeese e 272
Drawable COM EXPOrt EXAMPIEScccoceieiieie ettt 276
Chapter 13

Creating Custom Java Export ODbjectscoouuivviiiiiiiiiniiiieeeeeeiies 291
About Java Export Object EXAMPIEScc.eveeiiieieeeeree e 292
Nondrawable Java EXport EXAMPIEcccveeieeiiie et 294
Drawable Java EXPOrt EXaMPIESooviiieiiere e 298

Part Ill: Appendices

Appendix A
IDL Java ObjJECt AP ... 311

PaCKage SUMIMEIYc.voiuiiiiceeiiie sttt sttt e se e e e tesneeneenneseesnas 312

Contents IDL Connectivity Bridges

Appendix B

({017 @] o] =Tod B4 7=T- 11 [0] o H USRI 471
SAMPIE IDL OBJECL ...ttt 472
Visual Basic .NET COde SAMPIEc.eiiieieieeeeseeee et 475
CH+ Client Code SAMPIEoveieeeeeeee ettt sresreennas 477
CH COUE SAMPIE ..ttt ettt et et e saeeeeeeseeeneeneeeeseesreeneas 479
Visual BasiC 6 COUE SAMPIEccevverieceeese e 481
Appendix C
Java ODJeCt Creation ... 483
SAMPIE IDL ODJECL ..ttt st eesneeee e e seeeneeneeeeseesreeneas 484
Java Object Initiation Without Parametersccccevvveeeeveie s 487
Java Object Initiation With Parametersccccecevice e iie s see e eesee e e 489
Appendix D
Multidimensional Array Storage and ACCESScccovvvveevevvveinnncnnnnnns 493
OVEIVIBIW <.ttt ettt bt s e teste s et et e e e aeeaesaeeseessesseensensesteeneeneenseseeseeaneas 494
Why Storage and ACCESS MAErccceeeeiiie et s 495
Storage and Accessin COM and IDLcooeeveevecieesee st ee e s 496
2D ArTay EXAMPIES ...oveceieeecie ettt ettt sttt nrenreennas 498
1o T0 1= TSRS 503

IDL Connectivity Bridges Contents

Chapter 1

About the IDL Bridges

This chapter discusses the following topics.

What IsaBridge? 10 IDL ExportBridge
IDL ImportBridge 11

IDL Connectivity Bridges

10 Chapter 1: About the IDL Bridges

What Is a Bridge?

A bridgeis atechnology path that lets applications in different programming
languages or environments share information: for example, between IDL and Java.
With bridge technol ogy, you can use an application that manipulates datain its native
language (e.g., Java) by calling on objects and processes from another language (e.g.,
IDL). In this way, you can take advantage of both environments to solve a problem
that might be otherwise difficult for either environment separately: for example,
embedding an IDL data object in a Java GUI to display acomplex data
transformation.

Note
Startup files are not executed when running bridge applications because an IDL
command line is not present. See “Understanding When Startup Files are Not
Executed” (Chapter 1, Using IDL) for details.

IDL supportsimport and export bridge technology. The Import Bridge lets you
import the functionality of a COM or Java object to an IDL application. The Export
Bridge lets you export the functionality of an IDL object to COM or Java application.
See the following for more information:

e “IDL Import Bridge” on page 11
e “IDL Export Bridge” on page 12

What Is a Bridge? IDL Connectivity Bridges

Chapter 1: About the IDL Bridges 11

IDL Import Bridge

The IDL Import Bridge technology lets you use COM and Java objectsin IDL
applications. For ageneral overview of this technology, see “Overview: COM and
ActiveX inIDL” on page 15.

COM and ActiveX

You have two options for incorporating a COM object into IDL:

« If the COM object does not have its own interface, you can use the
IDL comlIDispatch object class to communicate with the underlying COM
object through the COM IDispatch interface (see “Using COM Objectsin
IDL” on page 21 for details)

» If the COM object does have its own interface (i.e., it isan ActiveX control),
you can use IDL’'s WIDGET_ACTIVEX routine to place the control inan IDL
widget hierarchy (see “Using ActiveX Controlsin IDL” on page 49 for details)

Java

The IDL-Java bridge lets you access Java objects within IDL code. Java objects
imported into IDL behave like normal IDL objects. The bridge also provides IDL
with access to exceptions created by the underlying Java object. For more
information, see “Using Java Objectsin IDL” on page 71.

IDL Connectivity Bridges IDL Import Bridge

12 Chapter 1: About the IDL Bridges

IDL Export Bridge

The IDL Export Bridge technology lets you use IDL objectsin COM and Java
applications. For ageneral overview of thistechnology, see “ Exporting IDL Objects”
on page 125.

Note
The Export Bridge technology is installed as part of IDL. For the licensing and
environment reguirements of this technology, see “ Running the Assistant” on
page 149.

With the Export Bridge, interaction with IDL is through native Java and COM
wrapper objects that are generated for each IDL object with which client applications
want to interact. The wrapper objects manage all aspects of IDL loading,
initialization, process management, and cleanup, so users need only be familiar with
the client language (for embedding the wrapper in the client application) and the
basics of IDL (for accessing and manipulating IDL data and processes).

Export Bridge Assistant

The key to creating your own exported IDL objectsis the Export Bridge Assistant,
which generates these native wrapper objects from IDL objects. The Assistant isan
interactive dialogue in IDL that lets you customize the wrapper object you want to
create from the underlying IDL object. You can select the methods, parameters, and
properties that you want to export, as well as other information about the IDL object
(e.g., whether to convert array majority for parameters). See “Using the Export
Bridge Assistant” on page 147 for details.

Connector Object

Instead of exporting a custom IDL source object using the Assistant, you can also
access IDL functionality using the prebuilt connector object that is shipped with the
IDL distribution. ThisIDL connector object lets you quickly incorporate the
processing power of IDL into an application developed in an external, object-oriented
environment such as COM or Java. The connector object provides abasic,
nondrawabl e wrapper that includes the ability to get and set IDL variables and
execute command statements in the IDL process associated with the connector
object. For more information, see “Using the Connector Object” on page 245.

IDL Export Bridge IDL Connectivity Bridges

Part I: Importing Into
IDL

Chapter 2

Overview: COM and
ActiveX In IDL

This chapter discusses the following topics:

COM ObjectsandIDL 16 SkillsRequired to Use COM Objects 19
Using COM ObjectswithIDL 18

IDL Connectivity Bridges 15

16 Chapter 2: Overview: COM and ActiveX in IDL

COM Objects and IDL

Microsoft’'s Component Object Model, or COM, is a specification for developing
modular software components. COM is not a programming language or an API, but
an implementation of a component architecture. A component architectureisa
method of designing software components so that they can be easily connected
together, reused, or replaced without re-compiling the application that uses them.
Other examples of this methodol ogy include the Object Management Group’s
Common Object Request Broker Architecture (CORBA) and Sun’s JavaBeans
technologies.

ActiveX controls are a special class of COM aobject that follow a set of Microsoft
interface specifications; they are normally designed to present a user interface.

IDL for Windows supports three methods for using COM-based software
components in your applications:

e Exposing aCOM object asan IDL object

* Including an ActiveX control in an IDL widget hierarchy

Note
While COM components can be developed for numerous platforms, most COM-
based software iswritten for Microsoft Windows platforms. IDL for Windows
supports the inclusion of COM technologies, but IDL for UNIX does not. The
chaptersin this section will discuss COM in the context of Microsoft Windows
exclusively.

What Are COM Objects?

A COM object, or component, is a piece of software that:

* Isalibrary, rather than a stand-alone application (that is, it runsinside some
sort of client application such asIDL, a Visual Basic application, or a Web
browser)

« Isdistributed in a compiled, executable form

» Exposes agroup of methods and properties to its client application

COM Objects and IDL IDL Connectivity Bridges

Chapter 2: Overview: COM and ActiveX in IDL 17

In addition to these criteria, a component may also supply a user interface that can be
mani pul ated by the user. COM objects that supply a user interface and send eventsto
the programs that use them are generally packaged as ActiveX controls, althoughiitis
not arequirement that an ActiveX control provide a user interface.

COM objects and ActiveX controls are nearly always packaged as Windows
executable (. exe), dynamic link library (.d11), or object linking and embedding
(.ocx) files.

Why Use COM Objects with IDL?

There are several reasons to use COM technologies alongside IDL :

» COM objects can be designed to use the facilities of the underlying Windows
operating system. If you need access to Windows features not exposed within
IDL, incorporating a COM object into your IDL program may provide the
functionality you need.

* COM objects have been written to provide custom user interface elements or
accomplish specific tasks. Many of these components are available to you free
or at minimal cost. If you work exclusively in a Windows environment,
incorporating a pre-written component in your IDL program may be faster than
coding the same functionality in IDL.

IDL Connectivity Bridges COM Obijects and IDL

18 Chapter 2: Overview: COM and ActiveX in IDL

Using COM Objects with IDL

The methods for using COM objects with IDL are:
e “Exposing a COM Object asan IDL Object” on page 18
e “Including an ActiveX Control in an IDL Widget Hierarchy” on page 18

Exposing a COM Object as an IDL Object

IDL’s IDLcomlDispatch object class creates an IDL object that communicates with
an underlying COM object using the COM abject’s | Dispatch interface. When you
create an | DL.coml Dispatch object, you provide theidentifier for the COM object you
wish to use, and IDL handles instantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
The IDLcomlDispatch object is useful when you want to incorporate a generic
COM object into your IDL application. If the COM object you want to useis an
ActiveX control, usethe WIDGET_ACTIVEX routine, discussed below.

For details on using the IDLcomlIDispatch object classto incorporate COM objects
into your IDL applications, see Chapter 3, “Using COM Objectsin IDL".

Including an ActiveX Control in an IDL Widget
Hierarchy

IDL’s WIDGET_ACTIVEX routine incorporates an ActiveX control directly into an
IDL widget hierarchy. This allows you to place the ActiveX control in an IDL widget
interface, and to receive widget events directly from the control for handling by a
standard IDL widget event handler.

Internally, IDL uses the same mechanisms it uses when creating |DL coml Dispatch
objects when it instantiates an ActiveX control as part of an IDL widget hierarchy.
After the widget hierarchy has been realized, an object reference to the IDL object
that encapsulates the ActiveX control can be retrieved and used as an interface with
the ActiveX control. This allows you to call the ActiveX control’s methods and get
and set its properties using standard IDL object conventions and syntax.

For details on using the WIDGET_ACTIVEX routine to incorporate ActiveX
controlsinto your IDL applications, see Chapter 4, “Using ActiveX Controlsin IDL”.

Using COM Objects with IDL IDL Connectivity Bridges

Chapter 2: Overview: COM and ActiveX in IDL 19

Skills Required to Use COM Objects

Although IDL provides an abstracted interface to COM functionality, you must be
familiar with some aspects of COM to intertwine COM and IDL successfully.

If You Are Using COM Objects

If you are using a COM abject directly, viathe IDLcomlDispatch object, you will
need a thorough understanding of the COM object you are using, including its
methods and properties. An understanding of the Windows tools used to discover
information about COM objectsis useful.

If You Are Using ActiveX Controls

If you are incorporating an ActiveX control into an IDL widget hierarchy using
WIDGET_ACTIVEX, you will need athorough understanding of the ActiveX
control you are using, including its methods, properties, and the information returned
when an event is generated. An understanding of the Windows tools used to discover
information about ActiveX controlsis useful.

If You Are Creating Your Own COM Object

If you are creating your own COM object to be included in IDL, you will need a
thorough understanding both of your devel opment environment and of COM itself. It
is beyond the scope of this manual to discuss creation of COM objects, but you
should be able to incorporate any component created by following the COM
specification into IDL by following the procedures outlined here.

IDL Connectivity Bridges Skills Required to Use COM Obijects

20 Chapter 2: Overview: COM and ActiveX in IDL

Skills Required to Use COM Objects IDL Connectivity Bridges

Chapter 3

Using COM Objects

In IDL

This chapter discusses the following topics:

About Using COM Objectsin IDL
IDLcomlDispatch Object Naming Scheme . 24

Creating IDLcomlIDispatch Objects 28
Method Calls on IDLcomlDispatch Objects 29
Managing COM Object Properties 37

IDL Connectivity Bridges

Passing Parameter Arrays by Reference .. 40
References to Other COM Objects. 42
Destroying IDLcomlIDispatch Objects 43

COM-IDL DataTypeMapping 44
Example: RSIDemoComponent 46
21

22 Chapter 3: Using COM Objects in IDL

About Using COM Objects in IDL

If you want to incorporate a COM object that does not present its own user interface
into your IDL application, use IDL’s IDLcomlIDispatch object class.

IDL’s IDLcomlIDispatch object class creates an IDL object that uses the COM

I Digpatch interface to communicate with an underlying COM object. When you
create an IDLcomlIDispatch object, you provide information about the COM object
you wish to use, and IDL handlesinstantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
If the COM object you want to use in your IDL application is an ActiveX control,

usethe WIDGET_ACTIVEX routine, discussed in Chapter 4, “Using ActiveX
ControlsinIDL".

Array Data Storage Format

COM, like C, stores array datain row-major format. IDL stores array datain column-
major format. See Appendix D, “Multidimensional Array Storage and Access’ for a
detailed discussion of thisissue and itsimplications for IDL application design.

Object Creation

To create an IDL object that encapsulates a COM object, use the OBJ_NEW function
as described in “Creating | DL comlIDispatch Objects’ on page 28. IDL creates a
dynamic subclass of the IDLcoml Dispatch object class, based on information you
specify for the COM object.

Method Calls and Property Management

Once you have created your | DL comlDispatch object within IDL, use normal IDL
object method calls to interact with the object. (See Chapter 1, “The Basics of Using
Objectsin IDL” (Object Programming) for adiscussion of IDL objects.) COM object
properties can be set and retrieved using the GetProperty and SetProperty methods
implemented for the IDLcomlDispatch class. See “Method Calls on
IDLcomlIDispatch Objects’ on page 29 and “Managing COM Object Properties’ on
page 37 for details.

About Using COM Obijects in IDL IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 23

Object Destruction

Destroy IDLcomlDispatch objects using the OBJ_DESTROY procedure. See
“Destroying | DLcomlIDispatch Objects’ on page 43 for details.

Registering COM Components on a Windows
Machine

Before a COM object or ActiveX control can be used by a client program, it must be
registered on the Windows machine. In most cases, components are registered by the
program that installs them on the machine. If you are using a component that is not
installed by an installation program that handles the registration, you can register the
component manually.

To register acomponent (.d11 or .exe) or acontrol (. ocx), use the Windows
command line program regsvr32, supplying it with name of the component or
control to register. For example, the IDL distribution includesa COM component
named RSIDemoComponent, contained in afile named RSIDemoComponent .d11l
located in the examples\doc\bridges\com subdirectory of the IDL distribution.
To register this component, do the following:

1. Open a Windows command prompt.

2. Change directoriesto the examples\doc\bridges\coum subdirectory of the
IDL distribution.

3. Enter the following command:
regsvr32 RSIDemoComponent.dll

Windows will display a pop-up dialog informing you that the component has been
registered. (You can specify the” /s * parameter to regsvr32 to prevent the dialog
from being displayed.)

Note
You only need to register acomponent once on a given machine. It is not necessary
to register a component before each use.

IDL Connectivity Bridges About Using COM Obijects in IDL

24 Chapter 3: Using COM Objects in IDL

IDLcomIDispatch Object Naming Scheme

When you create an | DL.coml Dispatch object, IDL automatically creates a dynamic
subclass of the IDLcomlDispatch class to contain the COM object. IDL determines
which COM object to instantiate by parsing the class name you provide to the
OBJ_NEW function. You specify the COM abject to use by creating a class name
that combines the name of the base class (IDLcomlDispatch) with either the COM
class identifier or the COM program identifier for the object. The resulting class
name looks like

IDLcomIDispatch$SID type$ID
where ID_typeis one of the following:
e cLsIDif the object isidentified by its COM class ID
e PROGID if the object isidentified by its COM program ID
and ID isthe COM object’s actua class or program identifier string.

Note
While COM objects incorporated into IDL are instances of the dynamic subclass
created when the COM object isinstantiated, they still expose the functionality of
the class IDLcoml Dispatch, which is the direct superclass of the dynamic subclass.
All IDLcomlDispatch methods are available to the dynamic subclass.

Class Identifiers

A COM object’s class identifier (generally referred to asthe CLSID) is a 128-bit
identifying string that is guaranteed to be unique for each object class. The strings
used by COM as class IDs are aso referred to as Globally Unique Identifiers
(GUIDs) or Universally Unique Identifiers (UUIDs). It is beyond the scope of this
chapter to discuss how class IDs are generated, but it is certain that every COM
object hasa unique CLSID.

COM class|Ds are 32-character strings of a phanumeric characters and numeral sthat
look like this:

{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52}

The above classidentifier identifies the RSIDemoComponent class included with
IDL.

IDLcomIDispatch Object Naming Scheme IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 25

When you create an |DLcoml Dispatch object using a CLSID, you must modify the
standard CLSID string in two ways:

1. You must omit the opening and closing braces ({ }).

2. You must replace the dash characters (-) in the CLSID string with
underscores ().

See “Creating IDLcoml Dispatch Objects’” on page 28 for example class names
supplied to the OBJ_NEW function.

Note
If you do not know the class ID of the COM object you wish to expose as an IDL
object, you may be able to determine it using an application provided by Microsoft.
See “Finding COM Class and Program IDs” on page 26 for details.

Program ldentifiers

A COM object’s program identifier (generally referred to as the PROGID) isa
mapping of the class identifier to amore human-friendly string. Unlike class IDs,
program |Ds are not guaranteed to be unique, so namespace conflicts are possible.
Program IDs are, however, easier to work with; if you are not worried about name
conflicts, use the identifier you are most comfortable with.

Program IDs are a phanumeric strings that can take virtually any form, although by
convention they look like this:

PROGRAM. Component .version

For example, the RSIDemoComponent class included with IDL has the following
program ID:

RSIDemoComponent .RSIDemoObjl.1

When you create an |DLcoml Dispatch object using a PROGID, you must modify the
standard PROGID string by replacing the dot characters (.) with underscores ().

See “Creating IDLcoml Dispatch Objects’” on page 28 for example class names
supplied to the OBJ_NEW function.

Note
If you do not know the program ID of the COM object you wish to expose as an
IDL object, you may be able to determine it using an application provided by
Microsoft; see “Finding COM Class and Program IDs” on page 26 for details.

IDL Connectivity Bridges IDLcomIDispatch Object Naming Scheme

26 Chapter 3: Using COM Objects in IDL

Finding COM Class and Program IDs

In general, if you wish to incorporate a COM abject into an IDL program, you will
know the COM class or program ID — either because you created the COM object
yourself, or because the developer of the object provided you with the information.

If you do not know the class or program 1D for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. You can download the OLE/COM Object Viewer at no
charge directly from Microsoft. As of thiswriting, you can locate the tool by pointing
your Web browser to the following URL :

http://www.microsoft.com/com
and then selecting Downloads from the Resour ces menu.

The OLE/COM Object Viewer displays all of the COM objectsinstalled on a
computer, and allows you to view information about the objects and their interfaces.

5 OLE/COM Dbject Yiewer] 3

File ©hject Yiew Help

=3 £l P |

--égz RequestMakeCall Class | Hoicon FSIDemalbjl Class

@, Reveal Transition Akl (i 77RCR2-BBEC-4D 24 B2E 3 FE5RACEE2E 62}
¢ RevealTrans

--égz RichText Apppearance
[, RichText General Prope LS = -

"é'fz RIPBWizard Class L [ATTBC2EE-B0EC-402 A-B2E3-FS5S6ACES2ESS} = RSIDemacbil Class
-G Ripple

i X InprocServer3z [<no name>] = d:\RSIdd\RSIDEM-~1.DLL
"éz RM Enlls.tment Helper InprocServer3Z [ThreadingModel] = Apartment

"éﬁ RMGetLicense Class PraglD = RSIDemaComponent. RSIDemaohil. 1

--égz Role-based Security Po - Programmable

@ Rall Typelib = {62AD7BE6-8067-48F7-B392-7F458936 1DCE}

"@ RotateBvr Class - YersionIndependentProgIh = RSIDemoomponent.RSIDemochil
@, Route Class

--égz RowsetHelper

.08

Registry Implementationl Activationl Launch Permissionsl Access Permissions

R_SIDemoComponent.RSIDemoObjl.1 = RSIDemoObjl Class
| “ CLSID = {A7TBC2E2-30EC-402A-B2B3-FSS6ACES2ES2}
Typelib =

"é’z‘z R
@, RSIDemoObj3 Class

B, RTP Class _I;I o =
4 I I »

Figure 3-1: Microsoft's OLE/COM Object Viewer Application

Note
You can copy an object’s class ID to the clipboard by selecting the object in the
leftmost panel of the object viewer, clicking the right mouse button, and selecting
“Copy CLSID to Clipboard” from the context menu.

IDLcomIDispatch Object Naming Scheme IDL Connectivity Bridges

http://www.microsoft.com/com

Chapter 3: Using COM Objects in IDL 27

If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the
HEL P command with the OBJECTS keyword. IDL displays the full dynamic
subclass name, including the class ID or program ID that was used when the object

was created.

IDL Connectivity Bridges IDLcomIDispatch Object Naming Scheme

28 Chapter 3: Using COM Objects in IDL

Creating IDLcomIDispatch Objects

To expose aCOM object as an IDL object, use the OBJ NEW function to create a
dynamic subclass of the IDLcomlDispatch object class. The name of the subclass
must be constructed as described in “ DL coml Dispatch Object Naming Scheme” on
page 24, and identifies the COM object to be instantiated.

Note
If the COM object you want to use within IDL isan ActiveX control, use the
WIDGET_ACTIVEX routine as described in Chapter 4, “Using ActiveX Controls
inIDL". Instantiating the ActiveX control as part of an IDL widget hierarchy alows
you to respond to events generated by the control, whereas COM objects that are
instantiated using the OBJ_NEW do nhot generate eventsthat IDL is aware of.

For example, suppose you wish to include a COM component with the class ID
{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52}

and the program ID
RSIDemoComponent .RSIDemoObjl.1

in an IDL program. Use either of the following calls to the OBJ NEW function:

ObjRef = OBJ_NEW($
' IDLcomIDispatch$CLSIDSA77BC2B2_88EC_4D2A_B2B3_F556ACB52E52 ")

or

ObjRef = OBJ_NEW($
'IDLcomIDispatch$PROGIDSRSIDemoComponent_RSIDemoObjl_1')

IDL'sinternal COM subsystem instantiates the COM object within an
IDL comliDispatch object with one of the following the dynamic class names

IDLcomIDispatch$SCLSIDSA77BC2B2_88EC_4D2A _B2B3_F556ACB52E52
or
IDLcomIDispatch$PROGIDSRSIDemoComponent_ RSIDemoObjl_1

and sets up communication between the object and IDL. You can work with the
IDL comlDispatch object just as you would with any other IDL object; calling the
object’s methods, and getting and setting its properties.

See“IDLcomIDispatch” (IDL Reference Guide) for additional details.

Creating IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 29

Method Calls on IDLcomIDispatch Objects

IDL allows you to call the underlying COM object’s methods by calling methods on
the IDLcomIDispatch object. IDL handles conversion between IDL data types and
the data types used by the component, and any resultsare returned in IDL variables of
the appropriate type.

Aswith al IDL objects, the general syntax is:
result = ObjRef -> Method([Arguments])
or
ObjRef -> Method[, Arguments]

where ObjRef isan object reference to an instance of a dynamic subclass of the
IDLcomlDispatch class.

Function vs. Procedure Methods

In COM, all object methods are functions. IDL’s implementation of the

IDL comliDispatch object maps COM methods that supply areturn value using the
retval attribute as IDL functions, and COM methods that do not supply areturn
value viathe retval attribute as procedures. See “ Displaying I nterface Information
using the Object Viewer” on page 33 for more information on determining which
methods use the retval attribute.

The DL comlDispatch::GetProperty and IDL coml Dispatch:: SetProperty methods are
special cases. These methods are DL object methods — not methods of the
underlying COM object — and they use procedure syntax. The process of getting and
setting properties on COM objects encapsulated in IDLcoml Dispatch objectsis
discussed in “Managing COM Object Properties’ on page 37.

Note
The IDL object system uses method names to identify and call object lifecycle
methods (Init and Cleanup). If the COM object underlying an IDL comlIDispatch
object implements Init or Cleanup methods, they will be overridden by IDL’s
lifecycle methods, and the COM object’s methods will be inaccessible from IDL.
Similarly, IDL implements the GetProperty and SetProperty methods for the
IDL comliDispatch object, so any methods of the underlying COM abject that use
these names will be inaccessible from IDL.

IDL Connectivity Bridges Method Calls on IDLcomIDispatch Objects

30 Chapter 3: Using COM Objects in IDL

What Happens When a Method Call Is Made?

When a method is called on an IDLcoml Dispatch object, the method name and
arguments are passed to the internal IDL COM subsystem, where they are used to
construct the appropriate | Dispatch method calls for the underlying COM aobject.

From the point of view of an IDL user issuing method calls on the IDL coml Dispatch
object, this process is completely transparent. The IDL user simply calls the COM
object’s method using IDL syntax, and IDL handles the trand ation.

Data Type Conversions

IDL and COM use different data types internally. While you should be aware of the
types of data expected by the COM object’s methods and the types it returns, you do
not need to worry about converting between IDL data types and COM data types
manually. IDL’s dynamic type conversion facilities handle all conversion of data
types between IDL and the COM system. The data type mappings are described in
“COM-IDL Data Type Mapping” on page 44.

For example, if the COM object that underlies an IDL coml Dispatch object has a
method that requires a value of type INT as an input argument, you would supply the
valueasan IDL Long. If you supplied the value as any other IDL datatype, IDL
would first convert the valueto an IDL Long using its normal data type conversion
mechanism before passing the value to the COM object asan INT.

Similarly, if a COM object returns a BOOL value, IDL will placethevaueina
variable of Byte type, with avalue of 1 (one) signifying True or avaue of O (zero)
signifying False.

Optional Arguments

Like IDL routines, COM object methods can have optional arguments. Optional
arguments eliminate the need for the calling program to provide input data for al
possible arguments to the method for each call. The COM optional argument
functionality is passed along to COM object methods called on DL comlDispatch
objects, and to the IDLcoml Dispatch::GetProperty method. This meansthat if an
argument is not required by the underlying COM aobject method, it can be omitted
from the method call used on the IDL coml Dispatch object.

Method Calls on IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 31

Note
Only method arguments defined with the optional token in the object’s interface
definition are optional . See “ Displaying Interface Information using the Object
Viewer” on page 33 for more information regarding the object’s interface definition
file.

Warning
If an argument that is not optional is omitted from the method call used on the
IDLcomliDispatch object, IDL will generate an error.

Argument Order

Like IDL, COM treats arguments as positional parameters. This means that it makes
adifference where in the argument list an argument occurs. (Contrast thiswith IDL's
handling of keywords, which can occur anywhere in the argument list after the
routine name.) COM enforces the following ordering for arguments to object
methods:

1. Required arguments
2. Optional arguments for which default values are defined
3. Optiona arguments for which no default values are defined

The same order applies when the method is called on an IDLcoml Dispatch aobject.
Default Argument Values

COM allows objects to specify a default value for any method arguments that are
optional. If acall to amethod that has an optional argument with a default value
omits the optional argument, the default valueis used. IDL behaves in the same way
as COM when calling COM object methods on | DL coml Dispatch objects, and when
calling the IDL coml Dispatch::GetProperty method.

Method arguments defined withthe defaultvalue () tokeninthe object’sinterface
definition are optional, and will use the specified default value if omitted from the
method call. See “ Displaying Interface Information using the Object Viewer” on
page 33 for more information regarding the object’s interface definition file.

Argument Skipping

COM allows methods with optional arguments to accept a subset of the full argument
list by specifying which arguments are not present. This allows the calling routine to
supply, for example, the first and third arguments to a method, but not the second.
IDL provides the same functionality for COM object methods called on

IDL Connectivity Bridges Method Calls on IDLcomIDispatch Objects

32

Chapter 3: Using COM Objects in IDL

IDL comliDispatch objects, but not for the IDLcoml Dispatch::GetProperty or
SetProperty methods.

To skip one or more arguments from alist of optional arguments, include the SKIP
keyword in the method call. The SKIP keyword accepts either a scalar or a vector of
numbers specifying which arguments are not provided.

Note
Theindicesfor the list of method arguments are zero-based — that is, the first

method argument (either optional or required) is argument O (zero), the next is
argument 1 (one), etc.

For example, suppose a COM object method accepts four arguments, of which the
second, third, and fourth are optional:

ObjMethod, argl, arg2-optional, arg3-optional, arg4-optional

To call this method on the IDL coml Dispatch object that encapsulates the underlying
COM object, skipping arg2, use the following command:

objRef->0bjMethod, argl, arg3, argd4, SKIP=1

Note that the SK1P keyword usesthe index value 1 to indicate the second argument in
the argument list. Similarly, to skip arg2 and arg3, use the following command:

objRef->0bjMethod, argl, arg4, SKIP=[1,2]

Finally, note that you do not need to supply the SKIP keyword if the arguments are
supplied in order. For example, to skip arg3 and arg4, use the following command:

objRef->0bjMethod, argl, arg2

Finding Object Methods

In most cases, when you incorporate a COM object into an IDL program, you will
know what the COM object’s methods are and what arguments and data types those
methods take, either because you created the COM object yourself or because the
developer of the object provided you with the information.

If for some reason you do not know what methods the COM object supports, you may
be able to determine which methods are available and what parameters they accept
using the OLE/COM Object Viewer application provided by Microsoft. (See“Finding
COM Class and Program IDs” on page 26 for information on acquiring the
OLE/COM Object Viewer.)

Method Calls on IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 33

Warning
Finding information about a COM object’s methods using the OLE/COM Object
Viewer requires a moderately sophisticated understanding of COM programming,
or at least COM interface definitions. While we provide some hints in this section
on how to interpret the interface definition, if you are not already familiar with the
structure of COM objects you may find this material inadequate. If possible, consult
the developer of the COM aobject you wish to use rather than attempting to
determine its structure using the object viewer.

Displaying Interface Information using the Object Viewer

You can use the OLE/COM Object Viewer to view the interface definitions for any
COM abject on your Windows machine. Select aCOM object in the leftmost panel of
the object viewer, click the right mouse button, and select “ View Type
Information...” A new window titled “1TypeLib Viewer” will be displayed, showing
all of the component’s interfaces (Figure 3-2).

; ITypeLib Yiewer ;Iglll
File Wiew

8l ol 2|

E" RSIDEMOCOMPOMENTLIb (RSIDemaComp |/ Generated .IDL file (by the OLE/COM Object Viewar) j
iy

@ coclass RSIDemodbil
[+l-#f dispinterface IRSIDemoCbjl
B¢ interface IRSIDemobjl [
@ codass RSIDemoOki2 uuid{62ADTEES-B067-48F7-BE92- TF488I35100E] ,

-4 dispinterface IRSIDemoCbj2 ;EISi?’::l-D']l;{SID - £ 1.0 Typs Lib .

. . elpstring (" ol omporEn: . = Library").

? interface IRSIDemoOh{2 custom{DE7TBAG4-5170-1101-A20A-0000F87730ES, 83951780),
@ coclass RSIDemoCbj3 custom (DET7BAG3-5170-1101-A2DA-0000F2773CE9, 1017680769
[+-#f dispinterface IRSIDemoCbi3

M- P inkerface IRSIDemaObi3 1
library RSIDEMOCOMPONENTLib

{

/¢ typelib filename: RSIDemclomponent . dll

{4 TLib // TLib : OLE Automaticon : (00020430-0000-
0o00-Co00-000000000046)
importlib({"stdole2.t1b") ;

/¢ Forward declare all types defined in this typelib
interface IRSIDemctbil;
interface IRSIDemctbiz;

) I I _’I interface IRSIDemotbdi3- LI
Ready S
Figure 3-2: Viewing a COM Object’s Interface Definition
Note

Thetop linesin the right-hand panel will say something like:

// Generated .IDL file (by the OLE/COM Object Viewer)
//

IDL Connectivity Bridges Method Calls on IDLcomIDispatch Objects

34

Chapter 3: Using COM Objects in IDL

// typelib filename: RSIDemoComponent.dll

The ».IDL file” inthiscase has nothing to do with IDL, the Interactive Data
Language. Here » D1~ stands for Interface Description Language — alanguage
used to define component interfaces. If you are familiar with the Interface
Description Language, you can often determine what a component is designed to

With the top-level object selected in the left-hand pane of the I Typelib Viewer, scroll
down in the right-hand pane until you find the section that defines the | Dispatch
interface for the object in question. The definition will look something like this:

interface IRSIDemoObjl : IDispatch {

[1d(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr);
[1d(0x00000002), propput]
HRESULT MessageStr([in] BSTR pstr) ;
[1d(0x00000002), propget]
HRESULT MessageStr([out, retval] BSTR* pstr);
[1d(0x00000003) 1]
HRESULT DisplayMessageStr () ;
[1d(0x00000004)]
HRESULT Msg2InParams (

[in] BSTR str,

[in] long val,

[out, retval] BSTR* pVal) ;
[1d(0x00000005)]
HRESULT GetIndexObject (

[in] long ndxObj,

[out, retval] IDispatch** ppDisp) ;
[1d(0x00000006)]
HRESULT GetArrayOfObjects (

[out] long* pObjCount,

[out, retval] VARIANT* psaObjs);

Method definitions ook like this:

[1d(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr) ;

where the line including the id string is an identifier used by the object to refer toits
methods and the following line or lines (usually beginning with HRESULT) define the
method’ s interface.

Again, whileit is beyond the scope of this manual to discuss COM object methodsin
detail, the following points may assist you in determining how to use a COM object:

Method Calls on IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 35

» Methods whose definitions include the retval attribute will appear in IDL as
functions.

[1d(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr) ;

e Methods that do not include the retval attribute will appear in IDL as
procedures.

[1d(0x00000003)]
HRESULT DisplayMessageStr () ;

» Methods whose definitionsinclude the propget attribute allow you to retrieve
an object property using the IDLcomlDispatch::GetProperty method. You
cannot call these methods directly in IDL; see “Managing COM Object
Properties’ on page 37 for additional details.

[1d(0x00000002), propget]
HRESULT MessageStr ([out, retval] BSTR* pstr);

e Methods whose definitions include the propput attribute allow you to set an
object property using the IDL coml Dispatch::SetProperty method. You cannot
call these methodsdirectly in IDL; see “Managing COM Object Properties’ on
page 37 for additional details.

[id(0x00000002), propput]
HRESULT MessageStr ([in] BSTR pstr);

* Methods that accept optional input values will include the optional tokenin
the argument’s definition. For example, the following definition indicates that
the second input argument is optional :

[1d(0x00000004)]

HRESULT Msglor2InParams (
[in] BSTR str,
[in, optional] int val,
[out, retval] BSTR* pVal);

* Methods that provide default values for optional arguments replace the
optional tokenwiththedefaultvalue () token, where the default value of
the argument is supplied between the parentheses. For example, the following
definition indicates that the second input argument is optional, and has a
default value of 15:

HRESULT Msglor2InParams (
[in] BSTR str,
[in, defaultvalue(15)] int val,
[out, retval] BSTR* pVal) ;

* While methods generally return an HRESULT value, thisis not a requirement.

IDL Connectivity Bridges Method Calls on IDLcomIDispatch Objects

36 Chapter 3: Using COM Objects in IDL

Displaying Interface Information Using the IDL HELP
Procedure
If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the

HEL P command with the OBJECTS keyword. IDL displays alist of objects, aong
with their methods, with function and procedure methods in separate groups for each

object class.

Method Calls on IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 37

Managing COM Object Properties

Asa convenience to the IDL programmer, COM object methods that have been
defined using the propget and propput attributes are accessible viathe

IDL comlIDispatch object’s GetProperty and SetProperty methods. This means that
rather than calling the COM object’s methods directly to get and set property values,
you use the standard IDL syntax.

Note
If aCOM object method's interface definition includes either the propget or the
propput attribute, you must use the IDL GetProperty and SetProperty methods to
get and set values. IDL does not allow you to call these methods directly.

Aswith all IDL objects, the IDL coml Dispatch object’s GetProperty and SetProperty
methods use procedure syntax. Keywords to the methods represent the names of the
properties being retrieved or set, and the keyword values represent either an IDL
variable into which the property valueis placed or an IDL expression that isthe value
to which the property is set. You must use the procedure syntax when calling either
method, even if the underlying COM object methods being used are functions rather
than procedures.

Setting Properties

To set a property value on a COM object, use the following syntax:
ObjRef->SetProperty, KEYWORD=Expression

where objRref isthe IDLcomlDispatch object that encapsulates the COM object,
KEYWORD isthe COM object property name, and Expression isan IDL expression
representing the property value to be set.

If the underlying COM object’s propput method requires additional arguments, the
arguments are supplied in the set Property method call, using the following
syntax:

ObjRef->SetProperty [, arg0, argl, ... argn], KEYWORD=Expression
Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property setting method. The partial keyword name functionality provided by IDL

is not valid with IDLcoml Dispatch objects.

You can set multiple property values in a single statement by supplying multiple
KEYWORD=Expression pairs.

IDL Connectivity Bridges Managing COM Object Properties

38

Chapter 3: Using COM Objects in IDL

IDL letsyou to set multiple properties at once in the same SetProperty call. For
example:

ObjRef->SetProperty, OPTION=1, INDEX=99L
This command is equivalent to the following lines:

ObjRef->SetProperty, OPTION=1
ObjRef->SetProperty, INDEX=99L

If you pass parameters when setting multiple properties, the parameter or parameters
are sent to each property being set. For example:

ObjRef->SetProperty, 'Parml', 24L, oRef, OPTION=1, INDEX=99L
This command is equivalent to the following lines:

ObjRef->SetProperty, 'Parml', 24L, oRef, OPTION=1
ObjRef->SetProperty, 'Parml', 24L, oRef, INDEX=99L

Thus, when you are setting multiple properties at the same time and passing
parameters, all the propertiesthat are set at the same time must be defined as
receiving the same sets of parameters.

Getting Properties

To retrieve a property value from a COM object, use the following syntax:
ObjRef->GetProperty, KEYWORD=Variable

where objRef isthe IDLcomlDispatch object that encapsulates the COM object,
KEYWORD isthe COM object property name, and Variable is the name of an IDL
variable that will contain the retrieved property value.

Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property getting method. The partial keyword name functionality provided by IDL
is not valid with IDL coml Dispatch objects.

You can get multiple property valuesin a single statement by supplying multiple
KEYWORD=Variable pairs.

Because some of the underlying COM abject’'s propget methods may require
arguments, the IDL.coml Dispatch object’s GetProperty method will accept optional
arguments. To retrieve a property using a method that takes arguments, use the
following syntax:

ObjRef->GetProperty [, arg0, argl, ... argn], KEYWORD=Variable

Managing COM Object Properties IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 39

Note, however, that if arguments are required, you can only specify one property to
retrieve.

IDL Connectivity Bridges Managing COM Object Properties

40

Chapter 3: Using COM Objects in IDL

Passing Parameter Arrays by Reference

By default, IDL arrays are passed to and received from the COM subsystem “ by
value’, meaning the array is copied. When dealing with large arrays or alarge
number of arrays, performance may suffer due to the by value passing scheme.
However, you can implement “by reference” array passing, which passes an IDL
array to a COM object in such away that the COM object can directly alter the IDL
array memory without the cost of marshaling (copying) the array to or from the COM
object. This can increase performance and save system memory allocation.

AnIDL array parameter is passed by referenceto aCOM method when the parameter
is defined as an IDL pointer to an array. For example:

LINDGEN (100)
PTR_NEW (myarr, /NO_COPY)

myarr
myptr

or
myptr = PTR_NEW(LINDGEN(100), /NO_COPY)

Then, the pointer is passed like a normal parameter:

PRINT, *myptr ; array before call
obj->UseArrayRef, myptr
PRINT, *myptr ; altered array after call

The IDL array must be large enough for the client's use. On the COM side:

e The COM object cannot resize the array (although the COM object does not
have to use or set al the elementsin the array)

e The COM object cannot change the type of e ements
e The COM object cannot change the dimensionality of the array

Thus, for multidimensional arrays, IDL must define the source array with the same
dimensions as the COM client expects.

In order for the IDL-COM subsystem to know that an IDL array should be passed by
reference, it looks at the source IDL variable to make sure it is a pointer to an array,
and that the destination COM method parameter is also declared as an array. Thus, it
isimportant to properly declare the destination COM parameter as a

SAFEARRAY (<type>), when implementing in C++.

For example, if the desireisto passan IDL array of 32-bit integer valuesto a COM
client, the COM method parameter needs to be declared like this:

[in, out] SAFEARRAY (long) psa

Passing Parameter Arrays by Reference IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 41

For the code example above, the full method signature in C++/ATL is:
HRESULT UseArrayRef ([in, out] SAFEARRAY (long) psa);

When implementing a COM-callable class in C# and passing in an array of 32-hit
integers, declare the method as:

public void UseArrayRef ([MarshalAs (UnmanagedType.SafeArray,
SafeArraySubType=System.Runtime.InteropServices.VarEnum.VT_I4)]

ref long [] arr)
{

arr[0] = 10;
arr[1l] = 11;

// etc

}

It iscritical to make sure that the element size of the IDL array matches the element
size declared in the COM method signature. If they don't, amarshaling error occurs
because the marshaler checks for consistency between the source and destination.
Thisissueis notorious for causing problems with element types of “int” and “long’”.
For example, trying to call either of the two COM method signatures above with an
IDL “integer” array would cause an error since IDL “integers’ are 16-bits by default
and C++/COM “ints” are 32-bits. Thus, in the code above, we declared the IDL array
as“long” values, which are 32-bits and match the C++/COM “long” valuein size.

Unsupported Array Types

You cannot pass an array by reference if the array consists of one of the following
types:

e Strings

e Object references

e IDL pointers

e |DL structures

IDL Connectivity Bridges Passing Parameter Arrays by Reference

42 Chapter 3: Using COM Objects in IDL

References to Other COM Objects

It is not uncommon for COM objects to return references to other COM objects,
either as a property value or via an object method. If an IDLcomlIDispatch object
returns a reference to another COM aobject’s IDispatch interface, IDL automatically
creates an |DLcoml Dispatch object to contain the object reference.

For example, suppose the GetOtherObject method to the COM object
encapsulated by the IDLcomlDispatch object ob51 returns a reference to another
COM object.

Obj2 = Objl->GetOtherObject ()

Here, obj2 isan IDLcomlDispatch object that encapsul ates some other COM object.
0Ob3j2 behavesin the same manner as any |DLcomlDispatch object.

Note that IDL coml Dispatch objects created in this manner are not linked in any way
to the object whose method created them. In the above exampl e, this means that
destroying obj 1 does not destroy ob3j 2. If the COM object you are using creates new
IDL comlIDispatch objectsin this manner, you must be sure to explicitly destroy the
automatically-created objects along with those you explicitly create, using the

OBJ DESTRQY procedure.

References to Other COM Objects IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL 43

Destroying IDLcomIDispatch Objects

Use the OBJ DESTROY procedure to destroy and |DLcoml Dispatch object.

When OBJ DESTROQY is called with an IDLcoml Dispatch object as an argument,
the underlying reference to the COM object isreleased and IDL resources relating to

that object are freed.

Note
Destroying an IDLcoml Dispatch object does not automatically cause the

destruction of the underlying COM abject. COM employs a reference-counting
methodol ogy and expects the COM object to destroy itself when there are no
remaining references. When an IDLcoml Dispatch object is destroyed, IDL simply
decrements the reference count on the underlying COM object.

Note
IDL does not automatically destroy an object when the object variable goes out of

scope (e.g., when a procedure returns). If the IDLcomlDispatch object is not
explicitly destroyed, the COM reference count is not decremented, which could
keep the object instantiated and never released.

IDL Connectivity Bridges Destroying IDLcomIDispatch Objects

44

Chapter 3: Using COM Objects in IDL

COM-IDL Data Type Mapping

When data moves from IDL to a COM object and back, IDL handles conversion of
variable data types automatically. The data type mappings are shown in Table 3-1.

COM Type

IDL Type

BOOL (VT_BOOL)

Byte (true =1, false=0)

ERROR Long

(VT_ERROR)

CY (VT_CY) Double (see note below)
DATE (VT_DATE) Double

11(VT_11) Byte

INT (VT_INT) Long

UINT (VT_UINT)

Unsigned Long

VT_USERDEFINED

The IDL typeis passed through

VT _UIl Byte

VT_ 12 Integer

VT _Ul2 Unsigned integer
VT_ERROR Long

VT |4 Long

VT _Ul4 Unsigned Long
VT_I8 Long64
VT_UI8 Unsigned Long 64
VT R4 Float

VT_BSTR String

VT_R8 Double

Table 3-1: IDL-COM Data Type Mapping

COM-IDL Data Type Mapping

IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL

45

COM Type

IDL Type

VT_DISPATCH

IDLcomlDispatch

VT_UNKNOWN

IDLcomlDispatch

Table 3-1: IDL-COM Data Type Mapping (Continued)
Note on the COM CY Data Type

The COM CY datatypeisascaled 64-hit integer, supporting exactly four digitsto the
right of the decimal point. To provide an easy-to-use interface, IDL automatically
scales the integer as part of the data conversion that takes place between COM and
IDL, allowing the IDL user to treat the number as a double-precision floating-point
value. When the value is passed back to the COM object, it will be truncated if there
are more than four significant digits to the right of the decimal point.

For example, the IDL double-precision value 234 . 56789 would be passed to the

COM object as234.5678.

IDL Connectivity Bridges

COM-IDL Data Type Mapping

46 Chapter 3: Using COM Objects in IDL

Example: RSIDemoComponent

This example uses a COM component included in the IDL distribution. The
RSIDemoComponent is included purely for demonstration purposes, and does not
perform any useful work beyond illustrating how | DL comlDispatch objects are
created and used.

The RSIDemoComponent is contained in afile named RSIDemoComponent .d11
located in the examples\doc\bridges\coum subdirectory of the IDL distribution.
Before attempting to execute this example, make sure the component is registered on
your system as described in “ Registering COM Components on a Windows Maching”
on page 23.

There are three objects defined by the RSIDemoComponent. The example begins by
using RSIDemoObj1, which has the program ID:

RSIDemoComponent .RSIDemoObjl
and the class ID:

{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52}

Example Code
This complete example, IDispatchDemo.pro, islocated in the
examples\doc\bridges\coM subdirectory of the IDL distribution. It develops
an IDL procedure called IDispatchDemo that illustrates use of the
RSIDemoComponent. Run the example procedure by entering 1DispatchDemo &t
the IDL command prompt or view the filein an IDL Editor window by entering
.EDIT IDispatchDemo.pro.

1. Begin by creating an DL coml Dispatch object from the COM object. You can
use either the class ID or the program ID. Remember that if you use the class
ID, you must remove the braces ({ }) and replace the hyphens with
underscores.

objl = OBJ_NEW($
' IDLCOMIDispatch$SPROGIDSRSIDemoComponent_RSIDemoObjl')

or (with Class ID):

objl = OBJ_NEW($
' IDLCOMIDispatch$CLSIDSA77BC2B2_88EC_4D2A_B2B3_F556ACB52E52 ')

2. The COM object implements the Getc1.sTD method, which returns the class
ID for the component. You can retrieve thisvalue in and IDL variable and

Example: RSIDemoComponent IDL Connectivity Bridges

javascript:doIDL(".edit IDispatchDemo.pro")
javascript:doIDL("IDispatchDemo")

Chapter 3: Using COM Objects in IDL 47

print it. The string should be ' {A77BC2B2-88EC-4D2A-B2B3 -
F556ACB52E52} '.

strCLSID = objl->GetCLSID()
PRINT, strCLSID

Note
The GetCL SID method returns the class identifier of the object using the
standard COM separators (-).

3. The COM object has a property named MessageStr. To retrieve the va ue of
the MessagesStr property, enter:

objl -> GetProperty, MessageStr = outStr
PRINT, outStr

IDL should print 'RSIDemoObj1'.

4. You can aso set theMessagestr property of the object and display it using
the object’'s DisplayMessageStr method, which displays the value of the
MessageStr property in a Windows dialog:

objl -> SetProperty, MessageStr = 'Hello, world'
objl -> DisplayMessageStr

5. TheMsg2InParams method takestwo input parameters and concatenates
them into asingle string. Executing the following commands should cause IDL
toprint ' The value is: 25

instr = 'The value is: '

val = 25L

outStr = objl->Msg2InParams (instr, wval)
PRINT, outStr

6. Toview al known information about the DL coml Dispatch object, including
its dynamic subclass name and the names of its methods, use the IDL HELP
command with the OBJECTS keyword:

HELP, objl, /OBJECTS

7. TheGetIndexObject () method returns an object reference to one of the
following three possible objects:

* RSIDemoObjl (index =1)
* RSIDemoObj2 (index =2)

* RSTIDemoObj3 (index = 3)

IDL Connectivity Bridges Example: RSIDemoComponent

48

Chapter 3: Using COM Objects in IDL

Note
If theindex isnot 1, 2, or 3, the Get Index0bject method will return an
error.

To get areference to RSTDemoOb7 3, use the following command:
obj3 = objl->GetIndexObject (3)

8. All three objects have the cetcr.sTD method. You can use this method to
verify that the desired object was returned. The output of the following
commands should be '{13AB135D-A361-4A14-B165-785B03AB5023} '.

obj3CLSID = obj3->GetCLSID()
PRINT, obj3CLSID

9. Remember to destroy aretrieved object when you are finished with it:
OBJ_DESTROY, o0bj3

10. Next, usethe COM object’'sGetarrayofobjects () method to return a
vector of object references to RsIDemoObj 1, RSIDemoOb3 2, and
RSIDemoObj 3, respectively. The number of e ementsin the vector is returned
in the first parameter; the result should 3.

objs = objl->GetArrayOfObjects (cItems)
PRINT, cItems

11. Since each object implements the cetcLs1D method, you could loop through
al the object references and get its class ID:

FOR i = 0, cItems-1 do begin

objCLSID = objs[i] -> GetCLSID()

PRINT, 'Object[',i,'] CLSID: ', objCLSID
ENDFOR

12. Remember to destroy object references when you are finished with them:

OBJ_DESTROY, objs
OBJ_DESTROY, objl

Example: RSIDemoComponent IDL Connectivity Bridges

Chapter 4

Using ActiveX Controls

In IDL

This chapter discusses the following topics:

About Using ActiveX ControlsinIDL 50
ActiveX Control Naming Scheme 52
Method Callson ActiveX Controls 55

Managing ActiveX Control Properties 56

IDL Connectivity Bridges

ActiveX Widget Events 57
Destroying ActiveX Controls 60
Example: Calendar Control 61
Example: Spreadsheet Control 65

49

50 Chapter 4: Using ActiveX Controls in IDL

About Using ActiveX Controls in IDL

If you want to incorporate a COM object that presents a user interface (that is, an
ActiveX control) into your IDL application, use IDL's WIDGET_ACTIVEX routine
to place the control in an IDL widget hierarchy. IDL provides the same object method
and property manipulation facilities for ActiveX controls asit does for COM objects
incorporated using the IDL coml Dispatch abject interface, but adds the ability to
process events generated by the ActiveX control using IDL’s widget event handling
mechanisms.

Note
IDL can only incorporate ActiveX controls on Windows 2000/XP (and | ater)
platforms. See “ Feature Support by Operating System” (What's New in IDL 6.4) for
detalls.

When you use the WIDGET_ACTIVEX routine, IDL automatically creates an
IDLcomActiveX object that encapsulates the ActiveX control. IDLcomA ctiveX
objects are a subclass of the IDLcoml Dispatch aobject class, and share all of the
IDL comlIDispatch methods and mechanisms discussed in Chapter 3, “Using COM
Objectsin IDL". You should be familiar with the material in that chapter before
attempting to incorporate ActiveX controlsin your IDL programs.

Note
If the COM object you want to use in your IDL application is not an ActiveX
control, use the IDL coml Dispatch object class.

Warning: Modeless Dialogs

When displaying an ActiveX form or dialog box, it is the responsibility of the COM
object to pump messages. Modal dia ogs pump messages themselves, but modeless
dialogsdo not. IDL's COM subsystem does not provide the ability to pump messages
explicitly, giving IDL no way to pump messages while amodeless dialog is
displayed. As aresult, calling a modeless dialog from IDL will result in an error.

Registering COM Components on a Windows
Machine

Before a COM object or ActiveX control can be used by a client program, it must be
registered on the Windows machine. In most cases, components are registered by the
program that installs them on the machine. If you are using a component that is not

About Using ActiveX Controls in IDL IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 51

installed by an installation program that handles the registration, you can register the
component manually. For a description of the registration process, see “ Registering
COM Components on a Windows Machine” on page 23.

IDL Connectivity Bridges About Using ActiveX Controls in IDL

52 Chapter 4: Using ActiveX Controls in IDL

ActiveX Control Naming Scheme

When you incorporate an ActiveX control into an IDL widget hierarchy using the
WIDGET_ACTIVEX routine, IDL automatically creates an IDLcomActiveX object
that instantiates the control and handles all communication between it and IDL. You
tell IDL which ActiveX control to instantiate by passing the COM class or program
ID for the ActiveX control to the WIDGET_ACTIVEX routine as a parameter.

IDL automatically creates a dynamic subclass of the IDLcomActiveX class (whichis
itself a subclass of the IDL comlDispatch class) to contain the ActiveX control. The
resulting class name looks like

IDLcomActiveX$SID type$SID
where ID_typeisone of the following:
» cLs1Dif the object isidentified by its COM class ID
e PROGID if the object isidentified by its COM program ID
and ID isthe COM object’s actua class or program identifier string.

For more on COM class and program IDs see “ Class |dentifiers’ on page 24 and
“Program Identifiers’” on page 25.

While you will never need to use this dynamic class name directly, you may see it
reported by IDL viathe HEL P routine or in error messages. Note that when IDL
reports the name of the dynamic subclass, it will replace the hyphen charactersin a
class ID and the dot charactersin a program ID with underscore characters. Thisis
because neither the hyphen nor the dot character are valid in IDL object names.

Finding COM Class and Program IDs

In general, if you wish to incorporate an ActiveX object into an IDL widget
hierarchy, you will know the COM class or program ID, either because you created
the control yourself or because the developer of the control provided you with the
information.

If you do now know the class or program I D for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. For more information, see“Finding COM Class and Program
IDS’ on page 26.

ActiveX Control Naming Scheme IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 53

Creating ActiveX Controls

To include an ActiveX control in an IDL application, use the WIDGET_ACTIVEX
function, supplying the COM class or program ID of the ActiveX control asthe
COM _ID argument.

Note
If the object you want to usein your IDL application is not an ActiveX control, use
the IDLcomlDispatch object class as described in Chapter 3, “Using COM Objects
inIDL”. Instantiating a non-ActiveX component using the WIDGET_ACTIVEX
function is not supported, and may lead to unpredictable results.

Once the ActiveX object has been instantiated within an IDL widget hierarchy, you
can call the control’s native methods as described in “Method Calls on ActiveX
Controls’ on page 55, and access or modify its properties as described in “Managing
ActiveX Control Properties’ on page 56. IDL widget events generated by the control
arediscussed in “ActiveX Widget Events’ on page 57.

For example, suppose you wished to include an ActiveX control with the class ID:
{0002E510-0000-0000-C000-000000000046}

and the program ID:
OWC . Spreadsheet .9

in an IDL widget hierarchy. Use either of the following calls the
WIDGET_ACTIVEX function:

wAxX = WIDGET_ACTIVEX (wBase, $
'0002E510-0000-0000-C000-000000000046")

or
wAX = WIDGET_ACTIVEX (wBase, 'OWC.Spreadsheet.9', ID_TYPE=1)

where wBase isthe widget ID of the base widget that will contain the ActiveX
control.

Note
When instantiating an ActiveX control using the WIDGET_ACTIVEX function,
you do not need to modify the class or program ID as you do when creating an
IDL comliDispatch object using the OBJ_NEW function. Be aware, however, that
when IDL creates the underlying IDLcomActiveX object, the dynamic class name
will replace the hyphens from aclass ID or the dots from a program |D with
underscore characters.

IDL Connectivity Bridges Creating ActiveX Controls

54 Chapter 4: Using ActiveX Controls in IDL

IDL’sinternal COM subsystem instantiates the ActiveX control within an
IDLcomActiveX object with one of the following dynamic class names

IDLcomActiveX$CLSIDS0002E510_0000_0000_C000_000000000046
or
IDLcomActiveX$SPROGIDSOWC_Spreadsheet_9

and sets up communication between the object and IDL. IDL also places the control
into the specified widget hierarchy and prepares to accept widget events generated by
the control.

See“WIDGET_ACTIVEX” (IDL Reference Guide) for additional details.

Creating ActiveX Controls IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 55

Method Calls on ActiveX Controls

IDL allowsyou to call the underlying ActiveX control’s methods by calling methods
on the IDLcomActiveX abject that is automatically created when you call the
WIDGET_ACTIVEX function. IDL handles conversion between IDL data types and
the data types used by the component, and any resultsare returned in IDL variables of
the appropriate type. Aswith all IDL objects, the general syntax is:

result = ObjRef->Method([Arguments])
or
ObjRef -> Method[, Arguments]

where ObjRef isan object reference to an instance of a dynamic subclass of the
IDLcomActiveX class.

The IDLcomActiveX object classisadirect subclass of the IDLcomlDispatch object
class and provides none of its own methods. As aresult, method calls on
IDLcomActiveX objects follow the same rules as calls on IDLcoml Dispatch objects.
You should read and understand “Method Calls on IDLcomlDispatch Objects’ on
page 29 before calling an ActiveX control’s methods.

Retrieving the Object Reference

Unlike IDLcoml Dispatch objects, which you create explicitly with a call to the
OBJ _NEW function, IDLcomActiveX objects are created automatically by IDL. To
obtain an object reference to the automatically created IDLcomA ctiveX object, use
the GET_VALUE keyword to the WIDGET_CONTROL procedure.

For example, consider the following lines of IDL code:

wBase = WIDGET_BASE ()

wAX = WIDGET_ACTIVEX (wBase, 'myProgram.myComponent.l', ID_TYPE=1)
WIDGET_CONTROL, wBase, /REALIZE

WIDGET_CONTROL, wAx, GET_VALUE=0AX

Thefirst line creates a base widget that will hold the ActiveX control. The second
line instantiates the ActiveX control using its program ID and creates an
IDLcomActiveX object. Thethird line realizes the base widget and the ActiveX
control it contains; note that the ActiveX widget must be realized before you can
retrieve areference to the IDLcomA ctiveX object. The fourth line uses the
WIDGET_CONTROL procedure to retrieve an object reference to the
IDLcomActiveX object in the variable oax. You can use this object reference to call
the ActiveX control’s methods and set its properties.

IDL Connectivity Bridges Method Calls on ActiveX Controls

56 Chapter 4: Using ActiveX Controls in IDL

Managing ActiveX Control Properties

Asa convenience to the IDL programmer, ActiveX control methods that have been
defined using the propget and propput attributes are accessible viathe
IDLcomActiveX object’s GetProperty and SetProperty methods, which are inherited
directly from the IDL coml Dispatch object class. This means that rather than calling
the ActiveX control’s methods directly to get and set property values, you use the
standard IDL syntax.

The IDLcomActiveX object classisadirect subclass of the IDLcomlDispatch object
class and provides none of its own methods. Asaresult, IDL’s facilities for managing
the properties of ActiveX controls follow the same rules as for IDLcoml Dispatch
objects. You should read and understand “Managing COM Object Properties’ on
page 37 before working with an ActiveX control’s properties.

Managing ActiveX Control Properties IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 57

ActiveX Widget Events

Events generated by an ActiveX control are dispatched using the standard IDL
widget methodology. When an ActiveX event is passed into IDL, it is packaged in an
anonymous IDL structure that contains the ActiveX event parameters.

While the actual structure of an event generated by an ActiveX control will depend
on the control itself, the following gives an idea of the structure’'s format:

{ID . 0L,

TOP : 0L,

HANDLER : 0L,

DISPID : 0L, ; The DISPID of the callback method
EVENT_NAME : """, ; The name of the callback method
<Paraml name> : <Paraml value>,

<Param2 name> : <Param2 value>,

<ParamN name> : <ParamN value>

}

Aswith other IDL Widget event structures, the first three fields are standard. ID is
the widget id of the widget generating the event, TOP isthe widget 1D of thetop level
widget containing 1D, and HANDLER contains the widget ID of the widget
associated with the handler routine.

The DISPID field contains the decimal representation of the dispatch ID (or DISPID)
of the method that was called. Note that in the OLE/COM Object Viewer, this 1D
number is presented as a hexadecimal number. Other applications (Microsoft Visual
Studio among them) may display the decimal representation.

The EVENT_NAME field contains the name of the method that was called.

The Param name fields contain the values of parameters returned by the called
method. The actual parameter name or names displayed, if any, depend on the
method being called by the ActiveX control.

Using the ActiveX Widget Event Structure

Since the widget event structure generated by an ActiveX control depends on the
method that generated the event, it isimportant to check the type of event before
processing valuesin IDL. Successfully parsing the event structure requires a detailed
understanding of the dispatch interface of the ActiveX control; you must know either
the DISPID or the method name of the method, and you must know the names and
datatypes of the values returned.

IDL Connectivity Bridges ActiveX Widget Events

58 Chapter 4: Using ActiveX Controls in IDL

For example, suppose the ActiveX control you are incorporating into your |DL
application includes two methods named Method1 and Method2 in adispatch
interface that looks like this:

dispinterface MyDispInterface {
properties:
methods:
[1d(0x00000270)]
void Methodl ([in] EventInfo* EventInfo);
[1d(0x00000272)]
HRESULT Method2 ([out, retval] BSTR* EditData) ;
Y

A widget event generated by a call to Method1, which has no return values, would
look something like:

** Structure <3fb7288>, 5 tags, length=32, data length=32:

ID LONG 13
TOP LONG 12
HANDLER LONG 12
DISPID LONG 624
EVENT_NAME STRING 'Methodl'

Note that the DISPID is 624, the decimal equivalent of 270 hexadecimal.

A widget event generated by a call to Method2, which has one return value, would
look something like:

** Structure <3fb7288>, 6 tags, length=32, data length=32:

ID LONG 13

TOP LONG 12

HANDLER LONG 12

DISPID LONG 626
EVENT_NAME STRING 'Method2'
EDITDATA STRING 'some text value'

An IDL event-handler routine could use the value of the DISPID field to check which
of these two ActiveX control methods generated the event before attempting to use
the value of the EDITDATA field:

PRO myRoutine_event, event
IF (event .DISPID eq 626) THEN BEGIN
PRINT, event.EDITDATA
ENDIF ELSE BEGIN
<do something else>
ENDELSE
END

ActiveX Widget Events IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 59

Dynamic Elements in the ActiveX Event Structure

Parameter dataincluded in an event structure generated by an ActiveX control can
take the form of an array. If this happens, the array is placed in an IDL pointer, and
the pointer, rather than the array itself, isincluded in the IDL event structure.
Similarly, an ActiveX control may return areference to another COM abject, as
described in “References to Other COM Objects’ on page 42, in its event structure.

IDL pointers and objects created in this way are not automatically removed; it isthe
IDL programmer’s responsibility free them using aroutine such as PTR_FREE,
HEAP_FREE, or OBJ DESTROY.

If it isunclear whether the event structure will contain dynamic elements (objects or
pointers) it is best to pass the ActiveX event structure to the HEAP_FREE routine
when your event-handler routine has finished with the event. Thiswill ensure that all
dynamic portions of the structure are released.

IDL Connectivity Bridges ActiveX Widget Events

60 Chapter 4: Using ActiveX Controls in IDL

Destroying ActiveX Controls

An ActiveX control incorporated in an IDL widget hierarchy is destroyed when any
of the following occurs:

« When the widget hierarchy to which the ActiveX widget belongs is destroyed.

e Whenacal to WIDGET_CONTROL, wAx, /[DESTROY is made, where wAX
isthe widget ID of the ActiveX widget.

* When the underlying IDLcomActiveX object is destroyed by acall to
OBJ _DESTROY.

In most cases, cleanup of an application that includes an ActiveX control is not
different from an application using only IDL native widgets. However, becauseit is
possible for an ActiveX control to return references to other COM objectsto IDL,
you must be sure to keep track of all objects created by your application and destroy
them as necessary. See “References to Other COM Objects’ on page 42 for details.

In addition, it is possible for the widget event structure generated by an ActiveX
control to include IDL pointers or object references. Pointers and object references
included in the event structure are not automatically destroyed. See “Dynamic
Elementsin the ActiveX Event Structure” on page 59 for more information.

Destroying ActiveX Controls IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 61

Example: Calendar Control

This example uses an ActiveX control that displays a calendar interface. The control,
contained inthe filemscal . ocx, isinstalled along with atypical installation of
Microsoft Office 97, and may a so be present on your system if you have upgraded to
amore recent version of Microsoft Office. If the control is not present on your system
(you'll know the control is not present if the example code does not display a
calendar similar to the one shown in Figure 4-1), you can download a the control as
part of a package of sample ActiveX controlsincluded in thefile actxsamp. exe,
discussed in Microsoft Knowledge Base Article 165437.

If you download the control, place the filemscal . exe in aknown location and
execute thefile; you will be prompted for a directory in which to placemscal . ocx.
Open a command prompt window in the directory you chose and register the control
as described in “ Registering COM Components on a Windows Maching” on page 23.

The calendar control has the program ID:
MSCAL.Calendar.7
and the class ID:

{8E27C92B-1264-101C-8A2F-040224009C02}

Example Code
Thisexample, Activexcal .pro, isincludedinthe
examples\doc\bridges\coM subdirectory of the IDL distribution and develops
an IDL routine called ActiveX Cal that illustrates use of the calendar ActiveX
control within an IDL widget hierarchy. Run the example procedure by entering
ActiveXCal at the IDL command prompt or view thefilein an IDL Editor
window by entering .EDIT ActiveXCal.pro.

1. Create the ActiveXCal procedure. (Remember that in the ActiveXCal.pro
file, this procedure occurs last.)

PRO ActiveXCal
2. Create atop-level base widget to hold the ActiveX control.

wBase = WIDGET BASE(COLUMN = 1, SCR_XSIZE = 400, S
TITLE='IDL ActiveX Widget Calendar Control')

3. Create base widgets to hold labels for the selected month, day, and year. Set
theinitial values of the labels.

IDL Connectivity Bridges Example: Calendar Control

javascript:doIDL("ActiveXCal")
javascript:doIDL(".edit ActiveXCal.pro")

62

Example: Calendar Control

10.

11.

Chapter 4: Using ActiveX Controls in IDL

wSubBase = WIDGET_BASE (wBase, /ROW)

wVoid = WIDGET_ LABEL (wSubBase, value = 'Month: ')
wMonth = WIDGET LABEL (wSubBase, value = 'October')
wSubBase = WIDGET BASE (wBase, /ROW)

wVoid = WIDGET_ LABEL (wSubBase, VALUE = 'Day: ')
wDay = WIDGET_ LABEL (wSubBase, VALUE = '22"')
wSubBase = WIDGET_BASE (wBase, /ROW)

wVoid = WIDGET_LABEL (wSubBase, VALUE = 'Year: ')
wYear = WIDGET_LABEL (wSubBase, VALUE = '1999"'")

Instantiate the ActiveX Control, using the control’s class ID.

wAx=WIDGET_ACTIVEX (wBase, $
'{8E27C92B-1264-101C-8A2F-040224009C02}")

Realize the top-level base widget.
WIDGET_CONTROL, wBase, /REALIZE

Set the top-level base’s user value to an anonymous structure containing
widget IDs of the month, day, and year label widgets.

WIDGET_CONTROL, wBase, $
SET_UVALUE = {month:wMonth, day:wDay, year:wYear}

Retrieve the object ID of the IDLcomActiveX object that encapsulates the

ActiveX control. Use the GetProperty method to retrieve the current values of

the month, day, and year from the control.

WIDGET_CONTROL, wAx, GET_VALUE = O0AX
OoAx->GetProperty, month=month, day=day, year=year

Set the values of the label widgetsto reflect the current date, as reported by the

ActiveX control.

WIDGET_CONTROL, wMonth, SET_VALUE=STRTRIM (month, 2)
WIDGET_CONTROL, wbDay, SET_VALUE=STRTRIM(day, 2)
WIDGET_CONTROL, wYear, SET_VALUE=STRTRIM (year, 2)

Call XMANAGER to manage the widget events, and end the procedure.

XMANAGER, 'ActiveXCal', wBase

END

Now create an event-handling routine for the calendar control. (Remember that
inthe activexcal .pro file, this procedure occurs before the ActiveX Cal

procedure.)

PRO ActiveXCal_event, ev

The ActiveX widget isthe only widget in this application that generates widget
events, so the ID field of the event structure is guaranteed to contain the widget

IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 63

12.

13.

14.

15.

ID of that widget. Use the GET_VALUE keyword to retrieve an object
reference to the IDLcomActiveX object that encapsulates the control.

WIDGET_CONTROL, ev.ID, GET_VALUE = oCal

The user value of the top-level base widget is an anonymous structure that
holds the widget I Ds of the month, day, and year |abel widgets (see step 6
above). Retrieve the structure into avariable named state.

WIDGET_CONTROL, ev.TOP, GET_UVALUE = state

Use the GetProperty method on the IDLcomActiveX object to retrieve the
current values of the month, day, and year from the calendar control.

ocal->GetProperty, month=month, day=day, year=year

Use WIDGET_CONTROL to set the values of the month, day, and year label
widgets.

WIDGET_CONTROL, state.month, SET_VALUE = STRTRIM (month,2)
WIDGET_CONTROL, state.day, SET_VALUE = STRTRIM (day,2)
WIDGET_CONTROL, state.year, SET_VALUE = STRTRIM(year, 2)

Call HEAP_FREE to ensure that dynamic portions of the event structure are
released, and end the procedure.

HEAP_FREE, ev

END

IDL Connectivity Bridges Example: Calendar Control

64 Chapter 4: Using ActiveX Controls in IDL

Running the ActiveX Cal procedure displays awidget that looks like the following:

£l IDL ActiveX Widget Calendar Control I]
toanth: &
Day: 1
Wear: 2002
May 2002 May =] |2002 =l
Sun Mon Tue Wed Thu Fri Sat

28 28 a0 2 3 4

B B it 8 9 10 11

12 13 14 15 16 17 15

19 20 21 22 23 24 25

26 27 28 28 30 1 1

2 (il 4 & G [g

Figure 4-1: An IDL widget program Using an ActiveX Calendar Control

Example: Calendar Control IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 65

Example: Spreadsheet Control

This example uses an ActiveX control that displays a spreadsheet interface. The
control, contained in thefilemsowc . d11, isinstalled along with atypical installation
of Microsoft Office. If the control is not present on your system (you'll know the
control is not present if the example code fails when trying to realize the widget
hierarchy), the example will not run.

The spreadsheet control has the program ID:
OWC. Spreadsheet .9
and the class ID:

{0002E510-0000-0000-C000-000000000046}

Note
The spreadsheet control used in this exampleis included with older versions of
Microsoft Office; it is discussed in Microsoft Knowledge Base Article 248822.
Newer versions of Microsoft Office may include spreadsheet controls with updated
program and class IDs.

Information about the spreadsheet control’s properties and methods was gleaned
from Microsoft Excel 97 Visual Basic Sep by Sep by Reed Jacobson (Microsoft
Press, 1997) and by inspection of the control’s interface using the OLE/COM Object
Viewer application provided by Microsoft. It is beyond the scope of this manual to
describe the spreadsheet control’s interface in detail.

Example Code
Thisexample, ActivexExcel .pro, isincluded in the
examples\doc\bridges\coM subdirectory of the IDL distribution and develops
an IDL routine called ActiveX Excel that illustrates use of the spreadsheet ActiveX
control within an IDL widget hierarchy. Run the example procedure by entering
ActiveXExcel at the IDL command prompt or view thefilein an IDL Editor
window by entering .EDIT ActiveXExcel.pro.

1. Create afunction that will retrieve datafrom cells selected in the spreadsheet
control. The function takes two arguments. an object reference to the
IDLcomActiveX object that instantiates the spreadsheet control, and avariable
to contain the data from the selected cells.

FUNCTION excel_getSelection, oExcel, aData

IDL Connectivity Bridges Example: Spreadsheet Control

javascript:doIDL(".edit ActiveXExcel.pro")
javascript:doIDL("ActiveXExcel")

66

Chapter 4: Using ActiveX Controls in IDL

Retrieve an object that represents the selected cells. Note that when the
ActiveX control returns this object, IDL automatically creates an
IDLcomActiveX object that makesit accessible within IDL.

OoExcel->GetProperty, SELECTION=0Sel
Retrieve the total number of cells selected.
oSel->GetProperty, COUNT=nCells

If no cells are selected, destroy the selection object and return zero (the failure
code).

IF (nCells LT 1) THEN BEGIN
OBJ_DESTROY, oSel
RETURN, 0

ENDIF

Retrieve objects that represent the dimensions of the selection.
oSel->GetProperty, COLUMNS=o0Cols, ROWS=oRows
Get the dimensions of the selection, then destroy the column and row objects.

oCols->GetProperty, COUNT=nCols
OBJ_DESTROY, oCols
oRows->GetProperty, COUNT=nRows
OBJ_DESTROY, oRows

Create afloating point array with the same dimensions as the selection.
aData = FLTARR(nCols, nRows, /NOZERO) ;
Iterate through the cells, doing the following:

* Retrieve an object that represents the cell. Note that the numeric index of
the FOR loop is passed to the GetProperty method as an argument.

» Get the value contained in the cell.
e Set the appropriate element of the aData array to the cell's value.
e Destroy the object.

FOR i=1, nCells DO BEGIN
oSel->GetProperty, ITEM=oItem, i
oItem->GetProperty, VALUE=vValue

abDatal[i-1] = vValue
OBJ_DESTROY, oItem
ENDFOR

Destroy the selection object.

OBJ_DESTROY, oSel

Example: Spreadsheet Control IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 67

10. Return one (the success code) and end the function definition.

RETURN, 1

END

11. Next, create a procedure that sets the values of the cellsin the spreadsheet.
This procedure takes one argument: an object referenceto the IDLcomA ctiveX
object that instantiates the spreadsheet control.

PRO excel_setData, oExcel
12. Define the size of the data array.
nx = 20
13. Get an object representing the active spreadsheet.
oExcel->GetProperty, ActiveSheet=oSheet
14. Get an object representing the cells in the spreadsheet.
oSheet->GetProperty, CELLS=o0Cells
15. Generate some data.
im = BESELJ (DIST (nX))
16. Iterate through the elements of the data array, doing the following:

» Retrieve an object that represents the cell that corresponds to the data
element. Note that the numeric indices of the FOR loops are passed to the
GetProperty method as arguments.

e Set the value of the cell.
e Destroy the object.

FOR 1=0, nX-1 DO BEGIN
FOR j=0, nX-1 DO BEGIN
oCells->GetProperty, ITEM=oItem, i+1, Jj+1
oIltem->SetProperty, VALUE=im(i,Jj)
OBJ_DESTROY, oItem
ENDFOR
ENDFOR

17. Destroy the spreadsheet and cell objects, and end the procedure.

OBJ_DESTROY, oSheet
OBJ_DESTROY, oCells

END

18. Next, create a procedure to handle events generated by the widget application.

IDL Connectivity Bridges Example: Spreadsheet Control

68

19.

20.

21.

22.

23.

24,

25.

26.

27.

Chapter 4: Using ActiveX Controls in IDL

PRO ActiveXExcel_event, ev

The user value of the top-level base widget is set equal to a structure that
contains the widget ID of the ActiveX widget. Retrieve the structure into the
variable sState.

WIDGET_CONTROL, ev.TOP, GET_UVALUE=sState, /NO_COPY

Use the value of the DISPID field of the event structure to sort out “ selection
changing” events.

IF (ev.DISPID EQ 1513) THEN BEGIN

Place datafrom selected cellsin variable aData, using the
excel_getSelection function defined above. Check to make sure that the
function returns a success value (one) before proceeding.

IF (excel_getSelection(sState.oExcel, aData) NE 0) THEN BEGIN
Get the dimensions of the aData variable.
szData = SIZE(aData)
If aDataistwo-dimensional, display a surface, otherwise, plot the data.

IF (szData[O] GT 1 AND szData[l] GT 1 AND szData[2] GT 1) $
THEN SURFACE, aData $
ELSE $
PLOT, aData
ENDIF

ENDIF

Reset the state variable sState and end the procedure.

WIDGET_CONTROL, ev.TOP, SET_UVALUE=sState, /NO_COPY

END
Create the main widget creation routine.

PRO ActiveXExcel

IEXCEPT=0 ; Ignore floating-point underflow errors.
Create atop-level base widget.

wBase = WIDGET_ BASE (COLUMN=1, $
TITLE="IDL ActiveX Spreadsheet Example")

Instantiate the ActiveX spreadsheet control in awidget.

wAX=WIDGET_ACTIVEX (wBase, $

Example: Spreadsheet Control IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 69
"{0002E510-0000-0000-C000-000000000046}"', $
SCR_XSIZE=600, SCR_YSIZE=400)
28. Realize the widget hierarchy.
WIDGET CONTROL, wBase, /REALIZE

29. Thevalue of an ActiveX widget is an object reference to the IDLcomA ctiveX
object that encapsulates the ActiveX control. Retrieve the object referencein
the variable oExcel.

WIDGET_ CONTROL, wAx, GET_VALUE=oExcel
30. Turn off the TitleBar property on the spreadsheet control.
oExcel->SetProperty, DisplayTitleBar=0

31. Populate the spreadsheet control with data, using the excel_setbData
function defined above.

excel_setData, oExcel

32. Set the user value of the top-level base widget to an anonymous structure that
contains the widget ID of the spreadsheet ActiveX widget.

WIDGET_CONTROL, wBase, SET_UVALUE={oExcel:oExcel}
33. Call XMANAGER to manage the widgets, and end the procedure.

XMANAGER, 'ActiveXExcel', wBase, /NO_BLOCK
END

IDL Connectivity Bridges Example: Spreadsheet Control

70 Chapter 4: Using ActiveX Controls in IDL

Running the ActiveX Excel procedure display widgets that look like the following:

i =101 x|

]
Eal el s z [SEEY BB
A B C D E
1) 0.785198 0.223891 -0.260052 -0.39715 D177
0.765198 0.559134 0.080405 -0.310045 -0.386187 0144
0.223891 0.090405 -0.196548 03522593 -0 326875 -0.04¢
-0.260052 -0.310045 -0.392293 -0.370336 0177597 0.10°
039715 -0 38R167 -0.326875 0177597 004583 0.24:
0177597 0144665 -0.046336 0.101258 0.243877 0.29¢
0.150645 0172848 0226844 0285837 029445 0.21:
0.300079) 0.299655 0.289804 0.249062 0.156777 0.012
0171651 01586777 01102 0029915 -0.076487 -0.18:
10 -0.090334 0103734 0140967 -0.191787 -0.236522 -0.24;
11 -0.245936 0247752 -0 24%R3 -0 240343 -0.207336 -0.13¢
12 -0.090334 0103734 0140967 0191787 -0.236522 -0.24;
13| 0171651 0156777 01102 0.029315 -0.076457 -0.182
14 | 0.300079 0299655 0.289804 0.249062 0156777 0.017
16| 0.150B45 0172843 0225844 0285837 (029445 0217
16 0177597 0144666 -0.045336 0.101258 0.243577 0.29¢
17 | -01359715 -0.38R167 -0.326875 -0.177597 0.04583 0.247
18 -0.260052 -0.310045 -0.392293 -0.370336 -0.177597 0.107
19 0.223891 0.080405 -0.196548 -0.392293 -0.326875 -0.04k
20| 0785198 0.559134 0.090405 -0.310045 -0.3861687 -0.144665 0.172849 0.299655 U.158_?,j
»

< |

@~ [e k| =

@

Figure 4-2: An IDL Widget Program Using an ActiveX Spreadsheet Control

Example: Spreadsheet Control IDL Connectivity Bridges

Chapter 5

Using Java Objects In

IDL

The following topics are covered in this chapter:

Overview of Using JavaObjects 72
Initializing the IDL-JavaBridge 75
IDL-Java Bridge Data Type Mapping 78
Creating IDL-JavaObjects 84
Method Callson IDL-Java Objects 87
Managing IDL-Java Object Properties 89

IDL Connectivity Bridges

Destroying IDL-JavaObjects 91
Showing IDL-JavaOutput inIDL 92
The IDLJavaBridgeSession Object 94
JavaExceptions 96
IDL-JavaBridge Examples 99
Troubleshooting Your Bridge Session ... 118

71

72 Chapter 5: Using Java Objects in IDL

Overview of Using Java Objects

Javais an object-oriented programming language developed by Sun Microsystems
that is commonly used for web development and other programming needs. It is
beyond the scope of this chapter to describe Javain detail. Numerous third-party
books and el ectronic resources are available. The Java website (http://java.sun.com)
may be useful.

The IDL-Java bridge allows you to access Java objects within IDL code. Java objects
imported into IDL behave like normal IDL objects. See “ Creating | DL -Java Objects’
on page 84 for moreinformation. The IDL-Java bridge allowsthe arrow operator (->)
to be used to call the methods of these Java objects just as with other IDL objects, see
“Method Calls on IDL-Java Objects’ on page 87 for more information. The public
data members of a Java object are accessed through GetProperty and SetProperty
methods, see “Managing IDL-Java Object Properties’ on page 89 for more
information. These objects can a so be destroyed with the OBJ DESTROY routine,
see “Destroying IDL-Java Objects’ on page 91 for more information.

Note
IDL requires an evaluation or permanent IDL license to use this functionality. This

functionality is not available in demo mode.

The bridge also provides IDL with access to exceptions created by the underlying
Java object. This accessis provided by the IDL JavaBridgeSession abject, whichisa
Java object that maintains exceptions (errors) during a Java session, see “ The

IDL JavaBridgeSession Object” on page 94 for more information.

Note
Visual Java objects cannot be embedded into IDL widgets.

Note
On Solaris, there are potential problems creating graphical windows from the IDL-
Java bridge using Java versions before 1.5. We recommend using the X Toolkit
option, which the IDL-Java bridge will use by default.

Java Runtime Environment Requirements

IDL supportsversion 1.5 and greater of the Java runtime environment.

Overview of Using Java Objects IDL Connectivity Bridges

http://java.sun.com

Chapter 5: Using Java Objects in IDL 73

Note
On Macintosh machines, the version of Javainstalled along with the operating
system should be sufficient, whatever its version number.

Java Terminology
You should become familiar with the following terms before trying to understand
how IDL works with Java objects.

Java Virtual Machine (JVM) - A software execution engine for executing the byte
codesin Java class files on a microprocessor.

Java Native Interface (JNI) - Standard programming interface for accessing Java
native methods and embedding the VM into native applications. For example, JNI
may be used to call C/C++ functionality from Java or JNI can be used to call Java
from C/C++ programs.

Java Invocation API - An API by which one embeds the Java Virtual Machine into
your native application by linking the native application with the VM shared library.

Java Reflection API - Provides a small, type-safe, and secure API that supports
introspection about the classes and objects. The API can be used to:

e Construct new class instances and new arrays
e Access and modify fields of objects and classes
« Invoke methods on objects and classes

e Access and modify elements of arrays

IDL-Java Bridge Architecture

The IDL-Java bridge uses the Java Native Interface (INI), the reflection API, and the
JVM to enable the connection between IDL and the underlying Java system.

The IDL OBJ_NEW function can be used to create a Java object. A Java-specific
classtoken identifies the Java class used to create a Java proxy object. IDL parsesthis
class name and creates the desired object within the underlying Java environment.

The Java-specific token is a case-insensitive form of the name of the Java class.
Besides the token, the case-sensitive form of the name of the Java classis provided
because Javaitself is case-sensitive while IDL is not. IDL uses the case-insensitive
form to create the object definition while Java uses the case-sensitive form.

IDL Connectivity Bridges Overview of Using Java Objects

74 Chapter 5: Using Java Objects in IDL

After creation, the object can then be used and manipulated just like any other IDL
object. Method calls are the same as any other IDL object, but they are vectored off to
an IDL Java system, which will call the appropriate Java method using JNI.

The OBJ_DESTROQY procedurein IDL is used to destroy the object. This process
releases the internal Java object and frees any resources associated with it.

Overview of Using Java Objects IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 75

Initializing the IDL-Java Bridge

The IDL-Java bridge must be configured before trying to create and use Java objects
within IDL. The IDL program initializes the bridge when it first attempts to create an
instance of IDLjavaObject. Initializing the bridge involves starting the Java Virtua
Machine, creating any internal Java bridge objects (both C++ and Java) including the
internal DL JavaBridgeSession object. See “ The IDLJavaBridgeSession Object” on
page 94 for more information on the session object.

Configuring the Bridge

The .idljavabre fileon UNIX or idljavabre on Windows containsthe IDL-
Java bridge configuration information. Even though the IDL installer attempts to
create avalid working configuration file based on IDL location, the file should be
verified before trying to create and use Java objects within IDL.

The IDL-Java bridge looks for the configuration file in the following order:

1. If the environment variable IDLJAVAB_CONFIG is set, thefileit indicatesis
used.

Note
This environment variable must include both the path and the file name of
the configuration file.

2. If the environment variable IDLJAVAB_CONFIG is not set or the file
indicated by that variableis not found in that location, the path specified in the
HOME environment variable is used to try to locate the configuration file.

3. If thefileisnot found in the path indicated by the HOME environment
variable, the <IDL_DEFAULT>/resource/bridges/import/java path
is used to try to locate the configuration file.

The configuration file contains the following settings. With atext editor, open your
configuration file to verify these settings are correct for your system.

e TheJvM classpath Setting specifiesadditional locationsfor user classes. It
must point to the location of any class filesto be used by the bridge. On
Windows, paths should be separated by semi-colons. On UNIX, colons should
separate paths.

This path may contain folders that contain class files or specific jar files. It
follows the same rules for specifying '-classpath’ when running java or

IDL Connectivity Bridges Initializing the IDL-Java Bridge

76 Chapter 5: Using Java Objects in IDL

javac. You can also include the CLASSPATH environment variable in the
JVM Classpath.

JVM Classpath = SCLASSPATH:/home/johnd/myClasses.jar

which allows any class defined in the CLASSPATH environment variable to
be used in the IDL-Java bridge.

On Windows, an example of atypical JvM Classpath Settingis:
JVM Classpath = E:\myClasses.jar; SCLASSPATH

On UNIX, an example of atypical JvM Classpath Settingis:
JVM Classpath = /home/johnd/myClasses.jar:SCLASSPATH

e TheJvM LibLocation setting tellsthe Windows IDL-Java bridge which
JVM shared library within a given Java version to use. Various versions of
Java ship with different types of WM libraries. For example, Java 1.3 on
Windows shipswith a“classic” WM, a“hotspot” VM, and a“server” VM.
Other versions and platforms have different VM types.

On Windows, an example of atypical JvM LibLocation Seftingis:
JVM LibLocation = E:\jdkl.3.1_02\jre\bin\hotspot

On UNIX, you should not set JvM LibLocation inthe configuration file.
Instead, set the IDLJAVAB_LIB_LOCATION environment variable for the
session that will use the IDL-Java bridge. The following is atypical command
to set the environment variable:

setenv IDLJAVAB_LIB_LOCATION
/usr/java/j2rel.4.0_02/1ib/sparc/client
Note
You can also set the IDLJAVAB _LIB_LOCATION environment variable on
Windows platforms, rather than specifying the value in the configuration file.

Note
On Macintosh platforms, IDL is hard-coded to use the JavaVM 1.3.1, and so
the system ignores any value you place in IDLJAVAB_LIB_LOCATION.

* TheJgvM option# (where # isany whole number) setting allows you to send
additional parametersto the Java Virtual machine upon initialization. These
settings must be specified as string values. When these settings are
encountered in theinitiaization, the options are added to the end of the options
that the bridge sets by default.

Initializing the IDL-Java Bridge IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 77

e TheLog Location setting indicates the directory where IDL-Java bridgelog
fileswill be created. The default location provided by the IDL installer is / tmp
on Unix and ¢: \ temp on Windows.

 TheBridge Logging setting indicatesthe type of bridge debug logging to be
sent to afilecaled jb_log<pid>.txt (Where <pid>isaprocess|D
number) located in the directory specified by the Log Location setting.

Acceptable values (from least verbose to most verbose) are SEVERE, CONFIG,
CONFIGFINE. The default value is SEVERE, which specifies that bridge errors
arelogged. The conrF1G value indicates the configuration settings are also
logged. The CONFIGFINE value is the same as CONFIG, but provides more
detail.

No log fileis created if this setting is set to OFF.

The IDL-Java bridge usually only uses the configuration file once during an IDL
session. Thefileis used when the first instance of the IDLjavaObject classis created
in the session. If you edit the configuration file after the first instance is created, you
must exit and restart IDL to update the IDL-Java bridge with the changes you made
to thefile.

IDL Connectivity Bridges Initializing the IDL-Java Bridge

78

Chapter 5: Using Java Objects in IDL

IDL-Java Bridge Data Type Mapping

When data moves between IDL and a Java object, IDL automatically converts

variable data types.

The following table maps how Java data types correlate to IDL data types.

Java Type (# bytes) IDL Type Notes

boolean (1) Integer True becomes 1,
false becomes 0

byte (1) Byte

char (2) Byte The bridge handles
Java UTF characters

short (2) Integer

int (4) Long

long (8) Long64

float (4) Float

double (8) Double

Java.lang.String String Java has the notion
of aNULL string
(the java.lang.String
reference equals
null) and the concept
of an empty string.
IDL makes no such
differentiation, so
both are identically
converted.

Arrays of the above types IDL array of the same

dimensions (from 1 to
8 dimensions) and
corresponding type.

Table 5-1: Java to IDL Data Type Conversion

IDL-Java Bridge Data Type Mapping

IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 79

Java Type (# bytes) IDL Type Notes
Java.lang.Object (or array of | IDL array of In Java, everythingis
javalang.Object) and any primitives or IDL asubclass of Object.
subclass of javalang.Object | array of If the Java object is

IDLjavaObjects an array of

primitives, an IDL
array of the same
dimensions and
corresponding type
(shown in this table)
iscreated. IDL
similarly converts
arrays of primitives,
arrays of strings,
arrays of other Java
objectsto an IDL
Java object of the
same dimensions. If
the Object is some
single Java object,
IDL createsan object
reference of the
IDLjavaObject class.

Null object IDL Null object

Table 5-1: Java to IDL Data Type Conversion (Continued)

IDL Connectivity Bridges IDL-Java Bridge Data Type Mapping

80 Chapter 5: Using Java Objects in IDL

The following table shows how data types are mapped from IDL to Java.

IDL Type Java Type (# bytes) Notes

Byte byte (1) IDL bytesrange from 0 to 255,
Javabytesare -128 to 127. IDL
bytes converted to Java bytes
will retain their binary
representation but values greater
than 127 will change. For
example, BY TE(255) becomesa
Javabyteof -1. If BYTE is
converted to wider Java value,
the sign and value is preserved.

Integer short (2)

Unsigned integer short (2) IDL unsigned integers range
from O to 65535, Java shorts are
-32768 to 32767. IDL unsigned
integers converted to Java shorts
will retain their binary
representation but values greater
than 32768 will change. For
example, UINT(65535) becomes
aJavashort of -1. If UINT is
converted to wider Java value,
the sign and value is preserved.

Long int (4)

Table 5-2: IDL to Java Data Type Conversion

IDL-Java Bridge Data Type Mapping IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL

81

IDL Type

Java Type (# bytes)

Notes

Unsigned long

int (4)

IDL unsigned longs range from
0 to 4294967295, Javaints are -
2147483648 to 2147483647.
IDL unsigned longs converted to
Javaints will retain their binary
representation but values greater
than 2147483647 will change.
For example,
ULONG(4294967295) becomes
aJavaint of -1. If ULONG is
converted to wider Java value,
the sign and value is preserved.

Long64

long (8)

Unsigned Long64

long (8)

IDL unsigned long64 range from
0 to 18446744073709551615,
Javaints range from
-9223372036854775808 to
9223372036854775807. IDL
unsigned long64 converted to
Javalongs will retain their
binary representation values
greater than
9223372036854775807 will
change. For example,
ULONG64(1844674407370955
1615) becomes a Javalong of -1.

Float

float (4)

Double

double (8)

String

Javalang.String

Arrays of the above
types

Javaarray of the same
dimensions and
corresponding type

Table 5-2: IDL to Java Data Type Conversion (Continued)

IDL Connectivity Bridges

IDL-Java Bridge Data Type Mapping

82

Chapter 5: Using Java Objects in IDL

IDL Type Java Type (# bytes) Notes
IDLjavaObject Object of corresponding
Javaclass
Arrays of objects Javaarray of the same Only objects of type

dimensions, consisting of
corresponding Java proxy
objects

IDLjavaObject are converted.

Null object

Javanull

Note

Table 5-2:

IDL to Java Data Type Conversion (Continued)

When calling a Java method or constructor from IDL, the data parameters are

promoted as little as possible based on the signature of the given method. The

following table shows how data types are promoted within Java relative to IDL.

When strings and arrays are passed between IDL and Java, the array must be
copied. Depending upon the size of the array, this copy may betimeintensive. Care
should be taken to minimize array copying.

Java Type (to order of

1o e desired promotion) MILSS
Byte byte, char, short, int, long,
float, double, boolean
Integer short, int, long, float, double,

boolean

Unsigned integer

short, int, long, float, double,
boolean

Long

int, long, float, double, boolean

Unsigned Long

int, long, float, double, boolean

Long64

long, float, double, boolean

Unsigned Long64

long, float, double, boolean

Table 5-3:

IDL-Java Bridge Data Type Mapping

Java Data Type Promotion Relative to IDL

IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 83

oLt | TSaTEeo et | os
Float float, double
Double double
String Java.lang.String
IDLjavaObject Java.lang.Object

Table 5-3: Java Data Type Promotion Relative to IDL (Continued)

IDL Connectivity Bridges IDL-Java Bridge Data Type Mapping

84 Chapter 5: Using Java Objects in IDL

Creating IDL-Java Objects

Aswith all IDL objects, a Java object is created using the IDL OBJ NEW function.
Keying off the provided Java class name, the underlying implementation uses the
IDL Java subsystem to call the constructor on the desired Java object. The following
line of code demonstrates the basic syntax for calling OBJ NEW to create a Java
object within IDL:

oJava = OBJ_NEW (IDLjavaObject$SJAVACLASSNAME, JavaClassName $
[, Argl, Arg2, ..., ArgN])

where JAVACLASSNAME is the class name token used by IDL to create the object,
JavaClassName isthe class name used by Javato initialize the object, and Argl
through ArgN are any data parameters required by the constructor. See “ Java Class
Namesin IDL” for more information.

Example Code
Theexamplehellojava.pro islocated in the
resource/bridges/import/java/examples directory of the DL distribution
and shows a simple example of an IDL-Java object creation. Run the example
procedure by entering hellojava at the IDL command prompt or view thefilein
an IDL Editor window by entering .EDIT hellojava.pro.

Note
If you edit and recompile a Java class used by IDL during an IDL-Java bridge
session, you must first exit and restart IDL before your modified Java class will be
recognized by IDL.

The IDL-Java bridge also provides the ability to access static Java methods and data
members. See“ Java Static Access’ on page 85 for more information.

Java Class Names in IDL
The underlying Javainterpreter recognizes the Java class name including all objects

contai ned within the Java interpreter’s class path.

To identify a proper Java object, the fully-qualified package name should be used
when creating the IDL class name. For example, a class of type String would be
referredto as java.lang.String.

In the IDL class name, the Java class separator ('.") should be replaced with an
underscore ('_"). If aJava class of type String were created, the following IDL
OBJ NEW call would be used:

Creating IDL-Java Objects IDL Connectivity Bridges

javascript:doIDL("hellojava")
javascript:doIDL("hellojava.pro")

Chapter 5: Using Java Objects in IDL 85

oJString = OBJ_NEW('IDLJavaObject$JAVA_LANG_STRING', $
'java.lang.String', 'My String')
The class nameis provided twice because IDL is case-insensitive whereas Java is
case-sensitive, see “|DL-Java Bridge Architecture” on page 73 for more information.

Note
IDL objects use method names (INIT and CLEANUP) to identify and call object
lifecycle methods. As such, these method names should be considered reserved. If
an underlying Java object implements a method using either INIT or CLEANUP,
those methods will be overridden by the IDL methods and not accessible from IDL.
In Java, you can wrap these methods with different named methods to work around
this limitation.

Java Static Access

In Java, a program can call a static method or access static data members on a Java
class without first having to create the object.

IDL contains a special wrapper object type for calling static methods. This IDL
object wrapper references the underlying Java class, allowing the abject to call static
methods on the class or allowing the object to use the Get/Set Property calls to access
static data members. The following line of code demonstrates the basic syntax for
calling OBJ _NEW to create a static proxy within IDL:

oJava = OBJ_NEW (IDLjavaObject$Static$SJAVACLASSNAME, JavaClassName)

where JAVACLASNAME is the class name token used by IDL to create the object and
JavaClassName isthe class name used by Javato initialize the object. See“ Java
ClassNamesin IDL” on page 84 for more information.

A special static object would not need to be created to call an instantiated
IDLJavaObject with static methods:

oNotStatic = OBJ_NEW('IDLjavaObject$SJAVACLASSNAME', $
'JavaClassName')
oNotStatic -> aStaticMethod ; this is OK

Example Code
The javaprops .pro fileislocated in the
resource/bridges/import/java/examples directory of the DL distribution
and shows an example of working with static data members. Run the example
procedure by entering javaprops at the IDL command prompt or view thefilein
an IDL Editor window by entering .EDIT javaprops.pro.

IDL Connectivity Bridges Creating IDL-Java Objects

javascript:doIDL("javaprops")
javascript:doIDL(".edit javaprops.pro")

86 Chapter 5: Using Java Objects in IDL

Note
All restrictions on creating Java objects apply to this static object.

Creating IDL-Java Objects IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 87

Method Calls on IDL-Java Objects

When amethod is called on a Java-based IDL object, the method name and
arguments are passed to the IDL-Java subsystem and the Java Reflection API to
construct and invoke the method call on the underlying object.

IDL handles conversion between IDL and Java datatypes. Any results arereturned in
IDL variables of the appropriate type.

Aswithall IDL objects, the general syntax in IDL for an underlying Java method that
returns a value (known as afunction method in IDL) is:

result = ObjRef->Method([Arguments])

and the general syntax in IDL for an underlying Java method that does not return a
value, avoid method, (known as a procedure method in IDL) is:

ObjRef->Method [, Arguments]

where objRef isan object reference to an instance of adynamic subclass of the
IDLjavaObject class.

Note
Besides other Java based objects, the value of an argument may be an IDL primitive
type, an IDLjavaObject, or an IDL primitive type array. No complex types
(structures, pointers, etc.) are supported as parameters to method calls.

What Happens When a Method Call Is Made?

When amethod is called on an instance of IDLjavaObject, IDL uses the method
name and arguments to construct the appropriate method calls for the underlying Java
object.

From the point of view of an IDL user issuing method calls on an instance of
IDLjavaObject, this process is completely transparent. IDL handles the trandation
when the IDL user calls the Java object’s method.

Due to case-sensitivity incompatibilities between IDL and Java, Java's ability to
overload methods, and the fact that Java might promote certain data types, the Java
bridge uses an algorithm to match the IDL method name and parameters to the
corresponding Java object method.

IDL Connectivity Bridges Method Calls on IDL-Java Objects

88

Chapter 5: Using Java Objects in IDL

Before the algorithm starts, IDL provides a case-insensitive <METHODNAME> and
areference to the Java object. For a given object and its parent classes, the Java
bridge obtains alist of al the public method names, including static methods. This
algorithm performs the following steps:

1. If the Java class has one method name matching the IDL <METHODNAME>
(except for case insensitivity), this Java method name is used. At this point,
signatures and overloaded functions are not taken into account.

2. If the Java class has several method names that differ only in case and oneis
all uppercase, the uppercase name is used. Otherwise, the IDL-Java bridge
issues an error that it has no method named <METHODNAME>.

3. Once the method name has been determined, a promotion agorithm then
matches the Java data parameters as closely as possible with the IDL
parameters. Minimum data promotion from IDL to Javais preferred and only
widening promotion is alowed. If no match isfound, an error isissued.

Data Type Conversions

IDL and Java use different data types. IDL’'s dynamic type conversion facilities
handle all conversion of datatypes between IDL and the Java system. The data type
mappings are described in “1DL-Java Bridge Data Type Mapping” on page 78.

For example, if the Java object has a method that requires avalue of type int asan
input argument, IDL would supply the value asan IDL Long. For any other IDL data
type, IDL would first convert the value to an IDL Long using its normal data type
conversion mechanism before passing the value to the Java object asan int.

Method Calls on IDL-Java Objects IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 89

Managing IDL-Java Object Properties

Property names and arguments are also passed to the IDL Java subsystem and are
used in conjunction with the Java Reflection API to construct and access public data
members on the underlying object. These public data members (known as properties
in IDL) areidentified through arguments to the GetProperty and SetProperty
methods. See “ Getting and Setting Properties” on page 90 for more information.

Note
Only public data members may be accessed.

Due to case-sensitivity incompatibilities between IDL and Java and the fact that Java
might promote certain data types, the Java bridge uses an algorithm to match the IDL
properties name to the corresponding Java object data members.

Before the algorithm starts, IDL provides a case-insensitive <PROPERTY NAME>
and areference to the Java abject. For the given object and its parent classes, the Java
bridge obtains alist of all the public data members including static members. This
algorithm performs the following steps:

1. If the Java class has one data member name matching the IDL
<PROPERTY NAME> (except for case insensitivity), this Java data member is
used. At this point, datatypes are not yet taken into account; this algorithm
only matches the data member names.

2. If the Java class has several member names that differ only in case, the data
member name that exactly matches the IDL <PROPERTYNAME > (i.e. the
onethat isall caps) is called. Otherwise, the IDL-Java bridge issues an error
that the class has no data members named < PROPERTY NAME >,

3. When setting a property with the SetProperty method, a promotion algorithm
matches the provided IDL parameter with the Java data parameter as closely as
possible. If the IDL value can be promoted to the same type as the data
member, this data member is used. Otherwise, an error isissued.

When retrieving a property with the GetProperty method, this step is skipped
and the valueis returned to IDL.

Example Code
Theallprops.pro and publicmembers.pro filesin the
resource/bridges/import/java/examples directory of the DL distribution
provide information about data members associated with given Java classes. Run
the example procedures by entering al1props and publicmembers at the IDL

IDL Connectivity Bridges Managing IDL-Java Object Properties

javascript:doIDL("allprops")
javascript:doIDL("publicmembers")

90 Chapter 5: Using Java Objects in IDL

command prompt or view the filesin an IDL Editor window by entering . EDIT
allprops.pro OF .EDIT publicmembers.pro.

Getting and Setting Properties

The IDL-Java bridge follows the standard IDL property interface to support data
member access on Java objects and classes.

To retrieve a property value from a Java object, use the following syntax:
ObjRef->GetProperty, PROPERTY=variable

where objRef isan instance of IDLjavaObject that encapsulates the Java object,
PROPERTY is the name of the Java object’s data member (property), and variableis
the name of an IDL variable that will contain the retrieved property value.

To retrieve multiple property values in a single statement supply multiple
PROPERTY=variable pairs separated by commas.

To set a property value on a Java object, use the following syntax:
ObjRef->SetProperty, Property=value

where objRef isan instance of IDLjavaObject that encapsulates the Java object,
PROPERTY is the name of the Java object’s data member, and value is value of the
property to be set.

To set multiple property valuesin asingle statement supply multiple
PROPERTY=value pairs separated by commas.

Note
The provided PROPERTY must map directly to a data member name. Any name
passed into either of the property routinesis assumed to be afully qualified Java
property name. As such, the partial property name functionality provided by IDL is
not valid with IDL Java based objects.

The variable or value part may be an IDL primitive type, an instance of
IDL JavaObject, or an array of an IDL primitive type. See “IDL-Java Bridge Data
Type Mapping” on page 78 for more information.

Note
Besides other Java-based objects, no complex types (structures, pointers, etc.) are
supported as parametersto property calls.

Managing IDL-Java Object Properties IDL Connectivity Bridges

javascript:doIDL(".edit allprops.pro")

javascript:doIDL(".edit allprops.pro")

javascript:doIDL(".edit publicmembers.pro")

Chapter 5: Using Java Objects in IDL 91

Destroying IDL-Java Objects

The OBJ DESTROQOY routine is used to destroy instances of IDLjavaObject. When
OBJ DESTROY iscaled with a Java-based object as an argument, IDL releases the
underlying Java object and frees IDL resources relating to that object.

Note
Destruction of the IDL object does not automatically cause the destruction of the
underlying Java object. Because Java utilizes a garbage collection mechanism to
release any information allocated for a particular object, the resources utilized by
the underlying Java object will persist until the Java virtual machine's garbage
collector runs.

IDL Connectivity Bridges Destroying IDL-Java Objects

92 Chapter 5: Using Java Objects in IDL

Showing IDL-Java Output in IDL

By default, IDL prints the output from Java (the system. out and System.err
output streams).

For example, given the following Java code:

public class helloWorld
{
// ctor
public helloWorld() {
System.out.println("helloWorld ctor");
}

public void sayHello() {
System.out.println("Hello! (from the helloWorld object)");
}

}
The following output occursin IDL:

IDL> oJHello = OBJ_NEW('IDLjavaObject$HelloWorld', 'helloWorld')
% helloWorld ctor

IDL> oJHello -> SayHello

% Hello! (from the helloWorld object)

IDL> OBJ_DESTROY, oJHello

Example Code
This example codeis also provided inthe helloJava.java and
hellojava2.pro files, which arein the
resource/bridges/import/java/examples directory of the IDL
distribution. Run these example procedures by entering helloJava and
hellojava2 at the IDL command prompt or view thefilesin an IDL Editor
window by entering .EDIT helloJava.pro and .EDIT hellojava2.pro.

Note
Dueto restrictionsin IDL concerning receiving standard output from non-main
threads, the bridge will only send system.out and System. err information to
IDL from the main thread. Other threads’ output will be ignored.

Note
A print () inJavawill not have a carriage return at the end of the line (as opposed
toprintln (), which does). However, when outputting to Java both print () and
println () will print to IDL followed by a carriage return. You can change this

Showing IDL-Java Output in IDL IDL Connectivity Bridges

javascript:doIDL("helloJava")
javascript:doIDL("hellojava2")
javascript:doIDL(".edit helloJava.pro")

javascript:doIDL(".edit hellojava2.pro")

Chapter 5: Using Java Objects in IDL 93

result by having the Java-side application buffer its data up into the lines you wish
to see on the IDL-side.

IDL Connectivity Bridges Showing IDL-Java Output in IDL

94 Chapter 5: Using Java Objects in IDL

The IDLJavaBridgeSession Object

Java exceptions are handled within IDL through an IDL-Java bridge session object,

IDL JavaBridgeSession. This Java object can be queried to determine the status of the
bridge, including information on any exceptions. For example, one important Java
object available through the session object is the last issued Java exception.

The session object is aproxy to an internal Java object, which is created during the
IDL-Java bridge initialization process. You can connect an |DL JavaObject to this
object using OBJ NEW:

oJSession = OBJ_NEW('IDLjavaObject$IDLJAVABRIDGESESSION')
Note

Only one Java session object needsto be created during an IDL session. Subsequent
callsto this object will point to the same internal object.

When an exception occurs, the GetException function method indicates what
exception occurred:

oJException = oJSession->GetException|()

where oJsession isareference to the session object and oJException isaproxy
objectto ajava.lang.Throwable object, which isthe class used in Javato
manage exceptions. The session object also has a ClearException method that clears
the session object’s last exception. The GetException method always calls
ClearException method.

The IDL JavaBridgeSession object aso has the GetVersionObject method, which
retrieves the IDL JavaVersion object:

oJVersion = oJSession->GetVersionObject ()

where oJSession isareference to the session object and oJversion iSaproxy
object to an IDLJavaVersion object. This object determines version information
about the IDL-Java bridge and the underlying Java system.

The IDL JavaVersion object provides the following function methods, which do not
require any arguments:

e GetBuildDate() - ajavalang.String object specifying the build date. For
example, apr 1 2003.

* GetJavaVersion() - ajavalang.String object specifying the Java version. For
example, 1.3.1_02.

The IDLJavaBridgeSession Object IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 95

» GetBridgeVersion() - ajava.lang.String object specifying the IDL-Java bridge
version.

Example Code
An example of the version object is provided inthe bridge_version.pro file,
whichisinIDL'sresource/bridges/import/java/examples directory. Run
the example procedure by entering bridge_version at the IDL command prompt
or view thefilein an IDL Editor window by entering . EDIT
bridge_version.pro.

IDL Connectivity Bridges The IDLJavaBridgeSession Object

javascript:doIDL("bridge_version")
javascript:doIDL(".edit bridge_version.pro")

javascript:doIDL(".edit bridge_version.pro")

96 Chapter 5: Using Java Objects in IDL

Java Exceptions

During the operation of the bridge, an error may occur when initializing the bridge,
creating an IDLjavaObject, calling methods, setting properties, or getting
properties. Typically, these errors will be fixed by changing your IDL or Java code
(or by changing the bridge configuration). Java bridge errors operate like other IDL
errorsin that they stop execution of IDL and post an error message. These errors can
be caught like any other IDL error.

On the other hand, Java uses the exception mechanism to report errors. For example,
in Java, if we attempt to create ajava.lang.StringBuffer of negative length, a
javalang.NegativeArraySizeException is issued.

Java exceptions are handled much like bridge errors. They stop IDL execution (if
uncaught) and they report an error message containing a line number. In addition, a
mechanism is provided to grab the exception object (a subclass of
javalang.Throwable) viathe session object. Once connected with the exception
object, IDL can call any of the methods provided by this Java object. For example,
IDL can query the exception name to determine how to handle it, or print a stack
trace of where the exception occurred in your Java code.

The exception object is provided through the GetException method to the
IDL JavaBridgeSession object. See “The | DL JavaBridgeSession Object” on page 94
for more information about this object.

Uncaught Exceptions

If aJava exception isnot caught, IDL will stop execution and display an Exception
thrown error message. For example, when the following program is saved as
ExceptIssued.pro, compiled, and raninIDL:

PRO ExceptIssued

; This will throw a Java exception

oJStrBuffer = OBJ_NEW(S$S
'IDLJavalObject$java_lang_ StringBuffer', $
'java.lang.StringBuffer’, -2)

END
IDL issues the following output:

IDL> ExceptIssued

% Exception thrown

% Execution halted at: EXCEPTISSUED 4 ExceptIssues.pro
SMAINS

o0

Java Exceptions IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 97

From the IDL command line, you can then use the session object to help debug the
problem:

IDL> oJSession = OBJ_NEW('IDLJavaObject$IDLJAVABRIDGESESSION')
IDL> oJExc = oJSession->GetException ()

IDL> oJExc->PrintStackTrace

% java.lang.NegativeArraySizeException:

% at java.lang.StringBuffer.<init> (StringBuffer.java:116)

Example Code
A similar exampleis also provided in the exception.pro file, whichisin the
resource/bridges/import/java/examples directory of the IDL
distribution. The exception.pro example shows how to use the utility routine
provided in the showexcept .pro file. This showexcept Utility routine can be re-
used to provide consist error messages when Java exceptions occur. The
showexcept .pro fileisalso provided in the
resource/bridges/import/java/examples directory of the IDL
distribution. Run the example procedure by entering exception at the IDL
command prompt or view the filein an IDL Editor window by entering .EDIT
exception.pro.

Caught Exceptions

Java exceptions can be caught just like IDL errors. Consult the documentation of the
Java classes that you are using to ensure IDL is catching any expected exceptions.
For example:

PRO ExceptCaught

; Grab the special IDLJavaBridgeSession object
oJBridgeSession = OBJ_NEW ('IDLJavaObject$IDLJAVABRIDGESESSION')

bufferSize = -2
; Our Java constructor might throw an exception, so let’s catch it
CATCH, error_status
IF (error_status NE 0) THEN BEGIN
; Use session object to get our Exception
oJExc = oJBridgeSession->GetException()
; should be of type
; IDLJAVAOBJECTSJAVA_LANG_NEGATIVEARRAYSIZEEXCEPTION
HELP, oJExc
; Now we can access the members java.lang.Throwable
PRINT, 'Exception thrown:', oJExc->ToString/()
oJExc->PrintStackTrace
; Cleanup
OBJ_DESTROY, oJExc
Increase the buffer size to avoid the exception.

7

IDL Connectivity Bridges Java Exceptions

javascript:doIDL("exception")
javascript:doIDL(".edit exception.pro")

javascript:doIDL(".edit exception.pro")

98

Example Code

Chapter 5: Using Java Objects in IDL

bufferSize = bufferSize + 100
ENDIF

; This throws a Java exception the 1lst time, but pass the 2nd time.

oJStrBuffer = OBJ_NEW('IDLJavaObjectS$java_lang StringBuffer', $
'java.lang.StringBuffer', bufferSize)

OBJ_DESTROY, oJStrBuffer
OBJ_DESTROY, oJBridgeSession

END

A similar exampleis aso provided in the exception.pro file, whichisin the
resource/bridges/import/java/examples directory of the IDL
distribution. The exception.pro example shows how to use the utility routine
provided in the showexcept .pro file. This showexcept Utility routine can be re-
used to provide consist error messages when Java exceptions occur. The
showexcept .pro fileisalso provided in the
resource/bridges/import/java/examples directory of the IDL
distribution. Run the example procedure by entering showexcept at the IDL
command prompt or view thefilein an IDL Editor window by entering .EDIT
showexcept.pro.

Java Exceptions

IDL Connectivity Bridges

javascript:doIDL("showexcept")
javascript:doIDL(".edit showexcept.pro")

javascript:doIDL(".edit showexcept.pro")

Chapter 5: Using Java Objects in IDL 99

IDL-Java Bridge Examples

The following examples demonstrate how to access data through the IDL-Java
bridge:

e “Accessing Arrays Example”

e “Accessing URLs Exampl€’ on page 102

» “Accessing Grayscale Images Example” on page 104
e “Accessing RGB Images Example’ on page 108

Note
If IDL isnot ableto find any Java class associated with these examples, make sure

your IDL-Java bridge is properly configured. See “Configuring the Bridge” on
page 75 for more information.

Accessing Arrays Example

This example creates atwo-dimensional array within a Java class, which is contained

inafilenamed array2d. java. IDL then accesses this data through the ArrayDemo
routine, which isin afile named arraydemo . pro.

Example Code
Thesefilesare located inthe resource/bridges/import/java/examples
directory of the IDL distribution. Run this example procedure by entering

arraydemo at the IDL command prompt or view thefilein an IDL Editor window
by entering.EDIT arraydemo.pro.

The array2d. java file contains the following text for creating a two-dimensional
array in Java:

public class array2d {
short[][] m_as;
long (][] m_aj;

// ctor

public array2d() {
int SIZE1l 3;
int SIZE2 4;

// default ctor creates a fixed number of elements
m_as = new short[SIZE1l] [SIZE2];

IDL Connectivity Bridges IDL-Java Bridge Examples

javascript:doIDL("arraydemo")

javascript:doIDL(".edit arraydemo.pro")

100 Chapter 5: Using Java Objects in IDL

m_aj = new long[SIZE1l] [SIZE2];

for (int i=0; 1<SIZE1l; i++) {
for (int j=0; Jj<SIZE2; j++) {

m_as[i][j] = (short) (i*10+3);
m_aj[il[j] = (long) (i*10+3);
}
}
}
public void setShorts(short[][] _as) {
m_as = _as;
}
public short[][] getShorts() {return m_as;}
public short getShortByIndex(int i, int j) {
return m_as[i] [J];
}
public void setLongs(long[][] _aj) {
m_aj = _aj;
}
public long[][] getLongs() {return m_aj;}

public long getLongByIndex(int i, int j) {return m_ajl[il[j];}

}

The arraydemo . pro file contains the following text for accessing the two-
dimensional array within IDL:

PRO ArrayDemo

; The Java class array2d creates 2 initial arrays, one
; of longs and one of shorts. We can interrogate and

; change this array.

oJArr = OBJ_NEW ('IDLJavaObject$ARRAY2D', 'array2d')

; First, let’s see what is in the short array at index
; (2,3).
PRINT, ‘'array2d short(2, 3) = ', $

oJArr -> GetShortByIndex (2, 3), $

! (should be 23)°

; Now, let’s copy the entire array from Java to IDL.

shortArrIDL = oJArr->GetShorts()
HELP, shortArrIDL

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL

PRINT, 'shortArrIDL[2, 3] = ', shortArrIDL[2, 3], $
' (should be 23)"

; Let’s change this wvalue...

shortArrIDL[2, 3] = 999

; ...and copy it back to Java...

oJArr->SetShorts, shortArrIDL

; ...now its value should be different.

PRINT, 'array2d short(2, 3) = ', §
oJArr->GetShortByIndex (2, 3), ' (should be 999) "

; Let’s set our array to something different.
oJArr -> SetShorts, INDGEN (10, 8)
PRINT, 'array2d short (0, 0) = ',

oJArr->GetShortByIndex (0, 0), ' (should be 0)'

Uy

PRINT, 'array2d short(l, 0) = ', §
oJArr->GetShortByIndex (1, 0), ' (should be 1)
PRINT, 'array2d short(2, 0) = ', $
oJArr->GetShortByIndex (2, 0), ' (should be 2)'
PRINT, 'array2d short(0, 1) = ',

- Ur

oJArr->GetShortByIndex (0, 1), (should be 10)'

; Array2d has a setLongs method, but b/c arrays do not
; (currently) promote, the first call to setLongs works

; but the second fails.
oJArr->SetLongs, L64INDGEN (10, 8)
PRINT, 'array2d long(0, 1) = ', $

oJArr->GetLongByIndex (0, 1), ' (should be 10)'
;PRINT, ' (expecting an error on the next line...)'
;oJArr->SetLongs, INDGEN (10, 8)

; Cleanup our object.
OBJ_DESTROY, oJArr

END

After saving and compiling the above files (array2d.java in Javaand

ArrayDemo.pro in IDL), update the jbexamples. jar fileinthe

101

resource/bridges/import/java directory with the new compiled class and run
the ArrayDemo routinein IDL. The routine should produce the following results:

array2d short (2, 3) = 23 (should be 23)
SHORTARRIDL INT = Arrayl[3, 4]
shortArrIDL[2, 3] = 23 (should be 23)
array2d short (2,) = 999 (should be 999)
array2d short () = 0 (should be 0)
()
()

array2d short = 1 (should be 1)
array2d short = 2 (should be 2)

’

2, 3
0, 0
1, 0
2, 0

’

IDL Connectivity Bridges IDL-Java Bridge Examples

102 Chapter 5: Using Java Objects in IDL

array2d short (0, 1) = 10 (should be 10)
array2d long (0, 1) = 10 (should be 10)

Accessing URLs Example

This example finds and reads a given URL, which is contained in afile named
URLReader . java. | DL then accesses this data through the URL Read routine, which
isin afilenamed urlread.pro

Example Code
Thesefiles are located in the resource/bridges/import/java/examples
directory of the IDL distribution. Run this example procedure by entering urlread
a the IDL command prompt or view the filein an IDL Editor window by entering
.EDIT urlread.pro.

The URLReader . java file contains the following text for reading a given URL in
Java

import java.io.*;
import java.net.*;

public class URLReader

{
private ByteArrayOutputStream m_buffer;

// ERE R I I b R S I S I I R S I S I R R R I S I I I I I I S S S

//
// Constructor. Create the reader
//

// RS SR S S S SR RS SRR SRS R R R R R EEEEEEE R R R R R R R R
public URLReader () {
m_buffer = new ByteArrayOutputStream() ;
}

// EIE R R I I R I I I I R R R R I I R R I R R I 2 S R R I 2 S I R S S I 2 S I 2 b b S 2
//

// readURL: read the data from the URL into our buffer

//

// returns: number of bytes read (0 if invalid URL)

//

// NOTE: reading a new URL clears out the previous data

//

// ERE R I I I R S I S R I I R S I S S R R S I I I S S S S

public int readURL(String sURL) {
URL url;
InputStream in = null;

IDL-Java Bridge Examples IDL Connectivity Bridges

javascript:doIDL("urlread")
javascript:doIDL(".edit urlread.pro")

Chapter 5: Using Java Objects in IDL 103

m_buffer.reset(); // reset our holding buffer to 0 bytes

int total_bytes = 0;
byte[] tempBuffer = new byte[4096];
try {

url = new URL(SURL) ;

in = url.openStream() ;

int bytes_read;

while ((bytes_read = in.read(tempBuffer)) != -1) {
m_buffer.write(tempBuffer, 0, bytes_read);
total_bytes += bytes_read;

}

} catch (Exception e) {
System.err.println("Error reading URL: "+sURL);
total_bytes = 0;

} finally {
try {
in.close();

m_buffer.close();
} catch (Exception e) {}

return total_bytes;

// R R b S R R R R I e S ek R S S S R SRR R e b ek R S R R S R I

//
// getData: return the array of bytes
//
// R R SRS S S S SR RS SRS S S SRR SRR EEREEEREE R R R R R
public bytel] getData() ({
return m_buffer.toByteArray () ;

// ERE R I S S I b R S I S S I S I I I S R R I R I S I I I S S

//

// main: reads URL and reports # of byts reads
//

// Usage: java URLReader <URL>

//

// ERE R S S I I I S I I S I R S I S I R R I I I I S I I I I S S S

public static void main(String[] args) {

if (args.length != 1)
System.err.println("Usage: URLReader <URL>");
else {

URLReader o = new URLReader () ;
int b = o.readURL(args[0]);

IDL Connectivity Bridges IDL-Java Bridge Examples

104 Chapter 5: Using Java Objects in IDL

System.out.println("bytes="+b);

}

Theurlread.pro file contains the following text for inputting an URL asan IDL
string and then accessing its datawithin IDL:

FUNCTION URLRead, sURLName

; Create an URLReader.
oJURLReader = OBJ_NEW('IDLjavaObject$URLReader', 'URLReader')

; Read the URL data into our Java-side buffer.
nBytes = oJURLReader->ReadURL (sURLName)

; PRINT, 'Read ', nBytes, ' bytes'

; Pull the data into IDL.
byteArr = oJURLReader->GetData ()

; Cleanup Java object.
OBJ_DESTROY, oJURLReader

; Return the data.
RETURN, byteArr

END

After saving and compiling the above files (URLReader. java in Javaand
urlread.pro inIDL), you can runthe URLRead routinein IDL. Thisroutineisa
function with one input argument, which should be aIDL string containing an URL.
For example:

address = 'http://www.ittvis.com'
data = URLRead (address)

Accessing Grayscale Images Example

This example creates a a grayscale ramp image within a Java class, which is
contained in afile named GreyBandsImage. java. IDL then accesses this data
through the ShowGreylmage routine, which isin the showgreyimage . pro file.

Example Code
Thesefilesare located in the resource/bridges/import/java/examples
directory of the IDL distribution. Run this example procedure by entering

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 105

showgreyimage at the IDL command prompt or view thefilein an IDL Editor
window by entering.EDIT showgreyimage.pro.

IDL Connectivity Bridges IDL-Java Bridge Examples

javascript:doIDL("showgreyimage")
javascript:doIDL(".edit showgreyimage.pro")

106 Chapter 5: Using Java Objects in IDL

TheGreyBandsImage. java file containsthefollowing text for creating agrayscae
image in Java:

import java.awt.*;
import java.awt.image.*;

public class GreyBandsImage extends BufferedImage
{

// Members

private int m_height;

private int m_width;

//
// ctor
//
public GreyBandsImage() {
super (100, 100, BufferedImage.TYPE_INT_ARGB) ;
generateImage () ;
m_height = 100;
m width = 100;

}
//
// private method to generate the image
//
private void generateImage() {
Color c;
int width = getwidth() ;
int height = getHeight () ;
WritableRaster raster = getRaster();
ColorModel model = getColorModel () ;
int BAND_PIXEL_WIDTH = 5;
int nBands = width/BAND_PIXEL_WIDTH;
int greyDelta = 255 / nBands;
for (int i=0 ; 1 < nBands; i++) {
c = new Color(i*greyDelta, i*greyDelta, i*greyDelta);
int argb = c.getRGB();
Object colorData = model.getDataElements (argb, null);
for (int j=0; j < height; Jj++)
for (int k=0; k < BAND_PIXEL_WIDTH; k++)
raster.setDataElements(j, (i*5)+k, colorData);
}
}
//

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 107

// mutators

//

public int[] getRawData() {
Raster oRaster = getRaster();
Rectangle oBounds = oRaster.getBounds() ;
int[] data = new int[m_height * m_width * 4];

data = oRaster.getPixels(0,0,100,100, data);
return data;

}
public int getH() {return m_height; }
public int getW() {return m_width; }

}

The showgreyimage . pro file contains the following text for accessing the
grayscaeimage within IDL:

PRO ShowGreyImage

; Construct the GreyBandImage in Java. This is a sub-class of

; BufferedImage. It is actually a 4 band image that happens to
display bands in greyscale. It is 100x100 pixels.

oGrey = OBJ_NEW ('IDLjavaObject$GreyBandsImage', 'GreyBandsImage')

; Get the 4 byte pixel values.
data = oGrey -> GetRawData ()

Get the height and width.
oGrey -> GetH()
w = oGrey -> GetW()

ng
1l

; Display the graphic in an IDL window
WINDOW, 0, XSIZE = 100, YSIZE = 100
TV, REBIN(data, h, w)

; Cleanup
OBJ_DESTROY, oGrey

END

IDL Connectivity Bridges IDL-Java Bridge Examples

108 Chapter 5: Using Java Objects in IDL

After saving and compiling the above files (GreyBandsImage.java in Javaand
showgreyimage.pro in IDL), you can run the ShowGreylmage routinein IDL.
The routine should produce the following image:

Figure 5-1: Java Grayscale Image Example

Accessing RGB Images Example

This exampleimports an RGB (red, green, and blue) image from the IDL distribution
into aJavaclass. Theimageisinthe glowing gas. jpg file, which isin the
examples/data directory of the IDL distribution. The Java class also displays the
image in a Java Swing user-interface. Then, theimageis accessed into IDL and
displayed with the new ilmage tool.

Example Code
The Javaand IDL code for this example is provided in the

resource/bridges/import/java/examples directory, but the Java code has
not been built as part of the jbexamples. jar file.

Note
This example uses functionality only available in Java 1.4 and later.

Note

Dueto a Java bug, this example (and any other example using Swing on AWT) will
not work on Linux platforms.

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL

109

Thefirst and main Java class is FrameTest, which creates the Java Swing application
that imports the image from the glowing_gas. jpg file. Copy and paste the

IDL Connectivity Bridges

following text into afile, then save it as FrameTest . java:

import java.awt.*;

import java.awt.image.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.io.File;

public class FrameTest extends JFrame {

RSIImageArea c_imgArea;
int m_xsize;

int m_ysize;

Box c_controlBox;

public FrameTest () {

super ("This is a JAVA Swing Program called from IDL");
// Dispose the frame when the sys close is hit
setDefaultCloseOperation (DISPOSE_ON_CLOSE) ;

m _xsize = 350;

m_ysize = 371;

buildGUI () ;

public void buildGUI () {

c_controlBox = Box.createVerticalBox() ;

JLabel 11 = new JLabel ("Example Java/IDL Interaction");

JButton bLoadFile = new JButton("Load new file");
bLoadFile.addActionListener (new ActionListener () {
public void actionPerformed(ActionEvent e) ({
JFileChooser chooser = new JFileChooser (new
File ("c:\\ITT\\IDL63\\EXAMPLES\\DATA")) ;
chooser.setDialogTitle("Enter a JPEG file");
if (chooser.showOpenDialog (FrameTest.this) ==
JFileChooser .APPROVE_OPTION) {

java.io.File fname = chooser.getSelectedFile() ;
String filename = fname.getPath();
System.out.println(filename) ;
c_imgArea.setImageFile(filename) ;

IDL-Java Bridge Examples

110

Chapter 5: Using Java Objects in IDL

)

JButton bl = new JButton("Close this example");
bl.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
dispose () ;
}
)

c_imgArea = new
RSIImageArea ("c:\\itt\\idl63\\examples\\data\\glowing_gas.jpg",
new Dimension (m_xsize,m_ysize));

Box mainBox = Box.createVerticalBox() ;
Box rowBox = Box.createHorizontalBox();
rowBox.add (bl) ;

rowBox.add (bLoadFile) ;

c_controlBox.add(1l1l) ;
c_controlBox.add (rowBox) ;
mainBox.add (c_controlBox) ;
mainBox.add (c_imgArea) ;

getContentPane () .add (mainBox) ;

pack () ;
setVisible (true) ;
c_imgArea.displayImage () ;
c_imgArea.addResizelListener (new RSIImageAreaResizeListener () {
public void areaResized(int newx, int newy) {
Dimension cdim = c¢_controlBox.getSize(null);
Insets i = getInsets|();
newx = i.left + i.right + newx;
newy = i.top + cdim.height + newy + i.bottom;
setSize(new Dimension (newx, newy));

)
}

public void setImageData(int [] imgData, int xsize, int ysize) {

MemoryImageSource ims = new MemoryImageSource (xsize, ysize,
imgData, 0, ysize);

Image imgtmp = createImage (ims) ;

Graphics g = c_imgArea.getGraphics();

g.drawImage (imgtmp, 0, 0, null);

public void setImageData(byte []1[][] imgData, int xsize,

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 111

int ysize) {

System.out.println("SIZE = "+xsize+"x"+ysize);
int newArray [] = new int[xsize*ysize];

int pixi = 0;

int curpix = 0;

short [] currgb = new short[3];

for (int 1=0;i<m_xsize;i++) {
for (int j=0;j<m_ysize;j++) {
for (int k=0;k<3;k++) {
currgblk] (short) imgDatalk][i][3j];
currgblk] (currgbl[k] < 128) ? (short) currgblk] : (short)
(currgbl[k]-256) ;
}
curpix = (int) currgb[0] * +
((int) currgb[l] * (int) Math.pow(2,8)) +
((int) currgbl[2] * (int) Math.pow(2,16));

if (pixi % 1000 == 0)

System.out.println("PIXI = "+pixi+" "+curpix);
newArray [pixi++] = curpix;
}

}

MemoryImageSource ims = new MemoryImageSource (xsize, ysize,
newArray, 0, ysize);
c_imgArea.setImageObj (c_imgArea.createImage (ims)) ;

public byte[][][] getImageData()
{

int width = 1;

int height = 1;

PixelGrabber pGrab;

width = m_xsize;
height = m_ysize;

// pixarray for the grab - 3D bytearray for display
int [] pixarray = new int[width*height];
byte []1[]1[] bytearray = new byte[3] [width] [height];

// create a pixel grabber
pGrab = new PixelGrabber (c_imgArea.getImageObj(),0,0,
width, height, pixarray, 0, width);

// grab the pixels from the image
try {

IDL Connectivity Bridges IDL-Java Bridge Examples

112

Note
The above text isfor the FrameTest class that accessesthe glowing_gas. jpg file
in the examples/data directory of adefault installation of IDL on a Windows
system. Thefile'slocation is specified as ¢ : \\ITT\ \IDL70\\EXAMPLES\ \DATA
in the abovetext. If the glowing gas. jpg fileisnot in the same location on
system, edit the text to change the location of this file to match your system.

Chapter 5: Using Java Objects in IDL

boolean b = pGrab.grabPixels();

} catch (InterruptedException e) {
System.err.println("pixel grab interrupted");
return bytearray;

}

// break down the 32-bit integers from the grab into 8-bit bytes
// and fill the return 3D array
int pixi = 0;
int curpix = 0;
for (int j=0;j<m_ysize;j++) {
for (int 1=0;i<m_xsize;i++) {
curpix = pixarray[pixi++];

bytearray[0][1i][j] = (byte) ((curpix >> 16) & Oxff);
bytearray[1][i]1[j] = (byte) ((curpix >> 8) & 0xff);
bytearray[2][1i]1[j] = (byte) ((curpix) & Oxff);

}
}
return bytearray;
}

public static void main(String [] args) {
FrameTest f = new FrameTest () ;
}

The FrameTest class uses two other user-defined classes, RSIImageArea and
RSlImageAreaResizeL istener. These classes help to define the viewing area and
display theimage in Java. Copy and paste the following text into afile, then saveit as
RSITmageArea.java.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Vector;
import java.io.File;

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 113

public class RSIImageArea extends JComponent implements
MouseMotionListener, MouseListener {

Image c_img;

int m_boxw = 100;

int m_boxh = 100;

Dimension c_dim;

boolean m_pressed = false;

int m_button = 0;

Vector c_resizelisteners = null;

public RSIImageArea (String imgFile, Dimension dim) {

c_img = getToolkit () .getImage (imgFile) ;
c_dim = dim;

setPreferredSize (dim) ;

setSize (dim) ;
addMouseMotionListener (this) ;
addMouseListener (this) ;

}
public void addResizelistener (RSIImageAreaResizelistener 1) ({
if (c_resizelisteners == null) c_resizelisteners = new Vector();
if (! c_resizelisteners.contains(l)) c_resizelisteners.add(l);
}
public void removeResizelListener (RSIImageAreaResizeListener 1) {
if (c_resizelisteners == null) return;
if (c_resizelisteners.contains(l)) c_resizelisteners.remove(l);
}

public void displayImage() {
repaint () ;

}
public void paint (Graphics g) {

int xsize = c_img.getWidth (null) ;
int ysize = c_img.getHeight (null);
if (xsize != -1 && ysize !'= -1) {
if (xsize != c_dim.width || ysize != c_dim.height) {
c_dim.width = xsize;
c_dim.height = ysize;
setPreferredSize (c_dim) ;
setSize(c_dim) ;

if (c_resizelisteners != null) {
RSIImageAreaResizelListener 1 = null;
for (int j=0;j<c_resizelisteners.size();j++) {

IDL Connectivity Bridges IDL-Java Bridge Examples

114 Chapter 5: Using Java Objects in IDL

1 = (RSIImageAreaResizeListener)
c_resizelisteners.elementAt(Jj);
1l.areaResized(xsize, ysize);
}
}
}
}
g.drawImage(c_img, 0, 0, null);

}

public void setImageFile(String fileName) {
c_img = null;
c_img = getToolkit () .getImage (fileName) ;
repaint () ;

}

public Image getImageObj () {
return c_img;

}

public void setImageObj (Image img) {
c_img = img;

repaint () ;
}
public void drawZoomBox (MouseEvent e) {
int bx = e.getX() - m_boxw/2;
bx = (bx >=0) ? bx :0;
int by = e.getY() - m_boxh/2;

by = (by >=0) ? by :0;
int ex = bx + m_boxw;
if (ex > c_dim.width) {
ex = c_dim.width;
bx = c_dim.width-m_boxw;
}
int ey = by + m_boxh;
if (ey > c_dim.height) {
ey = c_dim.height;
by = c_dim.height-m_boxh;
}

repaint () ;

Graphics g = getGraphics();

g.drawImage (c_img, bx, by, ex, ey, bx+(m_boxw/4), by+(m_boxh/4),
ex- (m_boxw/4) ,ey- (m_boxh/4), null);

g.setColor (Color.white) ;

g.drawRect (bx, by, m _boxw, m_boxh) ;

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 115

public void mouseDragged (MouseEvent e) {
drawZoomBox (e) ;

}

public void mouseMoved (MouseEvent e) {

Graphics g = getGraphics();

if (m_pressed && (m_button == 1)) {
drawZoomBox (e) ;

g.setColor (Color.white) ;
g.drawString ("DRAG", 10,10);

} else {

g.setColor (Color.white) ;

String s = "("+e.getX()+","+e.getY()+")";
repaint () ;
g.drawString (s, e.getX(), e.get¥Y());

}

public void mouseClicked (MouseEvent e) {}
public void mouseEntered (MouseEvent e) {}
public void mouseExited (MouseEvent e) {}

public void mousePressed (MouseEvent e) {
m_pressed = true;

m_button = e.getButton();

repaint () ;

if (m_button == 1) drawZoomBox (e) ;

}

public void mouseReleased (MouseEvent e) {
m_pressed = false;
m_button = 0;
}
}
And copy and paste the following text into afile, then save it as
RSIImageAreaResizelListener.java.
public interface RSIImageAreaResizeListener ({
public void areaResized(int newx, int newy) ;

}

Compile these classes in Java. Then either update the jbexamples.jar filein the
resource/bridges/import/java directory with the new compiled class, place

IDL Connectivity Bridges IDL-Java Bridge Examples

116

Chapter 5: Using Java Objects in IDL

the resulting compiled classes in your Java class path, or edit the VM Classpath
setting in the IDL-Java bridge configuration file to specify the location (path) of these
compiled classes. See " Configuring the Bridge” on page 75 for more information.

With the Java classes compiled, you can now accessthem in IDL. Copy and paste the
following text into the IDL Editor window, then save it as ImageFromJava .pro:

PRO ImageFromJava
; Create a Swing Java object and have it load image data

; into IDL.

; Create the Java object first.
oJSwing = OBJ_NEW ('IDLjavaObject$FrameTest', 'FrameTest')

; Get the image from the Java object.
image = oJSwing -> GetImageData()
PRINT, 'Loaded Image Information:'
HELP, image

; Delete the Java object.
OBJ_DESTROY, oJSwing

; Interactively display the image.
IIMAGE, image

END

After compiling the above routine, you can run it in IDL. This routine produces the
following Java Swing application.

is m
L
Close this example Loat new file

Figure 5-2: Java Swing Application Example

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 117

Then, the routine produces the following il mage tool.

e st s i o g sl bl peme

Figure 5-3: ilmage Tool from Java Swing Example

Note
After IDL starts the Java Swing application, the two displays are independent of
each other. If anew image isloaded into the Java application, the IDL ilmage tool

isnot updated. If the ilmage tool modifies the existing image or opens anew image,
the Java Swing application is not updated.

IDL Connectivity Bridges IDL-Java Bridge Examples

118

Chapter 5: Using Java Objects in IDL

Troubleshooting Your Bridge Session

The IDL-Java bridge provides error messages for specific types of operations. These
messages can be used to determine when these errors occur, how these errors happen,
and what solutions can be applied. The following sections pertain to these error
messages and their possible solutions for each type of operation:

“Calling System.exit”

“Errors When Initializing the Bridge”

“Errors When Creating Objects’ on page 119

“Errors When Calling Methods” on page 120

“Errors When Accessing Data Members’ on page 121

Calling System.exit

The Javamethod system. exit terminates the process in which the Java Virtual
Machine is running. When the Java Virtual Machineisinitialized by IDL,
terminating its process also terminates IDL.

Errors When Initializing the Bridge

The IDL-Java bridge initializes when the first Java object in IDL is created. If the
bridge is not configured correctly, an error message isissued and the IDL stops. The
following errors occur because the IDL-Java bridge cannot find the Java Virtual
Machine on your system. On UNIX, check the IDLJAVAB _LIB LOCATION
environment variable, and on Windows, check the IDLJAVAB LIB_LOCATION
environment variable. If this environment variable does not exist on your system,
createit and set it equal to the location of the Java Virtual Machine on your system.
See “Configuring the Bridge” on page 75 for details:

Bad JVM Home value: 'path', where pathisthe location of Java Virtua
Machine on your system.

JVM shared lib not found in path 'JVM LibLocation', where VM
shared lib is the location of the Java Virtual Machine shared library and JVM
LibLocation isthe value of the IDLJAVAB_LIB_LOCATION environment
variable.

No valid JVM shared library exists at location pointed to
by S$IDLJAVAB_LIB_LOCATION

Troubleshooting Your Bridge Session IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 119

e idljavab.jar not found in path 'path', where pathisthelocation of
the /resource/bridges/import/java directory inthe IDL distribution.

e Bridge cannot determine which JVM to run
e Java virtual machine failed to start

* Failure loading JvM: path/JvM shared 1ib name, Where pathisthe
location of the Java Virtual Machine and JVM shared lib hame is the name of
the main Java shared library, which isusualy 1ibjvm.so on UNIX and
jvm.d11l on Windows.

If IDL catches an error and continues, subsequent attempts to call the bridge will
generate the following message:

e IDL-Java bridge is not running

If this message occurs, fix the error and restart IDL.
Errors When Creating Objects

Thefollowing error messages can occur while creating a Javaobject in IDL. Possible
solutions for these errors are also provided:

* Wrong number of parameters - occursif OBJ NEW does not have 2 or
more parameters. Make sure you are specifying the class name twice; oncein
uppercase with periods replaced by underscores for IDL, and another with
periods for Java. See “ Java Class Namesin IDL” on page 84 for details.

* Second parameter must be the Java class name - occursif 2nd
parameter isnot an IDL string. When using OBJ_NEW, make sure the Java
class name parameter is an IDL string. In other words, the class name has a
single quote mark before and after it. See “ Java Class Namesin IDL” on
page 84 for details.

e Class Classname not found, where classname isthe class name you
specified in the first two parameters to OBJ NEW - occursiif the IDL-Java
bridge cannot find the class name specified. Check the spelling of each class
name parameter and make sure the class name specified for IDL isreferring to
the same type of object specified for the Java class name. If the parameters are
correct, check the Classpath setting in the IDL-Java bridge configuration file.
Make sure the Classpath is set to the correct path for the class files containing
the classname class. See “ Configuring the Bridge” on page 75 for details.

e C(Class classname is not a public class, whereclassnameisthe class
name you specified in the first two parametersto OBJ_NEW - occurs if

IDL Connectivity Bridges Troubleshooting Your Bridge Session

120

Chapter 5: Using Java Objects in IDL

specified classis not apublic class. Edit your Java code to make sure the class
you want to access is public.

Constructor class: :class(signature) not found,whereclassistheclass
name - occursif the IDL-Java bridge cannot find the class constructor with the
given parameters. Check the spelling of the specified parameters and ook in
your Java code to seeif you are specifying the correct arguments for the class
you are trying to create. Also check to ensure your IDL data can be promoted
to the datatypesin the Java signature. See “ Java Class Namesin IDL” on
page 84 for details.

Tllegal IDL value in parameter N, wherenisthe position of the
parameter - occursif anillegal parameter typeis provided. For example, an
IDL structureis not allowed as a parameter to an |DLjavaObject.

Exception thrown - occursif an exception occursin Java. Either correct or
handle the Java exception. The Java exception can be determined with the

IDL JavaBridgeSession object. See “The IDL JavaBridgeSession Object” on
page 94 for details.

Errors When Calling Methods

Thefollowing error messages can occur while calling methods to Javaobjectsin IDL.
Possible solutions for these errors are aso provided:

Tllegal IDL value in parameter N, wherenisthe position of the
parameter - occursif anillegal parameter typeis provided. For example, an
IDL structure are not allowed as a parameter to an |DLjavaObject.

Class class has no method named method, where classisthe classname
and method is the method name specified when trying to call the Java method -
occursif the method of given name does not exist. Check the spelling of the
method name. Also compare the method namein the Java class source file with
the method name provided when calling the method in IDL. See “What
Happens When aMethod Call Is Made?’ on page 87 for details.

class: : method (signature) is a void method. Must be called as a
procedure, Where class is the class name and method is the method name
specified when avoid Javamethod is called as an IDL function. Change the
syntax of the method call. See “Method Calls on IDL-Java Objects’ on

page 87 for details.

Method class: : method (signature) not found, where classisthe class
name and method is the method name specified when trying to call the Java
method - occursif the IDL-Java bridge cannot find the method with a matching

Troubleshooting Your Bridge Session IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 121

signature. Check the spelling of the method name. Also compare the method
name in the Java class source file with the method name provided when calling
themethod in IDL. Also check to ensure your IDL data can be promoted to the
Java signature. See “What Happens When a Method Call Is Made?’ on

page 87 for details.

Exception thrown - occursif an exception occursin Java. Either correct or
handle the Java exception. The Java exception can be determined with the

IDL JavaBridgeSession object. See “The | DL JavaBridgeSession Object” on
page 94 for details.

Errors When Accessing Data Members

The following error messages can occur while accessing data members to Java
objectsin IDL. Possible solutions for these errors are also provided:

Tllegal IDL value in parameter N, wherenisthe position of the
parameter - occursif anillegal parameter type is provided. For example, an
IDL structureis not allowed as a parameter to an |IDLjavaObject.

Class class has no data member named property, whereclassisthe
class name and property is the data member name specified when trying to
access the Java data member - occurs if the data member of the given name
does not exist. Check the spelling of the property name. Also compare the data
member name in the Java class source file with the property name provided
when accessing it in IDL. See “Managing IDL-Java Object Properties’ on
page 89 for details.

Property class: :property of type type not found, whereclassisthe
class name, property is the data member name specified, and typeis property’s
data type when trying to access the Java data member - occursif the IDL-Java
bridge cannot find the Java data member of the given type. Check the data type
of Java data member and make sure you are trying to use asimilar typein IDL.
See “ Getting and Setting Properties’ on page 90 for details.

Exception thrown - occursif an exception occursin Java. Either correct or
handle the Java exception. The Java exception can be determined with the

IDL JavaBridgeSession object. See “The IDL JavaBridgeSession Object” on
page 94 for details.

IDL Connectivity Bridges Troubleshooting Your Bridge Session

122 Chapter 5: Using Java Objects in IDL

Troubleshooting Your Bridge Session IDL Connectivity Bridges

Part Il: Exporting from
IDL

Chapter 6

Exporting IDL Objects

This chapter discusses the following topics.

Overview of Exporting IDL Objects 126
Wrapper Objects 127
Object Lifecycle 130
IDL ACCESS .. oviiiiiii i 132

IDL Connectivity Bridges

Parameter Passing and Type Conversion . 136
EventHandling..................... 139
Supported Platformsand IDL Modes. ... 140
Configuring Build and Client Machines . 142

125

126

Chapter 6: Exporting IDL Objects

Overview of Exporting IDL Objects

IDL’s Export Bridge technology allows you to easily integrate IDL technology into
external environments using the latest component based frameworks and technol ogy.
Unlike the Calable IDL interface, which lets you create applications that exchange
datawith IDL through IDL variables and issue commands to the IDL interpreter but
which requires familiarity with both C/C++ and IDL’s own internal semantics and
syntax, the export bridge technology allows you to create IDL objects that can be
called directly from Java and COM applications.

Interaction with IDL isthrough native Java and COM wrapper objects that are
generated for each IDL object with which client applications want to interact. The
wrapper objects manage all aspects of IDL loading, initialization, process
management, and cleanup, so you only need to be familiar with the client language
(for embedding the wrapper in the client application) and the basics of IDL (for
accessing and manipulating IDL data and processes).

The key to the Export Bridge is the Export Bridge Assistant, which generates these
native wrapper objects from IDL objects. For more information on the Assistant, see
“Using the Export Bridge Assistant” on page 147. For more information on wrapper
objects, see “Wrapper Objects’ on page 127.

Note
Before attempting to create and use wrapper objects, you should be familiar with
the information in “ Configuring Build and Client Machines’ on page 142.

Overview of Exporting IDL Objects IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 127

Wrapper Objects

The main concept used when exporting IDL objects for usein aclient application is

that of awrapper object. A wrapper object is a native-language object (COM or Java)
that exposes an IDL object’s behavior to aclient. The client interacts with an instance
of the wrapper object using native-language constructs and native-language data

types.

A wrapper object is built using the Export Bridge Assistant, in which you can choose
which methods and properties of the IDL abject to expose to the client. During the
wrapper creation, you must specify the language-dependent variable types for all the
parameters of the methods and properties to be exported. Thisis required since IDL
has dynamically typed variables, whereas Java and COM do not. You can leave some
properties or methods unimplemented in the wrapper object. For more information,
see “Using the Export Bridge Assistant” on page 147.

When the Assistant exports an IDL object, it creates alanguage-specific wrapper
object for the IDL object. The wrapper exposes methods and properties of the
underlying IDL object it wraps, and the client interacts with the wrapper. When the
client calls amethod or modifies a property on awrapper object, it istrandated
through a series of abstraction layers, and the underlying IDL object’s method is
called or property modified.

Every wrapper object has a collection of stock methods that are common to all
wrapper objects as described in this document. Additionally, the underlying
abstraction layers also handle creating the IDL object in another process. This use of
multiple processes provides for IDL object pooling and isolation. For more
information on these processes, see “IDL Access’ on page 132.

For COM object wrappers, a . d11 fileiscreated for nondrawable objects; an . ocx
fileis created for drawable objects. In addition, a . t1b fileis generated. The user
registers the component and references the COM type library and property accessors
(put/get) on the objects using native language constructs. A COM wrapper provides
an | Dispatch-based interface for client use.

For Java object wrappers, javafiles (. java) and classfiles (. class) are created.
The user references the Java class definition in their code projects and calls methods
and property accessors (set/get) on the objects using native language constructs. The
Javawrapper is exposed as a standard Java object.

The actual use of the generated wrapper objects depends on the structure and patterns
used for the client environment. For more information, see “Using Exported COM
Objects’” on page 189 and “Using Exported Java Objects’ on page 215.

IDL Connectivity Bridges Wrapper Objects

128 Chapter 6: Exporting IDL Objects

IDL Connector Objects and Custom Wrapper Objects

Accessto IDL functionality from an external programming environment is available
through connector and custom wrapper objects. The prebuilt connector wrapper
object provides the ability to communicate with the IDL process from and external
application. A custom wrapper object incorporates the functionality of your own IDL
object.

Connector Objects

The connector object (distributed with IDL) provides accessto IDL’s processing
capabilities through a number of methods that |et you communicate with the IDL
process. Using these methods, you can:

* Create and destroy instances of the connector object in your application
e Passdatato and retrieve datafrom IDL

e Get and set the IDL process name (see “IDL Access’ on page 132 for more
information)

* Execute |IDL commands

Although the connector object does not provide support for graphics, it provides an
easy way to access the processing power of IDL in an externa environment. See
“Stock COM Wrapper Methods” on page 192 (COM) and “ Stock Java Wrapper
Methods’ on page 218 (Java) for complete language-specific method reference
information. For examples using the connector object, see Chapter 10, “Using the
Connector Object”.

Note
There are no stock properties.

Custom Wrapper Objects

A custom wrapper object is an IDL object that is exported using the Export Bridge
Assistant. A custom wrapper object contains the stock methods (referenced above) in
addition to the specific methods and properties of the IDL object being wrapped. For
information about how to create an IDL object that can be successfully exported, see
Chapter 11, “Writing IDL Objects for Exporting”. Examples of creating and using
custom objects are available in:

e Chapter 12, “Creating Custom COM Export Objects’
e Chapter 13, “Creating Custom Java Export Objects’

Wrapper Objects IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 129

Note
For more information on the language-specific wrapper objects, see “ COM
Wrapper Objects’” on page 191 (COM) and “ Java Wrapper Objects’ on page 217
(Java).

Drawable and Nondrawable Objects

Custom wrapper objects can encapsulate either drawable or nondrawable IDL
objects. To create a custom drawable wrapper object, the IDL source object must
subclass from an IDLitWindow, IDLgrWindow, or IDLitDirectWindow visualization
class and implement a set of callback routines for event handling. When events are
detected for that window object, the callback methods are called with the information
specific to the event detected. By subclassing from one of the drawable objects, a
visualization written for usein an iTool visualization, Object Graphics display, or
Direct Graphics display will seamlessly operate in an external environment via an
export bridge. See “Exporting Drawable Objects’ on page 264 for important
information about creating and using drawable objects.

Nondrawable IDL objects are not derived from the IDLitWindow, IDLgrWindow, or
IDLitDirectWindow classes and do not render to the screen. Nondrawable IDL
objects do not have to inherit from any superclass, though derivation from
IDLitComponent is necessary to fire IDL notifications.

Note
Java drawabl e objects are not supported on the Macintosh OS X platform.

IDL Connectivity Bridges Wrapper Objects

130 Chapter 6: Exporting IDL Objects

Object Lifecycle

Object lifecycle means the duration in which an object is valid for use between the
timeitisinstantiated or created and then released or destroyed. There are two
lifecycles to understand when dealing with the Export Bridge's wrapper abjects: the
lifecycle of an instance of the wrapper object and the lifecycle of the underlying IDL
object being wrapped.

The lifecycle of awrapper object begins when an instance of the wrapper object is
created within the client’s application. However, the underlying IDL object is not
created until the CreateObject stock method is called on the wrapper object instance.
Every wrapper object has a set of stock methods, including CreateObject and
DestroyObject, which are used to manage the object lifecycle. (For more information,
see “Object Creation” and “ Object Release” below.)

Note
For Java objects, the method is createObject, which is a more Java-like method-
naming scheme. Assume that when this chapter mentions method calls, COM
capitalizes the first word, but Java does not.

When the CreateObject method is called, the underlying IDL processis created (if
necessary), and an instance of the IDL object is created. The lifecycle of the IDL
object continues until the DestroyObject stock method is called on the wrapper object
instance. The lifecycle of the client’s wrapper object instance continues until it is
released or destroyed using native language constructs.

Object Creation

Calling the CreateObject method on the wrapper object instance creates an instance
of the underlying IDL object and callsits Init method with the specified parameters,
if any. See “ CreateObject” on page 194 (COM) and “ createObject” on page 220
(Java) for language-specific calling conventions.

Object Release

Calling the DestroyObject method calls the underlying IDL object’s Cleanup method,
if present; then the underlying IDL object itself is destroyed. Calling DestroyObject
does not release or destroy the wrapper object instance within the client space. This
happens when the release method is called on the wrapper instance. See
“DestroyObject” on page 199 (COM) and “destroyObject” on page 223 (Java) for
language-specific calling conventions.

Object Lifecycle IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 131

Java uses a garbage-collection scheme to clean up memory. It isimportant that there
are no references to the wrapper object remaining in the client application; otherwise,
the Java Virtua Machine (JV M) will not garbage-collect the wrapper object.

Note
There can be a period of time between the call to the DestroyObject method and
when the wrapper instance itself isreleased. During that period, no method calls on
the wrapper instance can be made because the underlying IDL object no longer
exigts.

IDL Connectivity Bridges Obiject Lifecycle

132 Chapter 6: Exporting IDL Objects

IDL Access

Calling a method or accessing a property on awrapper object instance callsinto the
underlying IDL object’s method or property. Each wrapper object is associated with
an IDL process, controlled by the IDL main process, by giving it a process name
during wrapper creation by the Export Bridge Assistant. All wrapper objects that use
the same process name have their underlying IDL objects created within the same
IDL process. For each wrapper object that provides a unique process name, a new
IDL processis created.

AsaCOM or Java devel oper, you do not need to worry about IDL process creation or
destruction. Creating a new object creates a new process for it (unless a process
dready exists and the new object is being added to it), and destroying the last object
in a process also destroys the process.

The code for the IDL object must be available because the bridge's process layers
call it. The wrapper does not contain the IDL object, only provides an interface for it,
and if you modify the IDL object after generation of its wrapper object, the wrapper
might not work as expected. For more information, see “Modifying a Source Object
After Export” on page 181.

Note
See “Configuring Build and Client Machines’ on page 142 for information on
setting up machines for building and using wrapper objects.

Note
Stock wrapper methods allow you to work with IDL processes. For COM, see
“GetProcessName” on page 205 and “ SetProcessName” on page 207. For Java, see
“getProcessName” on page 228 and “ setProcessName” on page 231. To take effect,
you must set a process name before creating an object in order for the object to exist
in that process.

Consider the following diagram:

IDL Access IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 133

Client Process
10L Process: X
EB ap per et a1
Obj A nc IDL Obj: A
Mame: ¥ \ W&'E?'LEF ™ hstance #1
EB w3
ObjB hstance #1 DL Ob: B
Process Mame: ¥ "-“-'I:"EIJ_:'IEEF ™ hstance #1
EB ap per -
Obj C hui;;'lﬁe #1 I0L Okj: C I0L Process: ¥
Processhame: ¥ \ Db?l:ll;r 7| hstance #1
hstanee #2 f
| oL ob:
WI:"EE'FI?F hstance #2
h=tance #3 10L Obj: C
Mrapper & hztance #3
Obj ©
EH ;E_EEPEF hemnce #1 I0L Process: =
Il 10L Obj: D
ProcessMame: Z \ m::"EIj:'FBEr * hstancfa #
EB ap per
Obj E htance #1 IDL Obj: E
ProcessName : Z "'""::"Elj?l:l'zer nstance #1

Figure 6-1: Example of Wrapper and Process Use

In the diagram, the client has created instances of several different wrapper objects:
A, B, C, D, and E. Wrapper objects A and B have their process name set to X, and
thus all instances of A and B create their underlying IDL objectsin the same IDL
process called X. Wrapper object C uses a different process, Y. Since there are three
instances of the same wrapper object C, there are three instances of the IDL object C
created in the process, Y. Wrapper objects E and D use an entirely different

process, Z.

IDL Connectivity Bridges IDL Access

134

Chapter 6: Exporting IDL Objects

IDL Ownership and Blocking

During a method call, the client-side wrapper object instance becomes the owner of
the IDL process that contains the underlying IDL object and remains the owner until
the method call returns. An IDL process can only have one owner at atime. If thereis
acurrent owner of an IDL process and another wrapper object attempts to access the
same IDL process, an IDL busy indication is returned through the wrapper object.

COM and Java handle error conditions differently: COM method calls return an
HRESULT error value, whereas Java method calls throw an exception. In COM, this
resultsin an IDL_BUSY condition; however, in Java, the requests are queued so that
no busy condition occurs. See “Error Handling” on page 211 (COM) and “Error
Handling” on page 242 (Java) for more information.

However, if one wrapper object instance owns a particular IDL process, another
client processis free to make calls on other wrapper object instances that map to
different IDL processes. In other words, the client can have multiple method calls
executing at the same time as long as each method call maps to a different process.

For example, using the diagram in Figure 6-1, if Instance #1 of wrapper object A is
the current owner of the IDL process named X, and then another thread calls a
method on Instance #1 of wrapper object B, it will return an IDL busy error, since it
will try to use the same process as the wrapper object A. However, another thread can
call amethod on any instances of wrapper objects C, D, and E since they mapto a
different processes that are not currently owned.

IDL Licensing Modes

IDL Access

By default, when aclient COM or Java application initiaizesthe IDL object, the IDL
export bridge checks to see what type of license is avail able on the client machine. If
an IDL development license is available, it is used and the IDL object runsin full
development mode. If a development license is not found, the export bridge checks
for aruntime license; if the IDL object runs in runtime mode, normal runtime
limitations (no compilation of . pro code, for example) are enforced. If no
development or runtime license is found, the IDL object runsin Virtual Machine
mode; normal Virtual Machine limitations (no compilation of .pro code, use of
EXECUTE disabled, etc.) are enforced.

COM and Javaapplications can explicitly set IDL processinitialization parametersto
specify which licensing mode the IDL object will use. See the description of the
initializer argument to the createObject method for detailsoninitializing IDL objects
from a Java application. See the description of the flags argument to the

IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 135

CreateObjectEx method for details on initializing IDL objects from a COM
application.

IDL Connectivity Bridges IDL Access

136 Chapter 6: Exporting IDL Objects

Parameter Passing and Type Conversion

The following topics contain important information that must be kept in mind when
passing abjects, arrays and variables between IDL and an external programming
environment:

e “Object Reference Use” below
e “Array Order Conversion” on page 137
e “Type Conversion” on page 137

Object Reference Use

It is possible to pass an object reference to another wrapper object as a method
parameter, with the following restrictions.

» The object reference must be a reference to another Export Bridge wrapper
object instance of the same wrapper language type (COM or Java) — that is,
COM to COM or Javato Java

* You cannot passin object references to non-Export Bridge wrapper objects

* Theobject referenceis“in-only,” meaning that methods and properties cannot
return or modify areference to an object

» Both objects (the object being referred to and the object using the reference)
must have their underlying IDL objects contained within the same IDL
process.

For example, using the diagram in Figure 6-1, wrapper object A can have a method
that takes an object reference. But the only valid object reference that can be specified
isto aninstance of wrapper object B, since both have their underlying IDL objects
living in the same process, X.

If you attempt to passin an object reference to an IDL object contained in different
processes, the method call returns an error. An error is also returned if you attempt to
pass in an object reference that does not reference an instance of an Export Bridge
wrapper object.

Arrays of Object References

You can also create an array of object references aslong as all the objects being
referenced are in the same IDL process as the object using the array.

Parameter Passing and Type Conversion IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 137

When creating an array of object references for COM, it must be defined asa
SAFEARRAY of variants, with each variant containing the IlUknown or I Dispatch
pointer to a COM or ActiveX wrapper object instance.

When creating an array of object references for Java, it must be defined asa
JDLArray containing an array of JIDLObjectl references.

Array Order Conversion

A method parameter or property value can be an array. When dealing with
multidimensiona arrays, one must always be aware of the array ordering. See
“Multidimensional Array Storage and Access’ on page 493 for a compl ete discussion
of the issues.

However, you must take into account the array ordering of the client-side array and
the array order expected by IDL. The wrapper objects will convert array ordering
when designated to do so in the Export Bridge Assistant. During wrapper object
construction, the Export Bridge Assistant lets you designate a method parameter as
an array and then indicate if the array needs to be converted (see “ Converting Array
Majority” on page 165 for details). If the array parameter is marked for conversion,
the client array is converted during the method call before being sent to the
underlying IDL object. If the parameter is also marked with In/Out mutability
(meaning that the parameter is not constant and can be set by the caller and pass the
value back to the caller), the array is also converted on the way back to the client. For
more information on mutability, see “Parameter Information” on page 176.

However, there are certain cases where arrays are automatically converted and the
user does not have the option to designate conversion. When calling the
GetldlVariable and SetldlVariable methods on a wrapper object, or when an IDL
function returns an array value, the array is always converted into the order expected
by COM. (For Java, the user has the option to designate conversion.)

Type Conversion

IDL isadynamically typed language that lets variables change type after creation.
Javaand COM are strongly typed languages, which require avariable to be given a
fixed type when it is created. This difference can lead to type-conversion errors
during method calls because the IDL object can redefine the datatype of a parameter.
When a method parameter is marked In/Out, the updated parameter value is returned
to the client upon return of the method. During the method return, the wrapper
compares the data type of the input value against the data type of the output value.

IDL Connectivity Bridges Parameter Passing and Type Conversion

138

Chapter 6: Exporting IDL Objects

The wrapper will perform aloose type conversion in which:

* Any scalar type can be converted to any other scalar type (e.g., ashort integer
to along integer)

e A scalar string to ascalar string (e.g., astring of one length to adifferent
length)

* Anarray toan array (e.g., any dimensionality and type to any other
dimensionality and type)

L oose type conversion attempts to convert the variables returned by the wrapped IDL
object to the types expected by the wrapper object.

A data conversion error is returned when the above rules are not met. For example:
e A scalar changesto astring
e A scalar changesto an array
e A string changesto a scalar
e A string changesto an array
e Anarray changesto ascalar
* Anarray changesto astring
See “ Supported Data Types’ on page 166 for data types supported by COM and Java.

IDL Error State and Successful Method Return

If your client creates an instance of a COM/Java Export Bridge wrapper object, and
calls an object method whose code throws an error, the wrapped method will return
an error unless the referenced code resets the internal IDL error state.

In this circumstance, it is best if the wrapped code catches its own error, handlesiit,
and resets the IDL error state. You can reset the IDL error state in the error handling
catch block by calling the M ESSAGE procedure:

MESSAGE, /RESET

This procedure call sets the 'ERROR_STATE system variable back to the
“success” state.

Parameter Passing and Type Conversion IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 139

Event Handling

There are three main types of eventsthat the clients of wrapper objects care about:
user-interface events (e.g., mouse click and mouse move), IDL output, and IDL
notifications. User-interface events are only available for drawable wrapper objects.
The IDL output and notifications are available for drawable and nondrawable
wrapper objects. The mechanism for the clients to receive wrapper-object eventsis
different for the different wrapper-object languages, as described in “Event
Handling” on page 208 (COM) and “Event Handling” on page 232 (Java).

An IDL notificationisaway for an IDL object to relay information back to wrapper
object instances whilein the middle of amethod call. This can be used for things like
updating the status of lengthy operations. In order for awrapper object to receive an
IDL noatification, the IDL object must inherit from the IDLitComponent object, and
the client must subscribe to the wrapper instance's events. All IDL graphic objects
automatically inherit from IDLitComponent. For nondrawable objects, if the IDL
object needs to send out a notification, it must explicitly inherit from
IDLitComponent.

The IDLitComponent::NotifyBridge method sends the notification. It takes any two
strings as parameters. For example, in the pro code below, assume that the object is
derived from IDLitComponent and the user wants to inform the client of the status of
alengthy computation.

pro IDLmyObject: :DoLongComputation
for T = 0, 10000000 do begin
percentDone = CalcPercentDone ()
; Send client some status
self->NotifyBridge, 'Completion Status', STRING (percentDone)

endfor

end

Note
IDL objects must derive from IDLitComponent if IDL notifications will be used.

IDL Connectivity Bridges Event Handling

140 Chapter 6: Exporting IDL Objects

Supported Platforms and IDL Modes

The IDL Export Bridge technology is available on the following platforms:

Windows | OS X Linux Solaris
Feature 32-bit | 64-bit | 32-bit | 32-bit | 64-bit | 32-bit | 64-bit
COM Object —Export (via o
Export Bridge Assistant)
Java Object —Export (via Export . . o?
Bridge Assistant)

Table 6-1: Export Bridge Platform Support
aGraphical Java objects cannot be exported under Macintosh OS X.
Supported Compilers

The IDL Export Bridge requires the following compilers for building COM and Java
wrapper objects.

BiERREr Claee! Compilers Supported

Type

COM Use Visua Studio 2005 for both the machine running the
Export Bridge Assistant and the machine building an
application using the wrapper objects (if different). VB.NET,
C#, C++ Managed, and C++ Unmanaged are all supported.

Java Use the Java Developer’s Kit (JDK) and Java Runtime

Environment (JRE) version 1.5 or higher

Note - On Macintosh machines, the version of Javainstalled
along with the operating system should be sufficient,
whatever its version number.

Table 6-2: Export Bridge Wrapper Object Compiler Support

Supported Platforms and IDL Modes IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 141

Client Machine Requirements

Client machines (those running applications that incorporate a wrapper object) have
separate requirements. See “Configuring the Machine Running the Wrapper Client”
on page 144 for details

Output Destinations

Windows allows output to both COM and Java. On other supported platforms, only
Javais supported (not COM). For a COM project on non-Windows platforms, the
Build menu in the Export Bridge Assistant is disabled.

IDL Licensing

Build machines must have an IDL license and an Export Bridge Assistant license.
Client machines must have either an licensed installation of IDL or a copy of the IDL
Virtual Machine. (Note that the ExecuteString methods are disabled for applications
running in the IDL Virtual Machine.)

Export Bridge Assistant Licensing

The Export Bridge Assistant isan IDL application. While the Assistant will run and
alow you to create export projectswith any IDL license, an additional-cost licenseis
required to build the Javaor COM native wrapper objects.

The Export Bridge Assistant cannot be run in runtime mode or in the IDL Virtual
Machine. Attempting to run the Assistant in various licensing modes will have the

following effects:
* Runtime mode — the Assistant will issue an error and exit

» IDL demo mode or no IDL license — the Save and Build operations are
disabled

* No Export Bridge Assistant license — the Build operation is disabled without
an Assistant licence feature (id1_bridge_assist)

IDL Connectivity Bridges Supported Platforms and IDL Modes

142 Chapter 6: Exporting IDL Objects

Configuring Build and Client Machines

This section describes how to configure build machines:
e Machinesthat run the Export Bridge Assistant

* Machinesthat use the wrapper objects created by the Assistant in an external
development environment (if different)

and client machines:

e Machines running applications that rely on wrapper objects
As adeveloper of applications that use wrapped IDL objects, you should be familiar
with al of the information in this section.

Configuring the Machine Running the Assistant

The computer that runs the Export Bridge Assistant must meet the following
requirements:

Item Description

Genera Requirements » IDL must beinstalled.

» TheIDL source object does not need to be in the
IDL path to be used by the Assistant, but does to
be used by the client application (see below).
Any IDL code referenced by the source object
must bein the same directory asthe source object
or inthe IDL path.

» Drawable IDL objectsthat inherit from
IDLgrwWindow, IDLitWindow, and
IDLitDirectWindow have specia requirements
as described in “Requirements for Drawable
Objects’ on page 264.

COM Requirements Visual Studio must be installed.

Java Requirements Javamust beinstaled, and javac must bein the
execution path.

Configuring Build and Client Machines IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 143

Note
See “ Supported Platforms and IDL Modes’ on page 140 for supported COM and
Javaversions.

Configuring the Machine Using Wrapper Objects

If different from the machine running the Assistant, the machine using wrapper
objectsin application development must meet the following requirementsin addition
to the requirements listed for the Assistant (“ Configuring the Machine Running the
Assistant” on page 142).

COM Registration Requirements

The wrapper object generated by the Assistant must be registered using regsvr32
<wrapperName> . DLL for non-drawable objects or regsvr32
<wrapperName>.0CX for drawable objects. To register afile:

1. Seect Start — Run, type cmd in the text box and click OK to open the
Command Prompt window.

2. Usethe cd command to change to the directory containing the file to be
registered.

3. Enter regsvr32 <wrapperName>.DLL Of <wrapperName> . OCX t0 register
thefile.

A message box will report the successful registration of thefile.

Note
If needed, you can unregister afile by using the -u flag asin
regsvr32 -u <wrapperName>.DLL

See “Wrapper Generation Example” on page 182 for a short exampl e that exports and
usesasimple IDL object.

Java Requirements

Javamust be ingtalled. Both javac and java must be in the execution path.

Note
The Java runtime environment installation does not provide javac.

For compilation and execution, thefile

IDL Connectivity Bridges Configuring Build and Client Machines

144 Chapter 6: Exporting IDL Objects

IDL_DIR/resource/bridges/export/java/javaidlb. jar
must be in the Java classpath.

For Java routines to use the exported java objects, they must use the following import
statement:

import com.idl.javaidl.*

On UNIX systems, the LD _LIBRARY _PATH environment variable
(DYLD_LIBRARY_PATH on Mac OS X) must include the IDL
bin.<platform>.<arch> directory. The PATH environment variable must also
include this directory.

The IDL_PATH environment variable must include the directory containing the IDL
source object source or SAVE file. In most cases, the variable should also include the
default IDL library so that IDL routines can be resolved.

See “Wrapper Generation Example” on page 182 for a short example that exports and
usesasimple IDL object.

The bridge_setup Script

On UNIX platforms, source the <1pr,_DIR>/bin/bridge_setup Script to set the
appropriate valuesfor the IDL_DIR, LD_LIBRARY_PATH, and CLASSPATH
environment variables. (The <1pr,_DTR>/bin directory also containsversions of this
script for use with the korn or bash shells.)

Note
On 64-hit Solaris platforms, the bridge_setup script will specify the 32-bit
version of IDL by default, since most Solaris systems use the 32-bit version of Java
as the default. To explicitly specify that the 64-bit version of IDL should be used,
set the IDL_PREFER_64 environment variable. (The value to which this
environment variable is set is not important; if it is defined at all the 64-bit version
of IDL will be used.)

Thereisno bridge_setup script for Windows platforms. In most cases, setting the
CLASSPATH environment variable (or specifying the class path along with the java
or javac command at the command line) is the only configuration necessary.

Configuring the Machine Running the Wrapper Client
The machine running the COM or Java application that uses a wrapper object must

have either alicensed version of IDL or a copy of the IDL Virtual Machine installed.
(Note that applications that use the ExecuteString method will not work in the IDL

Configuring Build and Client Machines IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 145

Virtual Machine.) Additionally, the IDL .pro or . sav file containing the object
definition must be in the IDL path. This requirement also appliesto any IDL files
called by code in the source object.

COM Applications
For a COM application:

» Theexecutablefile (.exe), and any .d11s generated during the Visual Studio
build process must be made available to the client.

* The.dll or .ocx file associated with a custom wrapper object must be

registered on the client machine. The client need not have Visual Studio
installed.

Note
Applications using the connector wrapper object need not register the

connector object .d11. Thisfileis automatically registered upon IDL
installation.

» Foranapplication builtina.NET language (such as Visual Basic .NET or C#),
the Microsoft .NET Framework must be installed on the client machine.

Java Applications

For a Java application:

e The Java Runtime Environment (JRE) must be installed (see “ Supported
Platforms and IDL Modes’ on page 140 for supported version information)

» Theexecutable.class file must be made available to the client

* IDI,_DIR/resource/bridges/export/java/javaidlb.jar must bein
the Java classpath

Note
On UNIX systems, it is advisable to execute the bridge_setup script on the client
machine as part of the Java application initialization. This ensuresthat IDL is

properly configured on the client machine. See “ The bridge_setup Script” on
page 144 for details.

IDL Connectivity Bridges Configuring Build and Client Machines

146 Chapter 6: Exporting IDL Objects

Configuring Build and Client Machines IDL Connectivity Bridges

Chapter 7

Using the Export Bridge

Assistant

This chapter discusses the following topics.

Export Bridge Assistant Overview 148
Runningthe Assistant 149
UsingtheAssistant 150
Working withaProject 157
BuildinganObject 161
ExportinganObject 162

IDL Connectivity Bridges

Specifying Information for Exporting ... 164
Information Skipped During Export 178
Exporting a Source Object’s Superclasses 180
Modifying a Source Object After Export . 181
Wrapper Generation Example 182

147

148 Chapter 7: Using the Export Bridge Assistant

Export Bridge Assistant Overview

The Export Bridge technology lets an IDL object be accessed from Java or COM
through the use of wrapper objects. The Export Bridge Assistant helps to automate
the process of creating the Java or COM wrapper object from the IDL source object.

The Assistant obtains as much information as possible about the IDL object directly
from IDL. Since IDL isloosely typed, the return types of functions and the types of
object properties and method parameters cannot be determined from IDL. Other
information such as the output destination (Java or COM) and destination specific
properties are not available from IDL and must be specified by the user.

The Assistant lets you specify the information described above for each item that isto
be exported. Note that you can choose not to export some properties, methods, or
parameters of the IDL source object. Any items that are both fully specified and
marked for export are built in the exported Java or COM object.

The Export Bridge Assistant can produce an IDL SAVE file containing a
specification of the IDL source object that isto be exported. This SAVE file, called a
wrapper definition file, preserves the state of your work between invocations of the
Assistant. You can stop the Assistant before the specification is complete and reopen
it a alater time to continue building.

Note
There are special requirements for IDL source object that are to be exported
including datatype limitations, structural requirements, and methods that need to be
included for drawable objects. See Chapter 11, “Writing IDL Objects for
Exporting” for complete details.

Platform Support and Machine Configuration

See “ Supported Platforms and IDL Modes’ on page 140 for information on the
platforms on which you can use the Export Bridge Assistant to create wrapper
objects. See “Configuring Build and Client Machines’ on page 142 for details on
configuring computers to build and run wrapper objects.

Export Bridge Assistant Overview IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 149

Running the Assistant

Start the Export Bridge Assistant from the IDL Workbench by entering the command
IDLEXBR_ASSISTANT

a the IDL command line. For more information, see“IDLEXBR_ASSISTANT”
(IDL Reference Guide).

IDL Connectivity Bridges Running the Assistant

150

Using the Assistant

You can use the Export Bridge Assistant to create COM or Javawrapper objects from

Chapter 7: Using the Export Bridge Assistant

native IDL objects. The Assistant is a system-wide dia og; for information on
launching it, see “ Running the Assistant” on page 149.

il Export Bridge Assistant =] E3
File Edit Build Help
=]

Change log | Export Iogl Build Iogl

welcome to the Export Bridge Assistant. ;I

'r'ou can uze the assistant to build a Java or COM object

from an IDL object. The azzistant retrieves information

zuch az method names and parameter names from the [DL object,
and then you can specify the remaining information needed

ta build the native object, such as data twpes of functions

and parameters.

To start a new project, select one of the following menu options
and zpecify the IDL source object [either a .pro or .sav file containing
the object definition file].
File->Mew project-»Java...
to create a Java object or
File->Mew project-»COM. ..
to create a COM object.

The assistant will dizplay a tree view of the DL source object's
properties, methods, and method parameters. Select items in the tree
and modify properties in the property sheet to complete the specification
of selected items.

Mot all methods or parameters need to be exported. Once the desired
items are fully specified and marked for export, you can uze the
Build Object menu to create the native Java or COM object.

Changes made in the assistant are listed below.

L o

Figure 7-1: The Export Bridge Assistant When Launched

Figure 7-1 shows the Assistant when it isfirst launched, without a project open.

Using the Assistant

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 151

Understanding the Assistant Interface

The Assistant consists of three panels, amenu bar, and atoolbar. The panelsare atree
view of the current project (if any), a property view of the current selected item (if
any), and aview of the three informational logs available in the Assistant.

The Menu Bar

The following menus appear on the Assistant menu bar:

* File
o Edit
e Build
e Hedp

The File menu, shown in Table 7-1, contains tools for creating, importing, exporting,
and saving projects.

Menu Selection Function

New Project For COM or Java (selected in a sub-menu), creates a new
project by selecting an IDL sourcefile (.pro) or SAVE file
containing an object definition. See “Working with a Project”
on page 157 for details.

Open Project... Opens an existing project. See “Opening a Project” on
page 157 for details.

Close Project Closesthe current project, prompting you to save any unsaved
changes.

Save Project Saves the current project to an IDL SAVE file. If the project

has not been previously saved, the behavior matches that of
Save Project As... (below). See” Saving aProject” on page 157
for details.

Save Project As... Prompts you to select aname for the project’s IDL SAVE file.
See “Saving a Project” on page 157 for details.

Revert To Saved Prompts you to discard changes made to the current project
and revert to its most recent saved version.

Table 7-1: The File menu

IDL Connectivity Bridges Using the Assistant

152

Chapter 7: Using the Export Bridge Assistant

Menu Selection

Function

Update From Source...

Prompts you to select an IDL source file or SAVE file
containing an object definition, which is compared to the
source object in the current project. See “ Updating a Project”
on page 158 for details.

SavelLog...

Saves the contents of the current log (change, export, or
build). The menu selection’s name changes to reflect that of
the current log (e.g., Save Change Log...). See “The Logs
Panel” on page 154 for details.

Closesthe Assistant, prompting you to save any unsaved
project changes.

Table 7-1: The File menu

The Edit menu contains only one operation: Clear L og, which clears the contents of
the current log (change, export, or build). The operation’s name changes to reflect
that of the current log (e.g., Clear Change Log). See “The Logs Panel” on page 154

for details.

The Build menu contains only one operation: Build Object, which builds the current
object. See “Building an Object” on page 161 for details.

The Help menu opens the online help for the following topics:

e Using the Export Bridge Assistant

e Configuring the Export Bridge Assistant

e Exporting IDL objectsto COM and Java

e Using exported COM objects

e Using exported Java objects

* HelponIDL
The Toolbar

The following buttons appear on the Assistant toolbar:

e Open Project

e SaveProject
e Build Object

Using the Assistant

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 153

These buttons match the menu operations of the same name. See“ The Menu Bar” on
page 151 for details.

The Project Tree View

The project tree displays a hierarchical view of the project and the contained IDL
source object with its properties, methods, method parameters, and superclasses. (See
“Specifying Information for Exporting” on page 164 for more information.) Clicking
on aniteminthetreefillsin the property sheet for that selected item.

Multiple selection is enabled. This can be very useful for setting object properties
efficiently. A property isonly applied to a selected item if it implementsthe property,
allowing a selection to span disparate items.

El{ﬂ |DL Export Bridge Project for Java
=25 idlitdirectwindowexample

425 Methads

=53 Superclasses

E{ﬂ IDLITDIRECTWINDOW
=25 Properties
- B wWINDDW_INDEX
=-£3 Methods

Figure 7-2: The Project Tree View of the Export Bridge Assistant

The icons next to itemsin the project tree indicate their readiness for export to a
wrapper object. For more information, see “Exporting an Object” on page 162.

IDL Connectivity Bridges Using the Assistant

154 Chapter 7: Using the Export Bridge Assistant

The Property Sheet View

The property view displays the properties of items selected in the project tree view.
You can change the properties using this view. Multiple selection is not enabled.

WAMDIDW_[MDE
Type JIDLMumber
Bray Falze
Corert majority | True
E xport True

Figure 7-3: The Property Sheet View of the Export Bridge Assistant

The Logs Panel

The logs panel has three tabs: Change Log, Export Log, and Build Log.
The Change Log

Thistext field initially contains welcome text that is cleared when a project is created
or closed. When aproject is open, the field displays arunning log of property settings
made by the user, including property changes and the following actions: Save
Project, Update From Source, and Revert To Saved Project. Figure 7-4 shows an
example of achangelog in progress.

Thetext is saved with the project, and when an existing project is opened, it isre-
displayed.

Change log |E:-:|:u:|rt In:ngl Build In:ngl

STYLE: Type: JIDLMumber

STYLE: &rray: Falze

TESTARGTIMLOMNG: Mutability: 1r
TESTARGTINLOMG: Type: JIDLMumber
TESTARGTINLOMG: Array: Falze
TESTFUMCTIONZ: Return type: JIDLMumber
TESTFUMCTIOMZ: Array: Falze

Figure 7-4: The Change Log of the Export Bridge Assistant

Using the Assistant IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 155

The Export Log

Thistext field contains a description of the items that are to be exported (those items
that are both fully specified and marked for export). It is cleared when a project is
created or closed. Figure 7-5 shows an example of an export log in progress.

Thetext is saved with the project, and when an existing project is opened, it isre-
displayed.

Change log Export log |Eui||:| Il:ugl

The following items are both marked for expart and
fully zpecified.

IDLE*BRTESTI
Froperties
STYLE
Methodz
TESTPROCEDURETHULT
TESTARGTIMLOMG
TESTFUMCTIOMZ

Figure 7-5: The Export Log of the Export Bridge Assistant
The Build Log

Thistext field displays the results of the build operation. It is cleared when a project
is created, opened or closed. Figure 7-6 shows an example of abuild log in progress.

IDL Connectivity Bridges Using the Assistant

156

Chapter 7: Using the Export Bridge Assistant

Thetext is saved with the project, and when an existing project is opened, it isre-

displayed.

Change log | Export log Build log

The output directary iz
C:A%Program Filez\ T THDLEdexrampleshtest
The fallowing filez have been generated:

helloworldes. dll
helloworldes. b

The component should be registered on the machine that wil
run the native application. The component can be registered
with regevr3z2,

The fallowing information might be important for application
developers using this component;

FroglD: IDLEA. hellowarldes. 1
YerzionlndependentProglD: IDLES. helloworldes
Interface Mame: Thelloworldes

CoClasz Mame: helloworldes

Figure 7-6: The Build Log of the Export Bridge Assistant

Note

The ProglD identifies the exported IDL object, and is displayed on the Build Log
tab. You may need thisidentifier if you handle the exported object directly in a
custom application.

Using the Assistant

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 157

Working with a Project

The Export Bridge Assistant works with a project that contains an IDL source object
to be exported. You can create a new project or open an existing one, modify or
update it, and save it.

Opening a Project

If you are creating a new project, you have the choice of making it COM or Java. For
both object types, you must specify the IDL source object by selecting either an IDL
sourcefile (<idlobject>__define.pro) or a SAVE file containing an object
definition (<id1object>__ define.sav).

To open an existing project, you must select an existing wrapper definition file
(<idlobject>_<dest>_wrapdef . sav) created by a previous invocation of the
Assistant.

Note
You can create or open a COM project on UNIX, but you cannot build any COM
objects. See “Output Destinations” on page 141 for details.

Once the source object is specified, the IDL object is resolved. Note that the source
object file does not have to be in the path. However, any supporting or referenced
source file must be in the same directory or in the IDL path so that it can be resolved.

When the object is resolved, the Assistant populates the project tree with property
names, routine names, and parameter names from the object. You can use thisview to
specify information about the object necessary for creation of the wrapper objects.

If you create a new project or open an existing project while you already have a
project open, you will be prompted to save any changes made to the current project
before the new or existing project opens. You can cancel instead to continue working
on the current project.

Saving a Project

You can save your work in the current project at any time. The Assistant stores the
information in an IDL SAVE file. You can save a project without having an Export
Bridges license (see “ Running the Assistant” on page 149 for details).

If you are saving aproject for the first time, the Assistant prompts you for the SAVE
file's name and location. The default name is based on the source object class name

IDL Connectivity Bridges Working with a Project

158 Chapter 7: Using the Export Bridge Assistant

asfollows. <idlobject>_ <dest>_ wrapdef.sav, where <dest> iseither java
Or com.

Note
Thisfilename is the default created by the Assistant, but you can save project files
in SAVE files with any name.

Updating a Project

You might have used the Assistant to generate awrapper object’s specification, make
changes to the original IDL source object, and want to merge these changes into the
existing object specification without losing the initial work done in the Assistant.
You can do this by bringing in the modified source object and having the Assistant
respond with both automated and manual update functionality.

The following list provides some common cases where an update might be useful:
e Changesto the IDL object
e Changesto method namesin IDL object, parameters unchanged
* Methods added
* Methods removed
* Method parameters added
* Method parameters removed
» Changes to object specification

» Method data modified (e.g., from function to procedure, the return type,
whether the return value is an array or not)

e Parameter data modified (e.g., parameter type, array)

When you select an object definition using the File — Update From Source...
command, the Assistant compares it to the object in the current project and ensures
that the object class of the file selected matches the class of the existing project.

Updating an existing project with an IDL source object redefines the project based on
the definition of the source object. When applicable, attributes from the existing
project are applied to matching items from the update. This application takes place
both automatically in the Assistant and manually through interaction with a dialog
that launches to guide the update.

First, the project tree is populated with routine names and parameter names from the
updated source (the master). Next, information from the IDL source object is

Working with a Project IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 159

compared to the existing definition. Property, method, and parameter information is
copied when the item is present in both existing definition and the updated source
object. The matching functionality istriggered if there are both added and removed
methods. The matching dialog is displayed (if applicable) so you can match names of
methods that were renamed. If matched, parameter information that matches exactly
is copied to the new wrapper definition.

The following dialog shows a method that has been renamed in the updated source
(marked with'_cHANGED'). The method TESTPROCEDURELIMULT from the old
methods has been linked to the new method
TESTPROCEDUREIMULT_CHANGED, which updates the display of linked
methods.

Export Bridge Assistant Update : Resolye Method Differe ﬂ

Old methodz Mew methods

FUMCTIOMMEW

Lk M ethmds

Linked Methods
TESTPROCEDURETMULT ==: TESTPROCEDURETMULT CHANGED

Unlink selected

i L

Cancel | [lane |

Figure 7-7: The Export Bridge Assistant’'s Update Dialogue

IDL Connectivity Bridges Working with a Project

160

Chapter 7: Using the Export Bridge Assistant

Table 7-2 summarizes the details of object modification and project update.

Object E.ff_ect .Of : Manual Action Automatic Action
Modifications Modlflc_:auon n Taken Taken
Assistant
Method renamed, Both Methods Added Object method added, | New method added,
parameters and Methods Removed | object definition information from old
unchanged aretrue method missing; you | method copied to new
can match old method | method, old method
name with new removed.
method name
M ethod added Object has a method If Methods Removed | New method added
not in the project isfalse, add method,;
otherwise, seethe
method-renamed
information (above)
Method removed Object lacksamethod | If Methods Added is | Old method removed

in the project false, remove method;
otherwise, seethe
method-renamed
information (above)
Parameter renamed | N/A None New parameter added,
old parameter removed
Parameter added Updated object has a None New parameter added
parameter not in the
project
Parameter removed | Object lacks a None Old parameter
parameter in the project removed
Property added Updated object has a None New property added
property not in the
project
Property removed | Object lacks a property | None Old property removed

in the project

Table 7-2: Resolving an Update from Source in the Export Bridge Assistant

Working with a Project

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 161

Building an Object

To build awrapper object, you need to create an object specification about the
exported object in the Export Bridge Assistant. This wrapper object iswhat your
client application needs to use the IDL source object’s functionality.

Note that the wrapper object isonly an interface between your client application and
the IDL source object. That is, the Assistant does not include the entire IDL object in
awrapper object generated from it, but createsa COM or Java layer to interact with
the source object. Furthermore, if you change the source object, you might affect an
existing wrapper object exported from it (see “Modifying a Source Object After
Export” on page 181).

Important topics regarding building an object include the following:

* Understanding the object status for exporting (* Exporting an Object” on
page 162)

* What information you need to specify when exporting an object (“ Specifying
Information for Exporting” on page 164)

* Javaand COM types supported by the Export Bridge technology (* Supported
Data Types’ on page 166)

* What gets skipped for exporting (“Information Skipped During Export” on
page 178)

* How to export superclasses (“ Exporting a Source Object’s Superclasses’ on
page 180)

* What to do with a modified object after exporting (“Modifying a Source
Object After Export” on page 181)

IDL Connectivity Bridges Building an Object

162 Chapter 7: Using the Export Bridge Assistant
Exporting an Object

The Assistant lets you set data types for parameters and other values needed for
creation of the wrappers. In addition, the interface for the Assistant indicates visually
the progress made so far. Theicons representing properties, methods, and parameters
in the assistant indicate the following:

* Which parts of the source object will be used:
e Methods that will be exported
» Methods that will be not be exported
» Which parts of the source object are completed:
* Methods that are fully specified
* Methods requiring further information

These two aspects of the state of the source object are independent from one another.
For example, a method might be fully specified, but Export could be False because
you want to test the exported object without generating the method. You might want
to set Export to True for several methods, fill out the information for only some of
them, and then create the exported object. The wrappers would be generated only for
those items that have Export set to true and are fully specified.

Note
Changing the export or completion status of a parameter could affect the status of
the method containing the parameter.

To make the process as simple as possible, default values and behaviors have been
specified when possible. For example, all methods start out with Export set to False,
but as soon as you specify information, such as areturn type on the method, the value
of the Export property is set to True. (For more information, see “About the Export
Property” on page 165.)

Exporting an Object IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 163

The project treeiconsindicate the status of anitem. The icons shown below represent
al of the permutations of the states described above.

Meaning Icons
Export is False, Incomplete * Method: (O
(initial defauilt) * Property or parameter: []
Export is True, Incomplete * Method: @

* Property or parameter: [B
Export is False, Fully Specified * Method: Q)

* Property or parameter: [
Export is True, Fully Specified * Method: @

* Property or parameter: [B

IDL Connectivity Bridges Exporting an Object

164 Chapter 7: Using the Export Bridge Assistant

Specifying Information for Exporting

When the Assistant creates anew project, it supplies default values for the attributes
that must be specified. Most of these values are set to UNSPECIFIED to indicate that
you must modify this attribute. Some attributes do not have a default value because
there is no reasonable one; also, supplying a default value could cause the wrappers
to be built with incorrect values.

The one value that is set by default in most casesisthe Convert Majority flag, used if
the value is an array. The default setting for this attribute (True) provides the most
expected behavior. For more information, see “ Converting Array Majority” on

page 165.

Note that in the IDL language, parameters are optional, so the Assistant does not
require the user to export every parameter that isretrieved from the I DL source object
and presented in the Assistant. It is up to the user to decide which parameters should
be exported. This might require defensive programming in the IDL source object to
ensure that parameters are not used if they are not supplied.

Information that can be specified includes:

« “Bridge Information” on page 167 — defines general wrapper object
information, the output directory, package name (Java only) and GUIDS
settings (COM only)

e “Source Object Information” on page 170 — indicates whether the object is
drawable or not (this cannot be changed)

* “Property Information” on page 171 — defines the property datatype, whether
itisan array (and the array magjority if it is), and whether or not it isto be
exported

« “Method Information” on page 173 — defines the export characteristics of a
procedure or function method, and defines the return value data type and array
characteristicsif the method isafunction

e “Parameter Information” on page 176 — defines the mutability, data type,
array characteristics and export selection for method parameters

Note
See “Parameter Passing and Type Conversion” on page 136 for important
information about passing objects, arrays and variables as parameters.

Specifying Information for Exporting IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 165

About the Export Property

Thefirst (and only the first time) any attribute of a property, method, or parameter
other than Export is set, the item has its Export property set to True. This behavior is
provided as a convenience.

Converting Array Majority

The Convert Majority property may be an option for a property, function return value
or method parameter that is defined as an array (the Array property is True). The
rulesfor the Convert Mgjority property vary depending on destination (COM or Java)
and whether the array is a property value, function return value or method parameter.
The settings and default values are described in Table 7-3.

Where to Specify Can Specify in COM? Can Specify in Java?
Get Property No (arrays always converted) | Yes (default isto convert)
Set Property Yes (default isto convert) Yes (default is to convert)
Function return values No (arrays always converted) | Yes (default isto convert)
Procedure parameters Yes (default isto convert) Yes (default isto convert)

Table 7-3: Rules for Specifying the Convert Majority Property

See the following for more information on these rules:
e Table 7-8 in “Property Information” on page 171
e Table7-10in“Method Information” on page 173
e Table 7-11in “Parameter Information” on page 176

Note
For COM wrappers, you could theoretically set the Convert Majority flag for the
property setting call but not the property retrieval call. In practice, the Assistant
uses one flag to control the Convert Majority setting for both Get and Set Property,
and so for COM, the setting for properties is always Convert Majority, which is set
to True and disabled.

For more information on array majority, see “Multidimensional Array Storage and
Access’ on page 493. Also see “Array Order Conversion” on page 137.

IDL Connectivity Bridges Specifying Information for Exporting

166

Chapter 7: Using the Export Bridge Assistant

Supported Data Types

The following data types are supported with the Export Bridge technology.

COM » Unsigned char ULONGLONG
» Char Float
» Short Double
< Unsigned short BSTR
e Long IUnknown*
« Unsigned long VARIANT
* LONGLONG

Java e JDLNumber
» JDLObjectl
« JIDLString

Note

See Appendix A, “IDL Java Object API” for information on JIDL* objects.

Specifying Information for Exporting

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 167

Bridge Information

The project has general information about the bridge being used (COM or Java).

Ea IDLITDIRECTWIND 0w
=423 Properties

IDL Export Bridge Project for Java
Source obiect clazsname |iditdirectwindowesample
Dutput classnanme idlitdirectwindowexample
Process name Default_Process Name
Output directory Cohworkspace’
Package name idlitdirectwindowexample

Figure 7-8: The Export Bridge Assistant: General Bridge Information

Table 7-5 describes the general bridge information’s properties and values

Property

Value

Name

Defaultsto “IDL Export Bridge Project for <dest>" where
<dest> is“COM” or “Java” Displayed in the sheet header
only, it is distinct from the project filename and source object
classname and cannot be modified.

Source object classname

Specified by selection of IDL object definition file. The file
must be selected, rather than specification of the object by
name only. Because this value is obtained from the source
object filename, the capitalization is the same as the filename.

Output classname

Defaultsto IDL source object class name; must be non-null and
avalid IDL identifier. Because this value is obtained from the
source object filename, the capitalization is the same as the
filename.

Process name

Defaultsto ‘ Default_Process Name'; must be non-null and
valid IDL identifier

Output directory

Defaultsto location of source object file (.pro or . sav);
independent from location of project file and sourcefile
(except for initial default to source location).

Table 7-4: General Bridge Information’s Properties

IDL Connectivity Bridges

Bridge Information

168 Chapter 7: Using the Export Bridge Assistant

The other properties displayed for the project depends on which bridge it is using:
COM or Java. The following describes COM -specific values.

|DL Export Eridge Project for CORM
S ource object classname pdlexbrtest]
Output classhame idlexbrtest]
Process name Default_Process_Mame
Dutput directony C:work spacetidlB 3t bridgetwizardtest
Fegenerate GUID: Falze
Euplicit Create0bject True

Figure 7-9: The Export Bridge Assistant: COM Bridge Information

Property Value

Regenerate GUIDs On the first build operation, GUIDS are always generated, so
this property is desensitized until after the first build. On
subsequent builds, if Regenerate GUIDs s False, the existing
GUIDs are used, alowing a developer to use the newly built
object without re-registering. If Regenerate GUIDs s true,
new GUIDS will be created during a build operation. Any
time GUIDs are regenerated during a build operation. they are
saved and can be used by setting Regenerate GUIDs to False.

Explicit CreateObject By default, graphical COM objects (ActiveX objects) call the
createObject method automatically when the control is
created. If this property is set to True, the automatic call to the
createObject method is removed; the client code must then
explicitly call one of the CreateObject or CreateObjectEx
methods to create the IDL process.

This property is disabled for nongraphical COM objects,
which alwaysrequire an explict call to one of the CreateObject
methods.

Table 7-5: COM Bridge Information’s Property Values

Bridge Information IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 169

The following describes Java-specific properties and val ues.

Source object clazzname

|DL Export Eridge Project for Java

Output clazzname

Procesz name

Output directon

FPackage name

idlexbrtest]

idlexbrtestl

Default_Process_Mame
C:workzpacehidliB 3t bridgewizard test
idlexbrtestl

Figure 7-10: The Export Bridge Assistant: Java Bridge Information

Property

Value

Package name Defaults to source object class name. Because thisvalueis

obtained from the source object filename, the capitalization is
the same as the filename.

This property is optional and can be blank. If blank, the Java
file and classfile will be created in the output directory. If not

blank, the name is used to create one or more subdirectories
below the output directory. Period characters are separator
charactersthat produce a directory hierarchy in the resulting
subdirectory for the result. Each segment between period
characters must be avalid identifier.

Table 7-6: Java Bridge Information’s Property Values

IDL Connectivity Bridges

Bridge Information

170

Chapter 7: Using the Export Bridge Assistant

Source Object Information

The source object for which you are making a wrapper has its own set of properties.

Ea IDL Export Bridge Project for Java
[ER | idlitdirectwindowexample:

Ea IDLITDIRECTWANDOW
B2 Properties

idlitdirectwindowexample

Drawable objsct [True

Figure 7-11: The Export Bridge Assistant: Source Object Information

Table 7-7 describes the characteristics of the source object.

Property

Value

Name

Name of this IDL source object; specified when project was
created and shown in the sheet header only

Drawable object

Trueif IDL source object is asubclass of IDLitWindow,
IDLgrWindow, or IDLitDirectWindow; otherwise False.

Table 7-7: Source Object Information’s Property Values

Source Object Information

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 171

Property Information

Each property of the source object hasits own set of properties.

=i |DL Expart Bridge Project forJava STYLE
223 ide;:b'lem. Tupe HIDLMumber
> S e—
> 5N o
[] TRAMSFARENCY Export
i Mathods

Tiue

Figure 7-12: The Export Bridge Assistant: Source Object Properties

Table 7-8 describes the properties and values of the source object’s properties.

Property Value
Name Name of the object’s property; shown in the sheet header only.
Type One of the types supported by the Export Bridge technology.

For the list, see “ Supported Data Types’ on page 166.

Array Indicates if property is of type array: Trueif itis, False
otherwise. If True, Convert Mgority is sensitive.

Convert Mgjority | Sensitiveonly if Array is True. Set to Trueif the property
value isan array and needs to be converted when setting the
property. (For COM, when retrieving a property value, the
magjority is always converted regardless of this attribute
setting.) The default value for both COM and Javaiis True.

For more information, see “ Converting Array Mgjority” on
page 165.

Export Indicates if the Assistant will export this property: Trueif it
will, False otherwise.

Table 7-8: Source Object Property Information’s Property Values

IDL Connectivity Bridges Property Information

172 Chapter 7: Using the Export Bridge Assistant

About Property Extraction

The aobject properties are extracted from the IDL source object by compiling the list
of all keywords on either or both of the SetProperty and GetProperty methods of the
object.

The following factors are not used to determine source object properties:

* Whether aproperty is registered or not (the export bridges do not require that
an object uses the component framework)

» The presence of amember variable in the source object's definition structure
» Keywordsto the object's Init method

Note that properties of built-in superclasses are not extracted (see “ Exporting a
Source Object’s Superclasses’ on page 180). To obtain wrapper routinesto get or set
asuperclass property, you must add an explicit property handler to your SetProperty
and/or GetProperty methods for the superclass property.

Property Information IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 173

Method Information

Each method of the source object hasits own set of properties. Figure 7-13 displaysa
procedure’s property information. Figure 7-14 displays the property information for a

function.
=1-i_3 0L Export Brdge Fropeck for Java TESTPROCEDURE1MULT
=1+ idlesbbast] Dutput method name iTE?TPQEEEDLF‘\.E'IrxLlLT
-3 Prapeaities Expait True

E COLOA
STYLE
[0 tRansFARENCY
SR | Methods
=] TESTPROCEDURE TMULT

[TESTARGTIMLONG

Change log | Expart bog | Buldlog |
I

Figure 7-13: The Export Bridge Assistant: Procedure Information

Table 7-9 describes the procedure information’s properties and values.

Property Value

Name Name of the procedure; shown in the sheet header only.

Output Method Name | The name of the wrapper method in the wrapper object.
Defaults to the method name obtained from the source object,
but can be changed to reflect native platform naming
conventions and case. Regardless of the output method name,
the wrapper method will call through the Export Bridge
technology layersto the original source object method namein
the IDL object.

Export Indicates if the Assistant will export this property: Trueif it
will, False otherwise.

Table 7-9: Procedure Information’s Property Values

IDL Connectivity Bridges Method Information

174

Chapter 7: Using the Export Bridge Assistant

EH3 DL Export Bridge Project foe Java
= _1||:|m-d:||le:|':
=iy Froperes
O rcowor
[s1rLE
[0 tRansParEMCY
=y Method:
=@ TESTPROCEDURETMULT
E TESTARGTIMLONG
TESTARG2OUTSTRING
=@ TESTPROCEDUREZ
O PoSITIOMALFSRAMT
O FosITIOMALPARAM2
_REGISTERPROFERTIES
=) TESTEUMCTIONTDN
B TESTARGUNLONG
[TEsTARGZOUTFLOAT

TESTARG1
[TESTARG2

TESTFUNCTIONZ
Output method name {TESTFUNCTIONZ

Aetuin lyps JIDLMumber
| oo

orvvert majonby
Espot [T

Change lag le-:ntl:ql Build h;ll

TESTFUMCTIONIDN: Retum tppe: JIDLMumbes
TESTFUNCTIONIDRN: Amay: True
TESTARG1INLONG: Type: JIDLMNumber
TESTARGTIMLONG: Aray True
TESTARGTIMLONG: Mutabiby: In
TESTFUMCTIONZ Export: Tiue
TESTFUMCTIOMIDN: Export: False
TESTFUMCTION1DN: Retum type: UNSPECIFIED
TESTFUMCTIONZ: Retun typs: JIDLNumbsr
TESTFUMCTIONZ Anay Falsa
TESTFUNCTIONIDN: Export: True
TESTFAOCEDUREZ Export: Tiue
TESTFUNCTIONIDN: Export: Falze

Figure 7-14: The Export Bridge Assistant: Function Information

Table 7-10 describes the function information’s properties and values. In addition to
the values that can be specified for procedure methods (Table 7-9), the following can

also be defined.
Property Value
Return Type One of the types supported by the Export Bridge technology.
For the list, see “ Supported Data Types’ on page 166.
Array

Indicates if property is of type array: Trueif it is, False
otherwise. If True and the destination is Java, Convert
Majority is sensitive.

Table 7-10: Function Information’s Property Values

Method Information

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 175

Property Value

Convert Mgjority Sensitive only if Array is True and the destination is Java. Set
to Trueif the property value is an array and needs to be
converted when setting the property. (For COM, when
retrieving a property value, the mgjority is always converted
regardless of this setting, which iswhy this property does not
appear with COM.) The default valueis True.

For more information, see “Converting Array Mgjority” on
page 165.

Table 7-10: Function Information’s Property Values (Continued)

IDL Connectivity Bridges Method Information

176

Chapter 7: Using the Export Bridge Assistant

Parameter Information

Each parameter of the source object’s methods has its own set of properties.

Note

If amethod parameter has its Export property set to True, al parameters of the
method to the left of the current parameter are marked for export aswell so asto not
leave holes in the parameters list and cause parameters to be out of sequence.

If aparameter hasits Export property set to False, all parametersto the right will
aso have their Export property set to False. If a parameter has its Export property
set to True, the parent method will have its Export property set to True.

|- DL Expert Bnidge Project forJava
-1 idlesbtest]
=144 Propeihes
E COLOR
STYLE
[0 TRaNSPaREMCY
==y Methods
=@ TESTPROCEDURETMULT
E TESTARG1IMLONG

TESTARGTIMLONG

Mutabilty i""

Type JIDLMumber
Array Falie

Espoit Tiue

Changs log | Export log | Buikdlog |
I

Figure 7-15: The Export Bridge Assistant: Parameter Information

Table 7-11 describes the parameter information’s properties and val ues.

Property Value

Name Name of the procedure; shown in the sheet header only.

M utability Either In or In/Out. Use In for parameters that are constant (In-
Only, meaning that their values cannot be changed). Use
In/Out for parameters that are not constant and require a value
to be passed back to the caller (can be In/Out or Out-only).

Return Type One of the types supported by the Export Bridge technology.
For the list, see “ Supported Data Types’ on page 166.

Array Indicates if property is of type array: Trueif itis, False

otherwise. If True, Convert Mgority is sensitive.

Table 7-11: Parameter Information’s Property Values

Parameter Information

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 177

Property Value
Convert Mgjority | Sensitiveonly if Array is True. Set to Trueif the property
valueisan array and needs to be converted when setting the
property. The default valueis True.
For more information, see “ Converting Array Majority” on
page 165.
Export Indicates if the Assistant will export this property: Trueif it

will, False otherwise.

Table 7-11: Parameter Information’s Property Values (Continued)

IDL Connectivity Bridges

Parameter Information

178 Chapter 7: Using the Export Bridge Assistant

Information Skipped During Export

The Assistant skips certain information when creating an object specification for
exporting because such information is unnecessary or unavailable for awrapper
object.

Lifecycle Methods

The lifecycle methods of the IDL source object, Init and Cleanup, are not presented
inthe list of methods to export in the Assistant. These methods are called through the
bridge when the wrapper object stock methods createObject and destroyObject are
called. (Note that Java capitalization is used here, COM names are different.) It is not
useful to export awrapper method explicitly for either of these routines.

For information on the stock methods, see “ Stock COM Wrapper Methods’ on
page 192 (COM) and “ Stock Java Wrapper Methods’ on page 218 (Java).

Get Property and Set Property Methods

The GetProperty and SetProperty methods of the IDL source object are not presented
inthelist of methods to export in the Assistant. These methods will be called through
the Export Bridge when the wrapper object routines for setting or retrieving aspecific
property are called. It isnot useful to export awrapper method explicitly for either of
these routines.

Drawable Object Event Handlers

For drawable objects (objects subclassed from |DLitWindow, |DLgrWindow, or
IDLitDirectWindow) as well as IDLitDirectWindow superclass itself, the following
methods are not typically heeded in the exported object:

e OnEnter ¢ OnMouseDown
* OnExit e OnMouseMotion
* OnExpose ¢ OnMouseUp

» OnKeyboard * OnResize

By default these methods are not presented in the Assistant for export from either the
original IDL source object or its superclasses.

These routines in the source object are called directly by the Export Bridge when
events are being handled, and so they are typically not needed in the exported object.

Information Skipped During Export IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 179

Exporting these routines would be unnecessary and confusing to most users since
they might assume that the methods in the exported object would be called, but under
default conditions they are unused. The sophisticated user might actually want to call
these in the client application, however, and so they can be presented in the assistant
by starting the application with the DRAWABLE_EVENTHANDLERS keyword set
(in addition to the OBJECT _FILE keyword). See “Running the Assistant” on

page 149 for details.

Typically, the methods found in .oro code object definition files will appear in the
Export Bridge Assistant. Since IDLgrWindow and IDLitWindow object definition
files are built-in, they do not appear as superclasses and their methods are not
presented in the Assistant.

IDL Connectivity Bridges Information Skipped During Export

180 Chapter 7: Using the Export Bridge Assistant

Exporting a Source Object’s Superclasses

You might want to set properties or call methods that are implemented in the
superclass of the source object. The Assistant interrogates the IDL source object to
obtain the properties, methods and method parameters. It also usesthe OBJ_CLASS
method to obtain the superclasses of the source object class, and for each user class
also obtains the properties, methods and method parameters. Thisisarecursive
process that requires interrogating each superclass for its superclasses. Built-in IDL
superclasses will not be included in the wrapper definition.

The routine used to extract object information, IDL's ROUTINE_INFO function, can
obtain the methods of a built-in object class. However, because ROUTINE_INFO
does not provide parameter information for built-in routines, the Assistant is unable
to extract the properties (parameters to SetProperty or GetProperty) or the parameters
of object methods for abuilt-in superclass. The built-in superclasses are not presented
in the project tree view.

To obtain wrapper routines to modify properties of built-in superclasses, you must
add an explicit property handler to the SetProperty and/or GetProperty methods for
the superclass property. To obtain wrapper routines to call methods of built-in
superclasses, you must add an explicit method to their source object that calls the
superclass method.

Exporting a Source Object’s Superclasses IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 181

Modifying a Source Object After Export

Madifications to the IDL source object can affect the operation of an existing
wrapper object even if the wrapper is not rebuilt because the wrapper object uses the
source object in its current state, not a state cached at the time the Assistant generates
the wrapper object.

In general:
e Adding properties or methods has no impact on an existing wrapper object.

» Removing properties or methods or changing method interfaces can invalidate
an existing wrapper object.

* Modifying behavior in a property handler or method causes the new behavior
to be in effect for the next invocation of the application using the wrapper
client. This can be useful because the wrapper does not need to be regenerated
for the client to pick up IDL source modifications.

IDL Connectivity Bridges Modifying a Source Object After Export

182 Chapter 7: Using the Export Bridge Assistant

Wrapper Generation Example

Thefollowing example exportsasimple IDL object that has no properties or methods
and demonstrates the configuration necessary to initialize a COM or Java client
application to use the exported object. First, create the IDL source object.

1. Createafilenamed helloworld__define.pro (withinyour IDL path)
containing the following code:

FUNCTION helloworld::INIT
RETURN, 1
END

PRO helloworld_ _define
struct = {helloworld, $
dummy: 0b $; dummy structure field, not a property

}
END

Thisisthe source object definition file that you will export using the Export
Bridge Assistant.

2. Openthe Assistant by entering IDLEXBR_ASSISTANT at the command line.
See one of the following:

“COM Wrapper Object Generation and Use” below
“Java Wrapper Object Generation and Use” on page 184

COM Wrapper Object Generation and Use

The following example exports and usesthe hel1lowor1d object inasimple Visual
Basic .NET console application. After creating the object definition file and

launching the Assistant as described in “Wrapper Generation Example” on page 182,
complete the following steps.

1. Select to create a COM export object by selecting File — New Project —
COM and browse to select thehelloworld__define.pro file. Click Open
to load the file into the Export Assistant.

Wrapper Generation Example IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 183

Ea 1DL Export Bridge Project for COM |DL Exponrt Bridge Project for COM
=& helloviorld Source object classname [helloworld
a Fraoperties Dutput claszname helloward
+/ Methods Process narne Default_Process_Mame
Output directory CHRSIMDLES
Feaenerate GUID= False

Figure 7-16: Helloworld COM Export Project

2. Thetop-leve project entry in the left-hand tree panel is selected by default.
There is no need to modify the default properties shown in the right-hand
property panel, but you can enter different values if desired. Select the tree
view item listed in the left column to configure the related propertiesin the
right column.

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

* Output classname
* Process name
» Output directory

helloworld Drawabl e abject equals False

Table 7-12: Example Export Object Parameters

For this simple exampl e, the source object has no properties or methods, so
none are exported.

Note
See “ Specifying Information for Exporting” on page 164 for details on
configuring export values.

3. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

4. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a nondrawable object, .t1b

IDL Connectivity Bridges Wrapper Generation Example

184 Chapter 7: Using the Export Bridge Assistant

and .a11 files (named based on the object name) are created in the Output
directory.

5. Register the.d11 using regsvr32 helloworld.dll. See“COM
Registration Requirements” on page 143 for detailsif needed.

6. Createanew Visua Basic .NET console application and add areference to the
COM library named helloworldLib 1.0 Type Library. Select
Project — Add Reference, and click on the COM tab. Select the
helloworld.dll and click OKk.

7. Replace the default module code with the following text:

Imports helloworldLib
Module Modulel
Dim oHello As New helloworldLib.helloworldClass
Sub Main ()
Try
oHello.CreateObject (0, 0, 0)
Catch ex As Exception
Console.WriteLine (oHello.GetLastError())
Return
End Try
AddHandler oHello.OnIDLOutput, AddressOf evOutput
oHello.ExecuteString ("Print, 'Hello World'")
End Sub
Sub evOutput (ByVal ss As String)
Console.WriteLine (ss)
End Sub
End Module

In this example, the stock ExecuteString method is used to print the hello
world message. By adding a handler for the Onl DL Output method, the console
application is able to capture and output the information that would typically
be printed to the Output window of IDL. After building the solution and
starting without debugging, the console window appears with the output

messages.
Java Wrapper Object Generation and Use

The following example exports and usesthe hel1lowor1d object in asimple Java
application. After creating the object definition file and launching the Assistant as
described in “Wrapper Generation Example” on page 182, complete the following

steps.

Wrapper Generation Example IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 185

1. Select to create a Java export object by selecting File — New Project — Java
and browseto selectthehelloworld__define.pro file Click Opentoload
the file into the Export Assistant.

Ela |DL Expart Eridge Project for Java IDL Export Bridge Project for Java
=43 hellowarld Source object classname |helloworld
a Froperties Output classname hellowarld
{2 Methads Process name Default_Procezs_Mame
Output directory C:HRSIMDLES
Package name helowarld

Figure 7-17: Helloworld Java Export Project

2. Thetop-level project entry in the left-hand tree panel is selected by default.
There is no need to modify the default properties shown in the right-hand
property panel, but you can enter different values if desired. Select the tree
view item listed in the left column to configure the related propertiesin the
right column.

Tree View Item Parameter Configuration

IDL Export Bridge Project | Accept the default value or make changes:
» Output classname
» Processname

» Output directory (pathsin later parts of
this example assume this field equals the
main IDL installation directory, whichis
typically c: \ITT\IDLxx on Windows)

helloworld Drawable object equals False

Table 7-13: Example Export Object Parameters

For this simple exampl e, the source object has no properties or methods, so
none are exported.

IDL Connectivity Bridges Wrapper Generation Example

186 Chapter 7: Using the Export Bridge Assistant

Note
See “ Specifying Information for Exporting” on page 164 for details on
configuring export values.

3. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

4. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. A subdirectory, named
helloworld (based on the object name), containsthe .java and .class
files, and islocated in the Output directory.

5. Createafilenamed helloworld_example. java that containsthefollowing
code and save the filein the hel1lowor1d directory.

package helloworld;
import com.idl.javaidl.*;
public class helloworld_example extends helloworld
implements JIDLOutputListener
{
private helloworld hwObj;

// Constructor
public helloworld_example() {
hwObj = new helloworld() ;
hwObj .createObject () ;
hwObj.addIDLOutputListener (this) ;
hwObj.executeString ("print, 'Hello World'");
}

// implement JIDLOutputListener

public void IDLoutput (JIDLObjectI obj, String sMessage) {
System.out.println("IDL: "+sMessage) ;

}

public static void main(String[] argv) {
helloworld_example example = new helloworld_ example() ;
}
}

Note
By default, the Assistant generates a package so any Javaroutine using an
exported wrapper object must include the package name. The second
statement, import com.idl.javaidl.=*; isalsorequired.

Wrapper Generation Example IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 187

For example purposes, the stock method executeString is called, and an output
listener isregistered to retrieve the IDL output.

The wrapper is compiled and run using the commands below:
e “Windows Commandsto Build and Run the Client” on page 187
* “UNIX Commandsto Build and Run the Client” on page 188

Windows Commands to Build and Run the Client

The following commands build and run this Java wrapper example on Windows.

1. To compile and run the Javaroutine, open the Windows Command window by
selecting Start — Run and enter cmd in the textbox.

2. Usethe cd command to change to the directory containing the helloworld
directory. For a default Windows installation, the command would be similar
to the following:

cd C:\ITT\IDL63

3. Referencethe classpath of javaidlb. jar inthe compile statement. Enter the
following commands (each asasingleline), replacing ror,_prr with the IDL
installation directory, for example TTT\1DL63:

javac -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
helloworld\helloworld_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
helloworld.helloworld_example

In both commands, the . character includes the current directory in the
classpath.

The first command uses javac to compile the example client. The path to the
helloworld_example.java fileis specified using a backslash character as
adirectory separator.

The second command uses java to run the example client. The final argument
specifies the package path to thehelloworld_example classfile. Notethat a
. character isused as a separator in the package path. Thefinal argument to the
second command intentionally omits the suffix.

After compiling and running the project, the output message will appear in the
command window.

IDL Connectivity Bridges Wrapper Generation Example

188 Chapter 7: Using the Export Bridge Assistant

UNIX Commands to Build and Run the Client

The following commands build and run this Java wrapper example on UNIX:

source IDIL_DIR/bin/bridge_setup
javac helloworld/helloworld_example.java
java helloworld.helloworld_example

Note
See “ Java Requirements’ on page 143 for more information onthebridge_setup
file.

The source command adds the necessary directories to the dynamic library path and
the classpath.

The second command uses javac to compile the example client. The third command
uses java to run the example client. The final argument specifies the package path to
thehelloworld_example. classfile. Notethat a . character isused as a separator
in the package path. The final argument to the second command intentionally omits
the suffix.

After compiling and running the project, the output message will appear.

Wrapper Generation Example IDL Connectivity Bridges

Chapter 8

Using Exported COM
Objects

This chapter discusses the following topics.

Overview of COM Export Objects 190 EventHandling..................... 208
COM Wrapper Objects 191 ErrorHandling 211
Stock COM Wrapper Methods 192 Debugging ... 213

IDL Connectivity Bridges 189

190 Chapter 8: Using Exported COM Objects

Overview of COM Export Objects

Once you have chosen to use a connector object or have exported a custom IDL
source object using the Assistant, use the method and event reference information
described here to create an instance of the object and interact with the IDL process
from an external COM environment.

This chapter presents important background information on using IDL objects
exported into COM:

e “COM Wrapper Objects’ on page 191
e “Stock COM Wrapper Methods” on page 192
e “Event Handling” on page 208
e “Error Handling” on page 211
For examples that use the methods and events described here, see:

e “Using the Connector Object” on page 245, which describes how to use the
connector object in COM environments

e “Creating Custom COM Export Objects’ on page 269, which provides
examples of using custom object methods (in addition to the stock wrapper
methods) in COM environments

Overview of COM Export Objects IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 191

COM Wrapper Objects

A COM wrapper object is defined as one that wraps a nondrawable IDL object, and
an ActiveX control as one that wraps adrawable IDL object. Typically, only ActiveX
controls handle (user) events, but COM wrapper objects can also fire events so that
the client can receive IDL output and notifications.

To use a COM wrapper object, the client instantiates one or more instances of the
wrapper objects and then calls its methods and properties. An ActiveX control must
be created in a host window before its methods and properties can be called.

ActiveX controls are typically hosted on GUI forms. These forms are generally built
in a GUI-based development environment such as Visua Basic or Visual Studio
.NET. The user creates aform by dragging and dropping controls onto the form.
ActiveX controls usually interrogate the host window to determine what user mode
they are in: design or runtime. While in design mode, the ActiveX control usually
displays a static image whereas in runtime mode, the ActiveX control is executing
and dynamically drawing to the screen.

The Export Bridge ActiveX wrapper controls also check for the user mode. In design
mode, a static image with the IDL Export Bridge logo is displayed. In runtime mode,
the ActiveX control internally calls the CreateObject method, the underlying IDL
object is created, and IDL begins rendering to the ActiveX window. When the
application is stopped and transitioned back to design mode, the ActiveX control
internally calls the DestroyObject method, and the static image is once again
displayed. See“ Stock COM Wrapper Methods’ on page 192 for information on these
methods.

Note
Not all ActiveX host windows provide the user mode. If the host window does not
provide the user mode, the Export Bridge ActiveX wrapper controls assume that
they are in runtime mode, and they immediately begin to render to the screen as
soon as they are instantiated.

IDL Connectivity Bridges COM Wrapper Objects

192

Chapter 8: Using Exported COM Objects

Stock COM Wrapper Methods

This section describes the stock methods in the COM wrapper objects created by the
Export Bridge Assistant:

“Abort” on page 193

“CreateObject” on page 194
“CreateObjectEx” on page 196
“DestroyObject” on page 199
“ExecuteString” on page 200
“GetIDLObjectClassName” on page 201
“Get|DLObjectVariableName” on page 202
“GetIDLVariable” on page 203
“GetLastError” on page 204
“GetProcessName” on page 205
“SetIDLVariable” on page 206
“SetProcessName” on page 207

Every connector object and custom COM wrapper object has these methods in
addition to those defined by the wrapped IDL object.

Stock COM Wrapper Methods IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 193

Abort

The Abort method requests that the IDL process containing the underlying IDL
object abort its current activity. This method is useful if agiven IDL method call is
busy for avery long time (e.g., avery long image processing command).

Note
Therequest isonly that, arequest, and IDL might take along time beforeit actually
stops or might completely finish its current activity. Such await is an effect of the
IDL interpreter.

The client can only abort the current IDL activity if that wrapper object is the current
owner of the underlying IDL process.

Syntax
HRESULT Abort(void)
Parameters

None

IDL Connectivity Bridges Abort

194 Chapter 8: Using Exported COM Objects

CreateObject

The CreateObject method creates the actual underlying IDL object. The argc, argy,
and argpal parameters are used to supply parameters to the underlying IDL object’s
Init method. If the Init method does not have any parameters, the caller sets argc,
argv, and argpal to 0, NULL, and NULL, respectively.

This method creates IDL objects that use a default licensing algorithm (see “IDL
Licensing Modes’ on page 134 for details). To use a specific IDL licensing mode, use
the CreateObjectEx method.

Note
By default, ActiveX controls call the CreateObject method implicitly. In an
ActiveX control, calls to the CreateObject method in client code will be ignored if
the Explicit CreateObject property in the Export Bridge Assistant project was set
to False when the ActiveX control was built.

Syntax
HRESULT CreateObject ([in] int argc, [in] VARIANT argv, [in] VARIANT argpal)
Parameters

argc
An integer that specifies the number of elements in the argv and argpal arrays.
argv

A VARIANT containing a COM SafeArray of VARIANT types, one for each
parameter to Init. The elementsin the array are given in order of the parameterslisted
in Init, ordered from left to right.

argpal

A VARIANT containing a COM SafeArray of 32-bit integer flag values, which can
be a combination of the IDLBML_PARMFLAG_CONST and
IDLBML_PARMFLAG_CONVMAJORITY values ORed together. The latter value
isonly used when an argv element is an array itself. For parameters that are not
arrays, the argpal[n] value must be 0.

CreateObject IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 195

The following constant values defined in the typlib information of awrapped IDL
object can be used:

IDLBML_PARMFLAG_CONST Use for parameters that are
constant (In-Only, meaning that
their values cannot be changed).

IDLBML_PARMFLAG_CONVMAUJORITY | Includeif the property valueisan
array.

For more information, see
“Converting Array Mgority” on
page 165.

Example

Note
See Appendix B, “COM Object Creation” for examples of creating objects from a
variety of COM programming languages.

The Init method of the IDL object being wrapped has the following signature:
PRO IDLexFoo::INIT, rect, filename
where rect isan array of 4 integersand filename isastring.

The COM client code that creates an instance of the wrapper object, and callsthe
CreateObject() method withthe rect and £i1lename parameters, would look likethe
following:

CComSafeArray<int> csa(4);
csal[0] = 0; csal[l] = 0; csal[2] = 5; csal3] = 10;

CComVariant argv[2];

int argpl2];

argv[0] = csa.Detach();

argp[0] = IDLBML_PARMFLAG_CONST;
argv[l] = "someFilename.txt";
argp[l] = IDLBML_PARMFLAG_CONST;

CComPtr<IMyWrapper> spWrapper;
spWrapper .CoCreateInstance (__uuidof (MyWrapper)) ;

spWrapper->CreateObject (2, argv, argp);

IDL Connectivity Bridges CreateObject

196 Chapter 8: Using Exported COM Objects

CreateObjectEx

The CreateObjectEx method creates the actual underlying IDL abject; it differs from
the CreateObject method in that it allows the specification of flag values that control
theway the IDL processisinitialized. The argc, argv, and argpal parameters are used
to supply parametersto the underlying IDL object’s Init method. If the Init method
does not have any parameters, the caller sets argc, argv, and argpal to 0, NULL, and
NULL, respectively. The flags parameter specifies one or more initialization flags
governing theway the IDL processisinitialized; currently, the available flags control
the method used to license the IDL session. (See “IDL Licensing Modes’ on

page 134 for detail s on the default licensing mechanism.)

Note
By default, ActiveX controls call the CreateObject method implicitly. In an
ActiveX control, calls to the CreateObject method in client code will be ignored if
the Explicit CreateObject property in the Export Bridge Assistant project was set
to False when the ActiveX control was built.

Syntax

HRESULT CreateObjectEx ([in] int argc, [in] VARIANT argy, [in] VARIANT
argpal, [in] long flags))

Parameters

argc
An integer that specifies the number of elements in the argv and argpal arrays.
argv

A VARIANT containing a COM SafeArray of VARIANT types, one for each
parameter to Init. The elementsin the array are given in order of the parameterslisted
in Init, ordered from left to right.

argpal

A VARIANT containing a COM SafeArray of 32-bit integer flag values, which can
be a combination of the IDLBML_PARMFLAG_CONST and
IDLBML_PARMFLAG_CONVMAUJORITY vaues ORed together. The latter value
isonly used when an argv element is an array itself. For parameters that are not
arrays, the argpal[n] value must be 0.

CreateObjectEx IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 197

The following constant values defined in the typlib information of awrapped IDL
object can be used:

IDLBML_PARMFLAG_CONST Use for parameters that are
constant (In-Only, meaning that
their values cannot be changed).

IDLBML_PARMFLAG_CONVMAJORITY Includeif the property valueisan
array.

For more information, see
“Converting Array Mgjority” on
page 165.

flags

Flag valuesthat control theway the IDL processisinitialized. The following constant
values defined in the typlib information of awrapped IDL object can be used:

IDLBML_LIC_FULL The application requires that alicensed
copy of IDL beinstalled on the local
machine. If IDL isinstalled but no licenseis
available, the application will runin IDL
Demo (7-minute) mode.

IDLBML_LIC LICENSED_SAV The application looks for an embedded
license in the save file being restored.

IDLBML_LIC RUNTIME The application looks for aruntime IDL
license. If no runtime license is available,
the application will run in Virtual Machine

mode.
IDLBML_LIC VM The application will run in Virtual Machine
mode.
Example
Note

See Appendix B, “COM Object Creation” for examples of creating objects from a
variety of COM programming languages.

The Init method of the IDL object being wrapped has the following signature:

IDL Connectivity Bridges CreateObjectEx

198

Chapter 8: Using Exported COM Objects

PRO IDLexFoo::INIT, rect, filename

where rect isan array of 4 integersand f£ilename isastring.

The COM client code that creates an instance of the wrapper object and calls the
CreateObjectEx() method with the rect and filename parameters, and which
explicitly specifiesthat it should runin IDL Virtual Machine mode, would look like

the following:

CreateObjectEx

CComSafeArray<int> csa(4);
csal[0] = 0; csall] = 0; csal[2] = 5; csal[3] = 10;

CComVariant argv[2];

int argpl2];

argv[0] = csa.Detach();

argp[0] = IDLBML_PARMFLAG_CONST;
argv[l] = "someFilename.txt";
argp[l] = IDLBML_PARMFLAG_CONST;

CComPtr<IMyWrapper> spWrapper;
spWrapper .CoCreateInstance (__uuidof (MyWrapper)) ;

spWrapper .CreateObjectEx (2, argv, argp, IDLBML_LIC_VM);

IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 199

DestroyObject

The DestroyObject method destroys the underlying IDL object. If the object being
destroyed is the last object within an OPS process, the OPS processis aso destroyed.

Note
Trying to re-create an object after it has been destroyed is not supported. You must
re-define the variable and then re-create the object.

Syntax
HRESULT DestroyObject(void)
Parameters

None

IDL Connectivity Bridges DestroyObject

200 Chapter 8: Using Exported COM Objects

ExecuteString
The ExecuteString method executes the specified command in the IDL process
containing the underlying IDL object.

Note
This method is disabled for applications running in the IDL Virtual Machine.

Syntax
HRESULT ExecuteString([in] BSTR bstrCmd)
Parameters

bstrCmd

A string containing the IDL command to be executed.
Examples
See “IDL Command Line with aCOM Connector Object” on page 252 for an

example that executes any IDL command entered into one textbox and writes IDL
output or error information to a second textbox.

ExecuteString IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 201

GetIDLODbjectClassName

The Getl DL ObjectClassName method returns the IDL class name of the underlying
IDL object.

Syntax
HRESULT GetI DL ObjectClassName([out,retval] BSTR* Name)
Return Value

A string containing the class name of the IDL object.

IDL Connectivity Bridges GetIDLObjectClassName

202 Chapter 8: Using Exported COM Objects

GetIDLODbjectVariableName

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. The Getl DL ObjectVariableName method returns that name.

Syntax
HRESULT Getl DL ObjectVariableName([out,retval] BSTR* Name)
Return Value

A string containing the variable name of the IDL object.

GetIDLObjectVariableName IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 203

GetIDLVariable

The Getl DLVariable method retrieves a named variable from the IDL process
containing the underlying IDL object.

Note
This method is disabled for applications running in the IDL Virtual Machine.

Syntax
HRESULT GetlDLVariable([in] BSTR bstrVar, [out,retval] VARIANT* Value)
Parameters

bstrvar
A string containing the name of the variable to retrieve from the IDL process.

Return Value

Thevariable’s values. If the variable is an array, the array is always converted from
IDL magjority to the standard COM SAFEARRAY majority ordering.

Examples
See “Data Manipulation with a COM Connector Object” on page 251 for an array

mani pul ation example that uses the GetlDLVariable, SetlDLVariable and
ExecuteString methods.

IDL Connectivity Bridges GetIDLVariable

204 Chapter 8: Using Exported COM Objects

GetlLastError
The GetLastError method getsthe error string for the last error that has occurred. Itis
called after amethod call returns an error. The returned error string is usualy the
actual IDL error message, if IDL generated the error message.
Syntax
HRESULT GetL astError([out,retval] BSTR* LastError)
Return Value

The error string for the last error that occurred.

GetLastError IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 205

GetProcessName

The GetProcessName method returns the name of the process that contains the
underlying IDL object.

Syntax
HRESULT GetProcessName([out,retval] BSTR* Name)
Return Value

A string containing the name of the process that containsthe IDL object.

IDL Connectivity Bridges GetProcessName

206 Chapter 8: Using Exported COM Objects

SetIDLVariable

The SetIDLVariable method sets the specified variable name to the specified value in

the IDL process containing the underlying IDL object. If the valueisa

SAFEARRAY, it is always converted from the standard COM SAFEARRAY

majority ordering to IDL mgjority.

Note
This method is disabled for applications running in the IDL Virtual Machine.

Syntax

HRESULT Set| DLVariable([in] BSTR bstrVar, [in] VARIANT Value)
Parameters

bstrVar

A string identifying the variable in the IDL process to be set to Value.
Value

The value for the variable.

Examples

See “Data Manipulation with a COM Connector Object” on page 251 for an array

mani pul ation example that uses the GetlDLVariable, SetIDLVariable and
ExecuteString methods.

SetIDLVariable IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 207

SetProcessName

The SetProcessName method sets the name of the process that will contain the IDL
object. This can only be called before making the CreateObject call. Once the object
is created, the process name cannot be reset and calling this method after
CreateObject has no effect.

Syntax
HRESULT SetProcessName([in] BSTR Name)

Parameters

Name

A string containing the name of the process that will contain the IDL object.

IDL Connectivity Bridges SetProcessName

208 Chapter 8: Using Exported COM Objects

Event Handling

Clients subscribe to wrapper instance events through a process called advising. The
wrapper object defines an outgoing source interface (event interface) containing the
event methods, and the client implements that interface. During advising, the client
passes a reference to its event interface to the wrapper. When an event occurs within
the wrapper, it fires the event to the client by calling the appropriate event method on
the client’s event interface.

ActiveX controlsfire eventsin the classical way via an outgoing source interface.
The Export Bridge ActiveX wrapper controls define the outgoing source interface
_DIDLWrapperEvents, as described below. Any client that wantsto receive the
events must subscribe to events by calling the wrapper object’s

| ConnectionPoint:: Advise() method. Once advised, the client unsubscribes to events
by calling ConnectionPoint::Unadvise().

HRESULT Advise ([in] IUnknown* pUnk,
[out,retval] DWORD* pdwCookie) ;
HRESULT Unadvise ([in] DWORD dwCookie) ;

The client implements the _DIDLWrapperEvents interface and calls the wrapper
object’s Advise() method with its_DIDLWrapperEvents interface reference, and
receives a cookie for that connection. When the clients wants to disconnect, the client
calls Unadvise() with the connection cookie.

In the classical sense, only ActiveX controls fire events, which are typically Ul
events. However, aclient using an Export Bridge COM wrapper object may be
interested in IDL output and notification. So, we carry the concept of firing events
over onto COM objects. Clients of COM wrapper objects can receive events by
advising to the same outgoing source interface in the same way that clients advise for
events on the ActiveX wrapper controls.

Mouse and Keyboard Events in COM Export Objects

For Ul events generated by ActiveX wrapper object, the client receives the events
first before IDL receives them. The client then has the option to “eat” the event and
prevent IDL from ever seeing the event. Each Ul event has a ForwardTol dl
parameter, which isinitially set to TRUE (1). If the event handler in the client code
clearsthe value to FAL SE (0), then the wrapper does not forward the event to IDL.

Note
For a COM exampl e that passes keyboard eventsto IDL, see “COM IDLitWindow
Surface Manipulation” on page 281.

Event Handling IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 209

The event interface is defined below and uses the following values. The mouse
Button parameter can have any of the following values ORed together:

IDLBML_MBUTTON_LEFT 0x1,
IDLBML_MBUTTON_RIGHT 0x2,
IDLBML_MBUTTON_MIDDLE 0x4,

The KeyState parameter can have any of the following values ORed together:

IDLBML_KEYSTATE_SHIFT 0x1,
IDLBML_KEYSTATE_CTRL 0x2,
IDLBML_KEYSTATE_CAPSLOCK 0x4,
IDLBML_KEYSTATE_ALT 0x8,

For the KeyCode parameters, if the key pressed isan ASCII character, then KeyCode
isthe ASCII value; otherwise it is one of these values:

IDLBML_KEYBOARD_EVENT_SHIFT
IDLBML_KEYBOARD_EVENT_CONTROL
IDLBML_KEYBOARD_EVENT_CAPSLOCK
IDLBML_KEYBOARD_EVENT_ALT
IDLBML_KEYBOARD_EVENT_LEFT
IDLBML_KEYBOARD_EVENT_RIGHT
IDLBML_KEYBOARD_EVENT_UP
IDLBML_KEYBOARD_EVENT_DOWN
IDLBML_KEYBOARD_EVENT_PAGE_UP
IDLBML_KEYBOARD_EVENT_PAGE_DOWN 10

0 J oUW

o)

IDLBML_KEYBOARD_EVENT_HOME 11
IDLBML_KEYBOARD_EVENT_END 12
IDLBML_KEYBOARD_EVENT_DEL 127 // 1sASCII is set to 1 when
// this code is given
Note

The constants above are defined in the typelib information contained within each
wrapper object and are used with the _DIDLWrapperEvents interface defined
bel ow.

dispinterface _DIDLWrapperEvents
{

HRESULT OnMouseDown (long Button, long KeyState, long X,
long vy, [in,out]llong* ForwardToIdl) ;
HRESULT OnMouseUp (long Button, long KeyState, long X,
long y, [in,out]long* ForwardToIdl) ;
HRESULT OnMouseMove (long Button, long KeyState, long x,
long vy, [in,out]long* ForwardToIdl) ;
HRESULT OnMouseWheel (long KeyState, long WheelDelta, long x,

long vy, [in,out]long* ForwardToIdl) ;
HRESULT OnMouseDoubleClick (long Button, long KeyState, long
x, long vy, [in,out]long* ForwardToIdl);

IDL Connectivity Bridges Event Handling

210 Chapter 8: Using Exported COM Objects

HRESULT OnMouseEnter
HRESULT OnMouseExit
HRESULT OnKeyDown

(v01d)
(v
(1
[in,out]long* ForwardToIdl) ;
(
)
(1

void) ;

ong KeyCode, long KeyState,
HRESULT OnKeyUp long KeyCode, long KeyState,
[in,out]long* ForwardToIdl

HRESULT OnSize ong width, long height, [in,out]long*

ForwardToIdl) ;
HRESULT OnIDLNotify (BSTR bstrl, BSTR bstr2);
HRESULT OnIDLOutput (BSTR bstrOutput) ;
Y
Note

For the OnMouseWheel event, the value of WheelDeltais a positive or negative
value that indicates the amount that the wheel was rotated forward or backward, e.g.
+/- 1, +/- 2, etc.

Note
Since the COM wrapper uses the same event interface, only the OnIDLNotify and
OnlIDL Output events will be fired to subscribers of COM “events.” The Ul events
in the _DIDLWrapperEventsinterface have no meaning in a nondrawable COM
wrapper context, and therefore will not be fired to the client.

Event Handling IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 211

Error Handling

Each method of awrapper object returns an HRESULT value. If the method call was
successful, it returns S_OK; otherwiseit returns a standard COM failure. If any of the
methods calls return an HRESULT error code, the client can then call the

GetL astError method to retrieve an error string, which is generally the actual IDL
error message string.

The table below describes the error return values and their meaning when they are
returned within the context of the wrapper method calls.

Error Code Meaning

E_ACCESSDENIED | Thiserror return value occurs in one of two situations:

» IDL isbusy. The client made a method call on a
wrapper object, but the underlying IDL is still busy
processing a previous request (method call) and has
not finished yet. For more information, see “IDL
Ownership and Blocking” on page 134.

» Theclient called the Abort method on a wrapper
object, but that wrapper object is not the current owner
of the underlying IDL; thereforeit isnot alowed to
abort IDL.

Table 8-1: HRESULT Error Codes

IDL Connectivity Bridges Error Handling

212

Chapter 8: Using Exported COM Objects

Error Code

Meaning

E_ABORT

This error return value occurs in one of two situations:
o Itisreturned from the original wrapper method call

whose operation was aborted by a successful call to
the Abort method.

It occurs when the client has created several wrapper
instances whose underlying IDL objects al livein the
same IDL process. During a method call on one of
those wrapper instances, the IDL pro code issues the
IDL Ex1T command. When this occurs, the OPS
processis destroyed, which aso destroys all the
underlying IDL objects. However, the client needs to
be notified of thisevent so that it can consider all those
wrapper instances as invalid and not use them again.
First, each listener (event subscriber) for each wrapper
instances will receive an OnlDLNotify callback with
the first string set to “OPS_NOTIFY_EXIT". Then,
the method call (if any) that isin progress at the time
of the ExxT command will return with the specified
error code.

Upon receiving the notification and after receiving this
error code, the user must not make any other method
calls on the wrapper instance, as the underlying IDL
object no longer exits.

E_FAIL

This error return value occurs in one of two situations:
» Theclient called the Abort method on a wrapper

object, but the underlying IDL is not currently busy, so
thereis nothing to abort.

» AnIDL error occurred. In this case, the error message

will be the same asthe IDL error message.

Table 8-1: HRESULT Error Codes (Continued)

Error Handling

IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 213
Debugging

When running an application that relies on a COM wrapper object, it is often difficult
to determine when errors occur in the associated IDL object or IDL process. Sincethe
instance of the wrapper object isinvoked outside of IDL, the normal debugging
capabilities of the IDL Workbench are not available.

However, it is possible to abtain this output by setting the IDL_BRIDGE_DEBUG
environment variable as described in “IDL_BRIDGE_DEBUG” (Chapter 1, Using
IDL). This debug information is usually written to stdout on Unix and Windows
(unless noted otherwise in the following table). This output can also be captured in
Visual Studio, the Debug Monitor (DBMON . exe) or WinDbg debugger on Windows.
In each instance, the output depends on the value of the IDL_BRIDGE_DEBUG
environment variable:

Value Behavior
0 Turn off debug output
1 Turn on debug output, which includes output from library load
errors, IDL execution errors, and PRINT statement output

The expected behavior in common debugging environments is described in the

following table.
Application Debug Output
Console Command window — debug information is presented in
Application line with any console window output when an .exe is

executed from the Windows command window

Visual Studio — debug output does not appear

DBMON — debug information appears in the debug
monitor window asit is generated

Table 8-2: Type and Location of Debug Information Output

IDL Connectivity Bridges Debugging

214 Chapter 8: Using Exported COM Objects

Application Debug Output
Windows Command window — no debug output since the window
Application that islaunched has no knowledge of the debugging

environment variable

Visual Studio — debug output appearsin the Debug Output
window only when the application window is closed

DBMON — debug information appears in the debug
monitor window as it is generated

Table 8-2: Type and Location of Debug Information Output (Continued)

Note
In Windows, the environment variable is read when an application or command
window isinitialy instantiated. For example, if you open Visual Studio and then
change the value of the environment variable, you must re-launch Visual Studio to
see the change in debug output behavior. DBMON is an exception asit always
listens for debug information output and immediately reflects changesin content
level.

Debugging IDL Connectivity Bridges

Chapter 9
Using Exported Java
Objects

This chapter discusses the following topics.

Overview of Java Export Objects 216 EventHandling..................... 232
JavaWrapper Objects 217 ErrorHandling 242
Stock Java Wrapper Methods 218 Debuggingo 244

IDL Connectivity Bridges 215

216 Chapter 9: Using Exported Java Objects

Overview of Java Export Objects

Once you have chosen to use a connector object or have exported a custom IDL
source object using the Assistant, use the method and event reference information
described here to create an instance of the object and interact with the IDL process
from an external Java environment.

This chapter presents important background information on using IDL objects
exported into Java:

e “JavaWrapper Objects’ on page 217

e “Stock Java Wrapper Methods” on page 218
« “Event Handling” on page 232

e “Error Handling” on page 242

Overview of Java Export Objects IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 217

Java Wrapper Objects

There are two different types of objects created by the Java Export Bridge: drawable
and non-drawable.

« Drawable wrapper objects contain a Java AWT Canvas object to which IDL
draws. These wrapper objectsinherit from the JIDL Canvas object.

* Nondrawable objects provide an interface between Javaand IDL to call
methods and pass data. However, these objects do not provide a Canvas on
which IDL can draw. They inherit from the JIDL Object object.

Note
Drawable Java objects are not supported on Macintosh OS X.

J DL Canvas objects extend java.awt.Canvas, which meansthat they are a
heavyweight component. They will work fine with AWT components. However,
Swing introduces the concept of lightweight components, which presents some issues
in Java when heavyweight objects are mixed with lightweight components. (Swing
does not provide alightweight Canvas. If Swing users require the use of a Canvas,
they use an awt.Canvas). Where possible, the J DL Canvas attempts to work around
these problems. However, Swing devel opers should be aware of them. The following
article provides background on this problem and describes the various problems that
may occur when mixing lightweight and heavyweight components:
http://java.sun.com/products/jfc/tsc/articles/mixing/.

Javais a highly multi-threaded language, especialy in GUI applications, which can
lead to problems with event handling. For example, event handling can happen in a
different thread from the main thread that started the GUI. Thus, a complicated GUI
could start processing events after the GUI has been initialized, but before the
createObject method is called to instantiate the wrapper object for client use. It is
therefore important not to start handling events before a successful object creation,
which can be accomplished by calling the isObjectCreated method available for all
Javawrapped objects to make sure the createObject call has finished successfully.

In addition to the wrapper methods created by the Export Bridge Assistant (see
“Stock Java Wrapper Methods” on page 218 for details), exported Java objects have
access to the interfaces and classesincluded in the IDL Java package itself. See
Appendix A, “IDL Java Object API” for details.

IDL Connectivity Bridges Java Wrapper Objects

http://java.sun.com/products/jfc/tsc/articles/mixing

218

Chapter 9: Using Exported Java Objects

Stock Java Wrapper Methods

This section describes the stock methods in the Java wrapper objects created by the
Export Bridge Assistant:

“abort” on page 219

“createObject” on page 220
“destroyObject” on page 223
“executeString” on page 224
“getIDLObjectClassName” on page 225
“getIDLObjectVariableName” on page 226
“getIDLVariable” on page 227
“getProcessName” on page 228
“isObjectCreated” on page 229
“setIDLVariable” on page 230
“setProcessName” on page 231

Every Java connector object and custom Java wrapper object has these methods in
addition to those defined by the wrapped IDL object.

Stock Java Wrapper Methods IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 219

abort

The abort method requests that the IDL process containing the underlying IDL object
abort its current activity. This method is useful if agiven IDL method call is busy for
avery long time (e.g., avery long image processing command).

Note
Therequest isonly that, arequest, and IDL might take along time beforeit actually

stops or might completely finish its current activity. Such await is an effect of the
IDL interpreter.

Note that the client can only call abort from a different thread than the one currently
executing because the method executing is, by its nature, blocked. The caller cannot
abort IDL activity that is occurring from an execution call in another wrapper object.
The client can only abort the current IDL activity if that wrapper object isthe current
owner of the underlying IDL process. For more information on error return code
relating to aborting, see “Error Handling” on page 242.

Syntax

public void abort()

Arguments

None

IDL Connectivity Bridges abort

220 Chapter 9: Using Exported Java Objects

createObject

The createObject method creates the actual underlying IDL object. The argc, argv,
and argpal arguments are used to supply parameters to the underlying IDL object’s
Init method. If the Init method does not have any parameters, the caller sets argc,
argv, and argpal to 0, null, and null, respectively. Theinitializer argument is used to
specify IDL processinitialization parameters (notably the IDL licensing mode).

The createObject method does the following:
1. It calsthe Init method for the IDL object.

2. It calsthe superclassinitListeners method (either JIDL Canvas::initListeners
or JIDL Object::initListeners) to initialize any event handlers.

TheinitListeners method has default behavior, which is different for drawable and
nondrawabl e objects (see“ Event Handling” on page 232 for moreinformation). If the
default behavior is not desired, a subclass to modify the listener initialization can
override the initListeners method.

Note
Registering or unregistering listeners for events should happen in the initListeners
method or AFTER the createObject method.

Syntax

public void createObject()
public void createObject(int argc, Object[] argv, int[] argpal)

public void createObject(int argc, Object[] argv, int[] argpal,
JDLProcesslnitializer initializer)

public void createObject(J DL Processl nitializer initializer)
Arguments

argc

The number of parameters to be passed to Init.

createObject IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 221

argv

The array of objectsto be passed to IDL. This array should be of length argc and
should contain objects of type JJIDLNumber, JIDLObjectl, JIDL String, or
JIDLATrray.

argpal

An array of argc flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

initializer
A JIDLProcessinitializer object that encapsulates the IDL process initialization
parameters. (Process initialization parameters alow the Java programmer to control

the licensing mode of the IDL process. See“IDL Licensing Modes’ on page 134 for
details on the default licensing mechanism.)

Example

The Init method of the IDL object being wrapped has the following signature:
PRO IDLexFoo::INIT, rect, filename
where rect isan array of four integers and filename isastring.

Thefollowing is an example of Javaclient code that creates an instance of the
wrapper object and calls the createObject method with the rect and filename
parameters:

// These are the Java types we want to pass to the ::Init method
int[] rect = {0, 0, 5, 10};
String file = "someFilename.txt";

// Wrap the Java types using Export Bridge data types
JIDLArray bRect = new JIDLArray (rect);
JIDLString bFile = new JIDLString(file);

// Create the wrapper object
MyWrapper wrapper = new MyWrapper () ;

// Set up parameters to pass to createObject
final int ARGC = 2;

Object[] argv = new Object[ARGC];

int[] argp = new int[ARGC];

IDL Connectivity Bridges createObject

222 Chapter 9: Using Exported Java Objects

argv[0] = bRect;
argp[0] = JIDLConst.PARMFLAG_CONST; // "in-only" parameter
argv[l] = bFile;
argpl[l] = JIDLConst.PARMFLAG_CONST; // "in-only" parameter

// Create the underlying IDL object and call

// its ::Init method with parameters and default IDL
// process initialization settings
wrapper.createObject (ARGC, argv, argp);

Note
See Appendix C, “Java Object Creation” for additional examples of creating Java
wrapper objects with and without parameters.

createObject IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 223

destroyObject

The destroyObject method destroys the underlying IDL object associated with the
wrapper. If the object being destroyed is the last object within a process, the process
is also destroyed.

Note that this method does not destroy the actual wrapper object. Because the
wrapper object is a Java object, it follows all the Java reference-counting and
garbage-collection schemes. Once all references to the wrapper object are released
from Java code and once the VM calls the garbage collector, the wrapper object may
be deleted from memory.

Note
Trying to re-create an object after it has been destroyed it is not supported. You
must re-define the variable and then re-create the object.

Syntax
public void destroyObject()
Arguments

None

IDL Connectivity Bridges destroyObject

224 Chapter 9: Using Exported Java Objects

executeString
The executeString method executes the specified command in the IDL process
containing the underlying IDL object

Note
This method is disabled for applications running in the IDL Virtual Machine.

Syntax
public void executeString(String sCmd)
Arguments

sCmd

The command to be executed.

Examples

See “IDL Command Line with Java Connector Object” on page 258 for an example
that executes an IDL command entered into one textbox and writes IDL output or
error information to a second textbox.

executeString IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 225

getIDLObjectClassName

The getl DL ObjectClassName method returns the IDL object class name of the
underlying IDL object.

Syntax
public String getl DL ObjectClassName()
Arguments

None

IDL Connectivity Bridges getIDLObjectClassName

226 Chapter 9: Using Exported Java Objects

getIDLObjectVariableName

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. The getl DL ObjectVariableName method returns that name.

Syntax
public String getl DL ObjectVariableName()
Arguments

None

getIDLObjectVariableName IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 227

getiIDLVariable

The getIDLVariable method retrieves the named variable from the IDL process
associated with the underlying IDL object.

Note
This method is disabled for applications running in the IDL Virtual Machine.

Syntax
public Object getl DLVariable(String sVar)
Arguments

sVar

The named variable to be retrieved. The returned object is of type JJIDLNumber,
JDLString, JDLObjectl, or JIDLArray.

If the variable is an array, the array is aways converted from IDL mgjority to the
standard Java array majority. (For more information on implications of array
majority, see “Multidimensional Array Storage and Access’ on page 493.)

Examples

See “Data Manipulation with a Java Connector Object” on page 256 for an array
mani pul ation example that uses the getl DLVariable, setIDLVariable and
executeString methods.

IDL Connectivity Bridges getIiDLVariable

228 Chapter 9: Using Exported Java Objects

getProcessName

The getProcessName method returns the name of the process associated with the
underlying IDL object.

Syntax
public String getProcessName()
Arguments

None

getProcessName IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 229

iIsObjectCreated

The isObjectCreated method returns True if the object has been created successfully
and returns False if the object has not yet been created or if the object creation was
unsuccessful. This call is often useful in amulti-threaded environment to check that
an object is created before making a method call on that object.

Syntax

public boolean isObjectCreated()
Arguments

None

IDL Connectivity Bridges isObjectCreated

230 Chapter 9: Using Exported Java Objects

setiIDLVariable

The setlDLVariable method sets the specified variable name to the specified valuein
the IDL process containing the underlying IDL object. If the typeis JIDLArray, itis
aways converted to IDL mgjority.

Note
This method is disabled for applications running in the IDL Virtual Machine.

Syntax
public void setlDLVariable(String sVar, Object value)
Arguments
sVar

A string identifying the variable in the IDL process to be set to value.

value

Thevaluefor sVar. The value should be an object of type JIDLNumber, JIDL Objectl,
JDLString or JIDLATrray. If the variable does not exist, it is created.

Examples

See “Data Manipulation with a Java Connector Object” on page 256 for an array
mani pul ation example that uses the getl DLVariable, setIDLVariable and

executeString methods.

setIDLVariable IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 231

setProcessName

The setProcessName method sets the name of the process that will contain the IDL
object. Thiscan only be called before making the createObject call. Once the object is
created, the process name cannot be reset and calling this method after createObject
has no effect.

Syntax
public void setProcessName(String sProcess)

Arguments

sProcess

A string containing the name of the process that will contain the IDL object.

IDL Connectivity Bridges setProcessName

232 Chapter 9: Using Exported Java Objects

Event Handling

Eventsin Java are handled by registered listener objects (often referred to as the
Observer design pattern). The object interested in listening to a given event must
implement the proper Javainterface and then register to receive the events.

Any Java object can register to listen to any other object’s events, but it is often
useful for awrapper object to listen to its own GUI and notify events. It usually
makes most sense for a client object to listen to IDL output events.

Note
Registering or unregistering listeners for events should happen in the initListeners
method or AFTER the createObject method.

Nondrawable Java Objects
Nondrawable objects, which inherit from JIDL Object, can be notified of the
following events:
* IDL notify events (by implementing JIDL NotifyL istener)
« IDL output events (by implementing JIDL OutputListener)
The default behavior as provided by the JIDLObject superclassis that they are not
wired to listen to any events.

Drawable Java Objects
Drawable objects, which inherit from JIDL Canvas, are wired by default to listen to
the following events:
e Mouse events (by implementing JIDL M ousel istener)
e Mouse enter canvas
e Mouse exit canvas
* Mouse pressed
* Mousereleased
* Mouse motion events (by implementing J DL M ouseM otionL.istener)
e Mousedragged
* Mouse moved

Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 233

* Mousewhed events (by implementing J DL MouseWheel Listener)
» Key events (by implementing J DLKeyL.istener)

* Key pressed

* Keyreleased
e Component events (by implementing JI DL ComponentL istener)

e Canvas exposed

» Canvasresized

In addition, drawable objects can also listen to the following events, but they do not
listen to them by default:

* IDL notify events (by implementing JIDL NotifyL istener)
* IDL output events (by implementing J DL OutputL istener)

IDL Notification

As mentioned above, IDL objects that subclass itComponent can trigger a
notification from the IDL object level by calling IDLitComponent::NotifyBridge.
Both drawable (JIDL Canvas) and nondrawable (JIDL Object) wrapper objects handle
IDL notifications.

To receive anatification, a class must implement the JIDLNotifyListener interface
and register with the wrapper object by calling its addI DL NotifyListener method to
register itself as alistener. The listener class can unregister itself by calling the
removel DLNatifyListener method.

The following is the definition of the JIDLNotifyListener interface:

public interface JIDLNotifyListener {
// obj: a reference to the wrapper object that triggered notify
// sl and s2 are strings sent from IDLitComponent::NotifyBridge

void OnIDLNotify (JIDLObjectI obj, String sl, String s2);
}

These methods are available to JIDL Canvas and JIDL Object:

public void addIDLNotifylListener (JIDLNotifyListener 1);
public void removeIDLNotifyListener (JIDLNotifyListener 1);

IDL Connectivity Bridges Event Handling

234

Chapter 9: Using Exported Java Objects

IDL Output

In general, IDL output can be listened to by any class that implements the
JDLOutputListener interface and registersitself asalistener by calling
addIDL OutputListener. The listener class can unregister itself by calling
removel DL OutputListener. Both drawable (JIDL Canvas) and non-drawable
(JIDLObject) wrapper objects handle IDL output.

The following is the definition of the JIDL OutputListener interface:

public interface JIDLOutputListener {

// obj: a reference to the wrapper object that triggered notify
// s 1s the IDL output string
void IDLoutput (JIDLObjectI obj, String s);

}

These methods are available to JIDL Canvas and JIDL Object:

public void addIDLOutputListener (JIDLOutputListener 1) ;
public void removeIDLOutputListener (JIDLOutputListener 1) ;

Handling Specific Events

This section describes how client applications can listen to and handle the following
events: mouse, mouse motion, keyboard, and component.

Mouse Events

Mouse events include a mouse entering the canvas, the mouse exiting the canvas, a
mouse press in the canvas, and amouse release in the canvas. Drag and move events
are handled as mouse motion events (see “Mouse Motion Events’ on page 235).

In general, mouse events may be listened to by any class that implements the

J DLMouseListener interface and registersitself as alistener by calling the
addIDLMousel istener method. The listener class can unregister itself by calling the
removel DL M ouseL istener method. Only drawable (J DL Canvas) wrapper objects
handle this event type.

The following is the definition of the JIDL Mousel istener interface:

public interface JIDLMouseListener {

// obj 1s a reference to the wrapper object

// e 1s a java.awt.event.MouseEvent

void IDLmouseEntered (JIDLObjectI obj, MouseEvent e);
void IDLmouseExited (JIDLObjectI obj, MouseEvent e);
void IDLmousePressed (JIDLObjectI obj, MouseEvent e);

Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 235

void IDLmouseReleased (JIDLObjectI obj, MouseEvent e);
}

These methods are available to JIDL Canvas:

public void addIDLMouseListener (JIDLMouseListener 1);
public void removeIDLMouselListener (JIDLMouseListener 1);

The default behavior of drawable wrappersisthat they automatically register to listen
to themselves and provide default event handlers for each of these events. The
following table describes the default behavior for each event type.

Event Action

IDLmousePressed Triggered when a mouse button is pressed inside the
canvas. The default behavior passes the event to the
IDL method OnM ouseDown.

IDLmouseReleased | Triggered when amouse button is released inside the
canvas. The default behavior passes the event to the
IDL method OnM ouseUp.

IDLmouseEntered Triggered when the mouse enters the canvas. Default
implementation does nothing. The default behavior
callsthe IDL method OnEnter.

IDLmouseExited Triggered when the mouse exits the canvas. Default
implementation does nothing. The default behavior
callsthe IDL method OnExit.

Table 9-1: The Default Behavior of Mouse Event Types

Mouse Motion Events

M ouse motion events include a mouse being moved or dragged inside the canvas. In
general, mouse motion can be listened to by any class that implements the
JIDLMouseMationListener interface and registersitself as alistener by calling the
addIDLMouseMotionListener method. The listener class can unregister itself by
calling the removel DLMouseMotionListener method. Only drawable (JIDL Canvas)
wrapper objects handle this event type.

The following is the definition of the JIDLMouseM otionListener interface:

public interface JIDLMouseMotionListener {

// obj 1s a reference to the wrapper object

IDL Connectivity Bridges Event Handling

236 Chapter 9: Using Exported Java Objects

// e 1s a java.awt.event.MouseEvent
void IDLmouseDragged (JIDLObjectI obj, MouseEvent e);
void IDLmouseMoved (JIDLObjectI obj, MouseEvent e);

}
These methods are available to JIDL Canvas:

public void addIDLMouseMotionListener (JIDLMouseMotionListener 1) ;
public void removeIDLMouseMotionListener (JIDLMouseMotionListener
1);

The default behavior of drawable wrappersisthat they automatically register to listen
to themselves and provide default event handlers for each of these events. The
following table describes the default behavior for each event type.

Event Action

IDLmouseDragged Triggered when the mouse is moved while its | eft
button is pressed inside the canvas. The default
behavior passes the event to the IDL method
OnMouseMotion.

IDLmouseMoved Triggered when the mouse is moved (while no button
is pressed) inside the canvas. The default behavior
passes the event to the IDL method OnM ouseM otion.

Table 9-2: The Default Behavior of Mouse Motion Event Types
Mouse Wheel Events

Mouse wheel events include the scroll whedl of the mouse being rolled inside the
canvas. In general, mouse wheel motion can be listened to by any class that
implements the JIDL M ouseWheel Listener interface and registersitself asalistener
by calling the addl DL M ouseWheel Listener method. The listener class can unregister
itself by calling the removel DL M ouseWheel Listener method. Only drawable

(JIDL Canvas) wrapper objects handle this event type.

The following is the definition of the JIDLMouseWheelListener interface:

public interface JIDLMouseWheelListener {
/** A mouse wheel has moved inside the JIDLCanvas.
* obj is a reference to the wrapper object
* e is a java.awt.event.MouseWheelEvent
*/
void IDLmouseWheelMoved (JIDLObjectI obj, MouseWheelEvent e);

Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 237

These methods are available to JI DL Canvas:

public void addIDLMouseWheellistener (JIDLMouseWheellListener 1) ;
public void removeIDLMouseWheelListener (JIDLMouseWheellListener 1) ;

The default behavior of drawable wrappersisthat they automatically register to listen
to themselves and provide default event handlers for each of these events. The
following table describes the default behavior for each event type.

Event Action

IDLmouseWheelMoved | Triggered when the mouse wheel isrolled. The default
behavior passes the event to the IDL method OnWheel.

Table 9-3: The Default Behavior of Mouse Wheel Event Type

Keyboard Events

Keyboard events include a key being pressed or released when the Canvas has focus.
In general, keyboard events can be listened to by any class that implements the
JIDLKeyListener interface and registers itself as alistener by calling the
addIDLKeyListener method. The listener class can unregister itself by calling the
removel DLKeyL istener method. Only drawable (JIDL Canvas) wrapper objects
handle this event type.

The following is the definition of the JIDLKeyListener interface:

public interface JIDLKeyListener {

// obj 1s a reference to the wrapper object

// e 1s a java.awt.event.KeyEvent

// (x,y) 1is the location of the mouse in the Canvas

void IDLkeyPressed (JIDLObjectI obj, KeyEvent e, int x, int vy);
void IDLkeyReleased(JIDLObjectI obj, KeyEvent e, int x, int vy);

}
These methods are available to JI DL Canvas:

public void addIDLKeyListener (JIDLKeyListener 1);
public void removeIDLKeyListener (JIDLKeyListener 1);

The default behavior of drawable wrappersisthat they automatically register to listen
to themselves and provide default event handlers for each of these events. The
following table describes the default behavior for each event type.

IDL Connectivity Bridges Event Handling

238

Chapter 9: Using Exported Java Objects

Event Action
IDLkeyPressed Triggered when akey is pressed when the canvas has
focus. The default behavior passesthe event to the IDL
method OnKeyboard.
IDLkeyReleased Triggered when a key is released when the canvas has
focus. The default behavior passes the event to the IDL
method OnKeyboard.

Table 9-4: The Default Behavior of Keyboard Event Types

Component Events

Component events include the drawabl e canvas being resized and being exposed
(uncovered or redrawn). Typically, these events are not handled by the client, but are
handled behind the scenes by the Java Export Bridge, which resizes and repaints the
canvas automatically. However, these events can be of interest to the client.

In general, component events can be listened to by any class that implements the

J DLComponentListener interface and registersitself as alistener by calling the
addComponentListener method. The listener class can unregister itself by calling the
removeComponentListener method. Only drawable (JIDL Canvas) wrapper objects
handle this event type, and these methods are available only to JIDL Canvas aobjects.

The following is the definition of the JIDL ComponentListener interface:

public interface JIDLComponentListener {
void IDLcomponentResized (JIDLObjectI obj, ComponentEvent e);
void IDLcomponentExposed (JIDLObjectI obj);

}

These methods are available to JIDL Canvas:

public void addIDLComponentListener (JIDLComponentListener 1)
public void removeIDLComponentListener (JIDLComponentListener 1)

Specifically, drawable wrapper objects (those that inherit from JIDL Canvas)
automatically register to listen to their own component events and provide default
handlers for each of these events. The following table describes the methods and
default implementations for the events.

Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects

239

Event

Action

IDLcomponentResized

Triggered when the canvasisresized. The default
behavior calls the IDL method OnResize.

IDLcomponentExposed

Triggered when the canvas is exposed. The default
behavior callsthe IDL OnExpose method, whichis
expected to call the IDL object’s draw method.

Table 9-5: The Default Behavior of Component Event Types

Subclassing to Change Behavior

There are two ways to change the event-handling behavior of listener objects:
subclassing the wrapper object and handling the eventsin the subclass, or allowing a
client object to handle events. Typically, GUI events and notifications are handled
through subclassing and IDL output through client objects.

When a client calls the (drawable or nondrawable) wrapper object’s createObject
method, the wrapper object callsitsinitListeners method internally. This method,
automatically generated by the Export Bridge Assistant, determines which eventsthe
wrapper object will listen to. As explained above, the wrapper object also has a set of
methods generated to provide the default handling of these events.

To change what the object is listening to, subclass the generated wrapper object and
override the initListeners method. The subclassed initListeners method can now
register for whatever listenersin which it is interested.

For example, automatically generated drawable wrapper objects handle mouse,
mouse motion, keyboard, and component events. Suppose you have awrapper object
called canvasWrapper, generated by the Assistant. You could subclass a wrapper
object called myCanvasWrapper that would only handle mouse motion events. (The
mouse motion events would still be handled in the default manner, but mouse,
keyboard, and component listening would not be enabled.) This new wrapper object

would look like this:

class myCanvasWrapper extends canvasWrapper ({
public void initListeners() {
addIDLMouseMotionListener (this) ;

}

IDL Connectivity Bridges

Event Handling

240 Chapter 9: Using Exported Java Objects

To change the behavior of the listener handlers, subclass the generated wrapper
object and override the event handling method whose behavior you want change. To
get the default behavior, simply pass the event to the superclass.

Consider the following example. Given the same generated canvasWrapper class,
you could ignore mouse drags and, on a mouse press, print information to a console
object before passing up to the IDL object to handle. This class would look like this:

class myCanvasWrapper?2 extends canvasWrapper {
public void IDLmousePressed(JIDLObjectI o, MouseEvent e) {
console.printMouseEvent (e) ;
super.IDLmousePressed(o, e); // pass to IDL

}

public void IDLmouseDragged (JIDLObjectI o, MouseEvent e) {
// do nothing
}
}

Listening from Other Java Objects

Any Java object that implements the proper listener interface and registersitself with
the wrapper object as alistener can also listen to events of interest. When more than
one object isregistered to listen to a given event, all listeners receive the event
without a guarantee of order.

The steps are as follows:
1. The classimplementsthe proper listener interface.
2. Theclassregistersto listen to events.
3. Theclass handles the event in the listener interface method (or methods).

Asan example, use the same canvasWrapper in a class called myClient that listensto
IDL output. First, implement the JIDL OutputListener interface. Next, use the
constructor to have the client register itself as alistener of the wrapper’'s IDL output.
Finally, implement the IDL output to act on the output. The code is shown below:

import com.itt.javaidl.*;

class myClient implements JIDLOutputListener {

canvasWrapper m_wrapper;

public myClient () {
m_wrapper = new canvasWrapper () ;
m_wrapper.createObject () ;
m_wrapper .addIDLOutputListener (this) ;

}

public void IDLoutput (JIDLObjectI obj, String s) {

Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 241

// do something with the IDL output

IDL Connectivity Bridges Event Handling

242

Chapter 9: Using Exported Java Objects

Error Handling

When an error occursin a Java wrapper object, it throws an unchecked exception of
type JIDLException (or a subclass of JIDLEXxception), which meansthat callsinto a

wrapper object should be wrapped in try-catch blocks, asis standard in Java.
J DL Exception provides the following method for getting the IDL error code:

public long getErrorCode() ;

In addition, because J DL Exception inherits from java.lang.Error, other Java
exception methods such as getM essage and printStack Trace are avail able.

The table below describes the error return values and their meaning when they are
returned within the context of the wrapper method calls. The Java errors are
encapsulated in a JIDL Exception object or a subclass of JIDLException, ashoted in

thetable.

Error Exception/Code

Meaning

JIDLBusyException (a subclass of JIDLException)
with JJIDLConst.IDL_BUSY error code

IDL isbusy. The client made a method
call on awrapper object, but the
underlying IDL processis still busy
with a previous request (method call)
and has not finished yet. For more
information, see “IDL Ownership and
Blocking” on page 134.

JDLException with
JDLConst.IDL_ABORT_NOT_OWNER error
code

Theclient called the abort method on a
wrapper object, but that wrapper
object is not the current owner of the
underlying IDL process. Therefore, it
isnot allowed to abort IDL.

JDLException with
JDLConst.IDL_NOTHING_TO_ABORT error
code

Theclient called the abort method on a
wrapper object, but the underlying
IDL processis not currently busy, so
there is nothing to abort.

JDLADbortedException (a subclass of
JDLException) with JIDLConst.IDL_ABORTED
error code

Thiserror isreturned from the original
wrapper method call whose operation
was aborted by a successful call to the
abort method.

Table 9-6: JIDLException Error Codes

Error Handling

IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects

243

Error Exception/Code

Meaning

JDLException with
JDLConst.OPS NOTICE_PROCESS ABORTED
error code

This error occurs when the client has
created several wrapper instances
whose underlying IDL objects all live
in the same IDL process. During a
method call on one of those wrapper
instances, the IDL pro code issues the
IDL exit command. When this occurs,
the process is destroyed, which also
destroys al the underlying IDL
objects. However, the client needs to
be notified of this event so that it can
consider all those wrapper instances as
invalid and not use them again.

First, each listener (event subscriber)
for each wrapper instance receives an
OnIDLNatify calback with the first
string set to “OPS_NOTIFY_EXIT”.
Then, themethod call (if any) that isin
progress at the time of the ExIT
command will return with the
specified error code.

Upon receiving the notification and
after receiving this error code, the user
must not make any other method calls
on the wrapper instance, as the
underlying IDL object no longer exits.

JDLException with IDL error code

A specific IDL error occurred. The
error code isthe ssme asthe IDL error
code.

Table 9-6: JIDLException Error Codes (Continued)

IDL Connectivity Bridges

Error Handling

244

Chapter 9: Using Exported Java Objects

Debugging

Debugging

When running an application that relies on a Java wrapper object, it is often difficult
to determine when errors occur in the associated IDL object. Since the instance of the
wrapper object isinvoked outside of IDL, the normal debugging capabilities of the
IDL Workbench are not available.

However, it is possible to abtain this output by setting the IDL_BRIDGE_DEBUG
environment variable as described in “IDL_BRIDGE_DEBUG” (Chapter 1, Using
IDL). For example, if you set this environment variable to 1, you can see library load
errors (on Windows), IDL execution errors, and output from IDL print commands.
The appearance of debug information printed to stdout on Windows or UNIX
depends upon the value set for the IDL_BRIDGE_DEBUG environment variable:

Value Behavior
0 Turn off debug output
1 Turn on debug output, which includes output from library load
errors, IDL execution errors, and PRINT statement output

To get additional Java-side diagnostics related to finding and loading the native
libraries, definethe IDL_LOAD_DEBUG parameter on the command line when
starting a Java application, as follows:

java -DIDL_LOAD_DEBUG <class-to-run>

IDL Connectivity Bridges

Chapter 10
Using the
Connector Object

This chapter discusses how to use the prebuilt connector object that isincluded in the IDL
distribution in COM and Java applications.

About the IDL Connector Object 246 Connector Object COM Examples. 249
Preparing to Use the IDL Connector Object .. Connector Object Java Examples.. 253
247

IDL Connectivity Bridges 245

246 Chapter 10: Using the Connector Object

About the IDL Connector Object

The prebuilt IDL connector export object that is shipped with the IDL distribution
lets you quickly incorporate the processing power of IDL into an application
developed in an external, object-oriented environment such as COM or Java. The
connector object definition provides the basis for anondrawable COM or Java
connector wrapper object that includes the ability to get and set IDL variables and
execute command statements in the associated IDL process. These connector
wrapper objects expose al of the standard wrapper object methods. See “ Stock COM
Wrapper Methods’ on page 192 (COM) and “ Stock Java Wrapper Methods’ on
page 218 (Java) for details.

Use a connector wrapper object if you need basic IDL processing capabilities. If you
need the flexibility of custom object methods, an interactive IDL drawing interface,
and/or associated mouse events, you should create an IDL object with the needed
functionality and export it using the Export Bridge Assistant as described in Chapter
7, “Using the Export Bridge Assistant”.

Note
Using the connector object provides exactly the same functionality as creating and
exporting the simplest IDL object, which could consist of code similar to the

following:
FUNCTION simpleobj::INIT
RETURN, 1
END

PRO simpleobj_ define
struct = {simpleobj, $
dummy:0b $; dummy structure field, not a property

}
END

About the IDL Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 247

Preparing to Use the IDL Connector Object

All of the files needed to use a connector object are provided in the IDL distribution.
You can locate the filesin the following directory locations where 7pr,_DIriswhere
you have installed IDL:

Files

File Descriptions

COM

Resourcefiles:
* COM_idl_connect.dll
* COM_idl_connect.tlb
arelocated in IDI,_DIR/resource/bridges/export/COM

Java

The java_IDL_connect classisincluded in the
javaidlb. jar file, whichislocated in the

IDI_DIR/resource/bridges/export/java

directory.

The javaidlb. jar file must be included in the Java classpath
in order to use the Java connector wrapper object. Thisfile

containsthe com. id1.javaidl package, which definesthe
Java class files needed by the Java export bridge.

IDL Object

The connector object definition is stored in a SAVE file named
idl_connect_define.sav
located inthe IDL,_DIR/1ib/bridges directory.

Thisisthe only object definition file, and since it is contained
within a SAVE file, it can be used with runtime IDL. Unlike
custom IDL object definition files, there is no need to distribute
this definition file with your application; it is already included in
the IDL distribution.

Table 10-1: Connector Object Files

To use the connector object with a COM application, you must reference the
COM_idl_connectLib 1.0 Type Library library inyour application. Thereis
no need to register the coM_id1_connect.d11 asdescribed in “COM Registration
Requirements’ on page 143 since thisis automatically registered upon IDL

installation.

IDL Connectivity Bridges

Preparing to Use the IDL Connector Object

248 Chapter 10: Using the Connector Object

To use the connector object within a Java application, you must include the correct
import statement in your Java application and set the classpath and as described in
“Java Reguirements’ on page 143.

Preparing to Use the IDL Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 249

Connector Object COM Examples

The following examples show how to use the connector object in Visual Basic .NET
Console and Windows applications. These examples contain important information
about how to access messages sent from IDL in a COM application and how to
communicate with the IDL process. In COM clients, the IDL output and notification
methods are part of the default outgoing event interface.

» “Hello World Example with a COM Connector Object” on page 250 — shows
how to use the ExecuteString method of the wrapper object to print a statement
such as “Hello World” in a console application.

o “DataManipulation with a COM Connector Object” on page 251 — uses
SetIDLVariable, Getl DLVariable and ExecuteString methods during array
mani pul ation within a Consol e application.

e “IDL Command LinewithaCOM Connector Object” on page 252 — provides
an interactive “IDL command line” in a Windows application.

IDL Connectivity Bridges Connector Object COM Examples

250 Chapter 10: Using the Connector Object

Hello World Example with a COM Connector Object

To create a Visual Basic .NET console application using the connector object
wrapper methods to print “Hello World” in a console application window, complete
the following steps:

1. Createanew Visual Basic .NET console application and add areference to the
COM_idl_connectLib 1.0 Type Library.

2. Replace the default module definition with the code referenced below. See
code comments for details.

Example Code
Thetext file for this example, com_export_hello_doc.txt, islocated in the
examples/doc/bridges/coM subdirectory of the IDL distribution. This Visual
Basic .NET code can be copied from the text file and adopted for use in your COM
environment.

After building and running the project, a simple console window will appear and
“Hello World” will be output to this location.

Note
An expanded “Hello World” example that allows you to optionally say hello from
someone can be found in “Hello World COM Example with Custom Method” in
Chapter 12. This example uses a custom IDL object with a method and the Export
Bridge Assistant to create the necessary wrapper object files.

Hello World Example with a COM Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 251

Data Manipulation with a COM Connector Object

Thefollowing Visual Basic .NET example creates two arrays and passes them to IDL
using the SetIDLVariable method. An ExecuteString command then multiplies the
two arrays and GetlDLVariable returns the result to the COM application. The
product of the array multiplication is printed to the console window.

1. Createanew Visual Basic .NET console application and add areference to the
COM_idl_connectLib 1.0 Type Library.

2. Replace the default module definition with the following code. See code
comments for useful information.

Example Code
Thetext file for this example, com_export_arrays_doc. txt, islocated in the
examples/doc/bridges/coM subdirectory of the IDL distribution. This Visual
Basic .NET code can be copied from the text file and adopted for use in your COM
environment.

Building and running this program outputs the following to the console window.

ELP,. ¢ ~/FULL eqgquals:
C LONG = Arrayl6,. 61

Mumber of elementsz in 1st dimension:
6
The results of multiplying afArray

a i 2 E]
times bArray

4 3

equals the following:
a a

1
8
6
4
2
a
e

Press any key to continu

Figure 10-1: Console Output of Array Multiplication

IDL Connectivity Bridges Data Manipulation with a COM Connector Object

252 Chapter 10: Using the Connector Object

IDL Command Line with a COM Connector Object

The following example creates a simple Windows application in Visual Basic .NET
that includes two text boxes. An IDL command typed in the top textbox is passed to
the IDL process through the use of the ExecuteString method. Command output and
any error messages are printed in the bottom textbox.

=lol x|

Figure 10-2: Design-time View of Simple Command Line Example

To replicate this example, complete the following steps:

1. Create anew Visua Basic .NET Windows application and add areference to
thecoM _idl_connectLib 1.0 Type Library.

2. Replace the default form definition with the code referenced bel ow. See code
comments for details.

Example Code
Thetext file for this example, com_export_commandline_doc.txt, islocated
in the examples/doc/bridges/coM subdirectory of the IDL distribution. This
Visual Basic .NET code can be copied from the text file and adopted for usein your
COM environment.

After building and running the project, enter IDL commands in the top textbox.
Pressing the Enter key sends the command to the IDL process.

IDL Command Line with a COM Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 253

Connector Object Java Examples

The following examples introduce the capabilities of the Java connector object:
¢ “Hello World Example with a Java Connector Object” on page 254
e “DataManipulation with a Java Connector Object” on page 256
e “IDL Command Line with Java Connector Object” on page 258

Note
The Java class files needed for the Export Bridge are found in the
com.idl.javaidl package, whichisstoredinthe javaidlb.jar file. See
“Preparing to Use the IDL Connector Object” on page 247 for more information.

Note on Running the Java Examples

Examplesin this chapter provide Windows-style compile javac (compile) and
java (run) commands. If you are running on a platform other than Windows, use
your platform’s path and directory separators and see “ Java Requirements’ on
page 143 for information about the bridge_setup file, which sets additional
information.

IDL Connectivity Bridges Connector Object Java Examples

254

Chapter 10: Using the Connector Object

Hello World Example with a Java Connector Object

To create a Java application that uses the connector object’s executeString method to
print “Hello World” in the command window, complete the following steps.

Example Code

Thefilefor thisexample, hello_example.java, islocated in the
examples/doc/bridges/java subdirectory of the IDL distribution.

Tip

Open thefilenamed hello_example.java in the location referenced above.

Open the Windows Command window by selecting Start — Run and enter
cmd in the textbox.

Use the cd command to change to the directory containing the
hello_example. java file. For adefault Windows installation, the
command would be:

cd IDL_DIR\examples\doc\bridges\java
where 1pr,_DIR isthe directory where you have installed IDL.

Reference the classpath of javaidlb. jar in the compile statement. This
automatically accesses the connector object, java_IDL_connect, Whichis
contained within the file. Enter the following two commands (as single lines)
to compile and execute the program, replacing rpr,_br1r with the IDL
installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
hello_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
hello_example

See “Note on Running the Java Examples’ on page 253 for information on
executing Java commands on a non-Windows platform.

After compiling and running the project, “Hello World!” will appear in the command
window.

Note

An expanded “Hello World” example that allows you to optionally say hello from
someone can be found in “Hello World Java Example with Additional Method” on

Hello World Example with a Java Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 255

page 294. This example uses a custom IDL object with a method and the Export
Bridge Assistant to create the necessary wrapper object files.

IDL Connectivity Bridges Hello World Example with a Java Connector Object

256

Chapter 10: Using the Connector Object

Data Manipulation with a Java Connector Object

The following Java example creates two arrays and passes them to IDL using the
setlDLVariable method. An executeString command then multiplies the two arrays
and getl DLVariable returns the result to the java application. The product of the array
multiplication is printed to the command window.

Example Code

Thefilefor thisexample, arrays_example.java, islocated in the
examples/doc/bridges/java subdirectory of the IDL distribution.

Complete the following steps:

1

Tip

Open the file named arrays_example.java in thelocation referenced
above.

Open the Windows Command window by selecting Start — Run and enter
cmd in the textbox.

Use the cd command to change to the directory containing the
arrays_example.java file. For adefault Windows installation, the
command would be:

cd IDIL_DIR\examples\doc\bridges\java
where 1pr_DIR isthe directory where you have installed IDL.

Reference the classpath of javaidlb. jar in the compile statement. This
automatically accesses the connector object, java_IDL_connect, Whichis
contained within the file. Enter the following two commands (as single lines)
to compile and execute the program, replacing rpr,_prr with the IDL
installation directory:

javac -classpath
".; IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
arrays_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
arrays_example

See “Note on Running the Java Examples’ on page 253 for information on
executing Java commands on a non-Windows platform.

Data Manipulation with a Java Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 257

After compiling and running the project, the result of the array manipulation is
printed to the command window, a subset of which appearsin the following figure.

C:“REI~IDL63I~examplessdoctbridges~javarjava —classpath "_;C:NREINIDL63“resource™
hridgesexportsjavasjavaidlb. jar" arrays_example
LONHG = Arravl6,. 61

Results of multiplying afrray
8123465
times bArray

543218

equals =
5 18 15 28 25 >

Figure 10-3: Java Array Manipulation Result

IDL Connectivity Bridges Data Manipulation with a Java Connector Object

258 Chapter 10: Using the Connector Object

IDL Command Line with Java Connector Object

Thefollowing example creates a simple Java application that includes two text boxes.
An IDL command typed in the top textbox is passed to the IDL process through the
use of the executeString method. Command output and any error messages are
printed in the bottom textbox.

Example Code
Thefilefor thisexample, JTDLCommandLine. java, islocated in the
examples/doc/bridges/java subdirectory of the IDL distribution.

1. Openthefile named JIDLCommandLine. java in the location referenced
above:

2. Open the Windows Command window by selecting Start — Run and enter
cmd in the textbox.

3. Usethe cd command to change to the directory containing the
JIDLCommandLine. java file. For adefault Windows instalation, the
command would be:

cd IDIL_DIR\examples\doc\bridges\java
where 1DL,_DIR isthe directory where you have installed IDL.

4. Reference the classpath of javaidlb.jar in the compile statement. This
automatically accesses the connector object, java_IDL_connect, Whichis
contained within the file. Enter the following two commands (as single lines)
to compile and execute the program, replacing rpr,_pr1r with the IDL
installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
JIDLCommandLine.java

java -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
JIDLCommandLine

Tip
See “Note on Running the Java Examples’ on page 253 for information on
executing Java commands on a non-Windows platform.

IDL Command Line with Java Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 259

After compiling and running the project, a smple command line interface appears as
shown in the following figure.

4. JIDLCommand o im] 5

IDL>

Output:

Festored file: IDL_COMNMECT__DEFIME.

Figure 10-4: Java “IDL’ Command Line Interface

Send commands to the IDL process by entering them in the top text box and pressing
the Enter key. Any output or errors will appear in the lower text field.

IDL Connectivity Bridges

IDL Command Line with Java Connector Object

260 Chapter 10: Using the Connector Object

IDL Command Line with Java Connector Object IDL Connectivity Bridges

Chapter 11

Writing IDL Objects for
Exporting

This chapter discusses the following topics.

OVeIVIaW ...t 262 Exporting Drawable Objects 264
Programming Limitations 263 Drawable Object Canvas Examples 266

IDL Connectivity Bridges 261

262

Chapter 11: Writing IDL Objects for Exporting

Overview

Overview

The abjects you writein IDL can, in the vast number of cases, take full advantage of
the Export Bridge technology, with only afew of IDL's capabilities not available. In
addition, due to limitations imposed by external environments (COM and Java),
certain restrictions exist for the method signatures that are exposed through the
Export Bridge. This chapter outlines these functional limitations.

The chapter also provides a concise introduction to the object classes available to
make drawable wrapper objects (objects that subclass from IDLitWindow,
IDLgrwWindow, and IDLitDirectWindow) and which to use when, with examples.

IDL Connectivity Bridges

Chapter 11: Writing IDL Objects for Exporting 263

Programming Limitations

This section discusses the programming limitations required by the Export Bridge
technology for successfully generating wrapper objects.

Keyword Parameters

Because COM and Java don’t support the concept of keyword parameters, the Export
Bridge does not support IDL keyword parameters in method signatures. If you want

to export an IDL method that uses keyword parameters, you must wrap the method in
another method that only implements positional parameters. The keyword parameters
to IDL source object methods are ignored except for the SetProperty and GetProperty
methods, in which keyword parameters are extracted to obtain the object’s properties.

Unsupported Data Types

Properties and method parameters exported to a wrapper object class cannot include
data of any of the following types:

* IDL Pointer
e Single- or double-precision complex data
* |DL Structure

» IDL objects, unlessthe object is an exported IDL object that existsin the same
process space or pool as the object upon which the method is being called (as
described in “Object Reference Use” on page 136)

Array Majority and Shape

The majority and shape of how data arrays are structured differs between the external
environments supported by the Export Bridge (COM and Java) and IDL. Note that
the Export Bridge technology might create a copy of array data when converting
between external environments and IDL.

For further information on array majority, see “Multidimensional Array Storage and
Access’ on page 493. In addition, see “Array Order Conversion” on page 137 and
“Converting Array Majority” on page 165 for details on how array mgjority is
handled in the Assistant.

IDL Connectivity Bridges Programming Limitations

264 Chapter 11: Writing IDL Objects for Exporting

Exporting Drawable Objects

If you want to create a COM or Java application that uses a drawable wrapper object,
you must subclass your IDL object from one of the following object classes before
generating the wrapper:

e IDLgrWindow — provides a canvas for graphic objects
e IDLitWindow — provides a canvas for iTool visualizations

« IDLitDirectWindow — provides a canvas for Direct Graphic routine output

Note
Java drawabl e objects are not supported on the Macintosh OS X platform.

Requirements for Drawable Objects

Objectsthat inherit from IDLgrWindow must set the GRAPHICS_TREE property
following creation of the objects hierarchy. This supports the automatic redraw
capabilities of the OnExpose method.

Note
Common drawable object methods (such as OnKeyboard or OnMouseM otion) are
typically not displayed in the Export Bridge Assistant when exporting a drawable
object. See “ Drawable Object Event Handlers’ on page 178 for details.

In addition, IDL objects derived from IDLitDirectWindow must first provide a call of
self->makeCurrent at the beginning of each method to ensure that the graphics
rendering occursin the wrapper’s drawable window, as described bel ow.

Direct Graphics Support

To provide IDL Direct Graphics support, the export bridge uses an object to create an
IDL Direct Graphics drawing surface. The Direct Graphics object,
IDLitDirectWindow, differs from standard IDL Direct Graphicsin the following
manner:

e The object implements the Active Window event handler callback methods to
manage events. As such, to perform any event processing in IDL the user must
sub-class this object and override the desired event callback methods.

Exporting Drawable Objects IDL Connectivity Bridges

Chapter 11: Writing IDL Objects for Exporting 265

» To make the window object current in the underlying direct graphics driver the
user callsthe IDLitDirectWindow::MakeCurrent method on the object. Thisis
similar to aWSET operationin IDL, but no window index is required.

e Onceawindow iscurrent, any IDL direct graphics routine can be called to
draw graphics on the provided drawing surface. The user can add a method on
the object they implement to render graphics or use the execute string
functionality of the bridge to issue IDL commands.

While the Export Bridge implementation provides a different method to create and
interact with a Direct Graphics Window, the differences are minor and let users
rapidly port their IDL Direct Graphics implementation for use with this technology.

IDL Connectivity Bridges Exporting Drawable Objects

266 Chapter 11: Writing IDL Objects for Exporting

Drawable Object Canvas Examples

The following examples use the three object classes as canvases for drawable objects.
You can use them with the Export Bridge by following “ Java Wrapper Example’ on
page 267 or use them with the Export Bridge Assistant (for more information, see
“Using the Export Bridge Assistant” on page 147). For information about a COM
example, see “COM Wrapper Example” on page 268.

IDLgrWindow Example

The IDLgrWindow example uses object graphics to create a map that lets you click
on and transform it with atrackball.

Example Code
The procedure file i d1grwindowexample__define.pro, located in the
examples/doc/bridges/ subdirectory of the IDL distribution, contains the
example code. Run the example procedure by entering

idlgrwindowexample__define a the IDL command prompt or view thefilein
an IDL Editor window by entering . EDTIT
idlgrwindowexample__define.pro.

IDLitDirectWindow Example

The IDLitDirectWindow example uses direct graphics to create a palette on which
you can draw and erase lines.

Example Code
The procedurefile id1iddirectwindowexample__define.pro, located in the
examples/doc/bridges/ subdirectory of the IDL distribution, contains the
example code. Run the exampl e procedure by entering
idliddirectwindowexample__define at the IDL command prompt or view
thefilein an IDL Editor window by entering . EDIT
idliddirectwindowexample__define.pro.

IDLitWindow Example

The IDLitWindow example uses the i Surface tool to plot a Hanning transform on a
surface.

Example Code
The procedurefile id11twindowexample__define.pro, located in the
examples/doc/bridges/ subdirectory of the IDL distribution, contains the

Drawable Object Canvas Examples IDL Connectivity Bridges

javascript:doIDL("idlgrwindow__define")
javascript:doIDL(".edit idlgrwindow__define.pro")

javascript:doIDL(".edit idlgrwindow__define.pro")

javascript:doIDL("idliddirectwindowexample__define")
javascript:doIDL(".edit idliddirectwindowexample__define.pro")

javascript:doIDL(".edit idliddirectwindowexample__define.pro")

Chapter 11: Writing IDL Objects for Exporting 267

example code. Run the exampl e procedure by entering
idlitwindowexample__define a the IDL command prompt or view thefilein
an IDL Editor window by entering . EDTIT
idlitwindowexample__define.pro.

Java Wrapper Example

An example Java wrapper that works with all three of the canvas types described
aboveisincluded in the IDL distribution. The application accepts a parameter that
specifies the name of the IDL classto use.

Note
Drawable Java objects are not supported on Macintosh OS X.

Note
The Export Bridge Assistant creates wrapper objects comparable to the code in this
example. Your applications should not need to include such code if they are using
Assistant-generated wrappers.

Note
The following steps assume you are working on aUNIX platform. If you are
working on a Windows platform, substitute the appropriate paths and path-
separator characters.

1. Copy thefile IDLWindowExample. java from the
IDL,_DIR/examples/doc/bridges/java

directory to a new directory where you will compile the Java code. In this
example, we assume you will build the Java examplein the
/tmp/idljavatest directory.

Change directoriesto the /tmp/idljavatest directory.

Source the bridge_setup file from the bin subdirectory of the IDL
installation. If you use a C shell:

source IDI_DIR/bin/bridge_setup

where IDL_DIRisthe path to your IDL installation. (There are
bridge_setup filesfor the C shell, korn shell, and bash shell. Use the proper
source command and bridge_setup filefor your installation.)

4, Compilethe IDLWindowExample. java file with the following command:

IDL Connectivity Bridges Drawable Object Canvas Examples

javascript:doIDL("idlitwindowexample__define")
javascript:doIDL(".edit idlitwindowexample__define.pro")

javascript:doIDL(".edit idlitwindowexample__define.pro")

268 Chapter 11: Writing IDL Objects for Exporting

javac IDLWindowExample.java

This command creates two class files; IDLwWindow.class and
IDLWindowExample.class.

5. Execute the example code with the following command:
java IDLWindowExample <IDL_classname>

where <IDL_classname> isthe name of one of the example classes
described above.

Note
Thebridge_setup file sets your CLASSPATH environment variable to
include both the current directory (». ») and the
IDI,_DIR/resource/bridges/export/java/javaidlb. jar file. See
“Java Reguirements’ on page 143 for additional information about the class
path

For example, if you sourced the bridge_setup file and compiled the
IDLWindowExample.java fileinthe /tmp/idljavatest directory, the
following commands would execute the three exampl es described above:

java IDLWindowExample IDLgrWindowExample
java IDLWindowExample IDLitDirectWindowExample
java IDLWindowExample IDLitWindowExample

COM Wrapper Example

See“ Tri-Window COM Export Example” on page 284 for the steps heeded to include
controls based on the three drawable objectsin a Visua Basic .NET Windows
application.

Drawable Object Canvas Examples IDL Connectivity Bridges

Chapter 12

Creating Custom
COM Export Objects

This chapter discusses the following topics.

About COM Export Object Examples.... 270 Drawable COM Export Examples 276
Nondrawable COM Export Example 272

IDL Connectivity Bridges 269

270 Chapter 12: Creating Custom COM Export Objects

About COM Export Object Examples

An IDL object can be wrapped for usein aCOM application using the Export Bridge
Assistant as described in Chapter 7, “Using the Export Bridge Assistant”. This
chapter provides several Visual Basic .NET examples that use custom COM export
objects. These include:

* Nondrawable examples — show how to access the processing power of IDL in
aCOM application by exchanging data with the IDL process, issuing IDL
commands, and accessing | DL output

» Drawable examples — contain the elements needed to create interactive IDL
drawing windows and to access keyboard and mouse events

Note
You can quickly incorporate the processing power of IDL in a COM application by
including the pre-built COM connector wrapper object in your external application.
Use this option if you do not need custom methods or an interactive drawing
surface. See Chapter 10, “Using the Connector Object” for examples.

The general process for each of these examples involves the following:
1. CreatetheobjectinIDL.

2. Export the object using the Export Bridge Assistant, which createsthe .d11,
.t1b or .ocx filesassociated with the IDL object that is now wrapped in a
COM export object wrapper.

Register the .d11 or .ocx file.

Reference the appropriate library in your COM application before attempting
to access the object functionality. This functionality automatically includes
stock methods and events (described in Chapter 8, “Using Exported COM
Objects’) in addition to custom methods you have chosen to export.

Note
See “Writing IDL Objects for Exporting” on page 261 for information on how to
create custom IDL objects that can be successfully exported using the Export
Bridge Assistant. There are important object method and data type requirements
that must be met.

About COM Export Object Examples IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 271

Note
When you distribute an application, you will also need to share:

— any application-specific .d11 files generated during the build process
—the executable file (.exe)
—the.dl1l or.ocx files(generated by the Export Bridge Assistant)
—the .pro or .sav file that contains the custom object definition
Any .pro or .sav filesincluded with your application must be located in the IDL

path.

Debugging Applications Using Export Objects

It can be challenging to determine what is happening in the IDL process associated
with awrapper object without the debugging features of the IDL Workbench. For
access to valuable debug information, consider using the IDL_ BRIDGE_DEBUG

environment variable, described in “ Debugging” on page 213.

IDL Connectivity Bridges About COM Export Object Examples

272 Chapter 12: Creating Custom COM Export Objects

Nondrawable COM Export Example

Nondrawable objects provide access to the enormous processing power of IDL, but
do not provide IDL drawing capabilities. Thisis useful for applications that need the
data manipulation capabilities of IDL, but have no need for, or have independent

drawing capabilities.

Hello World COM Example with Custom Method

The following simple example creates an IDL object with a single function method
that accepts one argument, and walks through the process of exporting the object
using the Export Bridge Assistant. Once the export files are created, a simple Visual
Basic .NET console application shows how to access the object method and capture

its output.

Complete the following steps to duplicate this example.

1. InanIDL Editor window, copy in the following code and save the file as
helloworldex__define.pro inadirectory inyour IDL path

; Method returns message based on presence or

; absence of argument.

FUNCTION helloworldex::HelloFrom,
IF (N_ELEMENTS (who) NE 0)
message = "Hello World from

RETURN, message
ENDIF ELSE BEGIN

message = 'Hello World'
RETURN, message
ENDELSE
END

THEN BEGIN
" + who

; Init returns object reference on successful

; initialization.

FUNCTION helloworldex::INIT
RETURN, 1

END

; Object definition.
PRO helloworldex_ define

struct = {helloworldex, $
who: '' , $
message: ' ' $
}
END

Nondrawable COM Export Example

IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 273

Note
Itisagood ideato test the functionality of an object before exporting it. After
compiling thefile, enter the following lines at the command line and make
sure the output is what is expected for this object.

ohello = OBJ_NEW ("HELLOWORLDEX")
PRINT, ohello->HelloFrom()
PRINT, ohello->HelloFrom('Mr. Bill'")

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a COM export object by selecting File — New Project —
COM and browse to select the helloworldex_define.pro file. Click
Open to load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in Specifying Information for
Exporting” on page 164. Refer to that section if you need more information
about the following steps.

4. Thetop-leve project entry in the left-hand tree panel is selected by default.
There is no need to modify the default properties shown in the right-hand
property panel, but you can enter different values if desired. Set other export
object characteristics as described in the following table. Select the tree view
item listed in the left column to configure the related properties in the right
column.

Tree View ltem Parameter Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

» Output classname
* Processnhame
e Output directory

helloworldex Drawabl e object equals False

Table 12-1: Example Export Object Parameters

IDL Connectivity Bridges Nondrawable COM Export Example

274 Chapter 12: Creating Custom COM Export Objects

Tree View Item Parameter Configuration

HELLOFROM method Output method name — accept the
default value, HELL OFROM

Return Type — BSTR since this
function method returns a string
message (as defined in the IDL object
definition structure)

Array — False since this method
returns a single string, not an array

Export — True

WHO argument Mutability — In since the argument is
not passed back to the caller

Type— BSTR since thisargument is
defined asastring in the IDL object
definition

Array — False

Export — True

Table 12-1: Example Export Object Parameters

5. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a nondrawable object, .t1b
and .a11 files (named based on the object name) are created in the Output
directory.

8. Register the.d11 using regsvr32 helloworldex.dll. See“COM
Registration Requirements” on page 143 for detailsif needed.

9. Create anew Visual Basic .NET console application and import areference to
the COM library named helloworldexLib 1.0 Type Library.

10. Replace the default module code with the text in the file referenced below. See
code comments for details.

Nondrawable COM Export Example IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 275

Example Code
Thetext file for this example, com_export_helloex_doc. txt, islocated in the
examples/doc/bridges/coM subdirectory of the IDL distribution. This Visual
Basic .NET code can be copied from the text file and adopted for use in your COM
environment.

After building the solution and starting without debugging, the console window
appears with the output messages.

IDL Connectivity Bridges Nondrawable COM Export Example

276

Chapter 12: Creating Custom COM Export Objects

Drawable COM Export Examples

A COM export object that supports graphics must be based on a custom IDL object
that inherits from IDLgrWindow, IDLitWindow or IDLitDirectWindow (as described
in “ Exporting Drawable Objects’ on page 264). Additionally, your IDL object must
also implement a set of callback methodsif you want to be able to respond to mouse
or keyboard events in the graphics window. These are described in “ Event Handling”
on page 208. Examplesin this section include:

“COM IDLgrWindow Based Histogram Plot Generator” on page 277 —
provides an object based on IDLgrWindow that creates a histogram plot for a
selected image file and lets you change the plot linestyle property.

“COM IDLitWindow Surface Manipulation” on page 281 — includes a
drawable IDLitWindow example with ISURFACE functionality and a custom
method |ets you change the active manipulator. Delete key events are captured
and passed to a custom OnKeyboard method that deletes sel ected
visualizations.

“Tri-Window COM Export Example” on page 284 — includes controls based
on the three types of drawable objects (IDLgrwWindow, | DLitWindow, and
IDLitDirectWindow) in asingle Visua Basic .NET Windows application. A
subprocedure captures | DLitComponent::NotifyBridge output and printsitto a
label on the form.

Drawable COM Export Examples IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 277

COM IDLgrWindow Based Histogram Plot Generator

This drawable object example inherits from IDLgrWindow and creates a histogram
plot for a selected monochrome or RGB image file. While this example does contain
several custom methods including those for opening afile, creating the plots, and
changing plot characteristics, it does not use keyboard or mouse events. See “COM
IDLitWindow Surface Manipulation” on page 281 for such an example.

Example Code
The object definition file, export_grwindow_doc__define.pro islocatedin
the examples/doc/bridges subdirectory of the IDL distribution. Run the
example procedure by entering export_grwindow_doc__define at the IDL
command prompt or view thefilein an IDL Editor window by entering .EDIT
export_grwindow_doc_ define.pro.

Complete the following steps to duplicate this example.

1. InanIDL Editor window, open the object definition file by entering .EDIT
export_grwindow_doc__define.pro at the command prompt.

Note
Itisagood ideato test the functionality of an object before exporting it. After
compiling thefile, enter the following lines at the command line and make
sure the output is what is expected for this object.

oPlotWindow = OBJ_NEW ("export_grwindow_doc")
oPlotWindow->CHANGELINE, 2
Thiswill display athree channel histogram plot and change the plot linestyle
to dashed.

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a COM export object by selecting File — New Project —
COM and browse to select export_grwindow_doc__define.pro. Click
Open to load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in “ Specifying Information for
Exporting” on page 164. Refer to that section if you need more information
about the following items.

IDL Connectivity Bridges COM IDLgrWindow Based Histogram Plot Generator

javascript:doIDL("export_grwindow_doc__define")
javascript:doIDL(".edit export_grwindow_doc__define.pro")

javascript:doIDL(".edit export_grwindow_doc__define.pro")

278

Chapter 12: Creating Custom COM Export Objects

4, Set export object characteristics as described in the following table. When you
select the tree view item listed in the left column, configure the related
properties as noted in the right column.

Note

Set the Export parameter to True for all itemsin thislist unless otherwise

noted.

Tip

You can select multiple itemsin the tree view and set properties for the

group.

Tree View Item

Property Configuration

IDL Export Bridge Project

Accept the default value or make changes
as desired:

* Output classname
* Process name
e Output directory

export_grwindow_doc

Drawable object equals True

OMODEL property
OVIEW property
OXAXIS property

Type — IUnknown*
Array — False

OXTEXT property

OYAXIS property

OYTEXT property

OPLOTCOLL property Type — IUnknown*
Array — True

SFILE property Type— BSTR
Array — False

CHANGELINE method

Enter different name if desired and mark
Export as True

Table 12-2: Example Export Object Parameters

COM IDLgrWindow Based Histogram Plot Generator

IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 279

Tree View Item

Property Configuration

STYLE argument M utability — In
Type — Short
Array — False
CREATEPLOTS method | Enter different name if desired and mark
Export as True
IMAGE argument Mutability — In
VROWS argument Type — Variant
VCOL S argument Array — True
Convert majority — False
VRGB argument M utability — In
Type — short
Array — False

OPEN method

Enter different name if desired and mark
Export as True

SFILE argument

Mutability — In
Type— BSTR
Array — False

NOTE: You can choose not to export this
parameter. If so, the method follows the
path for cases where no argument is
defined. (You will need to modify the
Visua Basic code to read
Me.Axexport_grwindow_docl.OPEN ()
instead of passing an argument.) If you do
choose to export this method, the argument
must either be anull string or afull file
path.

Table 12-2: Example Export Object Parameters

5. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

IDL Connectivity Bridges

COM IDLgrWindow Based Histogram Plot Generator

280

10.
11.

Example Code
Thetext file for this example, com_export_grwindow_doc. txt, islocated in
the examples/doc/bridges/com subdirectory of the IDL distribution. This
Visual Basic .NET code can be copied from the text file and adopted for usein your
COM environment.

Chapter 12: Creating Custom COM Export Objects

Verify that the object elements you want to export are listed in the Export og
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a drawable object, .t1b and
.ocx files(named based on the object name) are created in the Output
directory.

Register the .ocx using regsvr32 export_grwindow_doc.ocx. See
“COM Registration Requirements’ on page 143 for detailsif needed.

Create anew Visua Basic .NET Windows Application and add the
export_grwindow_doc Class fileto thetoolbox. Select View — Toolbox
and select the desired tab. Right-click and select Add/Remove Items. Click on
the COM Componentstab, place a checkmark next to the classfile and click
OK.

Add the IDL export_grwindow_doc control to your form.

Replace the default form code with the text in the file referenced bel ow. See
code comments for details.

After building and running the project, aWindows application interface will display a
histogram plot of an RGB image. You can change the linestyle of the plot by making
aselection from the listbox. You can also create a histogram plot for a new image by
clicking the button.

COM IDLgrWindow Based Histogram Plot Generator IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 281

COM IDLitWindow Surface Manipulation

This drawable object example inherits from IDLitWindow and creates an
ISURFACE display ina COM control. A listbox in aVisual Basic .NET Windows
application is populated with manipulator string values that, when selected, allow
you to draw annotations, rotate, or zoom within the exported IDLitWindow control.
You should avoid exposing any manipulator that has an associated widget interface
(such as a profile line manipulator) since such widget functionality is not supported
in objects that subclass from IDLitWindow.

Example Code
The abject definition file, export_itwinmanip_doc__define.pro islocated
inthe examples/doc/bridges subdirectory of the IDL distribution. Run the
example procedure by entering export_itwinmanip_doc__define at the DL
command prompt or view thefilein an IDL Editor window by entering .EDIT
export_itwinmanip_doc_ define.pro.

Complete the following steps to duplicate this example:

1. InanIDL Editor window, open the object definition file by entering . EDTT
export_itwinmanip_doc__define.pro a the command prompt.

Note
Itisagood ideato test the functionality of an object before exporting it. After
compiling the file, enter the following lines at the command line and make
sure the output is what is expected for this object.

oWin = OBJ_NEW ("export_itwinmanip_doc")
oWin->CHANGEMANIPULATOR, "annotation/oval"
Thiswill let you draw a oval annotation in the window. If you hit the Delete
key, the annotation will be removed. The available manipulator strings are
printed in the IDL output window.

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a COM export object by selecting File — New Project —
COM and browse to select export_itwinmanip_doc__define.pro.
Click Open to load the file into the Export Assistant.

IDL Connectivity Bridges COM IDLitWindow Surface Manipulation

javascript:doIDL("export_itwinmanip_doc__define")
javascript:doIDL(".edit export_itwinmanip_doc__define.pro")

javascript:doIDL(".edit export_itwinmanip_doc__define.pro")

282

Chapter 12: Creating Custom COM Export Objects

Note
Export Bridge Assistant details are available in “ Specifying Information for
Exporting” on page 164. Refer to that section if you need more information
about the following items.

Set export object characteristics as described in the following table. When you
select the tree view item listed in the left column, configure the related
properties as noted in the right column.

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

» Output classname
* Process hame
* Output directory

export_itwinmanip_doc Drawabl e abject equals True
CHANGEMANIPULATOR | Enter different name if desired and
method mark Export as True
MANIPID argument M utability — In

Type— BSTR

Array — False

Export — True

Table 12-3: Example Export Object Parameters

Save the project by selecting File — Save project. Accept the default name
and location or make changes as desired.

Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a drawable object, .t1b and
.ocx files(named based on the object name) are created in the Output
directory.

COM IDLitWindow Surface Manipulation IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 283

8. Register the.ocx UsiNg regsvr32 export_itwinmanip_doc.ocx. See
“COM Registration Requirements’ on page 143 for details if needed.

9. Create anew Visual Basic .NET Windows Application and add the
export_itwinmanip_doc Class fileto thetoolbox. Select View —
Toolbox and select the desired tab. Right-click and select Add/Remove
Items. Select the COM Components tab, place a checkmark next to the class
file, and click OK.

10. AddtheIDL export_itwinmanip_doc control to your form.

11. Replace the default form code with the text in the file referenced below. See
code comments for details.

Example Code
Thetext file for this example, com_export_itwinmanip_doc.txt, islocated in
the examples/doc/bridges/com subdirectory of the IDL distribution. This
Visual Basic .NET code can be copied from the text file and adopted for usein your
COM environment.

Note
This example exposes keyboard events. The value of the Delete key and other
standard keys are described in “Mouse and Keyboard Eventsin COM Export
Objects’ on page 208.

Build and run the project. Select a manipulator from the listbox to useit in the
IDLitWindow display. If you hit the keyboard Delete key while visualizations are
selected, they will be removed from the view.

IDL Connectivity Bridges COM IDLitWindow Surface Manipulation

284 Chapter 12: Creating Custom COM Export Objects

Tri-Window COM Export Example

The examples/doc/bridges directory includes three object definition files that
inherit from the three types of drawable objects: IDLgrWindow, IDLitDirectWindow
and IDLitWindow. The following example uses the Export Bridge Assistant to create
ActiveX controls from these object definition files and then creates a Windows
application in Visual Basic .NET that includes the three controls.

Example Code
The abject definition files, idlgrwindowexample__define.pro,
idlitdirectwindowexample__define.pro, and
idlitwindowexample define.pro arelocated in the
examples/doc/bridges subdirectory of the IDL distribution.

Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the IDL
command line and then compl ete the following steps to export the three drawable
objects.

Note
Export Bridge Assistant details are available in “ Specifying Information for
Exporting” on page 164. Refer to that section if you need more information about
the following items.

Wrap the IDLitDirectWindow Example

The object defined in idlitdirectwindowexample__define.pro inheritsfrom
IDLitDirectWindow and creates a drawing canvas that you can write on using your
mouse.

1. Select File — New Project — COM, browse to select
idlitdirectwindowexample_ define.pro fromthe
examples/doc/bridges directory, and click Open.

2. Set export object characteristics as described in the following table. When you
select the tree view item, listed in the left column, configure the related
properties as noted in the right column.

Tri-Window COM Export Example IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects

Tree View ltem

Property Configuration

IDL Export Bridge Project

Accept the default value or make
changes as desired:

* Output classname
* Process name
e Output directory

idlitdirectwindowexample

Drawable object equals True

WINDOW _INDEX property

You do not need to export the
WINDOW _INDEX property as the
control will always know it's own index
number. You can leave all fields
unchanged.

MAKECURRENT method

Export — False. Thisisonly used
within methodsin the IDL source object
definition file.

Table 12-4: Example Export Object Parameters

285

3. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

4. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

5. Build the export object by selecting Build — Build object. The Build log

panel shows the results of the build process. For a drawable object, .t1b and
.ocx files(named based on the object name) are created in the Output

directory.

Wrap the IDLgrWindow Example

The object defined in idlgrwindowexample_ define.pro inheritsfrom
IDLgrwindow and displays a globe that can be rotated using your mouse.

1. Select File — New Project — COM, browse to select
idlgrwindowexample define.pro fromthe examples/doc/bridges

directory, and click Open.

IDL Connectivity Bridges

Tri-Window COM Export Example

286 Chapter 12: Creating Custom COM Export Objects

2. Set export abject characteristics as described in the following table. When you
select the tree view item, listed in the left column, configure the related
properties as noted in the right column.

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

» Output classname
* Process hame
e Output directory

idlgrwindowexample Drawabl e abject equals True

CREATEOBJECTS method | Export — False. This method is not
called from the COM client.

Table 12-5: Example Export Object Parameters

3. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

4. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

5. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a drawable object, .t1b and
.ocx files(named based on the object name) are created in the Output
directory.

Wrap the IDLitWindow Example

The object defined in idlitwindowexample_ define.pro inheritsfrom
IDLitWindow and displays asurface in aview in which you can pan and zoom.

1. Select File — New Project — COM, browse to select
idlitwindowexample_ define.pro fromthe examples/doc/bridges
directory, and click Open.

2. There are no export object characteristics that must be modified, but you can
make changes to the default items as described in the following table. When

Tri-Window COM Export Example IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 287

you select the tree view item, listed in the left column, configure the related

properties as noted in the right column.

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

» Output classname
* Process name
e Output directory

idlitwindowexample Drawabl e abject equals True

Table 12-6: Example Export Object Parameters

Save the project by selecting File — Save project. Accept the default name
and location or make changes as desired.

Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a drawable object, .t1b and
.ocx files(named based on the object name) are created in the Output
directory.

Register the Controls and Create the Application

1

Register the . ocx files generated by the Export Bridge Assistant using
regsvr32 (see“COM Registration Requirements’ on page 143 for details if
needed). If you kept the default names, you will need to register
idlgrwindowexample.ocx, idlitdirectwindowexample.ocx, and
idlitwindowexample.ocx.

Create anew Visua Basic .NET Windows Application and add the
idlgrwindowexample Class, idlitdirectwindowexample Class,
and idlitwindowexample Class filesto thetoolbox. Select View —
Toolbox and select the desired tab. Right-click and select Add/Remove
Items. Select the COM Components tab, place a checkmark next to the class
files, and click OK .

Add the three controls IDL to your form in the order of
idlgrwindowexample Class, idlitdirectwindowexample Class
and idlitwindowexample Class from left toright.

IDL Connectivity Bridges Tri-Window COM Export Example

288 Chapter 12: Creating Custom COM Export Objects

/™ Triwindow Example

. . |DLarwindowE xample

Figure 12-1: Design-time View of Three Drawable Window Controls

4. Replacethe default module code with the text in the file referenced below. See
code comments for details.

Example Code
Thetext file for this example, com_export_triwindow_doc. txt, islocated in
the examples/doc/bridges/com subdirectory of the IDL distribution. This
Visual Basic .NET code can be copied from the text file and adopted for usein your
COM environment.

Tri-Window COM Export Example IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 289

When you build and run the example, the output will appear similar to the following
figure.

/8 Triwindow Example 10l =|

|DLgrwindowE xample |DLitDirectwindowE xample |DLitwindowE xample

Captured MaotifyBridge Method Output

Figure 12-2: Runtime View of Three Drawable Window Controls

Left-click and drag in the IDLgrWindow control to rotate the globe and follow the
instructions in the IDLitDirectWindow control to draw in the window. In the
IDLitWindow, left-click on the surface and drag the mouse cursor to reposition the
object, or left-click on one of the view handles and drag up or down to zoom in or
out. The bottom label text will change when you move your mouse into or out of the
IDLgrwindow- or IDLitDirectWindow-based controls as the label is updated with
the NotifyBridge output from the IDL object definition files.

IDL Connectivity Bridges Tri-Window COM Export Example

290 Chapter 12: Creating Custom COM Export Objects

Tri-Window COM Export Example IDL Connectivity Bridges

Chapter 13

Creating Custom
Java Export Objects

This chapter discusses the following topics.

About Java Export Object Examples.. 292 Drawable Java Export Examples 298
Nondrawable Java Export Example.. 294

IDL Connectivity Bridges 291

292 Chapter 13: Creating Custom Java Export Objects

About Java Export Object Examples

An IDL object can wrapped for use in a Java application using the Export Bridge
Assistant. For valuable information on the theory and architecture of awrapper object
created by the Export Bridge Assistant, see Chapter 7, “Using the Export Bridge
Assistant”.

This chapter provides several Java examples that incorporate the use of Java export
objects. Theseinclude:

* Nondrawable examples — show how to access the processing power of IDL in
a Java application by exchanging data with the IDL process, issuing IDL
commands, accessing IDL output.

» Drawable examples — contain the elements needed to create interactive IDL
drawing windows and access to mouse events.

Note
You can quickly incorporate the processing power of IDL in a Java application by
including the pre-built Java connector wrapper object in your external application.
Use this option if you do not need custom methods or an interactive drawing
surface. See Chapter 10, “Using the Connector Object” for details and examples.

The general process for each of these examples involves the following:
1. CreatetheobjectinIDL.

2. Export the object using the Export Bridge Assistant, which creates the files
associated with the IDL object that is now wrapped in a Java export object

wrapper.
3. Access the object in a Java application. This functionality automatically

includes stock methods (described in Chapter 9, “Using Exported Java
Objects’) in addition to custom methods you have chosen to export.

4. Compile and execute the application with a classpath reference to
javaidlb.jar.

Note
See “Writing IDL Objects for Exporting” on page 261 for information on how to
create custom IDL objects that can be successfully exported using the Export
Bridge Assistant. There are important object method and data type requirements
that must be met.

About Java Export Object Examples IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 293

Note
When you distribute an application, you will also need to share:
—the executable (.c1ass) file(s) including those generated by the Assistant
—the .pro or .sav file that contains the custom IDL object definition
Any .pro or .sav filesincluded with your application must be located in the IDL
path. Also, IDL,_DIR/resource/bridges/export/java/javaidlb.jar
must be in the Java classpath.

Note on Running the Java Examples

Examplesin this chapter provide Windows-style compile javac (compile) and
java (run) commands. If you are running on a platform other than Windows, use
your platform’s path and directory separators and see “ Java Requirements’ on
page 143 for information about the bridge_setup file, which sets additional
information.

Debugging Applications Using Export Objects

It can be challenging to determine what is happening in the IDL process associated
with awrapper object without the debugging features of the IDL Workbench. For
access to valuable debug information, consider using the IDL_ BRIDGE_DEBUG
environment variable, described in “ Debugging” on page 244.

IDL Connectivity Bridges About Java Export Object Examples

294 Chapter 13: Creating Custom Java Export Objects

Nondrawable Java Export Example

Nondrawable objects provide access to the enormous processing power of IDL, but
do not provide IDL drawing capabilities. Thisis useful for applications that need the
data manipulation capabilities of IDL, but have no need for, or have independent
drawing capabilities.

Hello World Java Example with Additional Method

The following simple example creates an IDL object with a single function method
that accepts one argument, and walks through the process of exporting the object
using the Export Bridge Assistant. Once the export files are created, a simple Java
application shows how to access the object method and capture its output.

Complete the following steps to duplicate this example.

1. InanIDL Editor window, copy in the following code and save the file as
helloworldex__define.pro inyour working directory:

; Method returns message based on presence or
; absence of argument.
FUNCTION helloworldex::HelloFrom, who
IF (N_ELEMENTS (who) NE 0) THEN BEGIN
message = "Hello World from " + who
RETURN, message
ENDIF ELSE BEGIN

message = 'Hello World'
RETURN, message
ENDELSE

END

; Init returns object reference on successful
; initialization.
FUNCTION helloworldex::INIT
RETURN, 1
END

; Object definition.
PRO helloworldex_ define

struct = {helloworldex, $
who: '' , §
message: ' ' $
}
END

Nondrawable Java Export Example IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 295

Note
Itisagood ideato test the functionality of an object before exporting it. After

compiling thefile, enter the following lines at the command line and make
sure the output is what is expected for this object.

ohello = OBJ_NEW ("HELLOWORLDEX")

PRINT, ohello->HelloFrom()

PRINT, ohello->HelloFrom('Mr. Bill")

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a Java export object by selecting File — New Project — Java
and browse to select thehelloworldex__define.pro file. Click Open to
load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in “ Specifying Information for
Exporting” on page 164. Refer to that section if you need more information
about the following steps.

4. Thetop-level project entry in the left-hand tree panel is selected by default.
There is no need to modify the default properties shown in the right-hand
property panel, but you can enter different values if desired. Set other export
object characteristics as described in the following table. Select the tree view
item listed in the left column to configure the related propertiesin the right
column.

Tree View Item Parameter Configuration

IDL Export Bridge Project | Accept the default value or make changes:
» Output classname

» Processname

e Output directory

helloworldex Drawable object equals False

Package name helloworldex

Table 13-1: Example Export Object Parameters

IDL Connectivity Bridges Nondrawable Java Export Example

296 Chapter 13: Creating Custom Java Export Objects

Tree View Item Parameter Configuration

HELLOFROM method Output method name — accept the default
value, HELLOFROM

Return Type — JIDL String since this function
method returns a string message (as defined in
the IDL object definition structure)

Array — False since this method returns a
single string, not an array

Export — True

WHO argument Mutability — In since the argument is not
passed back to the caller

Type — JIDL String since thisargument is
defined asastring in the IDL object definition

Array — False
Export — True

Table 13-1: Example Export Object Parameters

5. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

6. Verify that the object elements you want to export are listed in the Export og
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. A subdirectory, named
helloworldex (based on the object name), containsthe .java and.class
files, and islocated in the Output directory.

Using the Export Wrapper Object

Thefollowing simple Java application uses the wrapper object created in the previous
section.

Example Code
Thefilefor thisexample, helloworldex_example.java, islocated in the
examples/doc/bridges/java subdirectory of the IDL distribution.

Nondrawable Java Export Example IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 297

1. Openthefile named helloworldex_example.java inthe previously
referenced directory and save the filein the hel1owor1ldex directory.

2. Open the Windows Command window by selecting Start — Run and enter
cmd in the textbox.

3. Usethe ca command to change to the directory containing the
helloworldex directory.

4. Referencethe classpath of javaidlb. jar inthe compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing ror,_pr1r with the IDL installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
helloworldex\helloworldex_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
helloworldex.helloworldex_example

Tip
See “Note on Running the Java Examples’ on page 293 for information on
executing Java commands on a non-Windows platform.

After compiling and running the project, the output message will appear in the
command window.

IDL Connectivity Bridges Nondrawable Java Export Example

298 Chapter 13: Creating Custom Java Export Objects

Drawable Java Export Examples

A Java export object that supports graphics must be based on a custom IDL object
that inherits from IDLgrWindow, IDLitWindow, or IDLitDirectWindow (as
described in “Exporting Drawable Objects’ on page 264). Additionally, your IDL
object must also implement a set of listenersif you want to be able to respond to
keyboard or mouse eventsin the graphics window. These are described in “Event
Handling” on page 232. Examplesin this section include:

e “JavalDLgrWindow Based Histogram Plot Generator” on page 299 —
provides an object based on IDLgrWindow that creates a histogram plot for a
selected image file and lets you change the plot linestyle property.

o “JavalDLitWindow Surface Manipulation” on page 304 — includes a
drawable IDLitWindow example with ISURFACE functionality and a custom
method lets you change the active manipulator. The main classis subclassed to
pass key eventsto IDL. In the OnKeyboard method, Delete key events are
captured and selected visualizations are del eted.

Drawable Java Export Examples IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 299

Java IDLgrWindow Based Histogram Plot Generator

This drawable object example inherits from IDLgrWindow and creates a histogram
plot for a selected monochrome or RGB image file. While this example does contain
several custom methods including those for opening afile, creating the plots, and
changing plot characteristics, it does not use keyboard or mouse events. See “Java
IDLitWindow Surface Manipulation” on page 304 for such an example.

Example Code
The object definition file, export_grwindow_doc__define.pro islocatedin
the examples/doc/bridges subdirectory of the IDL distribution. Run the
example procedure by entering export_grwindow_doc__define atthelDL
command prompt or view thefilein an IDL Editor window by entering .EDIT
.EDIT export_grwindow_doc_ define.pro.

Complete the following steps to duplicate this example.

1. InanIDL Editor window, open the object definition file by entering .EDIT
export_grwindow_doc__define.pro at the command prompt.

Note
Itisagood ideato test the functionality of an object before exporting it. After
compiling thefile, enter the following lines at the command line and make
sure the output is what is expected for this object.

oPlotWindow = OBJ_NEW ("export_grwindow_doc")
oPlotWindow->CHANGELINE, 2
Thiswill display athree channel histogram plot and change the plot linestyle
to dashed.

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a Java export object by selecting File — New Project — Java
and browseto select export_grwindow_doc__define.pro. Click Open to
load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in “ Specifying Information for
Exporting” on page 164. Refer to that section if you need more information
about the following items.

IDL Connectivity Bridges Java IDLgrWindow Based Histogram Plot Generator

javascript:doIDL("export_grwindow_doc__define")
javascript:doIDL(".edit export_grwindow_doc__define.pro")

javascript:doIDL(".edit export_grwindow_doc__define.pro")

300

Chapter 13: Creating Custom Java Export Objects

4, Set export object characteristics as described in the following table. When you
select the tree view item listed in the left column, configure the related
properties as noted in the right column.

Note

Set the Export parameter to True for all itemsin thislist unless otherwise

noted.

Tip

You can select multiple itemsin the tree view and set properties for the

group.

Tree View Item

Property Configuration

IDL Export Bridge Project

Accept the default value or make changes
asdesired:

* Output classname
* Process name
e Output directory

export_grwindow_doc

Drawable object equals True

Package name

export_grwindow_doc

OMODEL property
OVIEW property
OXAXIS property
OXTEXT property
OYAXIS property
OYTEXT property

Type — JIDLObjectl
Array — False

OPLOTCOLL property

Type— JIDLObjectl

Array — True
SFILE property Type— JIDLString
Array — False

Table 13-2: Example Export Object Parameters

Java IDLgrWindow Based Histogram Plot Generator

IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 301

Tree View Item

Property Configuration

CHANGELINE method

Enter different name if desired and mark
Export as True

STYLE argument Mutability — In
Type — JIDLNumber
Array — False

CREATEPLOTS method Enter different name if desired and mark
Export as True

IMAGE argument M utability — In

VROWS argument Type — JIDLNumber

VCOLS argument Array — True

Convert majority — False

VRGB argument

Mutability — In
Type — JIDLNumber
Array — False

OPEN method

Enter different name if desired and mark
Export as True

SFILE argument

M utability — In
Type— JIDLString
Array — False

NOTE: You can choose not to export this
parameter. If so, the method follows the
path for cases where no argument is
defined. (You will need to modify the Java
code to read
export_grwindow_doc.OPEN() instead
of passing an argument.) If you do choose
to export this method, the argument must
either be anull string or afull file path.

Table 13-2: Example Export Object Parameters

5. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

IDL Connectivity Bridges

Java IDLgrWindow Based Histogram Plot Generator

302 Chapter 13: Creating Custom Java Export Objects

6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. A subdirectory, named
export_grwindow_doc (based onthe object name), containsthe.java and
.class files, andislocated in the Output directory.

Using the Java Export Object

The following section describes using the Java export object in a simple application.

Example Code
Thefilefor thisexample, export_grwindow_doc_example.java, islocated in
the examples/doc/bridges/java subdirectory of the IDL distribution.

1. Opaﬁﬂmf“enaﬂedexport_grwindow_doc_example.javainthe
location referenced above and copy it to your <output
directory>/export_grwindow_doc directory where <output
directory> was the directory specified as the Output directory in the
Assistant.

2. Open the Windows Command window by selecting Start — Run and enter
cmd in the textbox.

3. Usethe ca command to change to the directory containing the
export_grwindow_doc directory.

4. Referencethe classpath of javaidlb. jar inthe compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing ror,_pr1r with the IDL installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
export_grwindow_doc\export_grwindow_doc_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
export_grwindow_doc.export_grwindow_doc_example

Tip
See “Note on Running the Java Examples’ on page 293 for information on
executing Java commands on a non-Windows platform.

Java IDLgrWindow Based Histogram Plot Generator IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 303

After compiling and running the project, a Javainterface will display a histogram plot
of an RGB image. You can change the linestyle of the plot by making a selection

from thelistbox. You can also create a histogram plot for anew image by clicking the
button.

IDL Connectivity Bridges Java IDLgrWindow Based Histogram Plot Generator

304 Chapter 13: Creating Custom Java Export Objects

Java IDLitWindow Surface Manipulation

This drawable object example inherits from IDLitWindow and creates an
ISURFACE display in a Java application. A listbox is populated with manipul ator
string values that, when selected, allow you to draw annotations, rotate, or zoom
within the exported IDLitWindow object. You should avoid exposing any

manipul ator that has an associated widget interface (such as a profile line

manipul ator) since such widget functionality is not supported in objects that subclass
from IDLitWindow.

Example Code
The abject definition file, export_itwinmanip_doc__define.pro islocated
inthe examples/doc/bridges subdirectory of the IDL distribution. Run the
example procedure by entering export_itwinmanip_doc__define at the DL
command prompt or view thefilein an IDL Editor window by entering .EDIT
export_itwinmanip_doc_ define.pro.

Complete the following steps to duplicate this example.

1. InanIDL Editor window, open the object definition file by entering . EDTT
export_itwinmanip_doc__define.pro a the command prompt.

Note
Itisagood ideato test the functionality of an object before exporting it. After
compiling the file, enter the following lines at the command line and make
sure the output is what is expected for this object.

oWin = OBJ_NEW ("export_itwinmanip_doc")
oWin->CHANGEMANIPULATOR, "annotation/oval"
Thiswill let you draw a oval annotation in the window. If you hit the Delete
key, the annotation will be removed. The available manipulator strings are
printed in the IDL output window.

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a Java export object by selecting File — New Project — Java
and browse to select export_itwinmanip_doc__define.pro. Click
Open to load the file into the Export Assistant.

Java IDLitWindow Surface Manipulation IDL Connectivity Bridges

javascript:doIDL("export_itwinmanip_doc__define")
javascript:doIDL(".edit export_itwinmanip_doc__define.pro")

javascript:doIDL(".edit export_itwinmanip_doc__define.pro")

Chapter 13: Creating Custom Java Export Objects 305

Note
Export Bridge Assistant details are available in “ Specifying Information for
Exporting” on page 164. Refer to that section if you need more information
about the following items.

4. Set export object characteristics as described in the following table. When you
select the tree view item listed in the left column, configure the related
properties as noted in the right column.

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

» Output classname
* Processname
* Output directory

export_itwinmanip_doc Drawabl e abject equals True
Package name export_itwinmanip_doc
CHANGEMANIPULATOR | Enter different name if desired and
method mark Export as True
MANIPID argument M utability — In

Type— JIDLString

Array — False

Export — True

Table 13-3: Example Export Object Parameters

5. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. A subdirectory, named

IDL Connectivity Bridges Java IDLitWindow Surface Manipulation

306 Chapter 13: Creating Custom Java Export Objects

export_itwinmanip_doc (based on the object name), containsthe .java
and .class files, andislocated in the Output directory.

Using the Java Export Object

The following section describes using the Java export object in a simple application.

Example Code
Thefilesfor this example, export_itwinmanip_doc_example.java, and
export_itwinmanip_delete.java, arelocated in the
examples/doc/bridges/java subdirectory of the IDL distribution.

In this example, the export_itwinmanip_doc_example. java file containsthe
code to display the listbox and IDLitWindow drawing canvas. The
export_itwinmanip_delete. java file subclassesthe previousfile and handles
key press events, passing them on to the IDL object OnKeyboard method so that
selected visualizations can be deleted.

1. Openthefilesnamed export_itwinmanip_doc_example.java and
export_itwinmanip_delete.java inthelocation referenced above and
copy them to your <output directory>/export_itwinmanip_doc
directory where <output directory> wasthe directory specified asthe
Output directory in the Assistant.

2. Open the Windows Command window by selecting Start — Run and enter
cmd in the textbox.

3. Usethe ca command to change to the directory containing the
export_itwinmanip_doc directory.

4. Referencethe classpath of javaidlb. jar inthe compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing ror,_pr1r with the IDL installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
export_itwinmanip_doc*.java

java -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
export_itwinmanip_doc.export_itwinmanip_doc_example

Tip
See “Note on Running the Java Examples’ on page 293 for information on
executing Java commands on a non-Windows platform.

Java IDLitWindow Surface Manipulation IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 307

After compiling and running the project, a JJavainterface will display aasurfacein an
IDLitWindow. Select a manipulator from the listbox to use it in the IDLitWindow

display. If you hit the keyboard Delete key while visualizations are selected, they will
be removed from the view.

IDL Connectivity Bridges Java IDLitWindow Surface Manipulation

308 Chapter 13: Creating Custom Java Export Objects

Java IDLitWindow Surface Manipulation IDL Connectivity Bridges

Part Ill: Appendices

Appendix A

IDL Java Object API

This chapter describes the IDL Java package interfaces, classes and errors.

PackageSummary 312

IDL Connectivity Bridges 311

312

Package Summary

Appendix A: IDL Java Object API

This chapter describes the IDL Java Package in aformat similar to JavaDoc.

Class Summary

I nterfaces

JIDLComponentListener

The listener interface for receiving component
events (expose, resize) on a JIDL Canvas.

JIDLKeyListener

The listener interface for receiving keyboard
events (key pressed, key released) on a
JDLCanvas.

JIDLMouseListener

The listener interface for receiving mouse events
from IDL (press, release, enter, and exit) on a
JDLCanvas.

JIDLMouseMotionListener

The listener interface for receiving mouse motion
events from IDL (move and drag) on a
JDLCanvas.

JIDLMouseWheellListener

The listener interface for receiving mouse wheel
events from IDL on aJIDL Canvas.

JIDLNotifyListener The listener interface for receiving notify events
from IDL.

JIDLNumber The JIDLNumber class wraps a primitive java
number as a mutable object usable by the Java-
IDL Export bridge.

JIDLObjectI The interface that wrapped IDL objects must
implement.

JIDLOutputListener The listener interface for receiving output events
from IDL.

Classes
JIDLArray The JIDLArray classwraps a Java array as an

object usable by the Java-IDL Export bridge.

Package Summary

IDL Connectivity Bridges

Appendix A: IDL Java Object API

313

Class Summary

JIDLBoolean The JIDLBoolean class wraps aboolean as a
mutable object usable by the Java-IDL Export
bridge.

JIDLByte The JIDL Byte class wraps a byte as a mutable
object usable by the Java-IDL Export bridge.

JIDLCanvas This classwraps an IDL object of type
IDLitWindow in ajava.awtCanvas providing
direct rendering of the object from IDL.

JIDLChar The JIDL Char class wraps a char as a mutable
object usable by the Java-IDL Export bridge.

JIDLConst Contains constants used by the Java-IDL wrapper
classes.

JIDLDouble The JIDLDouble classwraps adouble as a
mutable object usable by the Java-IDL Export
bridge.

JIDLFloat The JIDLFloat class wraps afloat as a mutable
object usable by the Java-IDL Export bridge.

JIDLInteger The JIDLInteger class wraps an int as a mutable
object usable by the Java-IDL Export bridge.

JIDLLong The JIDLLong class wraps along as a mutable
object usable by the Java-IDL Export bridge.

JIDLObject This classwraps an IDL object.

JIDLProcessInitializer

The JIDL Processlnitializer class provides a
mechanism to pass licensing initialization
parametersto the JIDL Canvas and JIDL Object
createObject methods.

JIDLShort The JIDL Short class wraps a short as a mutable
object usable by the Java-IDL Export bridge.
JIDLString The JIDL String class wraps a String as a mutable
object usable by the Java-IDL Export bridge.
Errors

IDL Connectivity Bridges

Package Summary

314 Appendix A: IDL Java Object API

Class Summary

JIDLAbortedException Thrown when acall to IDL isinterrupted by an
abort request.
JIDLBusyException Thrown when acall to IDL is not executed

because the current IDL processis busy.

JIDLException An unchecked exception thrown when acall to
IDL encounters an error.

Package Summary IDL Connectivity Bridges

Appendix A: IDL Java Object API

JIDLAbortedException

Declaration

public class JIDLAbortedException extends JIDLException
implements java.io.Serializable

java.lang.Object

+--java.lang.Throwable

+--java.lang.Error

+--com.idl.javaidl.JIDLException

+--com.idl.javaidl.JIDLAbortedException
All Implemented Interfaces:

java.lio.Serializable

Description

315

An unchecked exception thrown when acall to IDL isinterrupted by an abort request.

Inherited Member Summary

Methodsinherited from interface JIDL Exception

getErrorCode (), toString()

Methodsinherited from class object

IDL Connectivity Bridges JIDLAbortedException

316 Appendix A: IDL Java Object API

Inherited Member Summary

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait (long,

int)

Methodsinherited from class Throwable

fillInStackTrace (), getCause(), getLocalizedMessage(),
getMessage (), getStackTrace(), initCause (Throwable),
printStackTrace (PrintWriter),

printStackTrace (PrintWriter),

printStackTrace (PrintWriter),

setStackTrace (StackTraceElement[])

JIDLAbortedException IDL Connectivity Bridges

Appendix A: IDL Java Object API 317

JIDLArray

Declaration

public class JIDLArray implements java.io.Serializable

java.lang.Object

+--com.idl.javaidl.JIDLArray
All Implemented Interfaces:

java.lio.Serializable

Description

The JIDLArray class wraps a Java array as an object usable by the Java-IDL Export
bridge.

Wraps arrays of type boolean, byte, char, short, int, long, float, double, String, and
JDLObjectl.

When retrieving the object, the calling code must cast the Object wrapped by
JDLATrray to the proper * array type. For example:

int[] myNativeArray = ...;

// Create a wrapped array so it may be used in the bridge
JIDLArray arr = new JIDLArray (myNativeArray)

// ... do something in the bridge to modify the array ...

// Now cast the resultant array to the expected type
int[] newNative = (int[])arr.arrayValue();

Member Summary
Constructors
JIDLArray (java.lang.Object arr)
Construct aJIDLArray from a native array
M ethods

IDL Connectivity Bridges JIDLArray

318 Appendix A: IDL Java Object API

Member Summary

java.lang.Object arrayValue ()
Get the native array that is wrapped by this object

java.lang.String getClassName ()
Get the classname of the wrapped array.

java.lang.Object getvValue ()
Get the native array that is wrapped by this object

void setValue (JIDLArray arr)

Set the native array that is wrapped by this object

void setValue (java.lang.Object arr)

Set the native array that is wrapped by this object

java.lang.String toString ()

Inherited Member Summary

Methodsinherited from class object

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait (long,
int)

Constructors

JIDLArray(Object)

public JIDLArray(java.lang.Object arr)

Construct aJIDLArray from a native array
Parameters:

arr - the native array to wrap for use in the export bridge (Must be an array of type
boolean, byte, char, short, int, long, float, double, String, or JIDLObjectl.)

Methods

arrayValue()

public java.lang.Object arrayValue()

JIDLArray IDL Connectivity Bridges

Appendix A: IDL Java Object API 319

Get the native array that is wrapped by this object
Returns:

the native array to wrap for use in the export bridge returned as an object. The array
will be of type boolean, byte, char, short, int, long, float, double, String, or
JDLObjectl.

getClassName()
public java.lang.String getClassName ()
Get the classname of the wrapped array.
Returns:
The classname of the wrapped array.
getValue()
public java.lang.Object getValue()
Get the native array that is wrapped by this object
Returns:

the native array to wrap for use in the export bridge returned as an object. The array
will be of type boolean, byte, char, short, int, long, float, double, String, or
JIDLObjectl.

setValue(JIDLArray)
public void setValue(com.idl.javaidl.JIDLArray arr)
Set the native array that is wrapped by this object
Parameters:

arr - the native array to wrap for use in the export bridge (Must be an array of type
boolean, byte, char, short, int, long, float, double, String, or JIDLObjectl.)

setValue(Object)

public void setValue(java.lang.Object arr)
Set the native array that is wrapped by this object
Parameters:

arr - the native array to wrap for use in the export bridge (Must be an array of type
boolean, byte, char, short, int, long, float, double, String, or JIDL Objectl.)

IDL Connectivity Bridges JIDLArray

320 Appendix A: IDL Java Object API

toString()

public java.lang.String toString()
Overrides:

toStringinclassobject

JIDLArray IDL Connectivity Bridges

Appendix A: IDL Java Object API 321

JIDLBoolean

Declaration

public class JIDLBoolean implements JIDLNumber,
java.lio.Serializable

java.lang.Object

+--com.idl.javaidl.JIDLBoolean

All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description
The JIDLBoolean class wraps a boolean as a mutable object usable by the Java-1DL
Export bridge.
Member Summary
Constructors
JIDLBoolean (boolean value)
Construct a wrapper object.
JIDLBoolean (JIDLNumber value)
Construct a wrapper object.
M ethods
boolean booleanvValue ()
Return the value of the wrapped primitive
byte bytevalue ()
Return the value of the wrapped primitive
char charvalue ()
Return the value of the wrapped primitive
double doubleValue ()
Return the value of the wrapped primitive

IDL Connectivity Bridges JIDLBoolean

322 Appendix A: IDL Java Object API

Member Summary

float floatvalue ()
Return the value of the wrapped primitive

int intvalue ()

Return the value of the wrapped primitive

long longValue ()
Return the value of the wrapped primitive

void setValue (boolean value)

Change the value of the wrapper object

void setValue (JIDLNumber value)

Change the value of the wrapper object

short shortvalue ()
Return the value of the wrapped primitive

java.lang.String toString ()

Inherited Member Summary

Methodsinherited from class object

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait (long,
int)

Constructors

JIDLBoolean(boolean)

public JIDLBoolean (boolean value)
Construct awrapper object.
Parameters:

value - value to wrap for usein the export bridge

JIDLBoolean(JIDLNumber)

public JIDLBoolean(com.idl.javaidl.JIDLNumber value)

Construct awrapper object.

JIDLBoolean IDL Connectivity Bridges

Appendix A: IDL Java Object API 323

Parameters:

value - JDLNumber to wrap for use in the export bridge
Methods

booleanValue()

public boolean booleanValue ()

Return the value of the wrapped primitive
Specified By:

booleanVaue in interface J DL Number
Returns:

value that is wrapped by this object
byteValue()

public byte byteValue ()

Return the value of the wrapped primitive

Specified By:

byteValue in interface JIDL Number

Returns:

value that is wrapped by this object
charValue()

public char charValue ()

Return the value of the wrapped primitive
Specified By:

charValue in interface JIDL Number
Returns:

value that is wrapped by this object
doubleValue()

public double doubleValue ()

IDL Connectivity Bridges JIDLBoolean

324

Return the value of the wrapped primitive
Specified By:

doubleValue in interface JIDL Number
Returns:

value that is wrapped by this object

floatValue()

public float floatValue ()

Return the value of the wrapped primitive
Specified By:

floatValue in interface JIDLNumber
Returns:

value that is wrapped by this object

intValue()

public int intValue ()

Return the value of the wrapped primitive
Specified By:

intValue in interface JIDL Number
Returns:

value that is wrapped by this object

longValue()

public long longValue ()

Return the value of the wrapped primitive
Specified By:

longValue in interface JIDL Number
Returns:

value that is wrapped by this object

JIDLBoolean

Appendix A: IDL Java Object API

IDL Connectivity Bridges

Appendix A: IDL Java Object API 325

setValue(boolean)
public void setValue (boolean value)
Change the value of the wrapper object
Parameters:

value - primitive value to wrap for use in the export bridge

setValue(JIDLNumber)
public void setValue(com.idl.javaidl.JIDLNumber value)
Change the value of the wrapper object
Specified By:
setValue in interface JIDL Number
Parameters:

value - JDLNumber to wrap for use in the export bridge

shortValue()

public short shortvValue ()

Return the value of the wrapped primitive
Specified By:

shortValue in interface J DL Number
Returns:

value that is wrapped by this object
toString()

public java.lang.String toString()
Overrides:

toStringinclassobject

IDL Connectivity Bridges JIDLBoolean

326 Appendix A: IDL Java Object API

JIDLBusyException

Declaration

public class JIDLBusyException extends JIDLException implements
java.lio.Serializable

java.lang.Object

+--java.lang.Throwable

+--java.lang.Error

+--com.idl.javaidl.JIDLException

+--com.idl.javaidl.JIDLBusyException
All Implemented Interfaces:
java.ilo.Serializable
Description

An unchecked exception thrown when acall to IDL is not executed because the
current IDL processis busy.

Inherited Member Summary

Methodsinherited from interface JIDL Exception

getErrorCode (), toString()

Methodsinherited from class object

JIDLBuUsyException IDL Connectivity Bridges

Appendix A: IDL Java Object API 327

Inherited Member Summary

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait (long,

int)

Methodsinherited from class Throwable

fillInStackTrace (), getCause(), getLocalizedMessage(),
getMessage (), getStackTrace (), initCause (Throwable),
printStackTrace (PrintWriter),

printStackTrace (PrintWriter),

printStackTrace (PrintWriter),

setStackTrace (StackTraceElement[])

IDL Connectivity Bridges JIDLBusyException

328 Appendix A: IDL Java Object API

JIDLByte

Declaration

public class JIDLByte implements JIDLNumber,
java.lio.Serializable

java.lang.Object

+--com.idl.javaidl.JIDLByte
All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description
The JIDLByte class wraps a byte as a mutable object usable by the Java-IDL Export
bridge.
Member Summary
Constructors
JIDLByte (byte value)
Construct a wrapper object.
JIDLByte (JIDLNumber wvalue)
Construct awrapper object.
M ethods
boolean booleanValue ()
Return the value of the wrapped primitive.
byte bytevalue ()
Return the value of the wrapped primitive
char charValue ()
Return the value of the wrapped primitive
double doubleValue ()
Return the value of the wrapped primitive

JIDLByte IDL Connectivity Bridges

Appendix A: IDL Java Object API

329

Member Summary

float floatvalue ()

Return the value of the wrapped primitive
int intvValue ()

Return the value of the wrapped primitive
long longValue ()

Return the value of the wrapped primitive
void setValue (byte value)

Change the value of the wrapper object
void setValue (JIDLNumber value)

Change the value of the wrapper object
short shortvalue ()

Return the value of the wrapped primitive
java.lang.String toString ()

Inherited Member Summary

Methodsinherited from class object

int)

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait (long,

Constructors

JIDLByte(byte)

public JIDLByte (byte value)

Construct awrapper object.

Parameters:

value - value to wrap for usein the export bridge

JIDLByte(JIDLNumber)

public JIDLByte(com.idl.javaidl.JIDLNumber value)

Construct awrapper object.

IDL Connectivity Bridges

JIDLByte

330

Appendix A: IDL Java Object API

Parameters:

value - JDLNumber to wrap for use in the export bridge

Methods

JIDLByte

booleanValue()

public boolean booleanValue ()

Return the value of the wrapped primitive.
Specified By:

booleanVaue in interface J DL Number
Returns:

true if non-zero, false otherwise

byteValue()

public byte byteValue ()

Return the value of the wrapped primitive
Specified By:

byteValue in interface JIDL Number
Returns:

value that is wrapped by this object

charValue()

public char charValue ()

Return the value of the wrapped primitive
Specified By:

charValue in interface JIDL Number
Returns:

value that is wrapped by this object

doubleValue()

public double doubleValue ()

IDL Connectivity Bridges

Appendix A: IDL Java Object API 331

Return the value of the wrapped primitive
Specified By:
doubleValue in interface JIDL Number
Returns:
value that is wrapped by this object
floatValue()
public float floatValue ()
Return the value of the wrapped primitive
Specified By:
floatValue in interface JIDLNumber
Returns:
value that is wrapped by this object
intValue()
public int intValue()
Return the value of the wrapped primitive
Specified By:
intValue in interface JIDL Number
Returns:

value that is wrapped by this object
longValue()

public long longValue ()

Return the value of the wrapped primitive
Specified By:

longValue in interface JIDL Number
Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLByte

332 Appendix A: IDL Java Object API

setValue(byte)
public void setValue (byte value)
Change the value of the wrapper object
Parameters:

value - primitive value to wrap for use in the export bridge

setValue(JIDLNumber)
public void setValue(com.idl.javaidl.JIDLNumber value)
Change the value of the wrapper object
Specified By:
setValue in interface JIDL Number
Parameters:

value - JDLNumber to wrap for use in the export bridge

shortValue()

public short shortvValue ()

Return the value of the wrapped primitive
Specified By:

shortValue in interface J DL Number
Returns:

value that is wrapped by this object
toString()

public java.lang.String toString()
Overrides:

toStringinclassobject

JIDLByte IDL Connectivity Bridges

Appendix A: IDL Java Object API 333

JIDLCanvas

Declaration

public abstract class JIDLCanvas extends java.awt.Canvas
implements JIDLObjectI, java.awt.event.ComponentListener,
java.awt.event.KeyListener, java.awt.event.MouseListener,
java.awt.event.MouseMotionListener, JIDLMouseListener,
JIDLMouseMotionListener, JIDLKeyListener, JIDLComponentListener,
JIDLCursorSupport

java.lang.Object

+--java.awt.Component

+--java.awt.Canvas

+--com.idl.javaidl.JIDLCanvas
All Implemented Interfaces:

javax.accessibility.Accessible,
java.awt.event.ComponentListener, java.util.EventListener,
java.awt.image.ImageObserver, JIDLComponentListener,
JIDLCursorSupport, JIDLKeyListener, JIDLMouseListener,
JIDLMouseMotionListener, JIDLObjectI,
java.awt.event.KeyListener, java.awt.MenuContainer,
java.awt.event .MouseListener,
java.awt.event.MouseMotionListener, java.io.Serializable

Description

This classwraps an IDL object of type IDLitWindow in ajava.awtCanvas providing
direct rendering of the object from IDL.

Note
JDL Canvasis not supported on Macintosh OS X.

In many of the methods of this class, one or more flags are required to be specified
for parameters being passed to or from the bridge. These flags follow the following
guidelines:

For all types of parameters (subclasses of JDLNumber, JIDL String, JIDL Objectl
and JIDLArray), aflag should be set that determines whether the parameter isin-only

IDL Connectivity Bridges JIDLCanvas

334

JIDLCanvas

Appendix A: IDL Java Object API

(const) or in-out (we expect it to be changed by IDL). The constants that determine
this are either IDLConst. PARMFLAG_CONST or
JIDLConst.PARMFLAG _IN_OUT.

For parameters that are arrays, a flag should be set that tells the bridge whether the
array isto be convolved when passed to IDL. If the PARM_IN_OUT flag is set, this
flag will also tell the bridge whether to convolve the array when it is copied back to
Java. The constants that determine this are either

JDLConst. PARMFLAG_CONVMAJJORITY or

JIDLConst. PARMFLAG_NO_CONVMAJORITY.

For example, if the parameter in question is an array that is to be modified by IDL
(in-out) and needs to be convolved when passed to and from IDL, we would set its
argpal array member as follows:

argpal[2] = JIDLConst.PARMFLAG_IN_OUT | JIDLConst .PARMFLAG_CONV
MAJORITY;

Member Summary

Fields

static int IDL_SOFTWARE_RENDERER
Internal use

static int OPENGL_RENDERER
Internal use

Constructors

JIDLCanvas (java.lang.String sClass, int
1i0PSFlags, java.lang.String sProcessName)
Construct a JDL Canvas

JIDLCanvas (java.lang.String sClass,
java.lang.String sProcessName)

Construct a JIDL Canvas Note that constructing the
JIDLODbject does NOT create the object on the IDL-side of
the bridge.

M ethods

void abort ()
Requests that the IDL process containing the underlying
IDL object abort its current activity.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 335

Member Summary

void addIDLComponentListener (JIDLComponentListener
listener)

Adds the specified J DL ComponentListener to alist of

listeners that receive notification of Component events.

void addIDLKeyListener (JIDLKeyListener listener)

Addsthe specified JDLKeyListener to alist of listeners
that receive notification of Key events.

void addIDLMouseListener (JIDLMouselListener listener)

Adds the specified JIDLMousel istener to alist of listeners
that receive notification of Mouse events.

void addIDLMouseMotionListener
(JIDLMouseMotionListener listener)

Adds the specified IDLMouseMotionListener to alist of

listeners that receive notification of MouseMotion events.

void addIDLMouseWheelListener
(JIDLMouseWheellListener listener)

Adds the specified IDLMouseWheelListener to alist of

listeners that receive notification of MouseWhesdl events.

void addIDLNotifyListener (JIDLNotifyListener
listener)

Addsthe specified IDL notify listener to receive IDL
notification events on this object.

void addIDLOutputListener (JIDLOutputListener
listener)

Adds the specified IDL output listener to receive IDL

output events on this object.

java.lang.Object callFunction(java.lang.String sMethodName, int
iPalFlag)
Call IDL function that accepts zero parameters.

java.lang.Object callFunction(java.lang.String sMethodName, int
argc, java.lang.Object argv, int[] argpal, int
iPalFlag)

Call IDL function.

void callProcedure(java.lang.String sMethodName)

Call IDL procedure that accepts zero parameters.

IDL Connectivity Bridges JIDLCanvas

336

JIDLCanvas

Appendix A: IDL Java Object API

Member Summary

void callProcedure(java.lang.String sMethodName, int
argc, java.lang.Object argv, int[] argpal)
Call IDL procedure.
void componentHidden (java.awt.event.ComponentEvent
e)
Called when the component is hidden.
void componentMoved (java.awt.event .ComponentEvent e)
Called when the component is moved.
void componentResized (java.awt.event.ComponentEvent
e)
Internal use.
void componentShown (java.awt.event .ComponentEvent e)
Called when the component is shown.
void createObject ()
Create the wrapped object by calling IDL's ::INIT method.
void createObject (int argc, java.lang.Object argv,
int[] argpal)
Create the wrapped object by calling IDL's ::INIT method.
void createObject (int argc, java.lang.Object argv,
int[] argpal,
com.idl.javaidl.JIDLProcessInitializer
initializer)
Create the wrapped object by calling IDL's ::INIT method.
void createObject (com.idl.javaidl .JIDLProcessInitial
izer initializer)
Create the wrapped object by calling IDL's ::INIT method.
void destroyObject ()
Destroys the underlying IDL object associated with the
Wrapper.
void draw ()
Internal use.
void executeString (java.lang.String sCmd)

Execute the given command string in IDL.

java.lang.String

getClassName ()
Get the class name of the object.

IDL Connectivity Bridges

Appendix A: IDL Java Object API

337

Member Summary

long getCookie ()
Internal use.
java.lang.String getIDLObjectClassName ()
Retrieves the IDL object class name of the underlying IDL
object.
java.lang.String getIDLObjectVariableName ()
When the underlying IDL object was created in the IDL
process, it was assigned a variable name.
java.lang.Object getIDLVariable(java.lang.String sVar)
Given avariable name, return the IDL variable.
java.lang.String getObjVariableName ()
Get the IDL Variable name of the given object
java.lang.String getProcessName ()
Returns the name of the process that contains the
underlying IDL object.
java.lang.Object getProperty(java.lang.String sProperty, int

iPalFlag)
Call IDL getProperty method to get named property.

void

IDLcomponentExposed (JIDLObjectI obj)
Called when the JIDL Canvas is exposed.

void

IDLcomponentResized (JIDLObjectI obj,
java.awt.event.ComponentEvent e)

Called when the JIDL Canvas is resized.

void

IDLkeyPressed (JIDLObjectI obj,
java.awt.event.KeyEvent e, int x, int vy)
Called when the JIDL Canvas has focus and akey is
pressed.

void

IDLkeyReleased (JIDLObjectI obj,
java.awt.event.KeyEvent e, int x, int vy)
Called when the JIDL Canvas has focus and akey is
rel eased.

void

IDLmouseDragged (JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse is dragged in a JIDL Canvas.

IDL Connectivity Bridges

JIDLCanvas

338

JIDLCanvas

Appendix A: IDL Java Object API

Member Summary

void IDLmouseEntered (JIDLObjectI obj,
java.awt.event.MouseEvent e)
Cadlled when the mouse enters a JIDL Canvas.
void IDLmouseExited (JIDLObjectI obj,
java.awt.event.MouseEvent e)
Cadlled when the mouse exits a JIDL Canvas.
void IDLmouseMoved (JIDLObjectI obj,
java.awt.event.MouseEvent e)
Cadled when the mouse ismoved in aJIDL Canvas.
void IDLmousePressed (JIDLObjectI obj,
java.awt.event.MouseEvent e)
Called when the mouse is pressed in a JIDL Canvas.
void IDLmouseReleased (JIDLObjectI obj,
java.awt.event.MouseEvent e)
Cadled when the mouseisreleased in a JIDL Canvas.
void initListeners ()
Initialize listeners.
boolean isFocusTraversable ()
Internal use.
boolean isObjCreated()
Determine if object has been created successfully.
boolean isObjectCreated()
Determine if object has been created successfully.
boolean isObjectDisplayable ()
void keyPressed(java.awt.event.KeyEvent e)
Internal use.
void keyReleased (java.awt.event.KeyEvent e)
Internal use.
void keyTyped (java.awt.event.KeyEvent e)
Internal use.
int mapIDLCursorToJavaCursor (java.lang.String

idlCursor)
Maps the IDL cursor to a suitable Java cursor.

IDL Connectivity Bridges

Appendix A: IDL Java Object API

339

Member Summary

void

mouseClicked(java.awt.event.MouseEvent e)
Internal use.

void

mouseDragged (java.awt.event .MouseEvent e)
Internal use.

void

mouseEntered (java.awt.event.MouseEvent e)
Internal use.

void

mouseExited(java.awt.event.MouseEvent e)
Internal use.

void

mouseMoved (java.awt .event .MouseEvent e)
Internal use.

void

mousePressed (java.awt.event.MouseEvent e)
Internal use.

void

mouseReleased (java.awt.event .MouseEvent e)
Internal use.

void

paint (java.awt.Graphics g)
Internal use.

void

removeIDLComponentListener
(JIDLComponentListener listener)

Remove the specified JIDL ComponentListener from alist
of listeners that receive notification of Component events.

void

removeIDLKeyListener (JIDLKeyListener listener)
Removes the specified JDLKeyListener from alist of
listeners that receive notification of Key events.

void

removeIDLMouseListener (JIDLMouselListener
listener)
Removes the specified JDLMouseListener from alist of
listeners that receive notification of Mouse events.

void

removeIDLMouseMotionListener
(JIDLMouseMotionListener listener)
Removes the specified JDLMouseMotionListener from a
list of listeners that receive notification of MouseMotion
events.

IDL Connectivity Bridges

JIDLCanvas

340

Appendix A: IDL Java Object API

Member Summary

void

removeIDLMouseWheelListener
(JIDLMouseWheellListener listener)
Removes the specified JDLMouseWheel Listener from a
list of listeners that receive notification of MouseWhesel
events.

void

removeIDLNotifyListener (JIDLNotifyListener
listener)

Removes the specified IDL notify listener so it no longer
receives IDL notifications.

void

removeIDLOutputListener (JIDLOutputListener
listener)

Removes the specified IDL output listener on this object.

void

setCursor (java.lang.String idlCursor)

Set the JIDL Canvas cursor.

void

setIDLVariable(java.lang.String sVar,
java.lang.Object obj)
Set/Create an IDL variable of the given name and value.

void

setProcessName (java.lang.String process)

Set the process name that the object will be created in.

void

setProperty(java.lang.String sProperty,
java.lang.Object obj, int iPalFlag)
Call IDL setProperty method to set named property.

java

.lang.String

toString ()
Returns a string representation of the object.

void

update (java.awt.Graphics g)
Internal use.

Inherited Member Summary

Fieldsinherited from class component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT,
RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fieldsinherited from interface ImageObserver

JIDLCanvas

IDL Connectivity Bridges

Appendix A: IDL Java Object API 341

Inherited Member Summary

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES,
SOMEBITS, WIDTH

Methodsinherited from class canvas

addNotify (), createBufferStrategy(int,
BufferCapabilities), createBufferStrategy(int,
BufferCapabilities), getAccessibleContext (),
getBufferStrategy ()

M ethodsinherited from class Component

IDL Connectivity Bridges JIDLCanvas

342 Appendix A: IDL Java Object API

Inherited Member Summary

action(Event, Object), add(PopupMenu),
addComponentListener (ComponentListener),
addFocusListener (FocusListener),
addHierarchyBoundsListener (HierarchyBoundsListener),
addHierarchylListener (HierarchyListener),
addInputMethodListener (InputMethodListener),
addKeyListener (KeyListener),

addMouseListener (MouseListener),
addMouseMotionListener (MouseMotionListener),
addMouseWheelListener (MouseWheellistener),
addPropertyChangel.istener (String,
PropertyChangelistener), addPropertyChangelistener (String,
PropertyChangelistener),

applyComponentOrientation (ComponentOrientation),

areFocusTraversalKeysSet (int), bounds (), checkImage (Image,
ImageObserver), checkImage (Image, ImageObserver),
contains (Point), contains (Point),

createImage (ImageProducer), createlImage (ImageProducer),
createVolatileImage (int, int, ImageCapabilities),
createVolatileImage (int, int, ImageCapabilities),
deliverEvent (Event), disable(), dispatchEvent (AWTEvent),
doLayout (), enable(boolean), enable(boolean),
enableInputMethods (boolean), getAlignmentX(),
getAlignmentY (), getBackground(), getBounds (Rectangle),
getBounds (Rectangle), getColorModel (),

getComponentAt (Point), getComponentAt (Point),
getComponentListeners (), getComponentOrientation(),
getCursor (), getDropTarget (), getFocusCycleRootAncestor (),
getFocusListeners (), getFocusTraversalKeys (int),
getFocusTraversalKeysEnabled (), getFont (),
getFontMetrics (Font), getForeground(), getGraphics(),
getGraphicsConfiguration(), getHeight (),
getHierarchyBoundsListeners (), getHierarchyListeners(),
getIgnoreRepaint (), getInputContext (),
getInputMethodListeners (), getInputMethodRequests(),
getKeylListeners (), getListeners(Class), getLocale(),
getLocation(Point), getLocation(Point),
getLocationOnScreen (), getMaximumSize (), getMinimumSize (),
getMouseListeners (), getMouseMotionListeners(),
getMouseWheelListeners (), getName (), getParent (),
getPeer (), getPreferredSize(),
getPropertyChangeliisteners (String),
getPropertyChangelisteners (String), getSize(Dimension),

getSize (Dimension), getToolkit (), getTreeLock(),
getWidth (), getX(), getY(), gotFocus (Event, Object),
handleEvent (Event), hasFocus (), hide (), imageUpdate (Image,

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 343

Inherited Member Summary

int, int, int, int, int), inside(int, int), invalidate(),
isBackgroundSet (), isCursorSet (), isDisplayable(),
isDoubleBuffered(), isEnabled(),

isFocusCycleRoot (Container), isFocusOwner (),
isFocusable(), isFontSet (), isForegroundSet(),
isLightweight (), isOpaque (), isShowing(), isValid(),
isVisible(), keyDown (Event, int), keyUp (Event, int),
layout (), list(PrintWriter, int), list(PrintWriter, int),

list (PrintWriter, int), list(PrintWriter, int),

list (PrintWriter, int), locate(int, int), location(),
lostFocus (Event, Object), minimumSize (), mouseDown (Event,
int, int), mouseDrag (Event, int, int), mouseEnter (Event,
int, int), mouseExit (Event, int, int), mouseMove (Event,
int, int), mouseUp (Event, int, int), move(int, int),
nextFocus (), paintAll (Graphics), postEvent (Event),
preferredSize (), preparelImage (Image, ImageObserver),
prepareImage (Image, ImageObserver), print (Graphics),
printAll (Graphics), remove (MenuComponent),
removeComponentListener (ComponentlListener),
removeFocusListener (FocusListener),
removeHierarchyBoundsListener (HierarchyBoundsListener),
removeHierarchyListener (HierarchyListener),
removeInputMethodListener (InputMethodListener),
removeKeyListener (KeyListener),

removeMouselListener (MouseListener),
removeMouseMotionListener (MouseMotionListener),
removeMouseWheelListener (MouseWheellListener),
removeNotify (), removePropertyChangeListener (String,
PropertyChangelistener),
removePropertyChangelListener (String,
PropertyChangelListener), repaint(long, int, int, int,
int), repaint(long, int, int, int, int), repaint (long,
int, int, int, int), repaint(long, int, int, int, int),
requestFocus (), requestFocusInWindow(), reshape(int, int,
int, int), resize(Dimension), resize(Dimension),
setBackground (Color), setBounds (Rectangle),

setBounds (Rectangle),

setComponentOrientation (ComponentOrientation),

setCursor (Cursor), setDropTarget (DropTarget),

setEnabled (boolean), setFocusTraversalKeys (int, Set),
setFocusTraversalKeysEnabled (boolean),

setFocusable (boolean), setFont (Font),

setForeground (Color), setIgnoreRepaint (boolean),
setLocale(Locale), setLocation(Point), setLocation (Point),
setName (String), setSize(Dimension), setSize(Dimension),
setVisible(boolean), show(boolean), show(boolean), size(),

IDL Connectivity Bridges JIDLCanvas

344 Appendix A: IDL Java Object API

Inherited Member Summary

transferFocus (), transferFocusBackward(),
transferFocusUpCycle (), validate()

M ethodsinherited from classobject

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait (long,
int)

Fields
IDL_SOFTWARE_RENDERER

public static final int IDL_SOFTWARE_RENDERER

Internal use
OPENGL_RENDERER

public static final int OPENGL_RENDERER

Internal use

Constructors

JIDLCanvas(String, int, String)

public JIDLCanvas(java.lang.String sClass, int i0OPSFlags,
java.lang.String sProcessName)

Deprecated.

Replaced by constructor taking 2 parameters

Construct a JIDL Canvas

Parameters:

sClass - IDL Class name

iOPSFlags - Unused. The process name determines the OPS flags.

sProcessName - The process name. If null or “”, in-process is used.

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 345

JIDLCanvas(String, String)

public JIDLCanvas(java.lang.String sClass,
java.lang.String sProcessName)

Construct a JIDL Canvas Note that constructing the JIDLObject does NOT create the
object on the IDL-side of the bridge. This is done using the createObject method.

Parameters:

sClass - IDL Class name

sProcessName - The process name. If null or “”, in-process is used.

Methods

abort()

public void abort ()

Requests that the IDL process containing the underlying IDL object abort its current
activity.

Thisisonly arequest and IDL may take along time before it actually stops.

The client can only Abort the current IDL activity if that wrapper object isthe current
“owner” of the underlying IDL.

Specified By:

abort in interface JIDL Objectl

Throws:

JIDLException - If IDL encounters an error.
See Also:

JDLAbortedException

addIDLComponentListener(JIDLComponentListener)

public void
addIDLComponentListener (com.idl.javaidl.JIDLComponentListener
listener)

Adds the specified JIDLComponentListener to alist of listeners that receive
notification of Component events.

IDL Connectivity Bridges JIDLCanvas

346

Appendix A: IDL Java Object API
Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.
Parameters:
listener - thelistener
See Also:

J DL ComponentListener

addIDLKeyListener(JIDLKeyListener)

public void addIDLKeyListener (com.idl.javaidl.JIDLKeyListener
listener)

Adds the specified JIDLKeyListener to alist of listeners that receive notification of
Key events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:
listener - thelistener
See Also:

JIDLKeyListener

addIDLMouseListener(JIDLMouseListener)

JIDLCanvas

public void addIDLMouseListener (com.idl.javaidl.JIDLMouseListener
listener)

Adds the specified IDLMouseL istener to alist of listeners that receive notification
of Mouse events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:
listener - thelistener
See Also:

JIDLMouseListener

IDL Connectivity Bridges

Appendix A: IDL Java Object API 347

addIDLMouseMotionListener(JIDLMouseMotionListener)

public void

addIDLMouseMotionListener (com.idl.javaidl.JIDLMouseMotionListener
listener)

Adds the specified IDLMouseMotionListener to alist of listeners that receive
notification of MouseM otion events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:
listener - thelistener
See Also:

JIDLMouseMotionListener

addIDLMouseWheelListener(JIDLMouseWheelListener)

public void

addIDLMouseWheelListener (com.idl.javaidl.JIDLMouseWheellListener
listener)

Adds the specified IDLMouseWheel Listener to alist of listeners that receive
notification of MouseWheel events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:
listener - thelistener
See Also:

JDLMouseWheelListener
addIDLNotifyListener(JIDLNotifyListener)

public void
addIDLNotifyListener (com.idl.javaidl.JIDLNotifyListener listener)

Adds the specified IDL notify listener to receive IDL notification events on this
object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

IDL Connectivity Bridges JIDLCanvas

348

JIDLCanvas

Appendix A: IDL Java Object API

Specified By:
addIDLNotifyListener in interface JJDLObjectl
Parameters:

listener - thelistener

addIDLOutputListener(JIDLOutputListener)

public void
addIDLOutputListener (com.idl.javaidl.JIDLOutputListener listener)

Adds the specified IDL output listener to receive IDL output events on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
addIDL OutputL istener in interface JIDL Objectl
Parameters:

listener - thelistener

callFunction(String, int)

public java.lang.Object callFunction(java.lang.String
sMethodName, int iPalFlag)

Call IDL function that accepts zero parameters.
Parameters:
sMethodName - the function name

iPalFlag - aflag determining whether areturned array is convolved or not. If the
returned value is not an array, this value is zero. See class description for more
information.

Returns:

an Object of type JDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 349

See Also:

callFunction(String, int, Object[], int[], int)
callFunction(String, int, Object[], int[], int)

public java.lang.Object callFunction(java.lang.String
sMethodName, int argc, java.lang.Object[] argv, int[] argpal,
int iPalFlag)

Call IDL function.

The argpal parameter is an array of flags created by OR-ing constants from class
JDL Const. Each array element corresponds to the equivalent parameter in argv.

Specified By:

callFunction in interface JI DL Objectl
Parameters:

sMethodName - the procedure name
argc - the number of parameters

argv - array of Objectsto be passed to IDL. Thisarray should be of length argc and
should contain objects of type JIDL Number, JJIDLObject, JIDL String or J DL Object.

argpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length argc.

iPalFlag - aflag determining whether areturned array if convolved or not. If the
returned value is not an array, this value is zero.

Returns:

an Object of type JDLNumber, JIDLString, JDLObjectl or IDLArray. The caller
must know the type of the Object being returned and cast it to its proper type.

Throws:
JIDLException - If IDL encounters an error.
See Also:

JIDLNumber, JIDLObject, JIDL String, JDLATrray,
JDLConst.PARMFLAG_CONST, JDLConst.PARMFLAG IN_OUT,
JDLConst.PARMFLAG _CONVMAJORITY,

JDLConst.PARMFLAG _NO _CONVMAJIORITY

IDL Connectivity Bridges JIDLCanvas

350 Appendix A: IDL Java Object API

callProcedure(String)
public void callProcedure(java.lang.String sMethodName)
Call IDL procedure that accepts zero parameters.
Parameters:
sMethodName - the procedure name
Throws:
JIDLException - If IDL encounters an error.
See Also:
callProcedure(String, int, Object[], int[])
callProcedure(String, int, Object[], int[])

public void callProcedure(java.lang.String sMethodName,
int argc, java.lang.Object[] argv, int[] argpal)

Call IDL procedure.

The argpal parameter is an array of flags created by OR-ing constants from class
JDLConst. Each array element corresponds to the equivalent parameter in argv.

Specified By:

callProcedure in interface J DL Objectl
Parameters:

sMethodName - the procedure name
argc - the number of parameters

argv - array of Objectsto be passed to IDL. Thisarray should be of length argc and
should contain objects of type JIDLNumber, JJIDLObject, JIDLString or J DL Object.

argpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or hon-convolved array This array should be
of length argc.

Throws:

JIDLException - If IDL encounters an error.

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 351

See Also:

JIDLNumber, JIDLObject, JIDL String, JIDLATrray,
JDLConst.PARMFLAG_CONST, JDLConst. PARMFLAG _IN_OUT,
JDLConst.PARMFLAG_CONVMAJIORITY,

JDLConst.PARMFLAG _NO _CONVMAJIORITY

componentHidden(ComponentEvent)
public void componentHidden (java.awt.event.ComponentEvent e)

Called when the component is hidden.

This method does nothing because IDL does not care about this event. This could be
overridden by achild of JIDLCanvas if these events were of interest to the client
application

Specified By:
componentHidden ininterface ComponentListener
See Also:
java.awt.event.ComponentListener
componentMoved(ComponentEvent)
public void componentMoved (java.awt.event.ComponentEvent e)

Called when the component is moved.

This method does nothing because IDL does not care about this event. This could be
overridden by achild of JIDLCanvas if these events were of interest to the client
application

Specified By:
componentMoved ininterface ComponentListener
See Also:

java.awt.event.ComponentListener
componentResized(ComponentEvent)

public final void
componentResized(java.awt.event.ComponentEvent e)

Internal use.
Called when the IDLCanvasisresized.

IDL Connectivity Bridges JIDLCanvas

352

JIDLCanvas

Appendix A: IDL Java Object API
If interested in resize events, use |DLcomponentResized. This method should NOT
be overridden by a child of JIDL Canvas.
Specified By:
componentResized ininterface componentListener
See Also:

J DL ComponentListener, | DLcomponentResi zed(JIDL Objectl, ComponentEvent)

componentShown(ComponentEvent)

public void componentShown (java.awt.event.ComponentEvent e)
Called when the component is shown.

This method does nothing because IDL does not care about this event. This could be
overridden by achild of JIDLCanvas if these events were of interest to the client
application

Specified By:
componentShown in interface ComponentListener
See Also:

java.awt.event.ComponentListener

createObject()

public void createObject ()
Create the wrapped object by calling IDL’s ::INIT method.
Used for ::INIT methods that take zero parameters.
Throws:
JIDLException - If IDL encounters an error.
See Also:
createObject(int, Object[], int[])

createObject(int, Object[], int[])

public void createObject (int argc, java.lang.Object[] argv,
int[] argpal)

Create the wrapped object by calling IDL’s ::INIT method.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 353

Note that the GUI that this Canvas lives in must be exposed before the createObject
method is called.

createObject does the following:
e« calIDL :INIT
e attach the IDL Window to this Canvas
e cal initListeners to hook up default event handling
e repaint the canvas

The argpal parameter is an array of flags created by OR-ing constants from class
JDLConst. Each array element corresponds to the equivalent parameter in argv. See
the class description for more information.

Specified By:

createObject in interface J DL Objectl
Parameters:

argc - the number of parameters

argv - array of Objectsto be passed to IDL. Thisarray should be of length argc and
should contain objects of type JIDLNumber, JJIDLObject, JIDLString or J DL Object.

argpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or hon-convolved array This array should be
of length argc.

Throws:
JIDLException - If IDL encounters an error.
See Also:

JDLCongt, initListeners()
createObject(int, Object([], int[], JIDLProcesslInitializer)

public void createObject (int argc, java.lang.Object[] argv,
int[] argpal, com.idl.javaidl.JIDLProcessInitializer initializer)

Create the wrapped object by calling IDL’s ::INIT method.

Note that the GUI that this Canvas livesin must be exposed before the createObject
method is called.

createObject does the following:

IDL Connectivity Bridges JIDLCanvas

354

Appendix A: IDL Java Object API

e Calls::Init method in the IDL object

» Callsthe superclassinitListeners method to initialize any event handlers. The
initListeners method has default behavior, which is different for graphical and
non-graphical objects. If the default behavior is not desired, a sub-classto
modify the listener initialization may override the initListeners method.

Specified By:

createObject in interface JIDL Objectl

Parameters:

argc - the number of parametersto be passed to INIT

argv - array of Objectsto be passed to IDL. This array should be of length argc and
should contain objects of type JIDL Number, JDLObject, JIDL String or JIDLArray.

argpal - array of flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

initializer - aJIDLProcessinitializer object that specifies IDL process
initialization parameters such as the licensing mode to be used. See “IDL Licensing
Modes’” on page 134 for details on the default licensing mechanism used when no
JDLProcessnitializer is specified.

Throws:

JIDLException - If IDL encounters an error.

createObject(JIDLProcessinitializer)

JIDLCanvas

public void createObject (com.idl.javaidl.JIDLProcessInitializer
initializer)

Create the wrapped object by calling IDL’s ::INIT method.
Used for ::INIT methods that take zero parameters.
Theinitializer parameter is used to supply IDL process initialization values.

Note that the GUI that this Canvas lives in must be exposed before the createObject
method is called.

Parameters:

initializer - aJIDLProcessinitializer object that specifies IDL process
initialization parameters such as the licensing mode to be used. See “IDL Licensing

IDL Connectivity Bridges

Appendix A: IDL Java Object API 355
Modes’ on page 134 for details on the default licensing mechanism used when no
JDLProcesslnitializer is specified.

Throws:
JIDLException - If IDL encounters an error.
destroyObject()
public void destroyObject ()

Destroys the underlying IDL object associated with the wrapper.

If the object being destroyed is the last object within an OPS process, the OPS
processis also destroyed.

Note that this does not destroy the actual wrapper object. Because the wrapper object
isaJavaobject, it followsall the Java reference counting/garbage collection schemes.
Once all references to the wrapper object are released from Java code and once the
Java Virtual Machine calls the garbage collector, the wrapper object may be deleted
from memory.

Specified By:
destroyObject in interface J DL Objectl
draw()
public void draw()
Internal use.
Call IDL to inform the Canvas has been exposed to cause aredraw.

Thisin turn calls al the JIDL ComponentListeners. Should not be overridden.

executeString(String)
public void executeString(java.lang.String sCmd)
Execute the given command string in IDL.
Specified By:
executeString in interface J DL Objectl
Parameters:

sCmd - the single-line command to executein IDL.

IDL Connectivity Bridges JIDLCanvas

356 Appendix A: IDL Java Object API

Throws:

JIDLException - If IDL encounters an error.

getClassName()
public java.lang.String getClassName ()
Deprecated.
Replaced by getl DL ObjectClassName()
Get the class name of the object.
Returns:

classname (“” if object not created yet)

getCookie()
public long getCookie ()
Internal use.
Specified By:
getCookie in interface JIDL Objectl
getIDLObjectClassName()

public java.lang.String getIDLObjectClassName ()

Retrieves the IDL object class name of the underlying IDL object.
Specified By:

getIDLObjectClassName in interface JIDL Objectl

Returns:

the IDL object class name

getIDLObjectVariableName()

public java.lang.String getIDLObjectVariableName ()

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. This method retrieves that name.

Specified By:
getIDL ObjectVariableName in interface JIDL Objectl

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 357

Returns:

the variable name

getIDLVariable(String)
public java.lang.Object getIDLVariable(java.lang.String sVar)
Given avariable name, return the IDL variable.

Note that in the case of arrays, the array will ALWAY S be convolved when passed
between Javaand IDL.

Specified By:

getIDLVariable in interface JIDL Objectl
Parameters:

svar - The IDL variable name
Returns:

an Object of type JDLNumber, JIDL String, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

getObjVariableName()
public java.lang.String getObjVariableName ()
Deprecated.
Replaced by getl DL ObjectVariableName()
Get the IDL Variable name of the given object
Returns:

a String representing the IDL Variable name

getProcessName()

public java.lang.String getProcessName ()

Returns the name of the process that contains the underlying IDL object. For anin-
process abject, returns an empty string.

IDL Connectivity Bridges JIDLCanvas

358

JIDLCanvas

Appendix A: IDL Java Object API

Specified By:
getProcessName in interface JIDL Objectl
Returns:

process name. Empty string if the processisin-process.

getProperty(String, int)

public java.lang.Object getProperty(java.lang.String
sProperty, int iPalFlag)

Call IDL getProperty method to get named property.
Specified By:

getProperty in interface JIDL Objectl

Parameters:

sProperty - the property name

iPalFlag - aflag determining whether areturned array will be convolved or not. If
the returned valueis not isignored.

Returns:

an Object of type JDLNumber, JIDL String, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:
JIDLException - If IDL encounters an error.
See Also:

JIDLNumber, JDLObjectl, JDLString, JIDLATrray,
JDLConst.PARMFLAG_CONVMAUJORITY,
JDLConst.PARMFLAG_NO_CONVMAJIORITY

IDLcomponentExposed(JIDLODbjectl)

public void IDLcomponentExposed (com.idl.javaidl.JIDLObjectI obj)
Called when the JIDL Canvas is exposed.

The default behavior of this method isto lock the Canvas, pass the event on to IDL to
handle (i.e. redraw), and then unlock the Canvas.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 359

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to do something special before or after the redraw happens.
The method would be implemented as follows:

public class mySubClass extends JIDLCanvas {
public void IDLcomponentExposed() {
// do something here before IDL is called
super . IDLcomponentExposed() ;
// do something if desired afterwards

}

Specified By:
IDLcomponentExposed in interface J DL ComponentListener
See Also:

J DLComponentListener, initListeners()
IDLcomponentResized(JIDLObjectl, ComponentEvent)

public void IDLcomponentResized(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.ComponentEvent e)

Called when the JIDL Canvas isresized.

The default behavior of this method is to send the resize event to IDL to handle.
Specified By:

IDLcomponentResized in interface JIDL ComponentListener

See Also:

J DL ComponentListener, initListeners()

IDLkeyPressed(JIDLODbjectl, KeyEvent, int, int)

public void IDLkeyPressed(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.KeyEvent e, int x, int y)

Called when the JIDL Canvas has focus and a key is pressed.

The default behavior of this method is pass the event to IDL which, if registered for
the event will call ::OnKeyboard.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of

IDL Connectivity Bridges JIDLCanvas

360

Appendix A: IDL Java Object API
the method. Or the sub-class may do something special before or after the event
happens.

See | DL componentExposed for an example of how this would be done.
Specified By:

IDLkeyPressed in interface JIDLKeyListener

See Also:

JIDLKeyListener, IDLcomponentExposed(JIDLObjectl), initListeners()

IDLkeyReleased(JIDLObjectl, KeyEvent, int, int)

public void IDLkeyReleased(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.KeyEvent e, int x, int y)

Called when the JIDL Canvas has focus and akey is released.

The default behavior of this method is pass the event to IDL which, if registered for
the event will call ::OnKeyboard. The behavior may be changed by overriding this
method in a sub-class. For example, the sub-class may want to ignore the event by
providing an empty implementation of the method. Or the sub-class may do
something special before or after the event happens. See | DL componentExposed for
an example of how this would be done.

Specified By:
IDLkeyReleased in interface JIDLKeyListener
See Also:

JDLKeyListener, IDLcomponentExposed(JIDL Objectl), initListeners()

IDLmouseDragged(JIDLObjectl, MouseEvent)

JIDLCanvas

public void IDLmouseDragged (com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse is dragged in a JIDL Canvas.

The default behavior of this method is pass the event to IDL which, if registered for
the event, will call ::OnMouseM otion.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
the method. Often our IDL IDLitWindow isonly interested in one type of motion
event and not another. Or the sub-class may do something special before or after the
event happens.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 361

See | DL componentExposed for an example of how this would be done.
Specified By:

IDLmouseDragged in interface JJ DL MouseM otionListener

See Also:

JIDLMouseMationListener, IDLcomponentExposed(JIDL Objectl), initListeners()
IDLmouseEntered(JIDLObjectl, MouseEvent)

public void IDLmouseEntered (com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse enters a JIDL Canvas.

The default behavior of this method is to ignore the event.

The behavior may be changed by overriding this method in a sub-class.
Specified By:

IDLmouseEntered in interface JIDLMouseL istener

See Also:

J DLMouseListener, initListeners()
IDLmouseExited(JIDLObjectl, MouseEvent)

public void IDLmouseExited (com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent e)

Called when the mouse exits a JI DL Canvas.

The default behavior of this method is to ignore the event.

The behavior may be changed by overriding this method in a sub-class.
Specified By:

IDLmouseExited in interface J DLMouseL istener

See Also:

JIDLMouseL istener, initListeners()

IDLmouseMoved(JIDLObjectl, MouseEvent)

public void IDLmouseMoved (com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent e)

IDL Connectivity Bridges JIDLCanvas

362

JIDLCanvas

Appendix A: IDL Java Object API

Called when the mouse is moved in a JIDL Canvas.

The default behavior of this method is pass the event to IDL which, if registered for
the event, will call ::OnMouseM otion.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
the method. Often our IDL IDLitWindow isonly interested in one type of motion
event and not another. Or the sub-class may do something special before or after the
event happens.

See | DL componentExposed for an example of how this would be done.
Specified By:

IDLmouseMoved in interface JIDL M ouseMotionListener

See Also:

JIDLMouseMationListener, IDLcomponentExposed(JIDL Objectl), initListeners()

IDLmousePressed(JIDLObjectl, MouseEvent)

public void IDLmousePressed(com.idl.javaidl.JIDLObjectI
obj, java.awt.event.MouseEvent e)

Called when the mouse is pressed in a JIDL Canvas.

The default behavior of this method is pass the event to IDL which, if registered for
the event, will call ::OnMouseDown.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
the method. Or the sub-class may do something special before or after the event
happens.

See | DLcomponentExposed for an example of how this would be done.
Specified By:

IDLmousePressed in interface JIDLMousel istener

See Also:

JIDLMouseListener, IDLcomponentExposed(JIDL Objectl), initListeners()

IDLmouseReleased(JIDLObjectl, MouseEvent)

public void IDLmouseReleased (com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent e)

IDL Connectivity Bridges

Appendix A: IDL Java Object API 363

Called when the mouse is released in a JIDL Canvas.

The default behavior of this method is pass the event to IDL which, if registered for
the event, will call ::OnMouseUp.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
the method. Or the sub-class may do something special before or after the event
happens.

See |DLcomponentExposed for an example of how this would be done.
Specified By:

IDLmouseReleased in interface JIDLMouselL istener

See Also:

JIDLMouseListener, IDLcomponentExposed(JIDL Objectl), initListeners()
initListeners()

public void initListeners()
Initialize listeners.

This method is always called by createObject. The J DL Canvas listensto the
following events:

e JIDLComponentListener

« JDLKeyListener

e JIDLMousel istener

» JDLMouseMotionListener

The method may be overridden by sub-classesto initialize a different set of listeners
(or none at al). For exampleif a sub-class of J DL Canvas only wished to listen to
key and component events, it would override initListeners as follows:

public void initListeners() {
addIDLComponentListener (this) ;
addIDLKeyListener (this) ;

As another example, if a sub-class of J DL Canvas wished to listen to key events,
component events, and notify events, it would need to implement
JDLNotifyListener and register to listen for these events in initListeners, as follows:

IDL Connectivity Bridges JIDLCanvas

364 Appendix A: IDL Java Object API

public class newCanvas extends JIDLCanvas implements JIDLNotifyLi
stener
{

public void initListeners() {
addIDLComponentListener (this) ;
addIDLKeyListener (this) ;
addIDLNotifyListener (this) ;

}

void OnIDLNotify (JIDLObjectI obj, String sl, String s2) {
// do something with the notify

}

Specified By:
initListenersin interface JIDL Objectl
See Also:

JDLComponentListener, IDLKeyListener, JIDLMouseL istener,
JDLMouseMationListener, JDLNotifyListener, JIDL OutputListener

iIsFocusTraversable()

public boolean isFocusTraversable ()
Internal use.
Overrides:

isFocusTraversable in class Component

iIsObjCreated()
public boolean isObjCreated ()
Deprecated.
Replaced by isObjectCreated()
Determineif object has been created successfully.
Returns:

true if object created successfully, or false if object not created or creation was
unsuccessful.

isObjectCreated()

public boolean isObjectCreated()

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 365

Determineif object has been created successfully.
Specified By:

isObjectCreated in interface JIDL Objectl
Returns:

true if object created successfully, or false if object not created, destroyed, or
creation was unsuccessful.

See Also:
createObject()
iIsObjectDisplayable()
public boolean isObjectDisplayable ()
Specified By:
isObjectDisplayable in interface J DL Objectl
keyPressed(KeyEvent)

public final void keyPressed(java.awt.event.KeyEvent e)
Internal use.
Called when akey is pressed when the JIDL Canvas has focus.

If interested in this event, use IDLkeyPressed. This method should NOT be
overridden by achild of JIDLCanvas.

Specified By:

keyPressed ininterface KeyListener

See Also:

JDLKeyListener, IDLkeyPressed(JIDL Objectl, KeyEvent, int, int)
keyReleased(KeyEvent)

public final void keyReleased(java.awt.event.KeyEvent e)
Internal use.
Called when akey is released when the JIDL Canvas has focus.

If interested in this event, use IDLkeyReleased. This method should NOT be
overridden by achild of JIDLCanvas.

IDL Connectivity Bridges JIDLCanvas

366

Appendix A: IDL Java Object API

Specified By:
keyReleased ininterface KeyListener
See Also:

JDLKeyListener, IDLkeyReleased(JIDLObjectl, KeyEvent, int, int)

keyTyped(KeyEvent)

public void keyTyped(java.awt.event.KeyEvent e)
Internal use.
Called when akey istyped.

This method does nothing because IDL does not care about this event, using
keyPressed to trigger its mouse events. This method should NOT be overridden by a
child of JIDLCanvas.

Specified By:

keyTyped ininterface KeyListener

maplIDLCursorToJavaCursor(String)

JIDLCanvas

public int mapIDLCursorToJavaCursor (java.lang.String idlCursor)

Maps the IDL cursor to a suitable Java cursor. Thisis called internally by setCursor
when the IDL drawable changes the cursor.

May be overridden to change the mapping. The default mapping is as follows:
* “ARROW” — Cursor.DEFAULT_CURSOR;
* “UP_ARROW” — Cursor.DEFAULT_CURSOR,;
* “IBEAM” — Cursor.TEXT_CURSOR;
* “ICON” — Cursor.TEXT_CURSOR;
* “CROSSHAIR" — Cursor.CROSSHAIR_CURSOR;
e “ORIGINAL” — Cursor.CROSSHAIR_CURSOR;
e “HOURGLASS’ — Cursor.WAIT_CURSOR,;
+ “MOVE’ — Cursor.MOVE_CURSOR;
e “SIZE_NW" — Cursor.NW_RESIZE_CURSOR,;
* “SIZE_SE" — Cursor.SE_RESIZE_CURSOR;
e “SIZE_NE’ — Cursor.NE_RESIZE_CURSOR;

IDL Connectivity Bridges

Appendix A: IDL Java Object API 367

e “SIZE_SW” — Cursor.SW_RESIZE_CURSOR,

» “SIZE_ EW” — Cursor.E_RESIZE_CURSOR,;

« “SIZE_NS’ — Cursor.N_RESIZE_CURSOR;

e otherwise — Cursor.DEFAULT _CURSOR;
Specified By:
mapIDLCursorToJavaCursor ininterface JIDLCursorSupport
Parameters:
idlcursor - aString representing the IDL cursor
Returns:
the Cursor constant representing the Java Cursor style
See Also:
setCursor(String)

mouseClicked(MouseEvent)
public void mouseClicked(java.awt.event.MouseEvent e)

Internal use.
Called when the mouse is clicked.

This method does nothing because IDL does not care about this event, using
mousePressed to trigger its mouse events. This method should NOT be overridden by
achild of JIDLCanvas.

Specified By:
mouseClicked ininterfface MouselListener

mouseDragged(MouseEvent)

public final void mouseDragged (java.awt.event.MouseEvent e)
Internal use.
Called when the mouse is dragged in the JIDL Canvas.

If interested in this event, use IDLmouseDragged. This method should NOT be
overridden by achild of JIDLCanvas.

IDL Connectivity Bridges JIDLCanvas

368

JIDLCanvas

Appendix A: IDL Java Object API

Specified By:
mouseDragged in interface MouseMotionListener
See Also:

JIDLMouseMationListener, IDLmouseDragged(JIDL Objectl, MouseEvent)

mouseEntered(MouseEvent)

public final void mouseEntered(java.awt.event.MouseEvent e)
Internal use.
Called when the mouse enters the JIDL Canvas.

If interested in this event, use IDLmouseEntered. This method should NOT be
overridden by achild of JIDLCanvas.

Specified By:

mouseEntered ininterface Mouseli stener

See Also:

J DLMouseL istener, IDL mouseEntered(JIDL Objectl, MouseEvent)

mouseExited(MouseEvent)

public final void mouseExited(java.awt.event.MouseEvent e)
Internal use.
Called when the mouse exits the JIDL Canvas.

If interested in this event, use DL mouseExited. This method should NOT be
overridden by achild of JIDLCanvas.

Specified By:

mouseExited ininterface Mouselistener

See Also:

J DLMouseListener, IDLmouseExited(JI DL Objectl, MouseEvent)

mouseMoved(MouseEvent)

public final void mouseMoved (java.awt.event.MouseEvent e)
Internal use.

Called when the mouse moves in the JIDL Canvas.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 369
If interested in this event, use IDLmouseMoved. This method should NOT be
overridden by achild of JIDLCanvas.

Specified By:

mouseMoved in interface MouseMotionListener

See Also:

JIDLMouseMationListener, IDLmouseMoved(JIDL Objectl, MouseEvent)

mousePressed(MouseEvent)
public final void mousePressed(java.awt.event.MouseEvent e)
Internal use.
Called when the mouse is pressed.

If interested in this event, use | DL mousePressed. This method should NOT be
overridden by achild of JIDLCanvas.

Specified By:
mousePressed ininterfface MouselListener
See Also:

JIDLMouseListener, IDLmousePressed(JIDL Objectl, MouseEvent)

mouseReleased(MouseEvent)

public final void mouseReleased(java.awt.event.MouseEvent e)
Internal use.
Called when the mouse is rel eased.

If interested in this event, use IDLmouseRe eased. This method should NOT be
overridden by a child of JIDLCanvas.

Specified By:

mouseReleased ininterface MouseListener

See Also:

J DLMouseListener, IDL mouseRel eased(JI DL Objectl, MouseEvent)
paint(Graphics)

public void paint(java.awt.Graphics g)

IDL Connectivity Bridges JIDLCanvas

370 Appendix A: IDL Java Object API

Internal use. Paint the Canvas. (Do not override this method)
Overrides:

paint inclass canvas
removelDLComponentListener(JIDLComponentListener)

public void
removeIDLComponentListener (com.idl.javaidl.JIDLComponentListener
listener)

Remove the specified JIDL ComponentListener from alist of listenersthat receive
notification of Component events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:
listener - thelistener
See Also:

J DL ComponentListener
removelDLKeyListener(JIDLKeyListener)

public void removeIDLKeyListener (com.idl.javaidl.JIDLKeyListener
listener)

Removes the specified IDLKeyListener from alist of listeners that receive
notification of Key events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - thelistener

See Also:

JIDLKeyListener
removelDLMouseListener(JIDLMouseListener)

public void
removeIDLMouseListener (com.idl.javaidl.JIDLMouseListener listener)

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 371

Removes the specified JIDLMouseListener from alist of listeners that receive
notification of Mouse events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:
listener - thelistener
See Also:

J DLMouseL istener
removelDLMouseMotionListener(JIDLMouseMotionListener)

public void
removeIDLMouseMotionListener (com.idl.javaidl.JIDLMouseMotionListen
er listener)

Removes the specified JIDLMouseMotionListener from alist of listenersthat receive
notification of MouseM otion events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:
listener - thelistener
See Also:

J DLMouseMationListener
removelDLMouseWheelListener(JIDLMouseWheelListener)

public void
removeIDLMouseWheelListener (com.idl.javaidl .JIDLMouseWheelListener
listener)

Removes the specified JIDLMouseWheelListener to alist of listeners that receive
notification of MouseWheel events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - thelistener

IDL Connectivity Bridges JIDLCanvas

372 Appendix A: IDL Java Object API

See Also:

JDLMouseWheelListener
removelDLNotifyListener(JIDLNotifyListener)

public void
removeIDLNotifyListener (com.idl.javaidl.JIDLNotifyListener
listener)

Removes the specified IDL notify listener so it no longer receives IDL notifications.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
removel DLNotifyListener in interface JIDL Objectl
Parameters:

listener - thelistener
removelDLOutputListener(JIDLOutputListener)

public void
removeIDLOutputListener (com.idl.javaidl.JIDLOutputListener
listener)

Removes the specified IDL output listener on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
removel DL OutputListener in interface J DL Objectl
Parameters:

listener - thelistener

setCursor(String)

public void setCursor(java.lang.String idlCursor)

Set the JIDL Canvas cursor. Called automatically when the IDL cursor changes. This
in turn calls mapl DL CursorToJavaCursor to map the IDL cursor name to a suitable
Java cursor type.

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 373

Specified By:

setCursor ininterface JIDLCursorSupport
Parameters:

idlcursor - A String representing the IDL cursor name.
See Also:

mapl DL CursorToJavaCursor(String)
setIiDLVariable(String, Object)

public void setIDLVariable(java.lang.String sVar,
java.lang.Object obj)

Set/Create an IDL variable of the given name and value.

Note that in the case of arrays, the array will ALWAY S be convolved when passed
between Javaand IDL.

Specified By:

setIDLVariablein interface JIDL Objectl
Parameters:

sVar - the IDL variable name

obj - object to be passed to IDL. Should be an object of type JI DL Number,
JDLODbject, IDLString or JIDLATrray.

Throws:

JIDLException - If IDL encounters an error.

setProcessName(String)
public void setProcessName (java.lang.String process)
Set the process name that the object will be created in.

The process name may only be set before createObject is called. If called after the
object has been created, this method call does nothing.

Specified By:
setProcessName in interface JIDL Objectl

IDL Connectivity Bridges JIDLCanvas

374 Appendix A: IDL Java Object API

Parameters:

process - Process name. Empty String means create in same process (in-process).
setProperty(String, Object, int)

public void setProperty(java.lang.String sProperty,
java.lang.Object obj, int iPalFlag)

Call IDL setProperty method to set named property.

The iPalFlag parameter is a set of flags that are or-ed together. Currently this
parameter is only used to specify whether a JDLArray being passedinto IDL is
convolved or not. For arrays argpal should be set to either

JDLConst. PARMFLAG_CONVMAJXORITY or

JIDLConst. PARMFLAG_NO_CONVMAJORITY.

Specified By:

setProperty in interface JIDL Objectl
Parameters:

sProperty - the property name

ob3j - object to be passed to IDL. Should be an object of type JJ DL Number,
JDLObject, IDLString or J DL Object.

iPalFlag - flag denoting whether the passed in parameter is convolved or not.
Note: setProperty does not alow obj to be modified by IDL

Throws:
JIDLException - If IDL encounters an error.
See Also:

JIDLNumber, JIDLObject, JIDL String, JIDLATrray,
JDLConst.PARMFLAG _CONVMAJIORITY,
JDLConst.PARMFLAG _NO _CONVMAJIORITY

toString()

public java.lang.String toString()

Returns a string representation of the object.
Overrides:

toString in class Component

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 375

update(Graphics)
public void update(java.awt.Graphics g)
Internal use. Update the Canvas. (Do not override this method)
Overrides:

update inclass canvas

IDL Connectivity Bridges JIDLCanvas

376 Appendix A: IDL Java Object API

JIDLChar

Declaration

public class JIDLChar implements JIDLNumber,
java.lio.Serializable

java.lang.Object

+--com.idl.javaidl.JIDLChar
All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description
The JIDL Char class wraps a char as a mutabl e object usable by the Java-IDL Export
bridge.
Member Summary
Constructors
JIDLChar (char wvalue)
Construct awrapper object.
JIDLChar (JIDLNumber value)
Construct awrapper object.
M ethods
boolean booleanValue ()
Return the value of the wrapped primitive.
byte bytevalue ()
Return the value of the wrapped primitive
char charvValue ()
Return the value of the wrapped primitive
double doublevValue ()
Return the value of the wrapped primitive
float floatvValue ()
Return the value of the wrapped primitive

JIDLChar IDL Connectivity Bridges

Appendix A: IDL Java Object API 377

Member Summary

int intvValue ()

Return the value of the wrapped primitive

long longValue ()
Return the value of the wrapped primitive

void setValue (char value)

Change the value of the wrapper object

void setValue (JIDLNumber value)

Change the value of the wrapper object

short shortvalue ()
Return the value of the wrapped primitive

java.lang.String toString ()

Inherited Member Summary

Methodsinherited from class object

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait(long,
int)

Constructors

JIDLChar(char)

public JIDLChar (char value)
Construct awrapper object.
Parameters:

value - value to wrap for usein the export bridge

JIDLChar(JIDLNumber)

public JIDLChar (com.idl.javaidl.JIDLNumber value)

Construct awrapper object.

IDL Connectivity Bridges JIDLChar

378

Appendix A: IDL Java Object API

Parameters:

value - JDLNumber to wrap for use in the export bridge

Methods

JIDLChar

booleanValue()

public boolean booleanValue ()

Return the value of the wrapped primitive.
Specified By:

booleanVaue in interface J DL Number
Returns:

true if non-zero, false otherwise

byteValue()

public byte byteValue ()

Return the value of the wrapped primitive
Specified By:

byteValue in interface JIDL Number
Returns:

value that is wrapped by this object

charValue()

public char charValue ()

Return the value of the wrapped primitive
Specified By:

charValue in interface JIDL Number
Returns:

value that is wrapped by this object

doubleValue()

public double doubleValue ()

IDL Connectivity Bridges

Appendix A: IDL Java Object API 379

Return the value of the wrapped primitive
Specified By:
doubleValue in interface JIDL Number
Returns:
value that is wrapped by this object
floatValue()
public float floatValue ()
Return the value of the wrapped primitive
Specified By:
floatValue in interface JIDLNumber
Returns:
value that is wrapped by this object
intValue()
public int intValue()
Return the value of the wrapped primitive
Specified By:
intValue in interface JIDL Number
Returns:

value that is wrapped by this object
longValue()

public long longValue ()

Return the value of the wrapped primitive
Specified By:

longValue in interface JIDL Number
Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLChar

380 Appendix A: IDL Java Object API

setValue(char)
public void setValue(char value)
Change the value of the wrapper object
Parameters:

value - primitive value to wrap for use in the export bridge

setValue(JIDLNumber)
public void setValue(com.idl.javaidl.JIDLNumber value)
Change the value of the wrapper object
Specified By:
setValue in interface JIDL Number
Parameters:

value - JDLNumber to wrap for use in the export bridge

shortValue()

public short shortvValue ()

Return the value of the wrapped primitive
Specified By:

shortValue in interface J DL Number
Returns:

value that is wrapped by this object
toString()

public java.lang.String toString()
Overrides:

toStringinclassobject

JIDLChar IDL Connectivity Bridges

Appendix A: IDL Java Object API 381

JIDLComponentListener

Declaration
public interface JIDLComponentListener

All Known Implementing Classes:

JDLCanvas

Description

The listener interface for receiving component events (expose, resize) on a
JDLCanvas.

Theclassthat isinterested in handling these eventsimplements thisinterface (and all
the methods it contains). The listener object created from that class is then registered
with the JIDL Canvas using the addl DL ComponentListener method. The listener is
unregistered with the removel DL ComponentL istener.

Component events are provided for notification purposes; the JIDL Canvas
automatically handles component redraws and resizes internally whether a program
registers an additional JIDL ComponentListener or not. The JIDL Canvasisitself a

J DL ComponentListener and provides default behavior for expose and resize. For an
expose event, the default behavior isfor the JDLCanvasto call the IDL program’s
OnExpose method. For aresize, the default isto call the IDL program’s OnResize
method.

Note that clients should not register to listen to JIDL Canvas ComponentEvents using
a ComponentListener, preferring the JIDL ComponentListener instead.

See Also:

java.awt.event.ComponentEvent,
java.awt.event.ComponentListener

IDL Connectivity Bridges JIDLComponentListener

382 Appendix A: IDL Java Object API

Member Summary
Methods
void IDLcomponentExposed (JIDLObjectI obj)
The IDL component (JIDL Canvas) has been exposed.
void IDLcomponentResized (JIDLObjectI obj,
java.awt.event.ComponentEvent event)
The IDL component (JIDL Canvas) has been resized.
Methods

IDLcomponentExposed(JIDLODbjectl)
public void IDLcomponentExposed (com.idl.javaidl.JIDLObjectI obj)
The IDL component (JIDL Canvas) has been exposed.

The default behavior of J DL Canvas's default DL componentExposed isto the IDL
program’s OnExpose method.

Parameters:

obj - The object that has been resized

IDLcomponentResized(JIDLObjectl, ComponentEvent)

public void IDLcomponentResized (com.idl.javaidl.JIDLObjectI obj,
java.awt.event.ComponentEvent event)

The IDL component (JIDLCanvas) has been resized.

The default behavior of JDLCanvas's default IDLcomponentResized isto call the
IDL program’s OnResize method.

Parameters:

obj - The object that has been resized

event - The Component event

JIDLComponentListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 383

JIDLConst

Declaration

public class JIDLConst
java.lang.Object

+--com.idl.javaidl.JIDLConst

Description

Contains constants used by the Java-IDL wrapper classes.

Member Summary

Fields

static int CONTROL_INPROC
Control flag for determining object isto be
created in-process

static int CONTROL_OUTPROC
Control flag for determining object isto be
created out-of -process

static int IDL_ABORT_NOT_OWNER

Error code when an abort request is made, but the
calling object does not have permission to
reguest the abort.

static IDL_ABORT_NOT_OWNER_MESSAGE
java.lang.String Internal use.

static int IDL_ABORTED
Error code returned when IDL processing has
aborted due to an abort request.

static int IDL_BUSY
Error code returned if IDL is called while
processing another request.

IDL Connectivity Bridges JIDLConst

384 Appendix A: IDL Java Object API

Member Summary

static int IDL_NOTHING_TO_ABORT
Error code when an abort request is made, but
there is nothing to abort.

static IDL_NOTHING_TO_ABORT_ MESSAGE
java.lang.String Internal use.
static int PARMFLAG_CONST

Parameter associated with this flag and passed to
IDL isconst (in-only).

static int PARMFLAG_CONVMAJORITY

Parameter associated with this flag and passed to
IDL isan array whose magjority will be
convolved.

static int PARMFLAG_IN_OUT
Parameter associated with this flag and passed to
IDL isin-out (mutable).

static int PARMFLAG_NO_CONVMAJORITY

Parameter associated with this flag and passed to
IDL isan array whose mgjority will NOT be
convolved.

Inherited Member Summary

Methodsinherited from class object

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), toString(), wait(long, int), wait(long, int),
wait (long, int)

Fields
CONTROL_INPROC

public static final int CONTROL_INPROC

Control flag for determining object isto be created in-process

JIDLConst IDL Connectivity Bridges

Appendix A: IDL Java Object API 385

CONTROL_OUTPROC

public static final int CONTROL_OUTPROC

Contral flag for determining object isto be created out-of-process

IDL_ABORT_NOT_OWNER

public static final int IDL_ABORT_ NOT OWNER

Error code when an abort request is made, but the calling object does not have
permission to request the abort.

Note that when this error occurs, a JIDL Exception is thrown to the calling client with
this value as its error code.

See Also:

JIDLException, JIDLObjectl.abort()
IDL_ABORT_NOT_OWNER_MESSAGE

public static final java.lang.String IDL_ABORT_NOT OWNER_MESSAGE

Internal use. Error message when an abort request is made, but the calling object does
not have permission to request the abort.

IDL_ABORTED
public static final int IDL_ABORTED
Error code returned when IDL processing has aborted due to an abort request.

Note that when this error occurs, a JIDLAbortedException is thrown to the calling
client with this value asits error code.

See Also:
J DL ADbortedException, JIDL Exception, JIDL Objectl.abort()
IDL_BUSY

public static final int IDL_BUSY
Error code returned if IDL is called while processing another request.

Note that when this error occurs, a JIDLBusyException isthrown to the calling client
with this value as its error code.

IDL Connectivity Bridges JIDLConst

386

Appendix A: IDL Java Object API

See Also:
JIDLBusyException, JIDLEXxception, J DL Objectl.abort()

IDL_NOTHING_TO_ABORT

public static final int IDL_NOTHING_TO_ABORT
Error code when an abort request is made, but there is nothing to abort.

Note that when this error occurs, a JIDLException is thrown to the calling client with
this value asiits error code.

See Also:
JIDLException, JIDLObjectl.abort()

IDL_NOTHING_TO_ABORT MESSAGE

public static final java.lang.String
IDL_NOTHING_TO_ABORT_MESSAGE

Internal use. Error message when an abort request is made, but there is nothing to
abort.

PARMFLAG_CONST

public static final int PARMFLAG_CONST

Parameter associated with thisflag and passed to IDL isconst (in-only). It is expected
IDL will not change this parameter. Any changes that happened in IDL will be
ignored.

See Also:
PARMFLAG_IN_OUT

PARMFLAG_CONVMAJORITY

JIDLConst

public static final int PARMFLAG_CONVMAJORITY

Parameter associated with this flag and passed to IDL is an array whose majority will
be convolved.

Note that if set, the array will be convolved when passed from Javato IDL, and
convolved again in the in-out case, when passed back to Java.

See Also:
PARMFLAG NO CONVMAJIORITY

IDL Connectivity Bridges

Appendix A: IDL Java Object API 387

PARMFLAG_IN_OUT

public static final int PARMFLAG_IN_OUT

Parameter associated with this flag and passed to IDL isin-out (mutable). Itis
expected IDL may change this parameter and on return from IDL the data will be
copied back to the Java object.

See Also:
PARMFLAG CONST

PARMFLAG_NO_CONVMAJORITY

public static final int PARMFLAG_NO_CONVMAJORITY

Parameter associated with this flag and passed to IDL is an array whose majority will
NOT be convolved.

Note that for arrays of dimensions 2 throught 8, this may be quicker than
PARMFLAG_CONVMAJORITY because the array doesn’t need to be re-ordered
when passed between Java and IDL memory space.

See Also:
PARMFLAG_CONVMAJIORITY

IDL Connectivity Bridges JIDLConst

388 Appendix A: IDL Java Object API
JIDLDouble

Declaration

public class JIDLDouble implements JIDLNumber,
java.lio.Serializable

java.lang.Object

+--com.idl.javaidl.JIDLDouble
All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description
The JIDL Double class wraps a double as a mutabl e object usable by the Java-1DL
Export bridge.
Member Summary
Constructors
JIDLDouble (double wvalue)
Construct awrapper object.
JIDLDouble (JIDLNumber value)
Construct awrapper object.
M ethods
boolean booleanvValue ()
Return the value of the wrapped primitive.
byte bytevalue ()
Return the value of the wrapped primitive
char charvalue ()
Return the value of the wrapped primitive
double doublevalue ()
Return the value of the wrapped primitive
float floatValue ()
Return the value of the wrapped primitive

JIDLDouble IDL Connectivity Bridges

Appendix A: IDL Java Object API 389

Member Summary

int intvValue ()

Return the value of the wrapped primitive

long longValue ()
Return the value of the wrapped primitive

void setValue (double value)

Change the value of the wrapper object

void setValue (JIDLNumber value)

Change the value of the wrapper object

short shortvalue ()
Return the value of the wrapped primitive

java.lang.String toString ()

Inherited Member Summary

Methodsinherited from class object

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait(long,
int)

Constructors

JIDLDouble(double)

public JIDLDouble (double value)
Construct awrapper object.
Parameters:

value - value to wrap for usein the export bridge

JIDLDouble(JIDLNumber)

public JIDLDouble (com.idl.javaidl.JIDLNumber value)

Construct awrapper object.

IDL Connectivity Bridges JIDLDouble

390

Appendix A: IDL Java Object API

Parameters:

value - JDLNumber to wrap for use in the export bridge

Methods

booleanValue()

public boolean booleanValue ()

Return the value of the wrapped primitive.
Specified By:

booleanVaue in interface J DL Number
Returns:

true if non-zero, false otherwise

byteValue()

public byte byteValue ()

Return the value of the wrapped primitive
Specified By:

byteValue in interface JIDL Number
Returns:

value that is wrapped by this object

charValue()

public char charValue ()

Return the value of the wrapped primitive
Specified By:

charValue in interface JIDL Number
Returns:

value that is wrapped by this object

doubleValue()

JIDLDouble

public double doubleValue ()

IDL Connectivity Bridges

Appendix A: IDL Java Object API 391

Return the value of the wrapped primitive
Specified By:
doubleValue in interface JIDL Number
Returns:
value that is wrapped by this object
floatValue()
public float floatValue ()
Return the value of the wrapped primitive
Specified By:
floatValue in interface JIDLNumber
Returns:
value that is wrapped by this object
intValue()
public int intValue()
Return the value of the wrapped primitive
Specified By:
intValue in interface JIDL Number
Returns:

value that is wrapped by this object
longValue()

public long longValue ()

Return the value of the wrapped primitive
Specified By:

longValue in interface JIDL Number
Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLDouble

392 Appendix A: IDL Java Object API

setValue(double)
public void setValue (double value)
Change the value of the wrapper object
Parameters:

value - primitive value to wrap for use in the export bridge

setValue(JIDLNumber)
public void setValue(com.idl.javaidl.JIDLNumber value)
Change the value of the wrapper object
Specified By:
setValue in interface JIDL Number
Parameters:

value - JDLNumber to wrap for use in the export bridge

shortValue()

public short shortvValue ()

Return the value of the wrapped primitive
Specified By:

shortValue in interface J DL Number
Returns:

value that is wrapped by this object
toString()

public java.lang.String toString()
Overrides:

toStringinclassobject

JIDLDouble IDL Connectivity Bridges

Appendix A: IDL Java Object API

JIDLEXxception

Declaration

public class JIDLException extends java.lang.Error implements

java.lio.Serializable
java.lang.Object

+--java.lang.Throwable

+--java.lang.Error

+--com.idl.javaidl.JIDLException
All Implemented Interfaces:
java.io.Serializable
Direct Known Subclasses:
JIDLAbortedException, JIDLBusyException

Description

An unchecked exception thrown when acall to IDL encounters an error.

393

Member Summary
Methods
long getErrorCode ()
Get the IDL error code associated with the IDL error.
java.lang.String toString ()

IDL Connectivity Bridges

JIDLEXxception

394 Appendix A: IDL Java Object API

Inherited Member Summary

M ethodsinherited from class object

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait (long,

int)

Methodsinherited from class Throwable

fillInStackTrace (), getCause(), getLocalizedMessage(),
getMessage (), getStackTrace (), initCause (Throwable),
printStackTrace (PrintWriter),

printStackTrace (PrintWriter),

printStackTrace (PrintWriter),

setStackTrace (StackTraceElement[])

Methods
getErrorCode()

public long getErrorCode ()

Get the IDL error code associated with the IDL error.

toString()

public java.lang.String toString()

Overrides:

toString inclass Throwable

JIDLEXxception IDL Connectivity Bridges

Appendix A: IDL Java Object API 395

JIDLFloat

Declaration

public class JIDLFloat implements JIDLNumber,
java.lio.Serializable

java.lang.Object

+--com.idl.javaidl.JIDLFloat
All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description
The JIDLHoat class wraps a float as a mutable object usable by the Java-IDL Export
bridge.
Member Summary
Constructors
JIDLFloat (float value)
Construct a wrapper object.
JIDLFloat (JIDLNumber value)
Construct awrapper object.
M ethods
boolean booleanvValue ()
Return the value of the wrapped primitive.
byte bytevalue ()
Return the value of the wrapped primitive
char charvValue ()
Return the value of the wrapped primitive
double doublevalue ()
Return the value of the wrapped primitive

IDL Connectivity Bridges JIDLFloat

396 Appendix A: IDL Java Object API

Member Summary

float floatVvalue()
Return the value of the wrapped primitive

int intValue ()

Return the value of the wrapped primitive

long longValue ()
Return the value of the wrapped primitive

void setValue (float value)

void setValue (JIDLNumber wvalue)

Change the value of the wrapper object

short shortvalue ()
Return the value of the wrapped primitive

java.lang.String toString ()
Return the value of the wrapped primitive

Inherited Member Summary

Methodsinherited from class object

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait (long,
int)

Constructors

JIDLFloat(float)

public JIDLFloat (float value)
Construct awrapper object.
Parameters:

value - value to wrap for usein the export bridge
JIDLFloat(JIDLNumber)

public JIDLFloat (com.idl.javaidl.JIDLNumber value)

Construct awrapper object.

JIDLFloat IDL Connectivity Bridges

Appendix A: IDL Java Object API 397

Parameters:

value - JDLNumber to wrap for use in the export bridge
Methods

booleanValue()
public boolean booleanvValue ()
Return the value of the wrapped primitive.
Specified By:
booleanValue in interface JIDL Number
Returns:

true if non-zero, false otherwise

byteValue()
public byte byteValue ()
Return the value of the wrapped primitive
Specified By:
byteValue in interface JIDL Number
Returns:

value that is wrapped by this object
charValue()

public char charValue ()
Return the value of the wrapped primitive
Specified By:
charValue in interface JJIDL Number
Returns:

value that is wrapped by this object
doubleValue()

public double doubleValue ()

IDL Connectivity Bridges JIDLFloat

398

Return the value of the wrapped primitive
Specified By:

doubleValue in interface JIDL Number
Returns:

value that is wrapped by this object

floatValue()

public float floatValue ()

Return the value of the wrapped primitive
Specified By:

floatValue in interface JIDLNumber
Returns:

value that is wrapped by this object

intValue()

JIDLFloat

public int intValue ()

Return the value of the wrapped primitive
Specified By:

intValue in interface JIDL Number
Returns:

value that is wrapped by this object

longValue()

public long longValue ()

Return the value of the wrapped primitive
Specified By:

longValue in interface JI DL Number
Returns:

value that is wrapped by this object

Appendix A: IDL Java Object API

IDL Connectivity Bridges

Appendix A: IDL Java Object API 399

setValue(float)
public void setValue(float value)
setValue(JIDLNumber)
public void setValue (com.idl.javaidl.JIDLNumber value)
Change the value of the wrapper object
Specified By:
setValue in interface JIDL Number
Parameters:

value - primitive value to wrap for use in the export bridge

shortValue()

public short shortvalue ()
Return the value of the wrapped primitive
Specified By:
shortVaue in interface J DL Number
Returns:

value that is wrapped by this object
toString()

public java.lang.String toString()
Return the value of the wrapped primitive
Overrides:
toStringinclassobject
Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLFloat

400 Appendix A: IDL Java Object API
JIDLInteger

Declaration

public class JIDLInteger implements JIDLNumber,
java.lio.Serializable

java.lang.Object

+--com.idl.javaidl.JIDLInteger
All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description
The JIDL Integer class wraps an int as a mutable object usable by the Java-1DL
Export bridge.
Member Summary
Constructors
JIDLInteger (int value)
Construct awrapper object.
JIDLInteger (JIDLNumber wvalue)
Construct awrapper object.
M ethods
boolean booleanvValue ()
Return the value of the wrapped primitive.
byte bytevValue ()
Return the value of the wrapped primitive
char charvValue ()
Return the value of the wrapped primitive
double doublevalue ()
Return the value of the wrapped primitive

JIDLInteger IDL Connectivity Bridges

Appendix A: IDL Java Object API 401

Member Summary

float floatvalue()
Return the value of the wrapped primitive

int intValue ()

Return the value of the wrapped primitive

long longValue ()
Return the value of the wrapped primitive

void setValue (int value)

Change the value of the wrapper object

void setValue (JIDLNumber value)

Change the value of the wrapper object

short shortvValue ()
Return the value of the wrapped primitive

java.lang.String toString ()
Return the value of the wrapped primitive

Inherited Member Summary

Methodsinherited from class object

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait (long,
int)

Constructors
JIDLInteger(int)

public JIDLInteger (int value)
Construct awrapper object.
Parameters:

value - value to wrap for use in the export bridge

JIDLInteger(JIDLNumber)

public JIDLInteger (com.idl.javaidl.JIDLNumber value)

IDL Connectivity Bridges JIDLInteger

402

Appendix A: IDL Java Object API

Construct awrapper object.
Parameters:

value - JDLNumber to wrap for use in the export bridge

Methods

booleanValue()

public boolean booleanvValue ()

Return the value of the wrapped primitive.
Specified By:

booleanValue in interface JI DL Number
Returns:

true if non-zero, false otherwise

byteValue()

public byte byteValue ()
Return the value of the wrapped primitive
Specified By:
byteValue in interface JIDL Number
Returns:

value that is wrapped by this object

charValue()

JIDLInteger

public char charValue ()

Return the value of the wrapped primitive
Specified By:

charValue in interface JJIDL Number
Returns:

value that is wrapped by this object

IDL Connectivity Bridges

Appendix A: IDL Java Object API 403

doubleValue()

public double doubleValue ()

Return the value of the wrapped primitive
Specified By:

doubleValuein interface JIDL Number
Returns:

value that is wrapped by this object
floatValue()

public float floatValue ()

Return the value of the wrapped primitive
Specified By:

floatValue in interface JIDLNumber
Returns:

value that is wrapped by this object
intValue()

public int intValue ()

Return the value of the wrapped primitive
Specified By:

intValue in interface JIDL Number
Returns:

value that is wrapped by this object
longValue()

public long longValue ()
Return the value of the wrapped primitive
Specified By:

longValue in interface JJDLNumber

IDL Connectivity Bridges JIDLInteger

404 Appendix A: IDL Java Object API

Returns:
value that is wrapped by this object
setValue(int)

public void setValue (int value)
Change the value of the wrapper object
Parameters:

value - primitive value to wrap for use in the export bridge

setValue(JIDLNumber)
public void setValue(com.idl.javaidl.JIDLNumber value)
Change the value of the wrapper object
Specified By:
setValue in interface JIDL Number
Parameters:

value - JDLNumber to wrap for use in the export bridge

shortValue()

public short shortvValue ()

Return the value of the wrapped primitive
Specified By:

shortValue in interface J DL Number
Returns:

value that is wrapped by this object
toString()

public java.lang.String toString()

Return the value of the wrapped primitive
Overrides:

toStringinclassobject

JIDLInteger IDL Connectivity Bridges

Appendix A: IDL Java Object API 405

Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLInteger

406 Appendix A: IDL Java Object API
JIDLKeyListener

Declaration
public interface JIDLKeyListener

All Known Implementing Classes:
JIDLCanvas
Description

The listener interface for receiving keyboard events (key pressed, key released) on a
JDLCanvas.

The class that isinterested in handling these eventsimplements thisinterface (and all
the methods it contains). The listener object created from that class is then registered
with the JIDL Canvas using the addI DL KeyL istener method. The listener is
unregistered with the removel DLKeyListener.

The JIDL Canvas automatically handles key events whether a program registers an
additional JIDLKeyListener or not. The JIDLCanvasisitself aJIDLKeyListener and
provides default behavior for press and release. For akey press or key release, the
default behavior isfor the JIDLCanvasto call the IDL program’s OnKeyboard
method.

Note that clients should not register to listen to JIDL Canvas KeyEvents using a
KeyListener, preferring the JIDLKeyListener instead.

See Also:

JIDLCanvas, java.awt.event.KeyEvent,
java.awt.event.KeyListener

JIDLKeyListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 407

Member Summary
Methods

void IDLkeyPressed (JIDLObjectI obj,
java.awt.event.KeyEvent event, int x, int vy)
A key press has occurred inside the J DL Canvas.

void IDLkeyReleased (JIDLObjectI obj,
java.awt.event.KeyEvent event, int x, int vy)
A key release has occurred inside the JIDL Canvas.

Methods

IDLkeyPressed(JIDLODbjectl, KeyEvent, int, int)

public void IDLkeyPressed(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.KeyEvent event, int x, int y)

A key press has occurred inside the JIDL Canvas.

The default behavior of JDL Canvas's default implementation isto call the IDL
program’s OnKeyboard method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - Thekey event

x - The x pixel location in the canvas where the event occurred

v - They pixel location in the canvas where the event occurred
IDLkeyReleased(JIDLObjectl, KeyEvent, int, int)

public void IDLkeyReleased(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.KeyEvent event, int x, int y)

A key release has occurred inside the JIDL Canvas.

The default behavior of JDL Canvas's default implementation isto call the IDL
program’s OnKeyboard method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

IDL Connectivity Bridges JIDLKeyListener

408 Appendix A: IDL Java Object API

event - Thekey event
x - The x pixel location in the canvas where the event occurred

y - They pixel location in the canvas where the event occurred

JIDLKeyListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 409

JIDLLong

Declaration

public class JIDLLong implements JIDLNumber,
java.lio.Serializable

java.lang.Object

+--com.idl.javaidl.JIDLLong
All Implemented Interfaces:

JIDLNumber, java.io.Serializable

Description
The JIDLLong class wraps along as a mutable object usable by the Java-IDL Export
bridge.
Member Summary
Constructors
JIDLLong (JIDLNumber value)
Construct awrapper object.
JIDLLong (long value)
Construct awrapper object.
M ethods
boolean booleanvValue ()
Return the value of the wrapped primitive.
byte bytevalue ()
Return the value of the wrapped primitive
char charvValue ()
Return the value of the wrapped primitive
double doublevalue ()
Return the value of the wrapped primitive

IDL Connectivity Bridges JIDLLong

410 Appendix A: IDL Java Object API

Member Summary

float floatVvalue()
Return the value of the wrapped primitive

int intValue ()

Return the value of the wrapped primitive

long longValue ()
Return the value of the wrapped primitive

void setValue (JIDLNumber value)

Change the value of the wrapper object

void setValue (long value)

Change the value of the wrapper object

short shortvalue ()
Return the value of the wrapped primitive

toString ()
java.lang.String | Return the value of the wrapped primitive

Inherited Member Summary

Methodsinherited from class object

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait (long,
int)

Constructors
JIDLLong(JIDLNumber)

public JIDLLong (com.idl.javaidl.JIDLNumber value)
Construct awrapper object.
Parameters:

value - JIDLNumber to wrap for use in the export bridge

JIDLLong(long)

public JIDLLong (long value)

JIDLLong IDL Connectivity Bridges

Appendix A: IDL Java Object API 411

Construct awrapper object.
Parameters:

value - value to wrap for usein the export bridge
Methods

booleanValue()
public boolean booleanValue ()
Return the value of the wrapped primitive.
Specified By:
booleanValue in interface JIDLNumber
Returns:
true if non-zero, false otherwise
byteValue()
public byte byteValue ()
Return the value of the wrapped primitive
Specified By:
byteValue in interface JIDL Number
Returns:

value that is wrapped by this object

charValue()

public char charValue ()
Return the value of the wrapped primitive
Specified By:
charVauein interface JIDL Number
Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLLong

412

doubleValue()

public double doublevValue ()

Return the value of the wrapped primitive
Specified By:

doubleValuein interface JIDL Number
Returns:

value that is wrapped by this object

floatValue()

JIDLLong

public float floatValue ()

Return the value of the wrapped primitive
Specified By:

floatValue in interface JIDLNumber
Returns:

value that is wrapped by this object

intValue()

public int intValue ()

Return the value of the wrapped primitive
Specified By:

intValue in interface JIDL Number
Returns:

value that is wrapped by this object

longValue()

public long longValue ()
Return the value of the wrapped primitive
Specified By:

longValue in interface JJDLNumber

Appendix A: IDL Java Object API

IDL Connectivity Bridges

Appendix A: IDL Java Object API 413

Returns:

value that is wrapped by this object
setValue(JIDLNumber)

public void setValue (com.idl.javaidl.JIDLNumber value)

Change the value of the wrapper object
Specified By:

setValue in interface JIDL Number
Parameters:

value - JIDLNumber to wrap for use in the export bridge

setValue(long)

public void setValue (long value)

Change the value of the wrapper object
Parameters:

value - primitive value to wrap for use in the export bridge

shortValue()

public short shortvValue ()

Return the value of the wrapped primitive
Specified By:

shortValue in interface J DL Number
Returns:

value that is wrapped by this object
toString()

public java.lang.String toString()
Return the value of the wrapped primitive
Overrides:

toStringinclassobject

IDL Connectivity Bridges JIDLLong

414 Appendix A: IDL Java Object API

Returns:

value that is wrapped by this object

JIDLLong IDL Connectivity Bridges

Appendix A: IDL Java Object API 415

JIDLMouseListener

Declaration
public interface JIDLMouselListener

All Known Implementing Classes:

JIDLCanvas
Description

The listener interface for receiving mouse events from IDL (press, release, enter, and
exit) on aJIDLCanvas. A mouse event is generated when the mouse is pressed,
released, the mouse cursor enters or |eaves the JIDL Canvas component.

Note: Mouse moves and drags are tracked using JIDL M ouseM otionL istener.

The classthat isinterested in processing an IDL mouse event implements this
interface (and all the methods it contains). The listener object created from that class
isthen registered with the JIDL Canvas using the addl DL M ousel istener method. The
listener is unregistered with the removel DLMouseL istener.

The JIDL Canvas automatically handles mouse events whether a program registers an
additional JIDLMousel istener or not. The JIDLCanvasisitself a
JDLMouseListener and provides default behavior for the 4 events, as denoted in the
specific methods bel ow.

Note that clients should not register to listen to JIDL Canvas MouseEvents using a
MouseL istener, preferring the JIDLMouselistener instead.

See Also:

JIDLCanvas, JIDLMouseMotionListener, java.awt.event.MouseEvent,
java.awt.event.MouseListener

IDL Connectivity Bridges JIDLMouseListener

416

Appendix A: IDL Java Object API

Member Summary

M ethods

void

IDLmouseEntered (JIDLObjectI obj,
java.awt.event.MouseEvent event)

The mouse has entered the JIDL Canvas.

void

IDLmouseExited (JIDLObjectI obj,
java.awt.event.MouseEvent event)

The mouse has exiting the JIDL Canvas.

void

IDLmousePressed (JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse button was pressed inside the JIDL Canvas.

void

IDLmouseReleased (JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse button was released inside the JI DL Canvas.

Methods

IDLmouseEntered(JIDLObjectl, MouseEvent)

public void IDLmouseEntered(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent event)

The mouse has entered the JIDL Canvas.

The default behavior of JDL Canvas's default implementation isto call the IDL
program’s OnEnter method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse event

IDLmouseExited(JIDLObjectl, MouseEvent)

public void IDLmouseExited (com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent event)

The mouse has exiting the JIDL Canvas.

The default behavior of JDL Canvas's default implementation isto call the IDL
program’s OnExit method.

JIDLMouseListener

IDL Connectivity Bridges

Appendix A: IDL Java Object API 417

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse event
IDLmousePressed(JIDLODbjectl, MouseEvent)

public void IDLmousePressed (com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse button was pressed inside the JIDL Canvas.

The default behavior of JDL Canvas's default implementation isto call the IDL
program’s OnM ouseDown method.

Parameters:
obj - The JIDLCanvas in which the event occurred.

event - The mouse event
IDLmouseReleased(JIDLObjectl, MouseEvent)

public void IDLmouseReleased(com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseEvent event)

A mouse button was released inside the J DL Canvas.

The default behavior of JDL Canvas's default implementation isto call the IDL
program’s OnMouseUp method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse event

IDL Connectivity Bridges JIDLMouseListener

418 Appendix A: IDL Java Object API

JIDLMouseMotionListener

Declaration
public interface JIDLMouseMotionListener

All Known Implementing Classes:

JIDLCanvas
Description

The listener interface for receiving mouse motion events from IDL (move and drag)
on aJIDL Canvas. (Mouse presses, releases, enter and exits are tracked using
JDLMouselListener.)

The class that isinterested in processing an IDL mouse motion event implementsthis
interface (and all the methods it contains). The listener object created from that class
is then registered with the JIDL Canvas using the addl DL M ouseM otionListener
method. The listener is unregistered with the removel DLMouseM otionL istener.

The JIDL Canvas automatically handles mouse motion events whether a program
registers an additional JIDLMouseM otionListener or not. The JIDLCanvasisitself a
JDLMouseMotionListener and provides default behavior which isto call the IDL
object’s OnM ouseM otion method.

Note that clients should not register to listen to JIDL Canvas mouse motion events
using a MouseM otionL istener, preferring the JJIDLMouseM otionL istener instead.

See Also:

JIDLCanvas, JIDLMouseListener, java.awt.event.MouseEvent,
java.awt.event.MouseMotionListener

JIDLMouseMotionListener IDL Connectivity Bridges

Appendix A: IDL Java Object API

419

Member Summary
M ethods
void IDLmouseDragged (JIDLObjectI obj,
java.awt.event.MouseEvent event)
A mouse was dragged inside the JIDL Canvas.
void IDLmouseMoved (JIDLObjectI obj,
java.awt.event.MouseEvent event)
A mouse was moved inside the JIDL Canvas.
Methods

IDLmouseDragged(JIDLObjectl, MouseEvent)

public void IDLmouseDragged (com.idl.javaidl.JIDLObjectI obj,

java.awt.event.MouseEvent event)

A mouse was dragged inside the JIDL Canvas.

The default behavior of JDL Canvas's default implementation isto call the IDL

program’s OnM ouseM otion method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse event

IDLmouseMoved(JIDLObjectl, MouseEvent)

public void IDLmouseMoved (com.idl.javaidl.JIDLObjectI obj,

java.awt.event.MouseEvent event)

A mouse was moved inside the JIDL Canvas.

The default behavior of JDL Canvas's default implementation isto call the IDL

program’s OnMouseM otion method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse event

IDL Connectivity Bridges

JIDLMouseMotionListener

420 Appendix A: IDL Java Object API
JIDLMouseWheelListener

Declaration
public interface JIDLMouseWheelListener

All Known Implementing Classes:
JIDLCanvas
Description

The listener interface for receiving mouse wheel events on a JIDL Canvas.

The classthat isinterested in processing an IDL mouse wheel event implements this
interface. The listener object created from that class is then registered with the

J DL Canvas using the addIDL M ouseWheel Listener method. The listener is
unregistered with the removel DL MouseWheel Listener.

The JIDL Canvas automatically handles mouse wheel events whether a program
registers an additional JJIDLMouseWheelListener or not. The JIDL Canvasisitself a
JDLMouseWheelListener and provides default behavior for the event.

Note that clients should not register to listen to JIDL Canvas M ouseWheel Events
using a MouseWheel Listener, preferring the JIDLM ouseWheel Listener instead.

Note
The Java convention for mouse wheel direction isthe opposite of IDL's. Thisis
transparent to IDL applications because when the MouseWheel Event is passed to
IDL, the signisflipped.

See Also:

JIDLCanvas, JIDLMouseListener, java.awt.event.MouseWheelEvent,
java.awt.event.MouseWheelListener

JIDLMouseWheelListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 421

Member Summary
M ethods
void IDLmouseWheelMoved (JIDLObjectI obj,
java.awt.event.MouseEvent event)
A mouse wheedl was moved inside the JIDL Canvas.
Methods

IDLmouseWheelMoved(JIDLObjectl, MouseWheelEvent)

public void IDLmouseWheelMoved (com.idl.javaidl.JIDLObjectI obj,
java.awt.event.MouseWheelEvent event)

A mouse wheel was moved inside the JIDL Canvas.

The default behavior of JDL Canvas's default implementation isto call the IDL
program’s OnWheel method.

Parameters:

obj - The JIDLCanvas in which the event occurred.

event - The mouse whed event

IDL Connectivity Bridges JIDLMouseWheelListener

422 Appendix A: IDL Java Object API
JIDLNotifyListener

Declaration
public interface JIDLNotifyListener

Description

The listener interface for receiving notify events from IDL.

IDL objects that sub-class itComponent may trigger a notification by calling
IDLitComponent::Notify. Both drawable (JIDL Canvas) and non-drawable
(JIDLObject) wrapper objects may be listened to. However by default, JIDL Object
and J DL Canvas objects do NOT listen to their output events.

The classthat isinterested in receiving IDL notify events of a particular object *
implements this interface. The listener object created from that classis registered
with the JIDLObjectl using the addIDL NotifyListener method. The listener is
unregistered with the removel DLNotifyListener.

See Also:

JIDL Canvas, JIDLObject, J DL Objectl

Member Summary
M ethods
void OnIDLNotify (JIDLObjectI obj, java.lang.String
sl, java.lang.String s2)
An IDL notify has occurred.
Methods

OnIDLNotify(JIDLODbjectl, String, String)

public void OnIDLNotify (com.idl.javaidl.JIDLObjectI obj,
java.lang.String sl, java.lang.String s2)

An IDL notify has occurred.

JIDLNotifyListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 423

Parameters:

obj - The JIDLObjectl in which the event occurred.
s1 - Thefirst string parameter sent vialdllComponent:Notify

s2 - The second string parameter sent via ldll Component:Notify

IDL Connectivity Bridges JIDLNotifyListener

424 Appendix A: IDL Java Object API

JIDLNumber

Declaration
public interface JIDLNumber
All Known Implementing Classes:

JDLShort, JIDLLong, JDLInteger, JDLFloat, IDLDouble, JIDLChar, JIDLByte,
JIDLBoolean

Description

The JIDLNumber class wraps a primitive java number as a mutabl e object usable by
the Java-IDL Export bridge.

Member Summary
Methods

boolean booleanvValue ()

Return the value of the wrapped primitive.
byte bytevalue ()

Return the value of the wrapped primitive.
char charvValue ()

Return the value of the wrapped primitive.
double doublevValue ()

Return the value of the wrapped primitive.
float floatvalue()

Return the value of the wrapped primitive.
int intvalue ()

Return the value of the wrapped primitive.

JIDLNumber IDL Connectivity Bridges

Appendix A: IDL Java Object API

425

Member Summary

long

longValue ()

Return the value of the wrapped primitive.

void

setValue (JIDLNumber value)
Change the value of the wrapper object

short

shortValue ()

Return the value of the wrapped primitive.

Methods

booleanValue()

public boolean booleanValue ()

Return the value of the wrapped primitive.

Returns:

true if non-zero, false otherwise

byteValue()

public byte bytevValue ()

Return the value of the wrapped primitive.

Returns:

value that is wrapped by this object

charValue()

public char charValue ()

Return the value of the wrapped primitive.

Returns:

value that is wrapped by this object

doubleValue()

public double doubleValue ()

Return the value of the wrapped primitive.

IDL Connectivity Bridges

JIDLNumber

426

Returns:

value that is wrapped by this object
floatValue()

public float floatValue ()

Return the value of the wrapped primitive.

Returns:

value that is wrapped by this object
intValue()

public int intValue()

Return the value of the wrapped primitive.

Returns:

value that is wrapped by this object
longValue()

public long longValue ()
Return the value of the wrapped primitive.
Returns:

value that is wrapped by this object
setValue(JIDLNumber)

Appendix A: IDL Java Object API

public void setValue (com.idl.javaidl.JIDLNumber value)

Change the value of the wrapper object

Parameters:

value - JDLNumber to wrap for use in the export bridge

shortValue()

public short shortvalue ()

Return the value of the wrapped primitive.

JIDLNumber

IDL Connectivity Bridges

Appendix A: IDL Java Object API 427

Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLNumber

428

Appendix A: IDL Java Object API

JIDLODbject

Declaration

public class JIDLObject implements JIDLObjectI,
java.lio.Serializable

java.lang.Object

+--com.idl.javaidl.JIDLObject

All Implemented Interfaces:

JIDLObjectI, java.lo.Serializable

Description

JIDLObject

This classwraps an IDL object.

In many of the methods of this class, one or more flags are required to be specified
for parameters being passed to or from the bridge. These flags follow the following
guidelines:

For all types of parameters (subclasses of JDLNumber, JIDL String, JIDL Objectl
and JIDLArray), aflag should be set that determines whether the parameter isin-only
(const) or in-out (we expect it to be changed by IDL). The constants that determine
this are either IDLConst. PARMFLAG_CONST or

JDLConst. PARMFLAG_IN_OUT.

For parameters that are arrays, a flag should be set that tells the bridge whether the
array isto be convolved when passed to IDL. If the PARM_IN_OUT flag is set, this
flag will also tell the bridge whether to convolve the array when it is copied back to
Java. The constants that determine this are either

JDLConst. PARMFLAG_CONVMAJXORITY or

JDLConst. PARMFLAG_NO_CONVMAUJORITY.

For example, if the parameter in question is an array that is to be modified by IDL
(in-out) and needs to be convolved when passed to and from IDL, we would set its
argpal array member as follows:

argpal[2] = JIDLConst.PARMFLAG_IN_OUT | JIDLConst .PARMFLAG_CONV
MAJORITY;

IDL Connectivity Bridges

Appendix A: IDL Java Object API 429

Member Summary

M ethods

void abort ()
Requests that the IDL process containing the
underlying IDL object abort its current activity.

void addIDLNotifyListener (JIDLNotifyListener
listener)

Adds the specified IDL notify listener to receive IDL
notification events on this object.

void addIDLOutputListener (JIDLOutputListener
listener)

Adds the specified IDL output listener to receive IDL

output events on this object.

java.lang.Object callFunction(java.lang.String sMethodName,
int iPalFlag)
Call IDL function that accepts zero parameters.

java.lang.Object callFunction(java.lang.String sMethodName,
int argc, java.lang.Object argv, int[]
argpal, int iPalFlag)

Call IDL function.

void callProcedure(java.lang.String sMethodName)

Call IDL procedure that accepts zero parameters.

void callProcedure(java.lang.String sMethodName,
int argc, java.lang.Object argv, int][]
argpal)

Call IDL procedure.

void createObject ()

Create the wrapped object by calling IDL's ::INIT
method.

void createObject (int argc, java.lang.Object
argv, int[] argpal)

Create the wrapped object by calling IDL's ::INIT
method.

IDL Connectivity Bridges JIDLObject

430 Appendix A: IDL Java Object API

Member Summary

void createObject (int argc, java.lang.Object
argv, int[] argpal,
com.idl.javaidl.JIDLProcessInitializer

initializer)
Create the wrapped object by calling IDL's ::INIT
method.

void createObject (com.idl.javaidl .JIDLProcessInit

ializer initializer)

Create the wrapped object by calling IDL's ::INIT

method.

void destroyObject ()
Destroysthe underlying IDL object associated with the
wrapper.

void executeString(java.lang.String sCmd)

Execute the given command string in IDL.

java.lang.String getClassName ()
Get the class name of the object.

long getCookie ()
Internal use.

java.lang.String getIDLObjectClassName ()
Retrieves the IDL object class name of the underlying
IDL object.

java.lang.String getIDLObjectVariableName ()
When the underlying IDL object was created in the
IDL process, it was assigned a variable name.

java.lang.Object getIDLVariable (java.lang.String sVar)
Given avariable name, return the IDL variable.

java.lang.String getObjVariableName ()
Get the IDL Variable name of the given object

java.lang.String getProcessName ()
Returns the name of the process that contains the
underlying IDL object.

java.lang.Object getProperty(java.lang.String sProperty, int
iPalFlag)
Call IDL getProperty method to get named property.

JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 431

Member Summary

void initListeners ()
Initialize listeners.

boolean isObjCreated()
Determineif object has been created successfully.

boolean isObjectCreated()

Determineif object has been created successfully.

boolean isObjectDisplayable ()
void removeIDLNotifyListener (JIDLNotifyListener
listener)

Removes the specified IDL notify listener so it no
longer receives IDL natifications.

void removeIDLOutputListener (JIDLOutputListener
listener)
Removes the specified IDL output listener on this
object.

void setIDLVariable(java.lang.String sVar,

java.lang.Object obj)
Set/Create an I DL variable of the given name and
value.

void setProcessName (java.lang.String process)

Set the process name that the object will be created in.

void setProperty(java.lang.String sProperty,
java.lang.Object obj, int iPalFlag)
Call IDL setProperty method to set named property.

java.lang.String toString ()
Returns a string representation of the object.

Inherited Member Summary

M ethodsinherited from classobject

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait (long,
int)

IDL Connectivity Bridges JIDLObject

432 Appendix A: IDL Java Object API

Methods

abort()

public void abort ()

Requests that the IDL process containing the underlying IDL object abort its current
activity.

Thisisonly arequest and IDL may take along time before it actually stops.

The client can only Abort the current IDL activity if that wrapper object is the current
“owner” of the underlying IDL.

Specified By:

abort in interface JIDL Objectl

Throws:

JDLException - If IDL encounters an error.
See Also:

JIDLADbortedException
addIDLNotifyListener(JIDLNotifyListener)

public void
addIDLNotifyListener (com.idl.javaidl .JIDLNotifyListener listener)

Adds the specified IDL notify listener to receive IDL natification events on this
object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
addIDLNotifyListener in interface JIDLObjectl
Parameters:

listener - thelistener
addIDLOutputListener(JIDLOutputListener)

public void
addIDLOutputListener (com.idl.javaidl .JIDLOutputListener listener)

Adds the specified IDL output listener to receive IDL output events on this object.

JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 433
Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
addIDL OutputL istener in interface JIDL Objectl
Parameters:

listener - thelistener
callFunction(String, int)

public java.lang.Object callFunction(java.lang.String
sMethodName, int iPalFlag)

Call IDL function that accepts zero parameters.
Parameters:
sMethodName - the function name

iPalFlag - aflag determining whether areturned array if convolved or not. If the
returned value is not an array, this value is zero. See class description for more
information.

Returns:

an Object of type JDLNumber, JIDL String, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:
JIDLException - If IDL encounters an error.
See Also:

JIDLObjectl.call Function(String, int, Object[], int[], int)
callFunction(String, int, Object[], int[], int)

public java.lang.Object callFunction(java.lang.String
sMethodName, int argc, java.lang.Object[] argv, int[] argpal,
int iPalFlag)

Cadll IDL function.

The argpal parameter is an array of flags created by OR-ing constants from class
J DL Const. Each array element corresponds to the equivalent parameter in argv.

IDL Connectivity Bridges JIDLObject

434

Appendix A: IDL Java Object API

Specified By:

callFunction in interface JI DL Objectl
Parameters:

sMethodName - the procedure name
argc - the number of parameters

argv - array of Objectsto be passed to IDL. Thisarray should be of length argc and
should contain objects of type JIDL Number, JJIDLObject, JIDL String or J DL Object.

argpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length argc.

iPalFlag - aflag determining whether areturned array if convolved or not. If the
returned value is not an array, this value is zero.

Returns:

an Object of type JDLNumber, JIDLString, JIDLObjectl or IDLArray. The caller
must know the type of the Object being returned and cast it to its proper type.

Throws:
JIDLException - If IDL encounters an error.
See Also:

JIDLNumber, JIDLObject, JIDL String, JIDLATrray,
JDLConst.PARMFLAG_CONST, JDLConst. PARMFLAG _IN_OUT,
JDLConst.PARMFLAG _CONVMAJORITY,

JDLConst.PARMFLAG _NO _CONVMAJIORITY

callProcedure(String)

JIDLObject

public void callProcedure(java.lang.String sMethodName)

Call IDL procedure that accepts zero parameters.
Parameters:

sMethodName - the procedure name

Throws:

JIDLException - If IDL encounters an error.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 435

See Also:
callProcedure(String, int, Object[], int[])

callProcedure(String, int, Object[], int[])

public void callProcedure(java.lang.String sMethodName,
int argc, java.lang.Object[] argv, int[] argpal)

Call IDL procedure.

The argpal parameter is an array of flags created by OR-ing constants from class
JDLConst. Each array element corresponds to the equivalent parameter in argv.

Specified By:

callProcedure in interface JIDL Objectl
Parameters:

sMethodName - the procedure name
argc - the number of parameters

argv - array of Objectsto be passed to IDL. Thisarray should be of length argc and
should contain objects of type JIDL Number, JJIDLObject, JIDL String or J DL Object.

argpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length argc.

Throws:
JIDLException - If IDL encounters an error.
See Also:

JIDLNumber, JIDLObject, JIDL String, JIDLATrray,
JDLConst.PARMFLAG_CONST, JDLConst. PARMFLAG _IN_OUT,
JDLConst.PARMFLAG _CONVMAUJORITY,

JDLConst.PARMFLAG _NO _CONVMAJIORITY

createObject()

public void createObject ()
Create the wrapped object by calling IDL’s ::INIT method.

Used for ::INIT methods that take zero parameters. Assumes a default
JDLProcesslnitializer.

IDL Connectivity Bridges JIDLObject

436

Appendix A: IDL Java Object API

Throws:
JIDLException - If IDL encounters an error.
See Also:

createObject(int, Object[], int[])

createObject(int, Object[], int[])

JIDLObject

public void createObject (int argc, java.lang.Object[] argv,
int[] argpal)

Create the wrapped object by calling IDL’s ::INIT method.

The argc, argv, argpal parameters are used to supply parameters to the underlying
IDL object’s ::Init method.

If the ::Init method does not have any parameters, the caller sets argc, argv, argpal to
0, null, null, respectively.

createObject does the following:
e Calls::Init method in the IDL object

» Cadllsthe superclass initListeners method to initialize any event handlers. The
initListeners method has default behavior, which is different for graphical and
non-graphical objects. If the default behavior is not desired, a sub-classto
modify the listener initialization may override the initListeners method.

Specified By:
createObject in interface J DL Objectl
Parameters:

argc - the number of parametersto be passed to INIT

argv - array of Objectsto be passed to IDL. This array should be of length argc and
should contain objects of type JIDL Number, JIDLObject, JIDL String or JIDLArray.

argpal - array of flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

Throws:

JIDLException - If IDL encounters an error.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 437

createObject(int, Object(], int[], JIDLProcesslInitializer)

public void createObject (int argc, java.lang.Object[] argv,
int[] argpal, com.idl.javaidl.JIDLProcessInitializer initializer)

Create the wrapped object by calling IDL’s ::INIT method.

The argc, argv, argpa parameters are used to supply parameters to the underlying
IDL object’s ::Init method The initializer parameter is used to supply IDL process
initialization values.

If the ::Init method does not have any parameters, the caller sets argc, argv, argpal to
0, null, null, respectively.

createObject does the following:
e Calls::Init method in the IDL object

e Callsthe superclassinitListeners method to initialize any event handlers. The
initListeners method has default behavior, which is different for graphical and
non-graphical objects. If the default behavior is not desired, a sub-classto
modify the listener initialization may override the initListeners method.

Specified By:
createObject in interface J DL Objectl
Parameters:

argc - the number of parametersto be passed to INIT

argv - array of Objectsto be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JJIDLObject, JIDL String or JIDLArray.

argpal - array of flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

initializer - aJIDLProcesslinitializer object that specifies IDL process
initialization parameters such as the licensing mode to be used. See “IDL Licensing
Modes’ on page 134 for details on the default licensing mechanism used when no
JDLProcessnitializer is specified.

Throws:

JIDLException - If IDL encounters an error.

IDL Connectivity Bridges JIDLObject

438 Appendix A: IDL Java Object API

createObject(JIDLProcessinitializer)

public void createObject (com.idl.javaidl.JIDLProcessInitializer
initializer)

Create the wrapped object by calling IDL’s ::INIT method.

Used for ::INIT methods that take zero parameters.

Theinitializer parameter is used to supply IDL process initialization values.
Parameters:

initializer - aJIDLProcessinitializer object that specifies IDL process
initialization parameters such as the licensing mode to be used. See “IDL Licensing
Modes’ on page 134 for details on the default licensing mechanism used when no
JDLProcesslnitializer is specified.

Throws:
JIDLException - If IDL encounters an error.
destroyObject()
public void destroyObject ()

Destroys the underlying IDL object associated with the wrapper.

If the object being destroyed is the last object within an OPS process, the OPS
processis also destroyed.

Note that this does not destroy the actual wrapper object. Because the wrapper object
isaJavaobject, it followsall the Java reference counting/garbage collection schemes.
Once all references to the wrapper object are released from Java code and once the
Java Virtual Machine calls the garbage collector, the wrapper object may be deleted
from memory.

Specified By:
destroyObject in interface JIDL Objectl
executeString(String)
public void executeString(java.lang.String sCmd)
Execute the given command string in IDL.
Specified By:

executeString in interface JIDL Objectl

JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 439

Parameters:
sCmd - the single-line command to executein IDL.
Throws:

JIDLException - If IDL encounters an error.

getClassName()
public java.lang.String getClassName ()
Deprecated.
Replaced by getl DL ObjectClassName()
Get the class name of the object.
Returns:

classname (“” if object not created yet)

getCookie()
public long getCookie ()
Internal use.
Specified By:
getCookie in interface JIDL Objectl
getIDLObjectClassName()

public java.lang.String getIDLObjectClassName ()
Retrieves the IDL object class name of the underlying IDL object.
Specified By:
getIDLObjectClassName in interface J DL Objectl
Returns:

the IDL object class name
getIDLODbjectVariableName()

public java.lang.String getIDLObjectVariableName ()

When the underlying IDL object was created in the IDL process, it was assighed a
variable name. This method retrieves that name.

IDL Connectivity Bridges JIDLObject

440

JIDLObject

Appendix A: IDL Java Object API

Specified By:
getIDLODbjectVariableName in interface JIDL Objectl
Returns:

the variable name

getIDLVariable(String)

public java.lang.Object getIDLVariable(java.lang.String sVar)
Given avariable name, return the IDL variable.

Note that in the case of arrays, the array will ALWAY S be convolved when passed
between Javaand IDL.

Specified By:

getIDLVariable in interface JIDL Objectl
Parameters:

svar - The IDL variable name
Returns:

an Object of type JDLNumber, JIDL String, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

getObjVariableName()

public java.lang.String getObjVariableName ()
Deprecated.
Replaced by getl DL ObjectVariableName()
Get the IDL Variable name of the given object
Returns:

a String representing the IDL Variable name

getProcessName()

public java.lang.String getProcessName ()

IDL Connectivity Bridges

Appendix A: IDL Java Object API

441

Returns the name of the process that contains the underlying IDL object. For anin-

process abject, returns an empty string.
Specified By:

getProcessName in interface JIDL Objectl
Returns:

process name. Empty string if the processisin-process.
getProperty(String, int)

public java.lang.Object getProperty(java.lang.String
sProperty, int iPalFlag)

Call IDL getProperty method to get named property.
Specified By:

getProperty in interface JIDL Objectl

Parameters:

sProperty - the property name

iPalFlag - aflag determining whether areturned array will be convolved or not. If

the returned value is not isignored.

Returns:

an Object of type JDLNumber, JIDL String, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May

also return null.

Throws:

JIDLException - If IDL encounters an error.
See Also:

JIDLNumber, JIDLObjectl, JDLString, JIDLATrray,
JDLConst.PARMFLAG _CONVMAUJORITY,
JDLConst.PARMFLAG _NO _CONVMAJJORITY

initListeners()

public void initListeners()

Initialize listeners.

IDL Connectivity Bridges

JIDLObject

442 Appendix A: IDL Java Object API

This method is always called by createObject. The JDLObject listens to no events,
but this method may be overridden by sub-classes to initialize a different set of
listeners (or none at all).

For example if a sub-class of JIDL Object wished to listen to IDL output events, it
would need to implement JIDL OutputListener and register to listen for these events
in initListeners, as follows:

public class newObject extends JIDLObject implements JIDLOutputLi
stener
{

public void initListeners() {
addIDLOutputListener (this) ;

}

void IDLoutput (JIDLObjectI obj, String s) {
// do something with the output

}

Specified By:
initListenersin interface JIDL Objectl
See Also:

JDLNotifyListener, JIDLOutputListener
iIsObjCreated()

public boolean isObjCreated ()
Deprecated.
Replaced by isObjectCreated()
Determineif object has been created successfully.
Returns:

true if object created successfully, or falseif object not created or creation was
unsuccessful.

iIsObjectCreated()

public boolean isObjectCreated()

Determineif object has been created successfully.

JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 443

Specified By:
isObjectCreated in interface JIDL Objectl
Returns:

true if object created successfully, or false if object not created, destroyed, or
creation was unsuccessful.

See Also:
createObject()
isObjectDisplayable()
public boolean isObjectDisplayable ()
Specified By:
isObjectDisplayable in interface J DL Objectl
removelDLNotifyListener(JIDLNotifyListener)

public void
removeIDLNotifyListener (com.idl.javaidl.JIDLNotifyListener
listener)

Removes the specified IDL notify listener so it no longer receives IDL natifications.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
removel DLNotifyListener in interface JIDL Objectl
Parameters:

listener - thelistener
removelDLOutputListener(JIDLOutputListener)

public void
removeIDLOutputListener (com.idl.javaidl.JIDLOutputListener
listener)

Removes the specified IDL output listener on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

IDL Connectivity Bridges JIDLObject

444

Appendix A: IDL Java Object API

Specified By:
removel DL OutputListener in interface J DL Objectl
Parameters:

listener - thelistener

setIiDLVariable(String, Object)

public void setIDLVariable(java.lang.String sVar,
java.lang.Object obj)

Set/Create an IDL variable of the given name and value.

Note that in the case of arrays, the array will ALWAY S be convolved when passed
between Javaand IDL.

Specified By:
setiDLVariable in interface JIDL Objectl
Parameters:

svar - theIDL variable name

obj - object to be passed to IDL. Should be an object of type JJIDLNumber,
JDLODbject, IDLString or JIDLATrray.

Throws:

JIDLException - If IDL encounters an error.

setProcessName(String)

JIDLObject

public void setProcessName (java.lang.String process)
Set the process name that the object will be created in.

The process name may only be set before createObject is called. If called after the
object has been created, this method call does nothing.

Specified By:
setProcessName in interface JIDL Objectl
Parameters:

process - Process name. Empty String means create in same process (in-process).

IDL Connectivity Bridges

Appendix A: IDL Java Object API 445

setProperty(String, Object, int)

public void setProperty(java.lang.String sProperty,
java.lang.Object obj, int iPalFlag)

Call IDL setProperty method to set named property.

The iPalFlag parameter is a set of flags that are or-ed together. Currently this
parameter is only used to specify whether a JDLArray being passedinto IDL is
convolved or not. For arrays argpal should be set to either

JIDLConst. PARMFLAG_CONVMAJORITY or

JIDLConst. PARMFLAG_NO_CONVMAJORITY.

Specified By:

setProperty in interface JIDL Objectl
Parameters:

sProperty - the property name

obj - object to be passed to IDL. Should be an object of type JJ DL Number,
JDLObject, IDLString or J DL Object.

ipPalFlag - flag denoting whether the passed in parameter is convolved or not.
Note: setProperty does not alow obj to be modified by IDL

Throws:
JIDLException - If IDL encounters an error.
See Also:

JIDLNumber, JIDLObject, DL String, JIDLArray,
JDLConst.PARMFLAG_CONVMAJIORITY,
JDLConst.PARMFLAG_NO_CONVMAJIORITY

toString()

public java.lang.String toString()

Returns a string representation of the object.
Overrides:

toStringinclassobject

IDL Connectivity Bridges JIDLObject

446 Appendix A: IDL Java Object API

JIDLODbjectl

Declaration
public interface JIDLObjectI

All Known Implementing Classes:
JDLObject, JIDLCanvas
Description

The interface that wrapped IDL objects must implement. Both non-drawable and
drawable IDL objects implement this interface.

In many of the methods of this class, one or more flags are required to be specified
for parameters being passed to or from the bridge. These flags follow the following
guidelines:

For all types of parameters (subclasses of JDLNumber, JIDL String, JIDL Objectl
and JIDLArray), aflag should be set that determines whether the parameter isin-only
(const) or in-out (we expect it to be changed by IDL). The constants that determine
this are either IDLConst. PARMFLAG_CONST or

JIDLConst.PARMFLAG _IN_OUT.

For parameters that are arrays, a flag should be set that tells the bridge whether the
array isto be convolved when passed to IDL. If the PARM_IN_OUT flag is set, this
flag will also tell the bridge whether to convolve the array when it is copied back to
Java. The constants that determine this are either

JDLConst. PARMFLAG_CONVMAJXORITY or

JIDLConst. PARMFLAG_NO_CONVMAJORITY.

For example, if the parameter in question is an array that is to be modified by IDL
(in-out) and needs to be convolved when passed to and from IDL, we would set its
argpal array member as follows:

argpal[2] = JIDLConst.PARMFLAG_IN_OUT | JIDLConst.PARMFLAG_CONV
MAJORITY;

JIDLObjectl IDL Connectivity Bridges

Appendix A: IDL Java Object API

447

Member Summary

Methods

void abort ()
Requests that the IDL process containing the
underlying IDL object abort its current activity.

void addIDLNotifyListener (JIDLNotifyListener

listener)

Adds the specified IDL notify listener to receive IDL
notification events on this object.

void addIDLOutputListener (JIDLOutputListener

listener)
Adds the specified IDL output listener to receive IDL
output events on this object.

java.lang.Object

callFunction(java.lang.String sMethodName,
int argc, java.lang.Object argv, int[]
argpal, int iPalFlag)

Call IDL function.

void callProcedure(java.lang.String sMethodName,
int argc, java.lang.Object argv, int[]
argpal)
Call IDL procedure.

void createObject (int argc, java.lang.Object
argv, int[] argpal,
com.idl.idljava.JIDLProcessInitializer
initializer)
Creates the underlying IDL object.

void destroyObject ()
Destroys the underlying IDL object associated with the
Wrapper.

void executeString(java.lang.String sCmd)
Execute the given command string in IDL.

long getCookie()
Internal use.

java.lang.String

getIDLObjectClassName ()
Retrieves the IDL object class name of the underlying
IDL object.

IDL Connectivity Bridges

JIDLODbjectl

448 Appendix A: IDL Java Object API

Member Summary

java.lang.String getIDLObjectVariableName ()
When the underlying IDL object was created inthe IDL

process, it was assigned a variable name.

java.lang.Object getIDLVariable(java.lang.String sVar)
Given avariable name, return the IDL variable.

java.lang.String getProcessName ()
Returns the name of the process that contains the
underlying IDL object.

java.lang.Object getProperty(java.lang.String sProperty, int
iPalFlag)
Call IDL getProperty method to get named property.

void initListeners ()
Initialize any listeners.

boolean isObjectCreated()
Determine if object has been created successfully.

boolean isObjectDisplayable ()
void removeIDLNotifyListener (JIDLNotifyListener
listener)

Removes the specified IDL notify listener so it no
longer receives IDL natifications.

void removeIDLOutputListener (JIDLOutputListener
listener)
Removes the specified IDL output listener on this
object.

void setIDLVariable(java.lang.String sVar,

java.lang.Object obj)
Set/Create an IDL variable of the given name and
value.

void setProcessName (java.lang.String process)

Set the process name that the object will be created in.

void setProperty (java.lang.String sProperty,
java.lang.Object obj, int iPalFlag)
Call IDL setProperty method to set named property.

JIDLObjectl IDL Connectivity Bridges

Appendix A: IDL Java Object API 449

Methods

abort()

public void abort ()

Requests that the IDL process containing the underlying IDL object abort its current
activity.

Thisisonly arequest and IDL may take along time before it actually stops.

Theclient can only Abort the current IDL activity if that wrapper object is the current
“owner” of the underlying IDL.

Throws:

JIDLExceptions - If IDL encounters an error.
See Also:

JIDLADbortedException

addIDLNotifyListener(JIDLNotifyListener)

public void
addIDLNotifyListener (com.idl.javaidl.JIDLNotifyListener listener)

Adds the specified IDL notify listener to receive IDL natification events on this
object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - thelistener

addIDLOutputListener(JIDLOutputListener)

public void
addIDLOutputListener (com.idl.javaidl .JIDLOutputListener listener)

Adds the specified IDL output listener to receive IDL output events on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - thelistener

IDL Connectivity Bridges JIDLODbjectl

450 Appendix A: IDL Java Object API

callFunction(String, int, Object[], int[], int)

public java.lang.Object callFunction(java.lang.String
sMethodName, int argc, java.lang.Object[] argv, int[] argpal,
int iPalFlag)

Cadll IDL function.

The argpal parameter is an array of flags created by OR-ing constants from class
J DL Const. Each array element corresponds to the equivalent parameter in argv.

Parameters:
sMethodName - the procedure name
argc - the number of parameters

argv - array of Objectsto be passed to IDL. Thisarray should be of length argc and
should contain objects of type JIDLNumber, JJIDLObject, JIDLString or J DL Object.

argpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or hon-convolved array This array should be
of length argc.

iPalFlag - aflag determining whether areturned array if convolved or not. If the
returned value is not an array, thisvalue is zero.

Returns:

an Object of type JDLNumber, JIDLString, JIDLObjectl or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type.

Throws:
JIDLException - If IDL encounters an error.
See Also:

JIDLNumber, JIDLObject, DL String, JIDLArray,
JDLConst.PARMFLAG_CONST, JDLConst. PARMFLAG_IN_OUT,
JDLConst. PARMFLAG_CONVMAJIORITY,

JDLConst. PARMFLAG_NO_CONVMAUJORITY

callProcedure(String, int, Object[], int[])

public void callProcedure(java.lang.String sMethodName,
int argc, java.lang.Object[] argv, int[] argpal)

Call IDL procedure.

JIDLObjectl IDL Connectivity Bridges

Appendix A: IDL Java Object API 451

The argpal parameter is an array of flags created by OR-ing constants from class
JDLConst. Each array element corresponds to the equivalent parameter in argv.

Parameters:
sMethodName - the procedure name
argc - the number of parameters

argv - array of Objectsto be passed to IDL. Thisarray should be of length argc and
should contain objects of type JIDL Number, JJIDLObject, JIDL String or J DL Object.

argpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or hon-convolved array This array should be
of length argc.

Throws:
JIDLEXxception - If IDL encounters an error.
See Also:

JIDLNumber, JIDLObject, DL String, JIDLArray,
JDLConst.PARMFLAG_CONST, JDLConst. PARMFLAG_IN_OUT,
JDLConst. PARMFLAG_CONVMAJIORITY,

JDLConst. PARMFLAG_NO_CONVMAUJORITY

createObject(int, Object([], int[], JIDLProcesslInitializer)

public void createObject (int argc, java.lang.Object[] argv,
int[] argpal, com.idl.javaidl.JIDLProcessInitializer initializer)

Creates the underlying IDL object. The argc, argv, argpal parameters are used to
supply parameters to the underlying IDL object’s ::Init method. If the ::Init method
does not have any parameters, the caller sets argc, argv, and argpal to 0, null, and
null, respectively. createObject does the following:

e Cadls::Init method in the IDL object

e Cadllsthe superclassinitListeners method to initialize any event handlers. The
initListeners method has default behavior, which is different for graphical and
non-graphical objects. If the default behavior is not desired, a sub-classto
modify the listener initialization may override the initListeners method.

Parameters:

argc - the number of parametersto be passed to INIT

argv - array of Objectsto be passed to IDL. This array should be of length argc and
should contain objects of type JIDL Number, JJIDLObject, JIDL String or JIDLArray.

IDL Connectivity Bridges JIDLODbjectl

452

JIDLObjectl

Appendix A: IDL Java Object API

argpal - array of flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

initializer - aJIDLProcessinitializer object that specifies IDL process
initialization parameters such as the licensing mode to be used.

Throws:

JIDLException - If IDL encounters an error.

destroyObject()

public void destroyObject ()
Destroys the underlying IDL object associated with the wrapper.

If the object being destroyed is the last object within an OPS process, the OPS
processis also destroyed.

Note that this does not destroy the actual wrapper object. Because the wrapper object
isaJavaobject, it followsal the Java reference counting/garbage collection schemes.
Once all references to the wrapper object are released from Java code and once the
Java Virtual Machine calls the garbage collector, the wrapper object may be deleted
from memory.

executeString(String)

public void executeString(java.lang.String sCmd)
Execute the given command string in IDL.
Parameters:
sCmd - the single-line command to executein IDL.
Throws:

JIDLException - If IDL encounters an error.

getCookie()

public long getCookie ()

Internal use.

getIDLObjectClassName()

public java.lang.String getIDLObjectClassName ()

Retrieves the IDL object class name of the underlying IDL object.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 453

Returns:

the IDL object class name

getIDLODbjectVariableName()

public java.lang.String getIDLObjectVariableName ()

When the underlying IDL object was created in the IDL process, it was assighed a
variable name. This method retrieves that name.

Returns:

the variable name

getIDLVariable(String)

public java.lang.Object getIDLVariable(java.lang.String sVar)
Given avariable name, return the IDL variable.

Note that in the case of arrays, the array will ALWAY S be convolved when passed
between Javaand IDL.

Parameters:
svar - The IDL variable name
Returns:

an Object of type JDLNumber, JIDL String, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLEXxception - If IDL encounters an error.

getProcessName()

public java.lang.String getProcessName ()

Returns the name of the process that contains the underlying IDL object. For anin-
process abject, returns an empty string.

Returns:

process name. EMpty string if the processisin-process.

IDL Connectivity Bridges JIDLODbjectl

454 Appendix A: IDL Java Object API

getProperty(String, int)

public java.lang.Object getProperty(java.lang.String
sProperty, int iPalFlag)

Call IDL getProperty method to get named property.
Parameters:
sProperty - the property name

iPalFlag - aflag determining whether areturned array will be convolved or not. If
the returned value is not isignored.

Returns:

an Object of type JDLNumber, JIDL String, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:
JIDLException - If IDL encounters an error.
See Also:

JIDLNumber, JDLObjectl, JDLString, JJIDLATrray,
JDLConst.PARMFLAG_CONVMAJORITY,
JDLConst.PARMFLAG_NO_CONVMAJIORITY

initListeners()
public void initListeners()
Initialize any listeners.

This method is always called by the JIDL Object and JIDL Canvas createObject
methods.

The method may be overridden by sub-classesto initialize a different set of listeners
(or none at al).

iIsObjectCreated|()

public boolean isObjectCreated()

Determineif object has been created successfully.

JIDLObjectl IDL Connectivity Bridges

Appendix A: IDL Java Object API 455

Returns:

true if object created successfully, or false if object not created or creation was
unsuccessful.

iIsObjectDisplayable()
public boolean isObjectDisplayable ()
removelDLNotifyListener(JIDLNotifyListener)

public void
removeIDLNotifyListener (com.idl.javaidl.JIDLNotifyListener
listener)

Removes the specified IDL notify listener so it no longer receives IDL natifications.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - thelistener

removelDLOutputListener(JIDLOutputListener)

public void
removeIDLOutputListener (com.idl.javaidl.JIDLOutputListener
listener)

Removes the specified IDL output listener on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

listener - thelistener
setIiDLVariable(String, Object)

public void setIDLVariable(java.lang.String sVar,
java.lang.Object obj)

Set/Create an IDL variable of the given name and value.

Note that in the case of arrays, the array will ALWAY S be convolved when passed
between Javaand IDL.

IDL Connectivity Bridges JIDLODbjectl

456

Appendix A: IDL Java Object API

Parameters:
sVar - the|DL variable name

obj - object to be passed to IDL. Should be an object of type JI DL Number,
JIDLObject, IDL String or JIDLATrray.

Throws:

JIDLException - If IDL encounters an error.

setProcessName(String)

public void setProcessName (java.lang.String process)
Set the process name that the object will be created in.

The process name may only be set before createObject is called. If called after the
object has been created, this method call does nothing.

Parameters:

process - Process name. Empty String means create in same process (in-process).

setProperty(String, Object, int)

JIDLObjectl

public void setProperty(java.lang.String sProperty,
java.lang.Object obj, int iPalFlag)

Call IDL setProperty method to set named property.

The iPalFlag parameter is a set of flags that are or-ed together. Currently this
parameter is only used to specify whether a JDLArray being passedinto IDL is
convolved or not. For arrays argpal should be set to either

JIDLConst. PARMFLAG_CONVMAJXORITY or

JIDLConst. PARMFLAG_NO_CONVMAJORITY.

Parameters:
sProperty - the property name

obj - object to be passed to IDL. Should be an object of type JI DL Number,
JIDLObject, IDL String or JIDL Object.

iPalFlag - flag denoting whether the passed in parameter is convolved or not.
Note: setProperty does not alow obj to be modified by IDL

Throws:

JIDLException - If IDL encounters an error.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 457

See Also:

JDLNumber, JDLObject, JDL String, JDLATrray,
JDLConst.PARMFLAG_CONVMAJORITY,
JDLConst.PARMFLAG_NO_CONVMAJORITY

IDL Connectivity Bridges JIDLODbjectl

458 Appendix A: IDL Java Object API

JIDLOutputListener

Declaration
public interface JIDLOutputListener

Description

The listener interface for receiving output events from IDL.

Both drawable (JIDL Canvas) and non-drawable (JIDL Object) wrapper objects may
be listened to. However by default, JIDL Object and JIDL Canvas objects do NOT
listen to their output events.

The classthat isinterested in receiving IDL output events on a particular object
implements this interface. The listener object created from that classis registered
with the JIDL Objectl using the addI DL OutputListener method. The listener is
unregistered with the removel DL OutputL istener.

See Also:

JIDL Canvas, JIDLObject, JDLObjectl

Member Summary
M ethods
void IDLoutput (JIDLObjectI obj, java.lang.String s)
An IDL output has occurred
Methods

IDLoutput(JIDLODbjectl, String)

public void IDLoutput (com.idl.javaidl.JIDLObjectI obj,
java.lang.String s)

An IDL output has occurred

Parameters:

obj - The JIDLObjectl in which the event occurred.

JIDLOutputListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 459

s - The output string

IDL Connectivity Bridges JIDLOutputListener

460 Appendix A: IDL Java Object API

JIDLProcessinitializer

Declaration

public class JIDLProcessInitializer

java.lang.Object

+--com.idl.javaidl.JIDLProcessInitializer

Description

When aclient calls the createObject method of either the JIDL Canvas or JI DL Object
class, the JIDLProcesslnitializer object can be passed in to control IDL process
creation. Currently, this object controls the licensing mode of the IDL Process. See
“IDL Licensing Modes’ on page 134 for details on the default licensing mechanism
used when no JIDL Processinitializer is specified.

Member Summary

Fields

static int LICENSING_FULL
The IDL processrequires afull license.

static int LICENSING_LICENSED_SAV
The IDL process launches a SAVE file with an
embedded license.

static int LICENSING_RUNTIME
The IDL process requires aruntime license.

static int LICENSING_VM
TheIDL processrunsin Virtual Machine
mode.

Constructors

JIDLProcessInitializer ()
Construct a process initializer object.

JIDLProcessInitializer (int)
Construct a process initializer object.

JIDLProcessinitializer IDL Connectivity Bridges

Appendix A: IDL Java Object API 461

Member Summary

Methods
int getLicenseMode ()
Retrieve the current licensing mode.
void setLicenseMode (int)
Set the licensing mode.

Inherited Member Summary

M ethodsinherited from classobject

equals (Object), getClass(), hashCode(), notify(), notifyAll(),
toString (), wait(long, int), wait(long, int), wait(long, int)

Fields
LICENSING_FULL

public static final int LICENSING_ FULL

If thisflag is set, the Java application requiresthat alicensed copy of IDL beinstalled
on thelocal machine. If IDL isinstalled but no license is availabl e, the application
will runin IDL Demo (7-minute) mode.

LICENSING_LICENSED_SAV

public static final int LICENSING_LICENSED_SAV

If thisflag is set, the Java application looks for an embedded license in the save file
being restored.

LICENSING_RUNTIME

public static final int LICENSING_ RUNTIME

If thisflag is set, the Java application looks for aruntime IDL license. If no runtime
license is available, the application will run in Virtual Machine mode.

LICENSING_VM

public static final int LICENSING VM

IDL Connectivity Bridges JIDLProcessinitializer

462 Appendix A: IDL Java Object API

If thisflag is set, the Java application will runin Virtual Machine mode.
Constructors

JIDLProcessinitializer()
public JIDLProcessInitializer()
JIDLProcesslnitializer(int)

public JIDLProcessInitializer (int licenseMode)

Methods

getLicenseMode()

public int getLicenseMode ()
Returns:
The current licensing mode.

setLicenseMode(int)

public void setLicenseMode (int licenseMode)

JIDLProcessinitializer IDL Connectivity Bridges

Appendix A: IDL Java Object API

JIDLShort

Declaration

public class JIDLShort implements JIDLNumber,

java.lio.Serializable
java.lang.Object

+--com.idl.javaidl.JIDLShort
All Implemented Interfaces:

JIDLNumber, java.io.Serializable

463

Description
The JIDL Short class wraps a short as a mutabl e object usable by the Java-I DL Export
bridge.
Member Summary
Constructors
JIDLShort (JIDLNumber wvalue)
Construct a wrapper object.
JIDLShort (short wvalue)
Construct a wrapper object.
M ethods
boolean booleanvValue ()
Return the value of the wrapped primitive.
byte bytevalue ()
Return the value of the wrapped primitive
char charvValue()
Return the value of the wrapped primitive
double doublevalue ()
Return the value of the wrapped primitive
float floatvValue ()
Return the value of the wrapped primitive

IDL Connectivity Bridges

JIDLShort

464 Appendix A: IDL Java Object API

Member Summary

int intvValue ()

Return the value of the wrapped primitive

long longValue ()
Return the value of the wrapped primitive

void setValue (JIDLNumber value)

Change the value of the wrapper object

void setValue (short value)

Change the value of the wrapper object

short shortvValue ()
Return the value of the wrapped primitive

java.lang.String toString ()

Inherited Member Summary

Methodsinherited from class object

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait(long,
int)

Constructors

JIDLShort(JIDLNumber)

public JIDLShort (com.idl.javaidl.JIDLNumber value)

Construct awrapper object.
Parameters:
value - JDLNumber to wrap for use in the export bridge

JIDLShort(short)

public JIDLShort (short value)

Construct awrapper object.

JIDLShort IDL Connectivity Bridges

Appendix A: IDL Java Object API 465

Parameters:

value - value to wrap for usein the export bridge
Methods

booleanValue()
public boolean booleanvValue ()
Return the value of the wrapped primitive.
Specified By:
booleanValue in interface JIDL Number
Returns:

true if non-zero, false otherwise

byteValue()
public byte byteValue ()
Return the value of the wrapped primitive
Specified By:
byteValue in interface JIDL Number
Returns:

value that is wrapped by this object
charValue()

public char charValue ()
Return the value of the wrapped primitive
Specified By:
charValue in interface JJIDL Number
Returns:

value that is wrapped by this object
doubleValue()

public double doubleValue ()

IDL Connectivity Bridges JIDLShort

466

Return the value of the wrapped primitive
Specified By:

doubleValue in interface JIDL Number
Returns:

value that is wrapped by this object

floatValue()

public float floatValue ()

Return the value of the wrapped primitive
Specified By:

floatValue in interface JIDLNumber
Returns:

value that is wrapped by this object

intValue()

public int intValue ()

Return the value of the wrapped primitive
Specified By:

intValue in interface JIDL Number
Returns:

value that is wrapped by this object

longValue()

JIDLShort

public long longValue ()

Return the value of the wrapped primitive
Specified By:

longValue in interface JI DL Number
Returns:

value that is wrapped by this object

Appendix A: IDL Java Object API

IDL Connectivity Bridges

Appendix A: IDL Java Object API 467

setValue(JIDLNumber)
public void setValue(com.idl.javaidl.JIDLNumber value)
Change the value of the wrapper object
Specified By:
setValue in interface JIDL Number
Parameters:

value - JDLNumber to wrap for use in the export bridge

setValue(short)
public void setValue (short value)
Change the value of the wrapper object
Parameters:

value - primitive value to wrap for use in the export bridge

shortValue()

public short shortvValue ()

Return the value of the wrapped primitive
Specified By:

shortValue in interface J DL Number
Returns:

value that is wrapped by this object
toString()

public java.lang.String toString()
Overrides:

toStringinclassobject

IDL Connectivity Bridges JIDLShort

468 Appendix A: IDL Java Object API

JIDLString

Declaration

public class JIDLString implements java.io.Serializable
java.lang.Object

+--com.idl.javaidl.JIDLString
All Implemented Interfaces:

java.lio.Serializable

Description
The JIDL String class wraps a String as a mutable object usable by the Java-IDL
Export bridge.
Member Summary
Constructors
JIDLString (JIDLString value)
Construct awrapper object.
JIDLString(java.lang.String value)
Construct awrapper object.
Methods
void setValue (JIDLString value)
Change the value of the wrapper object
void setValue (java.lang.String value)
Change the value of the wrapper object
java.lang.String stringValue ()
Return the value of the wrapped primitive
java.lang.String toString ()

JIDLString IDL Connectivity Bridges

Appendix A: IDL Java Object API 469

Inherited Member Summary

M ethodsinherited from class object

equals (Object), getClass (), hashCode(), notify (),
notifyAll (), wait(long, int), wait(long, int), wait (long,
int)

Constructors
JIDLString(JIDLString)

public JIDLString(com.idl.javaidl.JIDLString value)
Construct awrapper object.
Parameters:

value - value to wrap for use in the export bridge
JIDLString(String)

public JIDLString(java.lang.String value)

Construct awrapper object.
Parameters:

value - value to wrap for use in the export bridge

Methods
setValue(JIDLString)

public void setValue(com.idl.javaidl.JIDLString value)
Change the value of the wrapper object

Parameters:

value - primitive value to wrap for use in the export bridge

setValue(String)

public void setValue(java.lang.String value)

Change the value of the wrapper object

IDL Connectivity Bridges JIDLString

470 Appendix A: IDL Java Object API

Parameters:

value - primitive value to wrap for use in the export bridge
stringValue()

public java.lang.String stringValue ()
Return the value of the wrapped primitive
Returns:

value that is wrapped by this object
toString()

public java.lang.String toString()
Overrides:

toStringinclassobject

JIDLString

IDL Connectivity Bridges

Appendix B

COM QObject Creation

The following topicsin this appendix show how to create a custom IDL wrapper object (initialized
with and without parameters) from severa COM programming languages.

SampleIDL Object 472 C#CodeSample.................... 479
Visual Basic .NET Code Sample........ 475 Visua Basic 6 Code Sample 481
C++ ClientCodeSample 477

IDL Connectivity Bridges 471

472 Appendix B: COM Object Creation

Sample IDL Object

The COM CreateObject method creates an instance of an underlying IDL object and
callsits Init method with any specified parameters (see “ CreateObject” on page 194
for details). Through this object instance, you have access to the properties and
methods of the object as well asthe underlying IDL process.

The following samples rely upon an IDL object named idlexfoo__define.pro
containing the following code:

; The Init method expects three parameters:

; a string, a 32-bit long, and an array which has

; 2 rows & 3 columns, containing 32-bit long values.

; The ::Init method can also be called without any parameters.

FUNCTION idlexfoo::Init, parmStr, parmVal, parmArr, _EXTRA=e

IF (N_ELEMENTS (parmStr) EQ 1) THEN BEGIN
IF (SIZE(parmStr,/type) NE 7) THEN BEGIN
PRINT, 'IDLexFoo::Init, parmStr is not a STRING'
HELP, parmStr
RETURN, O
ENDIF
ENDIF

IF (N_ELEMENTS (parmVal) EQ 1) THEN BEGIN
IF ((SIZE(parmVal,/type) NE 3)) THEN BEGIN
PRINT, 'IDLexFoo::Init, parmVal is not a LONG'
HELP, parmVal
RETURN, O
ENDIF
ENDIF

nElms = N_ELEMENTS (parmArr)
IF (nElms GT 0) THEN BEGIN
IF ((nElms NE 6) OR (size(parmArr,/type) NE 3)) THEN BEGIN
PRINT, 'IDLexFoo::Init, parmArr is not a ARR(3,2) of

LONG) '
HELP, parmArr
RETURN, O
ENDIF
ENDIF
RETURN, 1
END

Sample IDL Object IDL Connectivity Bridges

Appendix B: COM Object Creation 473

; Object definition.
PRO idlexfoo__define
; Create [col, row] 32-bit long array.
initArr = LONARR(3,2)
struct = {idlexfoo, $
parmStr: '', $
parmval: OL, $
parmArr: initArr $

}
END

Export the Sample IDL Object

You will need to create the necessary wrapper object files by using the Export Bridge
Assistant to generate them. Once you have created the object definition file,
idlexfoo__define.pro, complete the following steps:

1. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

2. Sdect to create a COM export object by selecting File — New Project —
COM and browseto select the idlexfoo__define.pro file. Click Open to
load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in Chapter 7, “Using the Export
Bridge Assistant”. Refer to that section if you need more information about
the following steps.

3. Thetop-level project entry in the left tree panel is selected by default. Thereis
no need to modify the default properties shown in the right-hand property
panel, but you can enter different valuesif desired. There are no other
parameters that need to be defined for this abject.

IDL Connectivity Bridges Sample IDL Object

474 Appendix B: COM Object Creation

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

» Output classname
* Process name
» Output directory

helloworldex Drawable object equals False

Table B-4: Example Export Object Parameters

4. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

5. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a nondrawable object, .t1b
and .a11 files (named based on the object name) are created in the Output
directory.

6. Register the.d11 using regsvr32 idlexfoo.dll.See“COM Registration
Requirements’ on page 143 for details if needed.

See the language-specific section for information on how to create this abject in your
application:

e “Visual Basic .NET Code Sample” on page 475
e “C++ Client Code Sampl€e’ on page 477

e “C# Code Sample’ on page 479

¢ “Visual Basic 6 Code Sample” on page 481

Sample IDL Object IDL Connectivity Bridges

Appendix B: COM Object Creation 475

Visual Basic .NET Code Sample

Within Visua Studio .NET, select Project — Add Reference.... Thisbrings up a
dialog. Select the COM tab, then Browse, and change the path to the
idlexfoo.dll. Thisimports the object referenceinto the project.

Within the project that will use the wrapper object, include the following line at the
top of the form:

Imports IDLexFooLib

Initiation Without Parameters in Visual Basic .NET

Use the following code to initialize the object with no parameters.

Private Sub Buttonl_Click(...)
Dim oFoo As New IDLexFooClass ()

Try
oFoo.CreateObject (0, 0, 0)

Catch ex As Exception
Debug.WriteLine (oFoo.GetLastError ())
Return

End Try

' use object here...

End Sub
Initiation with Parameters in Visual Basic .NET

Use the following code to initialize the object with its three parameters (a string, a
32-bit long value, and an array that has two rows and three columns, containing 32-
bit long values).

Inside the Public Class definition for the form and before any subroutines, you must
add the following two lines:

Const PARMFLAG_CONST As Integer = &HI1
Const PARMFLAG_CONV_MAJORITY As Integer = &H4000

Then create the object within your program:

Private Sub Buttonl_Click(...)

Dim oFoo As New IDLexFooClass

IDL Connectivity Bridges Visual Basic .NET Code Sample

476

Dim
Dim
Dim
Dim
Dim
Dim
Try

Cat

End

'u

Appendix B: COM Object Creation

parmStr As String = "I am a string parameter"
parmVal As Int32 = 24
parmArr As Int32(,) = {{10, 11, 12}, {20, 21, 22}}

argval As Object() = {parmStr, parmVal, parmArr}
argpal As Int32(= {PARMFLAG_CONST, PARMFLAG_CONST,
(PARMFLAG_CONST + PARMFLAG_CONV_MAJORITY) }

argc As Int32 = 3
(
)

oFoo.CreateObject (argc, argval, argpal)
ch ex As Exception
Debug.WriteLine (oFoo.GetLastError ())
Return

Try

se object here...

End Sub

Visual Basic .NET Code Sample IDL Connectivity Bridges

Appendix B: COM Object Creation 477

C++ Client Code Sample

The C++ project must somewhere include the following line, in order to pull in the
CoClass and Interface definitions for the wrapper object:

#import "IDLexFoo.tlb" no_namespace no_implementation \
raw_interfaces_only named_guids

For details about the object parameters, see “ Sample IDL Object” on page 472.
Initiation Without Parameters in C++

Use the following code to initialize the object with no parameters.

CComPtr<IIDLexFoo> spFoo;

if (FAILED(spFoo.CoCreateInstance(__uuidof (IDLexFoo)) || ! spFoo)

)
return E_FAIL;

CComVariant vtNULL(0) ;
HRESULT hr = spFoo->CreateObject (0, vtNULL, vtNULL) ;
if (FAILED (hr))
{
CComBSTR bstrErr;
spFoo->GetLastError (&bstrErr) ;
return E_FAIL;
}

Initiation with Parameters in C++

Use the following code to initialize the object with its three parameters (a string, a
32-bit long value, and an array that has two rows and three columns, containing 32-
bit long values).

CComPtr<IIDLexFoo> spFoo;

if (FAILED(spFoo.CoCreatelInstance(__uuidof (IDLexFoo)) || !spFoo)
)

return E_FAIL;

CComSafeArrayBound bound[2];

bound[0] .SetLowerBound(0); bound[0].SetCount(2); // two rows
bound[1].SetLowerBound(0); bound[1l].SetCount(3); // three cols

CComSafeArray<VARIANT> parmArr (bound, 2) ;

IDL Connectivity Bridges C++ Client Code Sample

478 Appendix B: COM Object Creation

long ndx[2];
long 1lDatal2][3] = { {10, 11, 12}, {20, 21, 22} };

for (int 1 = 0; 1 < 2; i++) { // row
for (int § = 0; j < 3; j++) { // col
ndx[0] = 1i; ndx[1l] = J;

parmArr.MultiDimSetAt (ndx, CComVariant (1lDatalil[j]1));

CComBSTR parmStr = "I am a string parameter";
CComVariant parmvVal = (long)24;

CComSafeArray<VARIANT> argval (3);

CComSafeArray<long> argpal (3);

argval[0] = parmStr; argpal[0] = IDLBML_PARMFLAG_CONST;
argval[l] = parmval; argpal[l] = IDLBML_PARMFLAG_CONST;
argval[2] = parmArr; argpal[2] =

IDLBML_PARMFLAG_CONST | IDLBML_PARMFLAG_CONVMAJORITY ;

long argc 3;
CComVariant vargval = argval;
CComVariant vargpal = argpal;

HRESULT hr = spFoo->CreateObject (argc,vargval,vargpal) ;
if (FAILED (hr))
{
CComBSTR bstrErr;
spFoo->GetLastError (&bstrErr) ;
return E_FAIL;
}

C++ Client Code Sample IDL Connectivity Bridges

Appendix B: COM Object Creation 479

C# Code Sample

Within Visua Studio .NET, in the Solution Explorer window, underneath the project
that will use the wrapper object, right-click on the References item, then select Add
Reference.... Thisbrings up adialog. Select the COM tab, then Browse, and change
the path to the wrapper .d11. Thisimports the object reference into the project.

Then, within the project that will use the wrapper object, include the following line at
the top, outside of the namespace for the class:

using IDLexFooLib;

Initiation Without Parameters in C#

Use the following code to initialize the object with no parameters.

private void buttonl_Click(...)
{
IDLexFooClass oFoo = new IDLexFooClass() ;

try {
oFoo.CreateObject (0, 0, 0);

}

catch {
Debug.WriteLine (oFoo.GetLastError()) ;
return;

}

// Use object here...
}

Initiation with Parameters in C#

Use the following code to initialize the object with its three parameters (a string, a
32-bit long value, and an array that has two rows and three columns, containing 32-
bit long values).

private void buttonl_Click(...)
{
const int PARMFLAG_CONST
const int PARMFLAG_CONV_MAJORITY

= 0x0001;
= 0x4000;

IDLexFooClass oFoo = new IDLexFooClass() ;

string parmStr
int parmvVal

"T am a string parameter";
24 ;

IDL Connectivity Bridges C# Code Sample

480

C# Code Sample

int[,] parmArr
int argc
object[] argval
int[] argpal

Appendix B: COM Object Creation

{{10, 11, 12}, {20, 21, 22}};

3;
{parmStr, parmVal, parmArr};
{PARMFLAG_CONST, PARMFLAG_CONST,

PARMFLAG_CONST | PARMFLAG_CONV_MAJORITY} ;

try {

oFoo.CreateObject (argc, argval, argpal);

}
catch {

Debug.WriteLine (oFoo.GetLastError()) ;

return;

// Use object here...

IDL Connectivity Bridges

Appendix B: COM Object Creation 481

Visual Basic 6 Code Sample

Within Visual Basic 6, select Project — Components, then Browse for the .d11 of
the wrapper object in order to include the objects definition in the project.

For details about the object parameters, see “ Sample IDL Object” on page 472.
Initiation Without Parameters in Visual Basic 6

Use the following code to initialize the object with no parameters.

Private Sub MyRoutine

Dim oFoo As IDLexFoo
Set oFoo = New IDLexFoo

On Error GoTo ErrorHandler
oFoo.CreateObject 0, 0, O
' use object here...
Return
ErrorHandler:
If Not oFoo Is Nothing Then
Debug.Print oFoo.GetLastError

End If

End Sub

Initiation with Parameters in Visual Basic 6

Use the following code to initialize the object with its three parameters (a string, a
32-bit long value, and an array which has two rows and three columns, containing 32-
bit long values).

Const PARMFLAG_CONST As Integer = &HI1
Const PARMFLAG_CONV_MAJORITY As Integer = &H4000

Private Sub MyRoutine
Dim oFoo As IDLexFoo
Dim parmStr As String
Dim parmvVal As Long

Dim parmArr (1, 2) As Long

Dim argc As Long

IDL Connectivity Bridges Visual Basic 6 Code Sample

482

Dim argv(2)
Dim argpal (2)

parmStr =

parmvVal = 24
parmArr (0, 0) = 10:
parmArr (1, 0) = 20:
argc = 3

argv(0) = parmStr:
argv(l) = parmVal:
argv(2) = parmArr:

As Variant
As Long

parmArr (0,
parmArr (1,

argpal (0)
argpal (1)
argpal (2)

PARMFLAG_CONV_MAJORITY

Set oFoo =

New IDLexFoo

On Error GoTo ErrorHandler

oFoo.CreateObject argc,

' use object here...

Return

ErrorHandler:

If Not oFoo Is Nothing Then

argv,

Appendix B: COM Object Creation

"I am a string parameter"

11:
21:

12
22

1) =
1)

parmArr (0,
parmArr (1,

2) =
2) =

PARMFLAG_CONST
PARMFLAG_CONST
PARMFLAG_CONST + _

argpal

Debug.Print oFoo.GetLastError

End If

End Sub

Visual Basic 6 Code Sample

IDL Connectivity Bridges

Appendix C
Java Object Creation

The following topicsin this appendix show how to create a custom IDL wrapper object (initialized
with and without parameters) in Java:

SampleIDL Object 484 Java Object Initiation with Parameters . .. 489
Java Object Initiation Without Parameters 487

IDL Connectivity Bridges 483

484

Sample IDL Object

Appendix C: Java Object Creation

The Java createObject method creates an instance of an underlying IDL object and
callsits Init method with any specified parameters (see “ createObject” on page 220
for details). Through this object instance, you have access to the properties and
methods of the object as well asthe underlying IDL process.

The following samples rely upon an IDL object contained in file named
idlexfoo__define.pro. Thisfile must beinthe DL path and needsto contain

the following code:

; The Init method expects three parameters:

; a string,
; 2 rows & 3 columns,
; The

FUNCTION idlexfoo::Init,

IF (N_ELEMENTS (parmStr)
IF (SIZE(parmStr, /type)

a 32-bit long,
containing 32-bit long values.
::Init method can also be called without any parameters.

and an array which has

parmStr, parmVal, parmArr, _EXTRA=e
EQ 1) THEN BEGIN

NE 7) THEN BEGIN

PRINT, 'IDLexFoo::Init, parmStr is not a STRING'
HELP, parmStr
RETURN, O
ENDIF
ENDIF
IF (N_ELEMENTS (parmVal) EQ 1) THEN BEGIN
IF ((SIZE(parmVal,/type) NE 3)) THEN BEGIN
PRINT, 'IDLexFoo::Init, parmVal is not a LONG'
HELP, parmVal
RETURN, O
ENDIF
ENDIF

nElms = N_ELEMENTS (parmArr)

IF (nElms GT 0)
IF (
PRINT,
+ 'of LONG) '
HELP, parmArr
RETURN, O
ENDIF
ENDIF

RETURN, 1
END

Sample IDL Object

(nElms NE 6)

THEN BEGIN
OR (size(parmArr, /type)
'IDLexFoo::Init, parmArr is not a ARR(3,2) ' S

NE 3)) THEN BEGIN

IDL Connectivity Bridges

Appendix C: Java Object Creation 485

; Object definition.
PRO idlexfoo__define
; Create [col, row] 32-bit long array.
initArr = LONARR(3,2)
struct = {idlexfoo, $
parmStr: '', $
parmval: OL, $
parmArr: initArr $

}
END

Export the Sample IDL Object

You will need to create the necessary wrapper object files by using the Export Bridge
Assistant to generate them. Once you have created the object definition file,
idlexfoo__define.pro, complete the following steps:

1. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

2. Select to create a Java export object by selecting File — New Project — Java
and browse to select the idlexfoo__define.pro file. Click Open to load
the file into the Export Assistant.

Note
Export Bridge Assistant details are available in Chapter 7, “Using the Export
Bridge Assistant”. Refer to that section if you need more information about
the following steps.

3. Thetop-level project entry in the left tree panel is selected by default. Thereis
no need to modify the default properties shown in the right-hand property
panel, but you can enter different valuesif desired. There are no other
parameters that need to be defined for this abject.

IDL Connectivity Bridges Sample IDL Object

486 Appendix C: Java Object Creation

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

» Output classname
* Process name

» Output directory
» Package name

idlexfoo Drawable object equals False

Table C-5: Example Export Object Parameters

4. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

5. Build the export object by selecting Build — Build object. The Build log
panel showsthe results of the build process. A subdirectory, named idlexfoo
(based on the object name), containsthe .java and .class files, andis
located in the Output directory.

See the following for information on how to create this object in your application:
e “Java Object Initiation Without Parameters’ on page 487
e “Java Object Initiation with Parameters’ on page 489

Note on Running the Java Examples

Examplesin this appendix provide Windows-style compile javac (compile) and
java (run) commands. If you are running on a platform other than Windows, use
your platform’s path and directory separators and see “ Java Requirements’ on
page 143 for information about the bridge_setup file, which sets additional
information.

Sample IDL Object IDL Connectivity Bridges

Appendix C: Java Object Creation

Java Object Initiation Without Parameters

487

Toinitialize an instance of the newly created wrapper object (based on the IDL object
described in “Sample IDL Object” on page 484) using createObject, complete the

following steps:

1. Create aJavafilenamed idlexfoo_example.java and saveitinthe
Export directory created by the Assistant. Include the following lines of code

inthefile:

// Reference the default package generated by the Assistant.
package idlexfoo;

// Reference the javaidl export bridge classes.
import com.idl.javaidl.*;

//Create main class, subclassing from object created by
//Bridge Assistant. You can either subclass or create a
//member variable of the object.

public class idlexfoo_example extends idlexfoo
implements JIDLOutputListener

{

//Create a variable referencing the exported object
private idlexfoo fooObj;

// Constructor.
public idlexfoo_example() {

}

// Create the wrapper object
fooObj = new idlexfoo() ;

// Add output listener to access IDL output.
fooObj.addIDLOutputListener (this) ;

// Create the underlying IDL object and call

// its ::Init method with parameters
fooObj.createObject();

fooObj.executeString ("PRINT, 'Created object'");

// Implement JIDLOutputListener
public void IDLoutput (JIDLObjectI obj, String sMessage)

}

System.out.println("IDL: "+sMessage);

//Instantiate a member of the class.
public static void main(Stringl[] argv) {

IDL Connectivity Bridges

Java Object Initiation Without Parameters

488

Appendix C: Java Object Creation

idlexfoo_example exampleObj =
new idlexfoo_example () ;

}

2. Open the Windows Command window by selecting Start — Run and enter
cmd in the textbox.

3. Usethe ca command to change to the directory containing the i dlexfoo
directory.

4. Referencethe classpath of javaidlb. jar inthe compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing <7pr,_p1R> With the IDL installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
idlexfoo\idlexfoo_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
idlexfoo.idlexfoo_example

Tip
See “Note on Running the Java Examples’ on page 486 for information on non-
Windows-style compile and execution commands.

After compiling and running the project, the output message will appear in the
command window.

Java Obiject Initiation Without Parameters IDL Connectivity Bridges

Appendix C: Java Object Creation 489

Java Object Initiation with Parameters

Use the following code to initialize the newly created Java wrapper object (based on
the IDL object described in “Sample IDL Object” on page 484) with its three
parameters:

e Astring
e A 32-bitlong value
* Anarray that has two rows and three columns, containing 32-bit long values

See createObject for more information about object parameters. See Appendix A,
“IDL Java Object API” for information on JIDL* objects.

1. CreateaJavafilenamed idlexfoo_example.java and saveitinthe
Export directory created by the Assistant. Include the following lines of code
in thefile:

// Reference the default package generated by the Assistant.
package idlexfoo;

// Reference the javaidl export bridge classes.
import com.idl.javaidl.*;

//Create main class, subclassing from object created by
//Bridge Assistant. You can either subclass or create a
//member variable of the object.
public class idlexfoo_example extends idlexfoo
implements JIDLOutputListener
{
//Create a variable referencing the exported object
private idlexfoo fooObj;

// Constructor.
public idlexfoo_example () {

// These are the parameters we want to pass to
// the ::Init method

String str = "I am a string parameter";

int var = 24;

int[][] array = {{10, 11, 12}, {20, 21, 22}};

// Wrap the Java types using Export Bridge data types
JIDLString parmStr = new JIDLString(str);

JIDLInteger parmVar = new JIDLInteger (var) ;

JIDLArray parmArray = new JIDLArray (array) ;

IDL Connectivity Bridges Java Obiject Initiation with Parameters

490 Appendix C: Java Object Creation

// Create the wrapper object
fooObj = new idlexfool();

// Set up parameters to pass to createObject
final int ARGC = 3;

Object[] argv = new Object[ARGC];

int[] argp = new int[ARGC];

// NOTE: JIDLConst.PARMFLAG_CONST indicates
// "in-only" parameter

argv[0] = parmStr;

argp[0] = JIDLConst.PARMFLAG_CONST; //
argv[l] = parmVar;

argp[l] = JIDLConst.PARMFLAG_CONST;
argv[2] = parmArray;

argp[2] = JIDLConst.PARMFLAG_CONST;

// Add output listener to access IDL output.
fooObj.addIDLOutputListener (this) ;

// Create the underlying IDL object and call

// its ::Init method with parameters
fooObj.createObject (ARGC, argv, argp);
fooObj.executeString ("PRINT, 'Created object'");

// implement JIDLOutputListener
public void IDLoutput (JIDLObjectI obj, String sMessage) {
System.out.println("IDL: "+sMessage);

//Instantiate a member of the class.
public static void main(String[] argv) {
idlexfoo_example exampleObj =
new idlexfoo_example();

}

2. Open the Windows Command window by selecting Start — Run and enter
cmd in the textbox.

3. Usethe ca command to change to the directory containing the i dlexfoo
directory.

Java Obiject Initiation with Parameters IDL Connectivity Bridges

Appendix C: Java Object Creation 491

4. Referencethe classpath of javaidlb. jar inthe compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing ror,_pr1r with the IDL installation directory:

javac -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
idlexfoo\idlexfoo_example.java

java -classpath
".;IDL_DIR\resource\bridges\export\javal\javaidlb.jar"
idlexfoo.idlexfoo_example

Tip
See “Note on Running the Java Examples’ on page 486 for information on non-
Windows-style compile and execution commands.

After compiling and running the project, the output message will appear in the
command window.

IDL Connectivity Bridges Java Obiject Initiation with Parameters

492 Appendix C: Java Object Creation

Java Obiject Initiation with Parameters IDL Connectivity Bridges

Appendix D

Multidimensional Array
Storage and Access

This appendix discusses the following topics.

OVeIVIaW ...t 494 Storage and Accessin COM and IDL ... 496
Why Storage and Access Matter 495 2D ArrayExamples 498

IDL Connectivity Bridges 493

494 Appendix D: Multidimensional Array Storage and Access

Overview

This appendix is designed to explain how multidimensional arrays are stored and
accessed, with specific relevance to marshaling arrays between COM clients and
IDL.

Please note that if you use the Convert Majority property in the Export Bridge
Assistant on exported property or method parameters (described in “ Converting
Array Magjority” on page 165), you do not have to worry about the information or
examplesin this appendix. For more information, see Table 7-8 in “Property
Information” on page 171.

A linear, one-dimensional (1D) vector is acontiguous list of itemsin memory. There
is no room for misinterpreting what order the items are stored and accessed.
However, moving beyond 1D can introduce contradictory definitions and
connotations, depending on the source consulted and the programming language in
guestion.

Accordingly, we will stay away from words of strong and conflicting meaning, such
as“column majority” and “row majority.” (You can read “ Columns, Rows, and Array
Majority” (Chapter 15, Application Programming) for more information on those
terms.) What matters more than vocabulary is how multidimensional arrays are stored
in physical memory (linear memory) and how they are accessed. For brevity’s sake,
we will use two-dimensional arrays (2D) to illustrate storage, and focus on Visual
Basic, C++, Win32 APIs, and IDL pro code for how the arrays are accessed.

Note
Java has the same issues as COM with multidimensional array storage and access.
You can assume that this appendix addresses both external languages, although it
names only COM.

Overview IDL Connectivity Bridges

Appendix D: Multidimensional Array Storage and Access 495

Why Storage and Access Matter

Clients that need to pass an array to IDL need to understand the memory layouts of
the arraysin order to know if they should convert arrays from one format to the other.
Simply trying to understand which format is “row” and which is*“column” major is
not enough because the definitions of those terms can differ in context.

Understanding these distinctions are critical when programming in Visual Basic and
C++ as each language natively stores arrays differently. However, using the Win32
Safearray APIs, either directly or indirectly through the ATL wrapper classes, alows
C++ code to create safe arrays in the same order as Visual Basic. However, C++ has
the flexibility to create safe arrays ordered differently, which is useful for testing.

In summary:

e SAFEARRAYsand IDL arrays are stored differently and must be converted to
be used by each other

e Multidimensional SAFEARRAY s are stored as “column major” in linear
memory (i.e., acolumn is stored contiguously in memory)

e |DL stores multidimensional arrays as “scanline major” (i.e., stores each
scanline contiguously in memory)

* AlltheWin32 APIsand ATL safearray wrapper classes access SAFEARRAY's
in column major

e Visual Basic accesses SAFEARRAY S as “column mgjor”

« Native C++ arrays are stored and accessed as “row major”

IDL Connectivity Bridges Why Storage and Access Matter

496 Appendix D: Multidimensional Array Storage and Access

Storage and Access in COM and IDL

There is a difference between storage and access. Storage focuses on the way a
multidimensional array of items gets arranged in linear memory. Since all memory is
linear memory, it is paramount to understand how arrays are arranged in linear
memory. Access is the way alanguage allows interaction with a multidimensional
array.

Since we are creating and reading arrays from a computer language, we must
understand the language’s perspective on the array and how to accessit.

Arrays in COM

In order to move an array around within the COM world, it must be described by a

SAFEARRAY descriptor whose dimensions are defined by SAFEARRAY BOUND
descriptors.

SAFEARRAY Descriptors

The SAFEARRAY descriptor has the following definition:

typedef struct SAFEARRAY
{

USHORT cDims;

USHORT fFeatures;

ULONG cbElements;

ULONG cLocks;

PVOID pvData;

SAFEARRAYBOUND rgsabound[1 1];
} SAFEARRAY;

This structure describes different aspects of the safe array, such astotal number of
dimensions, cpims, flagsindicating if the array is fixed and cannot be resized,
fFeatures, if there are any locks on the array, cl.ocks, and then a pointer to the
actual array dataitself, pvbata.

Usually, the SAFEARRAY descriptor is wrapped by the OLE Automation data type
Variant, and the Variant itself is passed around as the data type in method calls.
Either way, an array must be wrapped by a SAFEARRAY before it can be marshal ed.

SAFEARRAYBOUND Descriptors

A SAFEARRAY can have an unlimited number of dimensions, whose dimension
count isstored in cbims. For each dimension, there must an element of type

Storage and Access in COM and IDL IDL Connectivity Bridges

Appendix D: Multidimensional Array Storage and Access 497

SAFEARRAY BOUND, which stores the lower bound and number of elementsin the
dimension, as given by the structure:

typedef struct SAFEARRAYBOUND
{

ULONG cElements;

LONG lLbound;
} SAFEARRAYBOUND;

The SAFEARRAY descriptor member rgsabound[] isan array of

SAFEARRAY BOUND dements. (Visual Basic letsyou define an el ement range such
as“10to 20" or “-10 to 10" such that the 1Lbound item on the dimension is not zero,
but 10 and —10, respectively. For al of our examples, we assume the lower bound is

Z€ero.)

Note that in COM, items are frequently in reverse order than what you would expect,
which is the case with the SAFEARRAY descriptor’s rgsabound [] member array.
You must specify the dimensionsin reverse order. For example, if you are
constructing an array of 3 rows by 5 columns (3x5), the first SAFEARRAY BOUND
array item would have its cElements member set to 5, and the second item
rgsabound[] array item would have its cElements member set to 3.

However, you rarely set rgsabound[] yourself. All the Win32 API callsto create
safe arrays set these values for you, from information specified in the expected order
(i.e,, 3and 5). Do be aware that if you look in memory at the actual SAFEARRAY
descriptor data, you will seethe rgsabound [1 member array in reverse order.

Arrays in IDL

IDL arrays are stored in “scanline majority,” meaning that each scanlineis
contiguous in memory. Additionally, the dimensions are listed backwards from
standard computer-science notation.

For example, if you want to create an array of bytes with 5 columns and 3 rows, you
use the following code:

myarr = BYTARR(5,3)

Simply put: SAFEARRAY s and IDL arrays are arranged differently in linear
memory. Thus, when you create an array in the COM world that you want to give to
IDL, you must “convert the magjority.” For how to do so in three programming
languages, see “2D Array Examples’ on page 498.

IDL Connectivity Bridges Storage and Access in COM and IDL

498 Appendix D: Multidimensional Array Storage and Access

2D Array Examples

Let'screate a 2D array that has 3 rows by 5 columns (3x5). Since the ultimate goal is
to givethe array to IDL for processing, let's pretend it is an “image.” We will set the
first row to all red, the second row to all green, and the third row to all blue. Here's
the conceptual layout of our array

rrrrr

99999
bbbbb

We will see shortly that even though the conceptual 2D layout is the above, the actual
layout in linear memory is quite different between SAFEARRAY sand IDL.

Note
In the examples below, the “red” valueisrealy the ASCII character ‘r', “green” is

the ASCII character ‘g’, and so on. We use this scheme so when you look at the
actual memory, you'll see the letters “rgb”, which makes for easy reading. It is
much less confusing than using the cardinal numbers 1, 2, 3, when you are also
talking about ordinal numbering involving 1, 2, 3.

Note
These examples illustrate how different languages store data. You should not need

to include such code in your applications to make them work; the wrapper does the
conversion for you.

Visual Basic

Here is how to create the RGB array (matrix) in Visua Basic. This example, by
default, creates avalid SAFEARRAY that is compliant with the information above,
and stored within a Variant when passed as a parameter in a method call (not shown).

Const RED As Byte = 114

Const GREEN As Byte = 103

Const BLUE As Byte = 98

‘' This creates an array with dimension indices 0..2 & 0..4

‘' inclusive:

‘'i.e., it creates a 3x5 array; with “lower bounds” set to O.

Dim m(2, 4) As Byte
For I = 0 To 4

m(0, I) = RED

m(l, I) = GREEN
m(2, I) = BLUE

Next I

2D Array Examples IDL Connectivity Bridges

Appendix D: Multidimensional Array Storage and Access

Resulting linear memory:
rgbrgbrgbrgbrgb

Resulting SAFEARRAY .rgsabounds:
[0,51, [0,3]

Note the reversed order!

499

C++ Using ATL SAFEARRAY Wrapper Objects

This example uses the ATL Safearray wrapper objects: CComSafeArrayBound and
CComSafeArray, which simply wraps the calls to the native Win32 Safearray API

cals.

CComSafeArrayBound bound[2];
bound[0] .SetCount(3); // 3 rows
bound[1l].SetCount(5); // 5 columns
CComSafeArray<byte> matx (bound, 2) ;

long ndx[2];

for (int 1 = 0; 1 < 5; 1i++)

{
ndx([0] = 0; ndx[1l] = i;
matx.MultiDimSetAt (ndx, 'r');
ndx[0] = 1; ndx[1l] = i;
matx.MultiDimSetAt (ndx, 'g') ;
ndx([0] = 2; ndx[1l] = i;

matx.MultiDimSetAt (ndx, 'b');
}

Resulting linear memory:
rgbrgbrgbrgbrgb

Resulting SAFEARRAY .rgsabounds:
[0,51, [0,3]

Observe that when the ccomsafeArrayBound array iscreated, itisinitialized in the
conceptually correct order (i.e., specifying the “3 rows” by “5 columns’). But, if you
look at the actual SAFEARRAY . rgsabounds [1 €lement in memory, you see that

they were reversed when the array was created.

C++ Using SAFEARRAY API Calls and Creating

Different Memory Layout

C++ hasthe flexibility to create SAFEARRAY sin many different ways. By calling
the SAFEARRAY API calsdirectly and judiciously, you can create a SAFEARRAY

IDL Connectivity Bridges

2D Array Examples

500

Appendix D: Multidimensional Array Storage and Access

with datain a different order than what is normally expected. IDL and traditional
SAFEARRAY data ordering are different. This example puts the data into the
SAFEARRAY inthe same order as IDL expectsit. In other words, it puts the datain
the opposite order that is used for SAFEARRAY s when you use the API calls to set
individual data elements.

But first, we must step back and see how the C++ language stores multidimensional
arrays. If you have the following declaration:

byte datal3][5] = {
P
g g, g, g, g,
‘b‘,‘b','b','b','b' };

the resulting linear memory looks like this:
rrrrrgggggbbbbb

Thisisthe same order that IDL expects. However, C++ accesses the memory in the
opposite way that IDL would access the same data. For example, if you wanted to set
the ki element of the first row (O-indexed), here's how the two languages compare:

C++:
datal[0] [k] = value;
IDL:
Datalk,0] = value
However, the resulting linear memory layout is the same.

This example creates the 2D RGB array in C++ using the SAFEARRAY API calls
and arranging memory in the same layout as IDL.

// First, create the linear memory in the format: rrrrrgggggbbbbb
byte datal[3][5];

for (int 1 = 0; 1 < 5; 1i++)
{
datal[0][i] = 'r';
datal[l][i] = 'g';
datal[2][i] = 'b';

}

SAFEARRAYBOUND sabl[2];
sab[0].1Lbound = 0;
sab[0] .cElements
sab[1l].1lLbound =
sab[l] .cElements 5; // 5 columns

SAFEARRAY* psa = SafeArrayCreateEx(VT_UIl, 2, sab, NULL);
// By copying the source data into the safearray data area,
// we can create the data in a different order. Since the

3; // 3 rows

7

o

2D Array Examples IDL Connectivity Bridges

Appendix D: Multidimensional Array Storage and Access 501

// source data is in the same order as IDL expects, this creates
// a SAFEARRAY with a non-standard ordering.

//

memcpy (psa->pvData, data, sizeof (data));

Resulting linear memory:
rrrrrgggggbbbbb

Resulting SAFEARRAY . rgsabounds:
(0,51, [0,3]

The consumer of this array needs some indication that the order is different than
standard SAFEARRAY s and that it would not need to be converted before passing off
toIDL.

Here is how to create the 2D RGB array in IDL pro code:

arr = BYTARR(5, 3)
for i=0,4 do begin

arr[i,0] = 114B

arr[i,1] = 103B

arr[i,2] = 98B
endfor

Resulting linear memory:
rrrrrgggggbbbbb
Caling help, arr givesthe following information:

ARR BYTE = Arrayl[5, 3]

IDL Connectivity Bridges 2D Array Examples

502 Appendix D: Multidimensional Array Storage and Access

2D Array Examples IDL Connectivity Bridges

Index

A

abort method
COM connector, 193
Java connector, 219
ActiveX controls
class D, 52
destroying, 60
example IDL code, 61, 65
IDL object wrapper, 191
IDLcomActiveX object references, 55
inserting into IDL widget hierarchy, 18, 53
method calls, 55
naming scheme, 52
overview, 16
program ID, 52
properties, 56
registering, 50

IDL Connectivity Bridges

skillsrequired, 19
using inIDL, 50
widget events, 57
WIDGET_ACTIVEX, 18
ActiveXCal.pro, 61
ActiveXExcel.pro, 65
allprops.pro, 89
arraydemo.pro, 99
arrays
converting mgjority in Export Bridge, 165
multidimensional storage and access, 494
passing
by reference, 40
by value, 40
See also multidimensional arrays
arrays_examplejava, 256
arrray2d.java, 99

503

504

B GetL astError, 204
. . GetProcessName, 205
bridge_setup script, 144 SetiDLVariable, 206
br!dge_vers on.pro, 95 Setl ProcessName, 207
bndg_es_ . reference, 189
definition, 10 using, 247
Export COM export bridge
gbout, 12_ _ about wrapper objects, 191
Export Bridge Assistant, 148 methods, 192
supported data types, 166 reference, 189
Import, 11 i COM objects
by reference array passing, 40 array passing by reference, 40
by value array passing, 40 classID, 24
creating | DL.comlDispatch objects, 28
C data type mapping, 44
datatypes, 30
classes definition, 16
Java destroying, 43
data members, 89 example IDL code, 46
methods, 87 exposing as | DLcomlDispatch objects, 18
names, 84 inIDL, 22
path, 75 method calls, 29
properties, 89 Microsoft Object Viewer, 26
static, 85 optional method arguments, 30
COM overview, 16
Program ID, 156 program 1D, 25
COM connector properties, 37
about, 246 See also ActiveX
debugging, 213 See also IDLcomlIDispatch objects
error handling, 211 skills required, 19
event handling, 208 com.idl.javaidl
examples, 249 import statement, 144
methods package, 312
Abort, 193 com_export_arrays doc.txt, 251
CreateObject, 194 com_export_commandline_doc.txt, 252
CreateObjectEx, 196 com_export_grwindow_doc.txt, 280
DestroyObject, 199 com_export_hello_doc.txt, 250
ExecuteString, 200 com_export_helloex_doc.txt, 275
GetI DL ObjectClassName, 201 com_export_itwinmanip_doc.txt, 283
Get| DL ObjectVariableName, 202 com_export_triwindow_doc.txt, 288
GetIDLVariable, 203 configuring the IDL-Java bridge, 75

Index IDL Connectivity Bridges

connecting
to Javaobjects, 72

connector object. See Java connector object or

COM connector object
copyrights, 2
createObject method
COM connector, 194
Java connector, 220
createObjectEx method
COM connector, 196
creating
IDL object in COM, 194, 196
IDL object in Java, 220
JavaobjectinIDL, 84

D

datatypes
IDL and Java, 80
IDL-Java bridge conversion, 82
Javaand IDL, 78
supported by Export Bridge, 166
destroyObject method
COM connector, 199
Java connector, 223
drawable objects, 264

E

environment variables
IDL_PREFER 64, 144
errors
handling
COM wrapper objects, 211
IDL-Java bridge, 96
Javawrapper objects, 242
Java exceptions, 96
examples
ActiveX
ActiveXCal.pro, 61

IDL Connectivity Bridges

505

ActiveXExcel.pro, 65
including controls, 65
bridges
See also examples
COM.
Java.
export_grwindow_doc__define.pro, 277,
299
export_itwinmanip_doc__define.pro, 281,
304
helloworld__define.pro, 182
helloworldex__define.pro, 272, 294
I DispatchDemo.pro, 46
idlgrwindowexample _define.pro, 266,
284
idlitdirectwindowexample__define.pro,
266, 284
idlitwindowexample _define.pro, 266,
284
COM
export
com_export_arrays_doc.txt, 251
com_export_commandline_doc.txt, 252
com_export_grwindow_doc.txt, 280
com_export_hello_doc.txt, 250
com_export_helloex_doc.txt, 275
com_export_itwinmanip_doc.txt, 283
com_export_triwindow_doc.txt, 288
import
ActiveXCal.pro, 61
ActiveXExcel.pro, 65
I DispatchDemo.pro, 46, 46
Java
export
arrays_examplejava, 256
export_grwindow_doc_example.java,
302
export_itwinmanip_delete.java, 306
export_itwinmanip_doc_example.java,
306
hello_example.java, 254

Index

506

helloworldex_example.java, 296
JDLCommandLinejava, 258
import
alprops.pro, 89
array2d.java, 99
arraydemo.pro, 99
bridge version.pro, 95
exception.pro, 97
GreyBandslmage.java, 104
helloJavajava, 92
hellojava.pro, 84
hellojava2.pro, 92
javaprops.pro, 85
jbexamples.jar, 108
publicmembers.pro, 89
showexcept.pro, 97
showgreyimage.pro, 104
urlread.pro, 102
URLReader.java, 102
using COM objects, 46
wrapper objects
COM, 182
Java, 184
exception.pro, 97
executeString method
COM connector, 200
Java connector, 224
Export Bridge
IDL object requirements, 261
Java setup script, 144
overview, 12
programming limitations, 263
Export Bridge Assistant
building wrapper objects, 161
examples
COM, 182, 270
Java, 184, 292
exporting wrapper objects
bridge information, 167
converting array majority, 165
skipped information, 178

Index

source object
method information, 173
modification, 181
object information, 170
parameter information, 176
property information, 171
states, 162
superclasses, 180
specifying information, 164
supported data types, 166
interface
logs panel, 154
menu bar, 151
property sheet view, 154
toolbar, 152
logs
build, 155
change, 154
export, 155
output destinations, 141
projects
bridge information, 167
opening, 157
saving, 157
updating, 158
running
in different IDL modes, 141
supported platforms and compilers, 140
Update dialog, 159
using, 150
export_grwindow_doc__define.pro, 277, 299
export_grwindow_doc_example.java, 302
export_itwinmanip_delete.java, 306
export_itwinmanip_doc__define.pro, 281, 304
export_itwinmanip_doc_example.java, 306
exporting
IDL objectsto COM, 148
IDL objectsto Java, 148
exporting drawable objects
examples, 266
requirements, 264

IDL Connectivity Bridges

F

file
IDL-Java, 75

G

getI DL ObjectClassName method
COM connector, 201
Java connector, 225
getl DL ObjectV ariableName method
COM connector, 202
Java connector, 226
getIDLVariable method
COM connector, 203
Java connector, 227
GetL astError method
COM connector, 204
getProcessName method
COM connector, 205
Java connector, 228
GreyBandslmage.java, 104

H

handling Java exceptions, 96
hello_examplejava, 254
helloJavajava, 92

hellojava.pro, 84

hellojava2.pro, 92
helloworld__define.pro, 182
helloworldex__define.pro, 272, 294
helloworldex_example.java, 296

I DigpatchDemo.pro, 46, 46, 46

IDL Java Package, 312

IDL_PREFER_64 environment variable, 144
IDLcomActiveX object

IDL Connectivity Bridges

507

see ActiveX controls
IDLcomlDispatch objects

creating, 28

destroying, 43

method calls, 29

naming scheme, 24

overview, 18, 22
idlgrwindowexample _define.pro, 266, 284
idlitdirectwindowexample__define.pro, 266,

284

idlitwindowexample__define.pro, 266, 284
IDL-Java bridge. See Java Import Bridge
Import Bridge overview, 11
initListeners method, 220, 239
isObjectCreated method

Java connector, 229

J

Java connector

about, 246

debugging, 244

error handling, 242

event handling, 232

examples, 253

methods
abort, 219
createObject, 220
destroyObject, 223
executeString, 224
getIDL ObjectClassName, 225
getIDL ObjectVariableName, 226
getIDLVariable, 227
getProcessName, 228
isObjectCreated, 229
setIDLVariable, 230
setlProcessName, 231

reference, 215

using, 247

Java Export Bridge
about wrapper objects, 217

Index

508

methods, 218
reference, 215
runtime environment (JRE) requirements,
140
Java lmport Bridge
classnamein IDL, 84
classes
data members, 89
methods, 87
names, 84
path, 75
properties, 89
static, 85
configuration, 75
converting data types with IDL, 82
creating IDL-Java bridge objects, 84
destroying objects, 91
IDL datatypes, 78
Javadata types, 80
Native Interface (JNI), 73
objects, 72
runtime environment (JRE) requirements, 72
session object, 94
static
classes, 85
data members, 85
methods, 85
version, 94

JDLObject, 428
JIDLProcesslnitializer, 460
JIDL Short, 463
J DL String, 468
errors
JDLADbortedException, 315
JDLBusyException, 326
JDLEXxception, 393
interfaces
JDLComponentListener, 381
JDLKeyListener, 406
JIDLMouselistener, 415
JIDLMouseMotionListener, 418
JDLNotifyListener, 422
JIDLNumber, 424
JIDLObjectl, 446
JDLOutputListener, 458
JDL Package class summary, 312
JDLADbortedException, 315
JDLArray, 317
JIDLBoolean, 321
JDLBusyException, 326
JDLByte, 328
JDLCanvas, 333
JDLChar, 376
JDLCommandLinejava, 258
JDLComponentListener, 381
JIDLConst, 383
JIDLDouble, 388

javaprops.pro, 85

jbexamples.jar, 108

JDL (IDL Java) package

classes

JIDLArray, 317
JDLBoolean, 321
JDLByte, 328
JDLCanvas, 333
JDLChar, 376
JDLCongt, 383
JIDLDouble, 388
JDLFloat, 395
JDLInteger, 400
JDLLong, 409

JDLEXxception, 393
JDLFloat, 395
JDLInteger, 400
JDLKeyListener, 406
JDLLong, 409
JIDLMouselistener, 415
JIDLMouseMotionListener, 418
JDLNotifyListener, 422
JIDLNumber, 424
JIDLObject, 428
JIDLObjectl, 446
JDLOutputListener, 458
JIDLProcesslnitializer, 460

Index IDL Connectivity Bridges

JDL Short, 463
JDLString, 468

L

legalities, 2

licensing
exported COM objects, 134
exported Java objects, 134
Javaexport bridge, 221

M

method calls
ActiveX controls, 55
COM objects, 29
Microsoft Object Viewer, 26
multidimensiona arrays
2D examples, 498
storage and access, 494
COM, 496
IDL, 497

O

object properties
COM, 37
Object Viewer, 26
objects
IDL-Java bridge session
exceptions, 96
parameters, 94
Java classes
IDL-Java bridge, 72
path, 75
OLE/COM Object Viewer, 26, 32, 52

IDL Connectivity Bridges

P

package
com.idl.javaidl, 312
ProglD, 156
Program ID, 156
properties
ActiveX controls, 56
COM objects, 37
publicmembers.pro, 89

S

session object

IDL-Java bridge exceptions, 96
IDL-Java bridge parameters, 94

setIDLVariable method
COM connector, 206
Java connector, 230
setProcessName method
COM connector, 207
Java connector, 231
showexcept.pro, 97
showgreyimage.pro, 104

T

trademarks, 2

U

urlread.pro, 102
URLReader.java, 102

V
Virtua Machine

Java (JRE) requirements, 72, 140

509

Index

510

w

widget events
ActiveX, 57
WIDGET_ACTIVEX function
using, 18
widgets
WIDGET_ACTIVEX function
using, 18
wrapper objects
about, 127
building in the Export Bridge Assistant, 161
converting array majority, 165
debugging
COM, 213

Index

Java, 244
error handling
COwMm, 211
Java, 242
event handling
COM, 208
Java, 232
examples
COM, 182, 249, 270
Java, 184, 253, 292
exporting, 162
exporting drawable objects, 264
supported data types, 166

IDL Connectivity Bridges

	Online Manuals
	IDL Documentation
	What's New in IDL 7.0
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Analyst Reference Guide
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	IDL Connectivity Bridges
	Contents
	About the IDL Bridges
	What Is a Bridge?
	IDL Import Bridge
	IDL Export Bridge

	Part I: Importing into IDL
	Overview: COM and ActiveX in IDL
	COM Objects and IDL
	Using COM Objects with IDL
	Skills Required to Use COM Objects

	Using COM Objects in IDL
	About Using COM Objects in IDL
	IDLcomIDispatch Object Naming Scheme
	Creating IDLcomIDispatch Objects
	Method Calls on IDLcomIDispatch Objects
	Managing COM Object Properties
	Passing Parameter Arrays by Reference
	References to Other COM Objects
	Destroying IDLcomIDispatch Objects
	COM-IDL Data Type Mapping
	Example: RSIDemoComponent

	Using ActiveX Controls in IDL
	About Using ActiveX Controls in IDL
	ActiveX Control Naming Scheme
	Creating ActiveX Controls
	Method Calls on ActiveX Controls
	Managing ActiveX Control Properties
	ActiveX Widget Events
	Destroying ActiveX Controls
	Example: Calendar Control
	Example: Spreadsheet Control

	Using Java Objects in IDL
	Overview of Using Java Objects
	Initializing the IDL-Java Bridge
	IDL-Java Bridge Data Type Mapping
	Creating IDL-Java Objects
	Method Calls on IDL-Java Objects
	Managing IDL-Java Object Properties
	Destroying IDL-Java Objects
	Showing IDL-Java Output in IDL
	The IDLJavaBridgeSession Object
	Java Exceptions
	IDL-Java Bridge Examples
	Troubleshooting Your Bridge Session

	Part II: Exporting from IDL
	Exporting IDL Objects
	Overview of Exporting IDL Objects
	Wrapper Objects
	Object Lifecycle
	IDL Access
	Parameter Passing and Type Conversion
	Event Handling
	Supported Platforms and IDL Modes
	Configuring Build and Client Machines

	Using the Export Bridge Assistant
	Export Bridge Assistant Overview
	Running the Assistant
	Using the Assistant
	Working with a Project
	Building an Object
	Exporting an Object
	Specifying Information for Exporting
	Bridge Information
	Source Object Information
	Property Information
	Method Information
	Parameter Information

	Information Skipped During Export
	Exporting a Source Object’s Superclasses
	Modifying a Source Object After Export
	Wrapper Generation Example

	Using Exported COM Objects
	Overview of COM Export Objects
	COM Wrapper Objects
	Stock COM Wrapper Methods
	Abort
	CreateObject
	CreateObjectEx
	DestroyObject
	ExecuteString
	GetIDLObjectClassName
	GetIDLObjectVariableName
	GetIDLVariable
	GetLastError
	GetProcessName
	SetIDLVariable
	SetProcessName

	Event Handling
	Error Handling
	Debugging

	Using Exported Java Objects
	Overview of Java Export Objects
	Java Wrapper Objects
	Stock Java Wrapper Methods
	abort
	createObject
	destroyObject
	executeString
	getIDLObjectClassName
	getIDLObjectVariableName
	getIDLVariable
	getProcessName
	isObjectCreated
	setIDLVariable
	setProcessName

	Event Handling
	Error Handling
	Debugging

	Using the Connector Object
	About the IDL Connector Object
	Preparing to Use the IDL Connector Object
	Connector Object COM Examples
	Hello World Example with a COM Connector Object
	Data Manipulation with a COM Connector Object
	IDL Command Line with a COM Connector Object

	Connector Object Java Examples
	Hello World Example with a Java Connector Object
	Data Manipulation with a Java Connector Object
	IDL Command Line with Java Connector Object

	Writing IDL Objects for Exporting
	Overview
	Programming Limitations
	Exporting Drawable Objects
	Drawable Object Canvas Examples

	Creating Custom COM Export Objects
	About COM Export Object Examples
	Nondrawable COM Export Example
	Drawable COM Export Examples
	COM IDLgrWindow Based Histogram Plot Generator
	COM IDLitWindow Surface Manipulation
	Tri-Window COM Export Example

	Creating Custom Java Export Objects
	About Java Export Object Examples
	Nondrawable Java Export Example
	Drawable Java Export Examples
	Java IDLgrWindow Based Histogram Plot Generator
	Java IDLitWindow Surface Manipulation

	Part III: Appendices
	IDL Java Object API
	Package Summary
	JIDLAbortedException
	JIDLArray
	JIDLBoolean
	JIDLBusyException
	JIDLByte
	JIDLCanvas
	JIDLChar
	JIDLComponentListener
	JIDLConst
	JIDLDouble
	JIDLException
	JIDLFloat
	JIDLInteger
	JIDLKeyListener
	JIDLLong
	JIDLMouseListener
	JIDLMouseMotionListener
	JIDLMouseWheelListener
	JIDLNotifyListener
	JIDLNumber
	JIDLObject
	JIDLObjectI
	JIDLOutputListener
	JIDLProcessInitializer
	JIDLShort
	JIDLString

	COM Object Creation
	Sample IDL Object
	Visual Basic .NET Code Sample
	C++ Client Code Sample
	C# Code Sample
	Visual Basic 6 Code Sample

	Java Object Creation
	Sample IDL Object
	Java Object Initiation Without Parameters
	Java Object Initiation with Parameters

	Multidimensional Array Storage and Access
	Overview
	Why Storage and Access Matter
	Storage and Access in COM and IDL
	2D Array Examples

	Index

