

IDL Quick Start

IDL 6.3 Version

Copyright © 2002-2006 ITT Visual Information Solutions

All Rights Reserved

IDL® is a registered trademark of ITT Visual Information Soutions for the computer

software described herein and its associated documentation. All other product

names and/or logos are trademarks of their respective owners.

IDL Quick Start - 3 - Table of Contents

Table of Contents

1. Introduction to IDL 5

What is IDL? 5

Introduction and Resources 5

The IDL Development Environment 7

Installing the Tutorial Files 9

The Power of IDL 9

A Brief Tour of the IDL Language 10

2. Two & Three Dimensional Plots 15

The IDL Intelligent Tools (iTools) 15

Starting the iPlot Intelligent Tool and Loading Data 15

Selection of Objects, Undo/Redo, and Manipulation 23

Labeling Axes, Annotation, and Inserting a Legend 27

Operations, Graphical Output, and Printing 30

Scatter, Histogram, Polar, and 3-Dimensional Plots 34

3. Contours and Surfaces 41

Contouring a 2-Dimensional Dataset 41

Creating a Surface from a 2-Dimensional Dataset 43

Manipulating 3-Dimensional Graphical Objects 47

Adding Contours and a Texture Map 48

4. Working with Images 53

Image Display, Enhancement, and Regions of Interest 53

Color Palettes, Filtering, and Morphology 56

Line Profiles, Contouring, and Advanced Processing 59

5. Volume Rendering 65

Displaying 3-Dimensional Volumetric Data 65

Data Space Scaling 68

Volume Object Properties 69

Image Planes, Subvolumes, and Isosurfaces 75

6. Advanced Signal Processing 81

What is Signal Processing? 81

IDL Quick Start - 4 - Table of Contents

Curve Fitting 81

Simple Noise Removal 83

Correlation Analysis 89

Signal Analysis Transforms 92

Windowing 99

Wavelet Analysis 101

7. Advanced Image Processing 103

Digital Images and Advanced iImage Operations 103

Thresholding, Clipping, and Histogram Equalization 114

Morphological Operations and Image Segmentation 122

Processing Images in Alternate Domains 125

8. Working with Maps 137

Introduction to Mapping 137

Displaying an Image within a Map Projection 142

Mapping Data Programmatically 146

9. Advanced Graphics 153

IDL’s Graphical Systems 153

Utilizing the Direct Graphics System 158

Utilizing the Object Graphics System 167

10. Programming in IDL 177

Introduction to IDL Programming 177

Batch Files 178

Main-Level Programs 179

Named Programs (Procedures & Functions) 180

Object-Oriented Programs 187

iTools System Programs 193

Creating Graphical User Interfaces 194

Distributing IDL Programs 197

Appendix A: IDL Code Tuning 203

Writing Efficient IDL Programs 203

Appendix B: External Development 204

IDL Calling External Software 204

External Software Calling IDL 205

Appendix C: Other Training Courses 207

Training Courses Available from ITT 207

IDL Quick Start - 5 - Introduction to IDL

Chapter 1: Introduction to IDL

What is IDL?

IDL, the Interactive Data Language, is an interpreted computer language and

interactive software environment that is ideal for data analysis, visualization, and

cross-platform application development. IDL is specifically designed for the

visualization and analysis of large, multi-dimensional technical datasets. IDL is the

language of choice for technical professionals, offering simple syntax, array-oriented

architecture, and rich library of analysis and visualization routines. IDL combines all

of the tools individuals need for any type of project -- from “quick-look”, interactive

analysis and display to large-scale commercial programming projects.

IDL has a rich library of built-in mathematical, statistical, signal & image processing,

and analytical routines that provide proven algorithms that developers and scientists

can rely on. The language is specifically designed for visualizing large and complex

datasets, from simple 2D plots to powerful OpenGL-accelerated 3D graphics. In

addition, IDL reads and writes virtually any data format, type and size, reducing the

time users spend dealing with file I/O. Thousands of technical professionals use IDL

every day to rapidly develop algorithms, graphical user interfaces, and powerful

visualizations with the ability to quickly crunch through large numerical problems.

All of this is available in an easy-to-use, high-level, fully extensible programming

environment.

Introduction and Resources

This is the manual for the IDL Quick Start tutorial and training course. Users can

work through the exercises in this manual either independently on their own, or

interactively with the aid of an instructor from ITT as a 1-day intensive training

course. This manual covers a specific set of topics that represent a small subset of

the overall functionality that IDL provides. Our goal is to help you learn how to use

IDL and we want you to be successful in your work.

ITT is committed to providing the highest quality level of customer support and

assistance to our customers, and we provide a variety of support services to help

users be as productive as possible. In addition to the IDL Quick Start tutorial, the
ITT Global Services Group offers a more extensive training program that consists of

a series of courses taught with hands-on instruction by a team of skilled

professionals. ITT provides training classes across the country on a regular basis at

a number of locations, and can also do custom on-site instruction when needed.

Furthermore, the ITT Global Services Group also provides consulting, and we

specialize in building complete solutions for unique data analysis and visualization

applications. The ITT team of responsive, creative consultants is ready to listen and

deliver what the users want -- on time and within budget. They can help define

IDL Quick Start - 6 - Introduction to IDL

requirements and lead the way throughout the development cycle -- from

prototyping to final installation -- or jump in mid-stream and provide expert

assistance. Furthermore, the ITT Support Services department is available to

answer questions between 8:00 AM and 5:00 PM, Mountain Standard Time. Users

receive prompt, authoritative, and convenient replies to questions from qualified

specialists who are trained in the sciences and engineering.

There are a number of resources that are available to individuals working with the

IDL software package, and several of these resources can be found on the ITT

website (www.ittvis.com). Some of these resources include :

• Online Store : http://www.ittvis.com/store/

• Product Downloads : http://www.ittvis.com/download/

• Web Seminars : http://www.ittvis.com/webinar/

• Product Applications : http://www.ittvis.com/appprofile/

• Technical Support : http://www.ittvis.com/services/

• Training Programs : http://www.ittvis.com/training/

• Global Services : http://www.ittvis.com/gsg/

• User Forum : http://www.ittvis.com/forum/

• User-Contributed Library : http://www.ittvis.com/codebank/

Finally, the IDL software package also includes a complete set of documentation

manuals in either PDF format or the built-in Online Help system, which can be

accessed by selecting “Help > Contents…” from the IDL development environment

window. Another very good resource for individuals just getting started with the IDL

software package is the Getting Started with IDL documentation manual [Fig. 1-1].

Figure 1-1: The IDL Online Help system

IDL Quick Start - 7 - Introduction to IDL

The IDL Development Environment

IDL has a convenient interface called the IDL Development Environment (IDLDE)

that includes built-in data input, visualization, analysis, and program editing &

debugging tools. To start the IDLDE perform one of the following :

• Windows: select “Start > All Programs > RSI IDL #.# > IDL”
• UNIX et al.: execute “idlde” at the shell prompt

• Mac OS X: double-click “/Applications/rsi/idl_#.#/idlde”

Note: If executing “idlde” doesn’t work on UNIX and Linux, the IDL setup file (that defines environment
variables specific to IDL) needs to be sourced. This setup file is found in the “bin/” subdirectory of the IDL
installation. For example, with an installation of IDL in the default “/usr/local/rsi/” location the
appropriate commands would be :

Bourne or Korn shell: $. /usr/local/rsi/idl/bin/idl_setup.ksh

C or TC shell: % source /usr/local/rsi/idl/bin/idl_setup

It is a good idea to setup user accounts to source these files upon login in the resource configuration file in
their home directory (e.g. .cshrc, .login, .kshrc, etc.).

After launching IDL the main IDLDE window appears [Fig. 1-2]. The eight sections of

this window are described below. On Windows, most sections of the IDLDE can be

undocked (click and drag) and resized by moving the separator. In addition, each of

these individual sections, except the Document Panel and Main Menu Bar, can be

turned on or off under the Window menu.

The Main Menu Bar

 The Main Menu items, located at the top of the IDLDE, are used to control the

configuration of IDL, develop IDL programs, and layout projects. The main menu is

used primarily by the software programmer to design applications in IDL.

The Toolbar

 Toolbar buttons provide a shortcut to execute the most common tasks found

in the main menu.

The Project Window

 The Project Window allows users to manage, compile, run, and create

distributions of all the files needed to develop an IDL application. All of the

application files can be organized for ease of access, and to be easier to export to

other developers, colleagues, or users.

The Document Panel

 The Document Panel is where the IDL ASCII text editor and GUI builder

windows are displayed, which allow the user to edit the IDL source code of their

program modules and design GUIs (Windows only).

The Output Log

 The standard output from the IDL interpreter is displayed in the Output Log

window.

IDL Quick Start - 8 - Introduction to IDL

Figure 1-2: The IDL Development Environment

The Variable Watch Window

 Displays variables that are “in scope”. By selecting the + sign next to array

variable names the values are viewable. The tabs also allow viewing of parameters,

common blocks, and system variables.

The Command Input Line

 The Command Input Line is an IDL prompt where the user can enter IDL
commands, much like a DOS or UNIX shell prompt. IDL statements can be typed

directly into the command input line and executed by hitting Enter on the keyboard.

To use the Command Input Line first make sure that input focus is at the IDL

command prompt by clicking the mouse in the box right of the IDL> prompt. A

blinking cursor appears if the input focus is at the command line.

IDL Quick Start - 9 - Introduction to IDL

The Status Bar

 When the mouse pointer is positioned over a Toolbar button or an item is

selected from the Main Menu in the IDLDE, the Status Bar displays a brief

description.

Installing the Tutorial Files

In addition to this manual, a package of files is provided that includes custom IDL

programs and a number of data files that are used throughout the Quick Start

tutorial. These files are located within the folder named “IDL_QS_Files”. In order to
complete the steps performed during the Quick Start exercises, this folder must be

copied to the main IDL installation folder on the computer’s local harddrive and the

user must be given open write permissions to this location.

At this time, please perform the appropriate steps for your operating system to copy

the entire “IDL_QS_Files” folder to the appropriate location on the computer. The

default installation location for IDL that this folder should be copied to is :

• Windows: C:\RSI\IDL##\
• UNIX et al.: /usr/local/rsi/idl_#.#/

• Mac OS X: /Applications/rsi/idl_#.#/

Once this is accomplished, a couple of settings in the Preferences must be modified

so that IDL knows how to locate these files. IDL uses the concept of a “path” that

stores the directories IDL will search for libraries, include files, custom user-written

programs, and executive commands (much like UNIX and DOS). When a command

is executed within IDL that is not part of IDL’s built-in library, IDL will search the

folders designated by this “path” (in order of declaration) for either a *.pro (IDL

ASCII source code) or *.sav (IDL runtime binary) file with the same filename prefix

as the routine being executed. Please use the following steps to make the necessary

modifications to the Preferences for IDL :

1. select “File > Preferences…” from the IDLDE main menu
2. move to the “Startup” tab
3. change the “Working Directory:” setting by pressing the “Browse…” button
4. navigate to and select the “IDL_QS_Files” folder on the harddrive (you may

need to double-click on the folder in order to successfully select)

5. move to the “Path” tab
6. press the “Insert” button
7. once again, navigate to and select the “IDL_QS_Files” folder on the harddrive
8. check the box immediately to the left of the folder listing, which tells IDL to

search subdirectories recursively

9. press “Apply” in the Preferences dialog, followed by “OK”

The Power of IDL

IDL is basically a rich library of data analysis and visualization routines. The

software provides a wide variety of data input/output, processing, and graphics

IDL Quick Start - 10 - Introduction to IDL

generation functionality. IDL can be useful in just about any situation when data

needs to be analyzed.

Individuals who are new to IDL or have not been exposed to the software before

may be interested in seeing some demonstrations of how the software can be

utilized. One of the best ways to get a feel for the capabilities of IDL is to run the

built-in demo system, which can be accessed by pressing the button on the IDLDE

toolbar or executing the command DEMO at the IDL> command prompt :

IDL> demo

Note: The IDL source code for these demonstration programs can be found in the
“examples/demo/demosrc/” subfolder of the IDL installation.

The demonstration programs are launched by a category on the left-hand side, then

double-clicking on the link in the lower-right hand corner.

A Brief Tour of the IDL Language

Although IDL has a number of interactive tools for data input, analysis, and

visualization, it is (in essence) a programming language. The primary mechanism

for using IDL is by executing statements, either at the command line or within

programs, which control the actions of IDL. IDL statements are case insensitive (and

most are also space insensitive to an extent). For instance, each of the following are

acceptable IDL statements (and perform the same exact operation) :

1. IDL> PRINT,2*4
 8

2. IDL> print, 2 * 4
 8

3. IDL> Print, 2*4
 8

The PRINT routine prints the value of its argument into the IDL output log. Notice

that the argument is evaluated before it is printed, resulting in the number (8) being

output to the log window.

Note: IDL saves previously entered statements in a buffer, and these statements can be recalled to the
command line with the UP-DOWN arrow keys on most keyboards while cursor focus is at the command
line. The number of lines saved in the recall buffer can be changed in the Preferences for IDL.

In an IDL session, data (i.e. numbers and strings) is stored in what’s known as

variables. There are 3 basic types of IDL variables :

• Scalar (a single value)

• Array (from 1 to 8 dimensions – a vector is an array with only 1 dimension)

• Structure (an aggregate of various data types and other variables)

Any given variable in IDL also has a specific data type. There are 12 basic atomic

data types in IDL (seven different types of integers, two floating-point types, two

complex types, and a string) [Fig. 1-3]. The data type assigned to a variable is

IDL Quick Start - 11 - Introduction to IDL

determined either by the syntax used when creating the variable, or as a result of

some operation that changes the type of the variable (i.e. the IDL language is

dynamically typed).

Figure 1-3: IDL data types

Variables do not have to be declared in IDL, and the data type of a variable can be

determined by its usage. If a new variable is set equal to the sum of two integers,

then the new variable will also be an integer. For example, start by declaring a

scalar variable named “a” and set it equal to a value of (2) :

4. IDL> a = 2

By default, if a variable is set to a whole number it is assigned the 16-bit signed

integer data type, as illustrated in the Declare Scalar Syntax column of Fig. 1-3.
Next, declare a second scalar variable called “b” and set it equal to a floating-point

value of (5) :

5. IDL> b = 5.0

IDL provides the ability to perform an arithmetic operation on these two variables

and store the result in a new variable called “c” without having to first declare “c” :

6. IDL> c = a + b

The HELP routine is used to get information about the IDL session. In this case, use
the HELP routine to obtain information on the three variables declared thus far :

7. IDL> help, a, b, c
A INT = 2

B FLOAT = 5.00000

C FLOAT = 7.00000

Notice that when variables of different data types are combined in a single

expression, the result has the data type that yields the highest precision.

So far all of the work performed has been with scalar variables, but the real power of

IDL is in the fact that it’s an array-oriented language. For example, declare a

variable called “array” as an integer matrix with two dimensions of size 5 columns

IDL Quick Start - 12 - Introduction to IDL

and 5 rows. Use the INDGEN function to set the value for each element of the array
to its one-dimensional subscript (notice that IDL is a row-major language) :

8. IDL> array = indgen (5, 5)

9. IDL> help, array
ARRAY INT = Array[5, 5]

10. IDL> print, array
 0 1 2 3 4

 5 6 7 8 9

 10 11 12 13 14

 15 16 17 18 19

 20 21 22 23 24

Since IDL is an array-oriented language, any operation that is applied to an array

variable will automatically affect every element of the array without having to utilize

FOR loops. For example, every element within the variable “array” can be multiplied

by the scalar value (2) that is currently stored in the variable “a” with one simple
statement :

11. IDL> array = array * a

12. IDL> print, array
 0 2 4 6 8

 10 12 14 16 18

 20 22 24 26 28

 30 32 34 36 38

 40 42 44 46 48

The ability to perform operations on only specific elements of an array is another

power of the IDL language and is called subscripting. The square bracket

characters “[“ and “]” are used to perform subscripting in IDL. Since IDL is row-

major, the appropriate way to subscript a 2-dimensional array is with the syntax

[column#, row#]. It is also important to keep in mind that indexes for subscripting
start at 0 instead of 1. For example, to print only the value found in the element in

the 2nd column and 4th row of the variable “array” execute the statement :

13. IDL> print, array [1,3]
 32

So far we have executed two different routines from the IDL language library, PRINT
and HELP. There are 3 basic types of routines that can be used by executing

statements within the IDL language :

• Procedures

• Functions

• Executive Commands

A procedure is a routine that simply performs a well-defined task. In contrast, a

function is a routine that performs a well-defined task and also returns a value to

the specified variable once it is finished executing. Executive commands are used

to control the execution of IDL programs. The statements executed to run the 3

different types of IDL routines differ in their calling sequence syntax :

IDL Quick Start - 13 - Introduction to IDL

Procedure: IDL> PROCEDURE, argument

Function: IDL> result = FUNCTION (argument)

Executive: IDL> .EXECUTIVE_COMMAND –flags argument

For example, execute the following procedure, function, and executive command

statements at the IDL> command prompt (Note: “0” is the number zero) :

14. Procedure: IDL> CALENDAR, 1976

15. Function: IDL> time = SYSTIME (0)

16. Executive: IDL> .COMPILE arrow

In the example statements above, the CALENDAR procedure displays a simple
calendar for the year 1976 in an IDL graphics window, the SYSTIME function returns

the current time as a date/time string into the variable “time”, and the .COMPILE
executive command compiles the ARROW routine from the IDL distribution library
and opens its source code file into the IDLDE document panel. There are hundreds

of routines built into IDL, and most fall within one of these three categories.

In order to view the value returned by the SYSTIME function into the variable “time”
the HELP procedure can be utilized :

17. IDL> help, time

The IDL output log should report that “time” is a variable of type string that is equal
to the current date/time in the format “DOW MON DD HH:MM:SS YEAR”.

There are also 2 different types of parameters that any given IDL routine can

accept :

• Arguments

• Keywords

In the examples above, only arguments were specified. Arguments are used to

pass information (e.g. data) to and/or from the IDL routine. Arguments are
positional in that the order in which they are passed dictates what the IDL routine
does with the information in the variable/value specified. Some or all of the

arguments for any given routine may be optional.

In contrast, keywords are always optional and can be specified in any order.

Keyword parameters are used to control the behavior of the IDL routine being
executed, or to specify a named variable into which a result will be placed. For
instance, to control the behavior of the HELP procedure so it returns information
about the amount of dynamic memory (in bytes) currently in use by the IDL session,

set the MEMORY keyword equal to one :

18. IDL> help, memory=1

The MEMORY keyword is a binary behavioral parameter that is either “on” or “off”,

and this is controlled by setting the keyword to a value of 1 or 0, respectively. A

shortcut to setting a keyword “on” is available by preceding the variable with the
forward slash “/” character. In addition, keywords can be abbreviated to the

IDL Quick Start - 14 - Introduction to IDL

smallest string that uniquely identifies them for the routine in question. For

example, the following is a shortcut to perform the same exact task as above :

19. IDL> help, /mem

Some keywords are used to return results from a routine. For example, the OUTPUT
keyword to the HELP procedure can be used to place a string array containing the
formatted output of the HELP command into a named variable called “text” :

20. IDL> help, /mem, output=text

21. IDL> help, text
TEXT STRING = Array[1]

22. IDL> print, text

Finally, it is worth mentioning that you can view the IDL software documentation and

automatically jump to the index location of a specific keyword by executing the

question-mark character “?” followed by the keyword :

23. IDL> ?help

This will launch the IDL Online Help system and display the reference guide entry for

the HELP procedure.

IDL Quick Start - 15 - Two & Three Dimensional Plots

Chapter 2: Two & Three Dimensional
Plots

The IDL Intelligent Tools (iTools)

The IDL Intelligent Tools (iTools) are a set of interactive utilities that combine data

analysis and visualization with the ability to produce presentation quality graphics.

The iTools allow users to continue to benefit from the control of a programming

language, while enjoying the convenience of a point-and-click environment. There

are 6 primary iTool utilities built into the IDL software package. Each of these six

tools is designed around a specific data or visualization type :

• Two and three dimensional plots (line, scatter, polar, and histogram style)

• Surface representations

• Contours

• Image displays

• Mapping

• Volume visualizations

The iTools system is built upon an object-oriented component framework

architecture that is actually comprised of only a single tool, which adapts to handle

the data that the user passes to it. The pre-built iPlot, iSurface, iContour, iMap,

iImage, and iVolume procedures are simply shortcut configurations that facilitate ad
hoc data analysis and visualization. Each pre-built tool encapsulates the functionality

(data operations, display manipulations, visualization types, etc.) required to handle

its specific data type. However, users are not constrained to work with a single data

or visualization type within any given tool. Instead, using the iTools system a user

can combine multiple dataset visualization types into a single tool creating a hybrid

that can provide complex, composite visualizations.

Starting the iPlot Intelligent Tool and Loading Data

There are 3 ways in which a user can launch an iTool :

• Execute the statement for the appropriate procedure at the IDL> command

prompt

• Select “File > New > Visualization > iTool Name” from the IDLDE main menu
• Windows users can launch an iTool directly by selecting “Start > All Programs
> RSI IDL #.# > iTools > iTool Name”, and Macintosh users can launch an
iTool directly by double-clicking “/Applications/rsi/idl_#.#/iTool Name”.

In this case, launch the iPlot tool by executing the procedure iPlot at the IDL>
command prompt :

IDL Quick Start - 16 - Two & Three Dimensional Plots

1. IDL> iPlot

A splash screen will appear while the iTools system is launching. The first time the

iTools system is launched in any given session of IDL will always be the slowest since

the iTools need to be compiled from their ASCII text source code files found in the

“lib/itools/” subfolder of the IDL distribution (i.e. the user has access to the source
code for the entire iTools system). Once the iTools system is up and running a

separate window will come up entitled “IDL iPlot”. Feel free to minimize the IDLDE
window as the next steps of this exercise will involve the iPlot utility.

In the following exercise, the time-series data from the example data file

“time_series.txt” will be input into the iPlot utility. This example data file is located
in the “data” subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\time_series.txt
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/time_series.txt
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/time_series.txt

The file “time_series.txt” contains standard ASCII text consisting of 4 columns of
data separated by whitespace. The first column contains the time-stamp data

(independent variable), and the rest of the columns contain various data

measurements made at the associated time (dependent variables). Here are the

first 4 lines of this ASCII text file :

 Time Data1 Data2 Data3

 0 0.638570 0.721137 0.498828

 1 0.638366 0.721189 0.503347

 2 0.637349 0.720877 0.505433

There are a number of different ways to load data into an iTool, and probably the

easiest of these is to use the data input utilities built into the iTools system.

2. Select “File > Open…” from the IDL iPlot window.
3. Navigate to the location of the “time_series.txt” file, select it, and hit “Open”.
4. This will launch the ASCII Template wizard [Fig. 2-1] that will guide the user

through the steps of defining the layout of the data within the file.

5. Change the “Data Starts at Line:” field to 2 so the first line of column headers
is skipped during the read process [Fig. 2-1].

6. Hit the “Next >>” button to proceed to step 2.
7. In Step 2 of 3 make sure all of the parameters match the default settings

illustrated in Fig. 2-2.

8. Hit the “Next >>” button to proceed to step 3.
9. In Step 3 of 3 change the name of the fields to match the column headers

above. This can be accomplished by clicking on the columns in the “Sample

Record:” area and typing the appropriate text into the “Name:” field [Fig. 2-

3].

10. Hit “Finish” to complete the ASCII Template wizard.

IDL Quick Start - 17 - Two & Three Dimensional Plots

Figure 2-1: Step 1 of 3 for the ASCII Template wizard

Figure 2-2: Step 2 of 3 for the ASCII Template wizard

IDL Quick Start - 18 - Two & Three Dimensional Plots

Figure 2-3: Step 3 of 3 for the ASCII Template wizard

Once the user is finished running the ASCII Template wizard the IDL iTools Create
Visualization dialog will come up [Fig. 2-4].

Figure 2-4: The IDL iTools Create Visualization dialog

IDL Quick Start - 19 - Two & Three Dimensional Plots

11. In order to create a line plot visualization out of the time-series data, press
“Select a visualization and specify parameters” and hit “OK”.

This will bring up the iTools Insert Visualization dialog. This tool is used to select the
data that is used to create the line plot visualization. In this case, there is one

independent variable (X) contained in the field “time_series.TIME”, and 3 dependent

variables (Y) that can be plotted as a function of this time.

12. Click on the “time_series” item within the Data Manager panel and expand.
13. Select the “X” row in the lower left table and then double-click the

“time_series.TIME” field from the upper left window to insert the time-stamp

data as the independent variable [Fig. 2-5].

14. Select the “Y” row in the lower left table and then double-click the
“time_series.DATA1” field from the upper left window to insert the first data

measurement as the dependent variable [Fig. 2-5].

15. Once these selections have been made, press “OK”.

Figure 2-5: The iTools Insert Visualization dialog

A simple line plot of the “Time” data (X axis) versus the “Data1” data (Y axis) will
appear within the IDL iPlot window [Fig. 2-6]. Notice that both the X and Y axes
have been automatically scaled to display the full data range of the respective

variables. Currently the size of the IDL iPlot window should be the default when it
was first launched, which makes it difficult to visualize the features within the line

IDL Quick Start - 20 - Two & Three Dimensional Plots

plot graphic. Consequently, use the following steps to maximize the visual area for

the graphics window :

16. From the IDL iPlot window menu select “Window > Zoom on Resize”.

17. Hit the maximize button in the upper-right hand corner of the window.

Figure 2-6: The IDL iPlot window displaying graphic of time-series data

Currently the line plot should be displayed with the default black color. Furthermore,

the iPlot tool should be in selection mode with the line plot automatically selected

(graphic will be surrounded by 8 small squares and highlighted with cyan color

markers). If the line plot is not selected simply click on the line in any location so it

appears as displayed in Fig. 2-6. In order to differentiate the line plot from the axes

(and the other data variables which will soon be plotted) change the color to red by

following these steps :

18. Right-click on the lineplot in order to see the standard iTools context menu.
19. Select “Properties…”.
20. Within the IDL iPlot: Visualization Browser window, click on the box to the

right of the “Color” property and select bright red [Fig. 2-7].

21. Once the desired change has been made, close the IDL iPlot: Visualization
Browser window.

IDL Quick Start - 21 - Two & Three Dimensional Plots

Figure 2-7: The IDL iPlot: Visualization browser window (property sheet)

Now that the line plot for the first dataset has been changed in color to red, the two

remaining dependent data variables can be imported an overplotted within the

existing visualization :

22. From the IDL iPlot window menu system, select “Insert > Visualization…”.
23. Select the “Y” row in the lower left table and this time double-click the

“time_series.DATA2” field from the upper left window to insert the second

data measurement as the dependent variable.

24. Once this has been accomplished, hit “OK”.

This will automatically insert a new lineplot within the existing data space and axes.

Once again the line is plotted with the default black color, so use the following steps

to change the color of this line to blue :

25. Select the new black line plot if it is not already (it should be selected by
default).

26. Right-click, select “Properties…”, and change the “Color” property to blue.
27. Close the IDL iPlot: Visualization Browser window.

Next, plot the third and final data variable and change its line color to green :

28. From the IDL iPlot window menu system, select “Insert > Visualization…”.
29. This time select the “Y” row in the lower left table and then double-click the

“time_series.DATA3” field from the upper left window to insert the second

data measurement as the dependent variable.

30. Once this has been accomplished, hit “OK”.
31. Select the new black line plot.

IDL Quick Start - 22 - Two & Three Dimensional Plots

32. Right-click, select “Properties…”, and change the “Color” property to green.
33. Close the IDL iPlot: Visualization Browser window.

Notice that when this final data variable was plotted, the scaling of the Y axis

automatically changed in order to display the full data range of all 3 time-series

measurements. In addition, dashed lines that are cyan in color will be displayed

when a specific line plot is selected, which mark the minimum and maximum Y data

range for that dataset. The line plot visualization should now look like Fig. 2-8.

Figure 2-8: The line plot visualization of all 3 time-series datasets

Now that all 3 time-series datasets have been loaded and plotted, it is a good idea to

save the current state of the iPlot visualization utility. When an iTool is saved, the
state of the utility in its entirety is output to a file on disk, and this state includes the

layout of the current graphical visualizations, their properties, and the data itself.

Use the following steps to save the current iTool state :

34. From the IDL iPlot window, select “File > Save As…”.
35. Save the iTools state to a new file named “line_plots.isv” located in the

“output” subfolder of the Quick Start directory [Fig. 2-9] :

• Windows: C:\RSI\IDL##\IDL_QS_Files\output\line_plots.isv

IDL Quick Start - 23 - Two & Three Dimensional Plots

• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/output/line_plots.isv
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/output/line_plots.isv

36. Press the “Save” button.

Figure 2-9: Saving the iTool state to a file on disk

Selection of Objects, Undo/Redo, and Manipulation

The iTools graphical system is based on an object-oriented architecture where each

element (graphic, display window, axes, annotations, etc.) have individual objects

associated with them. These objects each have their own individual properties,

such as the color of the line plots that were modified in the previous exercise. The

power of an object-oriented architecture is that separate objects can be built into a

hierarchy that provides the ability to create complex graphical visualizations.

There are three ways to select separate or multiple objects within the iTools system :

• Using the Select/Translate arrow manipulator

• Using the Visualization Browser window
• Selecting “Edit > Select All” from the iTool menu system

IDL Quick Start - 24 - Two & Three Dimensional Plots

Experiment with selecting separate graphical objects or groups of objects using the

Select/Translate arrow :

1. If necessary, click the Select/Translate arrow button on the toolbar to

enter the object selection and translation manipulator mode.

2. Position the mouse cursor pointer over one of the line plots and click with the
left mouse button. The line plot object will be highlighted with cyan markers,

and a selection box will appear around the data space.

3. To select additional line plots, hold down the Shift key on the keyboard while
clicking them.

4. The arrow button manipulator also provides translation functionality. While at
least one of the line plots is selected, click and hold down the left mouse

button while moving the mouse to re-position the data space within the view

window. The mouse pointer changes to the translation pointer .

5. In addition to being able to select and move the line plots, the axes are also
their own individual objects. Click on one of the axes to select it, then hold

down the left mouse button to move it within the view window. Each axis can

be moved in a plane perpendicular to its direction.

6. Also experiment with the ability to click-and-drag an object selection box.
This can be accomplished by clicking in the white area outside of the data

space, holding down the mouse button, and dragging a rectangular box.

Once the mouse button is released, any objects that fall within the selected

region in their entirety will be selected and highlighted.

If at any time an action is taken within an iTool that the user wishes to reverse, they

can utilize the built-in Undo/Redo system. There are two ways to access the

Undo/Redo mechanism within any given iTool :

• Using the Undo/Redo buttons on the toolbar

• From the Edit menu system

7. Experiment with the Undo/Redo system using both the toolbar buttons and
the Edit menu system items in order to retrace and repeat the steps that
have been performed within the current IDL iPlot utility.

8. Using the Select/Translate arrow or the Undo/Redo system, setup the current
visualization in its previous appearance with the data space centered within

the view window.

9. While in Select/Translate mode, click in an area outside of the data space so
that no object appears selected.

10. Open the Visualization Browser window by selecting “Window > Visualization
Browser…” from the menu system.

The Visualization Browser window displays the object-oriented hierarchy of the

current graphical visualization for the iTool on the left-hand side, and the property

sheet for the currently selected object on the right-hand side [Fig. 2-10]. Currently

the main view object named “View_1” should be selected, which is the white

graphics area within the IDL iPlot window.

11. Experiment with selecting various objects on the left-hand side of the
Visualization Browser window.

IDL Quick Start - 25 - Two & Three Dimensional Plots

Notice how the objects are once again highlighted within the IDL iPlot utility window
when they are selected. In addition, notice how the property sheet on the right-

hand side of the Visualization Browser window updates to reflect the properties of
the currently selected object.

Currently the 3 line plot graphical objects that are contained within the iTool are

named “Plot”, “Plot 0”, and “Plot 1” by default [Fig. 2-10]. These line plot objects
can be given more appropriate names that help associate them with the data they

are displaying.

Figure 2-10: The Visualization Browser window

12. Click on the first line plot object named “Plot” within the Visualization Browser
window.

13. On the right-hand side, change the “Name” property to the appropriate time-
series field name from the original dataset “Data1”. It may help to expand
the plot object tree to look at the parameters (data) that define the graphical

object [Fig. 2-11].

14. Make sure to hit the Enter key on the keyboard after modifying the “Name”
property so the change takes effect.

15. Repeat this process for the other 2 line plot objects, changing “Plot 0” to
“Data2”, and “Plot 1” to “Data3” [Fig. 2-11].

16. The final state of the Visualization Browser window should look like Fig. 2-11.
Once this has been accomplished close the Visualization Browser window.

In addition to the translation manipulator mode accessed via the Select/Translate

arrow button, there is also Rotate, View Zoom, Scaling, and Data Range

manipulators that can be accessed using their respective buttons on the toolbar :

17. From the IDL iPlot window menu system, select “Edit > Select All”.

18. Click the Rotate button to enter rotation manipulator mode.

19. Experiment with arbitrarily rotating the current graphic by clicking on it,
holding down the mouse button, and moving the mouse.

IDL Quick Start - 26 - Two & Three Dimensional Plots

20. Notice how the arrow keys on the keyboard can also be used to rotate the
graphic (after it has been rotated by the mouse). Furthermore, notice how

using the Shift and Ctrl keys in conjunction with the arrow keys will rotate the
graphic by specific amounts.

21. Since the rotation of line plot graphics is usually not appropriate, use either
the Ctrl-arrow button single degree rotation or the Undo button to restore the

visualization to its original horizontal orientation.

Figure 2-11: Changing the Name properties of the 3 line plot objects

The size of the graphics area can also be made smaller / larger in relation to the

display canvas by using the View Zoom manipulator :

22. Click the Zoom button to enter View Zoom manipulator mode.

23. Position the mouse pointer over the viewplane. The pointer will change to a
zoom pointer.

24. The view zoom manipulator works by clicking-and-dragging with the mouse
cursor. Dragging the zoom pointer towards the top of the window (upwards

direction) will enlarge the graphics. Dragging the zoom pointer towards the

bottom of the window (downwards direction) will make the graphics area

smaller.

25. Restore the graphics area (approximately) to its original size, and click on the

Select/Translate arrow button in order to leave View Zoom mode.

In addition to using the View Zoom manipulator tool, the size of the graphics area

can also be made smaller / larger using the constrained and unconstrained scaling

available when using the Select/Translate arrow mode. Constrained scaling permits

changing the size of only one dimension while preserving the size of the other

IDL Quick Start - 27 - Two & Three Dimensional Plots

dimensions. In contrast, unconstrained rotation allows the user to scale all

dimensions of an object in an arbitrary fashion.

26. While using the Select/Translate arrow mode, click on one of the line plots
within the graphics area.

27. In addition to the selected line plot being highlighted with cyan color markers,
the 8 green selection boxes will appear around the graphics area.

28. To perform constrained scaling, position the mouse cursor over one of the
four selection boxes found midway along each side of the graphics area. The

mouse cursor will change to a double-headed arrow.

29. Click-and-drag with the mouse to scale the graphics in the desired direction.
30. To perform unconstrained scaling, position the mouse cursor over one of the

four selection boxes found in the corners of the graphics area. The mouse

cursor will change to a four-headed arrow.

31. Click-and-drag with the mouse to scale the graphics in an unconstrained
fashion.

32. Restore the graphics area (approximately) to its original shape and size.

Finally, the Data Range tool allows the user to zoom into the data space itself,

instead of simply resizing the graphics area within the viewplane. This allows users

to adjust the range displayed within the current graphics area, and zoom into the

data space to get a better look at features at a smaller scale.

33. While one or all of the line plots are selected, click the Data Range button

to enter data range manipulator mode.

34. Both the X and Y axes will be labeled with green translation arrows and zoom
symbols (“+” and “-”). Clicking on these will change the range and location

of the respective axis.

35. In addition, position the mouse cursor within the graphics area containing the
line plots. The mouse cursor will change to a cross-hair.

36. Click-and-drag to define a rectangular box within the graphics area, and once
the box has been defined release the mouse button to zoom into the

corresponding data range.

37. Select/Translate arrow button in order to leave Data Range mode.

38. In order to reset the data range to the original full extent of all 3 data
variables, select “Window > Reset Dataspace Ranges” from the IDL iPlot
window menu system.

Labeling Axes, Annotation, and Inserting a Legend

Currently the line plots for the 3 time-series data variables are displayed with

different colors, but there are no annotations present within the visualization window

that describe the contents of the graphic. In order to label the axes and change the

direction of the tick marks, utilize the Visualization Browser window :

1. Select “Window > Visualization Browser…”.
2. Expand the Axes group to see the 4 separate axis objects.
3. Select the first axis object named “Axis 0”. Notice that the bottom X-axis

within the iPlot window is highlighted.

IDL Quick Start - 28 - Two & Three Dimensional Plots

4. Scroll down the property sheet on the right-hand side and locate the “Title”
property. Change the “Title” property for this axis to “Time-Stamp (seconds

elapsed)” and hit Enter on the keyboard to complete the change [Fig. 2-12].

Figure 2-12: Modification of the Title property for the X axis

5. Next, select the second axis object named “Axis 2”. This selects the Y axis
along the left-hand side of the graphics area.

6. Find the “Tick direction” property, click within the setting box, and change the
droplist to “Left/Below”.

7. Once again, scroll down and change the “Title” property to “Data Values”.
8. Finally, select the last axis named “Axis 3” and change the “Tick direction”

property to “Right/Above”.

9. Once these tasks have been accomplished, close the Visualization Browser
window.

10. An axis may still be selected, so click in the white viewplane outside of the
graphics area to unselect all graphical objects.

It may also be appropriate to provide a title for the overall visualization, and this can

be inserted into the visualization using the Text annotation tool :

11. Click the Text annotation button to enter text insertion mode.

12. Once the mouse cursor is moved over the viewplane, the pointer will change
to a standard text selection cursor.

13. Click on a location outside and above the graphics area. A cursor is inserted
into the annotation layer and text insertion mode is initiated.

14. Using the keyboard, enter the text “Time-Series Line Plots”. Once finished
typing this text, hit the Enter key to complete the text annotation.

15. While this text annotation object is highlighted, right-click on it and select
“Properties…” from the context menu.

IDL Quick Start - 29 - Two & Three Dimensional Plots

16. The font properties of this text annotation can be modified to make it appear
like a legitimate graphics title. In the Visualization Browser window, change

the “Text font” property to “Times”.
17. Change the “Text style” property to “Bold”.
18. Change the “Text font size” to “16”, hit Enter, and close the Visualization
Browser window.

19. Re-position the text annotation so it is centered above the graphics area.

Finally, a legend can be inserted into the iPlot visualization window in order to label
the line plots with the names that were previously defined :

20. Click on one of the line plots, hold down the Shift key, and click on the
remaining two so that all 3 line plots are selected and highlighted.

21. From the menu system, select “Insert > New Legend”.
22. Position the legend in the desired location in the upper-right hand corner of

the viewplane.

23. Click in a blank white area of the viewplane outside all graphical objects in
order to deselect all objects.

24. At this point, it may be a good idea to re-save the current state of the iPlot
utility. This can be accomplished by selecting “File > Save” from the menu

system or hitting the Save button.

25. The current state of the IDL iPlot window should look similar to Fig. 2-13.

IDL Quick Start - 30 - Two & Three Dimensional Plots

Figure 2-13: The current state of the time-series line plot visualization

Operations, Graphical Output, and Printing

So far the exercises in this chapter have demonstrated the data input, graphics

creation, manipulation, undo/redo, and annotation capabilities of the iTools system.

In addition to this standard functionality the iTools system also includes operations,

which are data analysis and processing tools. Any given iTool will contain a suite of

the most common operations for the data type and visualization style that the utility

was designed for.

In the case of visualizing line plots of time-series data, one common operation that is

performed in signal processing analysis is the application of a smoothing filter that

will help eliminate some of the high-frequency noise contained within the data. In

addition, the user may be interested in obtaining mathematical statistics on the

time-series datasets :

1. Make sure the Select/Translate arrow button is selected.

IDL Quick Start - 31 - Two & Three Dimensional Plots

2. Click on one of the line plots, hold down the Shift key, and click on the
remaining two so that all 3 line plots are selected and highlighted.

3. From the menu system, select “Operations > Filter > Smooth”. A separate
dialog window entitled “Smooth” will appear.

4. This operation will apply a smoothing filter using a boxcar average over an
area of a specified width. Change the value for the “Width” field to “7” and

press the “OK” button in the Smooth window. Notice that the line plots are
smoothed.

5. Click within the white viewplane outside the graphics area in order to deselect
all objects.

6. Experiment with the Undo/Redo buttons the visualize the effect that the
smoothing operation had on the line plot graphics.

7. Reselect the three line plots by clicking on each while holding down the Shift
key. From the menu system, select “Operations > Statistics…”. This will
launch a separate window that displays the standard iTools statistics for each

of the 3 line plot datasets [Fig. 2-14].

8. Once finished viewing the statistical information, close the iTools Statistics
window.

Figure 2-14: Statistics for the time-series datasets

At this point, it may be necessary to obtain a softcopy or hardcopy version of the

current iPlot visualization. There are a number of ways of exporting the current
graphical visualization to the clipboard, image files on disk, or a printer :

9. Make sure the Select/Translate arrow button is selected. Click on an area

outside the plot and drag a rectangle around the entire plot.

IDL Quick Start - 32 - Two & Three Dimensional Plots

10. Select “Edit > Copy”. This will copy the current viewplane window to the
native operating system clipboard so that it can be pasted into other software

applications.

11. If running on a Windows computer with Microsoft Office installed, open either
Word or PowerPoint and paste the graphic into this separate application.

In addition to the standard clipboard operations, the iTools system also offers the

ability to export the current visualization to a wide variety of generic image formats :

12. From the menu system, select “File > Export…”. This will launch the IDL Data
Export Wizard.

13. In Step 1 of 3, select the “To a File” option for the export destination and hit
the “Next >>” button.

14. In Step 2 of 3, the user can select individual graphical objects to specify
either the entire visualization or individual data items to export. In this case,

in order to output the entire visualization select the “Window” object and hit
“Next >>”.

15. In step 3 of 3 the output “File Type:” should be set to Windows Bitmap by
default. If this is not the case, select Windows Bitmap now.

16. Click the file selection button and specify an output filename of “plot.bmp”

within the “output” subfolder of the Quick Start directory [Fig. 2-15].

Figure 2-15: Specifying an output filename for Windows Bitmap format

17. Once this is accomplished, hit the “Save” button in order to return to the IDL
Data Export Wizard.

IDL Quick Start - 33 - Two & Three Dimensional Plots

18. The full path to the output file specified will be displayed within the “File
Name:” field. This output file path should be :

• Windows: C:\RSI\IDL##\IDL_QS_Files\output\plot.bmp
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/output/plot.bmp
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/output/plot.bmp

19. Once this output filename is satisfactory, hit “Finish”.

Looking within the “output” directory for the bitmap file that was just exported from

the iPlot utility, the user should find a new file named “plot.bmp”. Looking at this file
in any standard image visualization software that can read and display bitmap files

will display the contents of the iPlot visualization as it currently appears.

The current iPlot visualization can also be sent directly to a printer for hardcopy
output :

20. Select “File > Print Preview…” from the main menu system.

A separate Print Preview window will be displayed [Fig. 2-16]. This tool allows the

user to control the layout of the iTools viewplane window in relation to a standard

8.5” x 11” piece of paper. Within the Print Preview window pane are horizontal and
vertical offset bars, along with a scaling box.

21. Change the orientation droplist to “Landscape”.
22. Click on the scaling box in the upper-right corner and move up or down to

make the size of the graphic larger or smaller, respectively.

23. Check the “Center” checkbox to automatically adjust the horizontal and
vertical offsets so the graphic is centered within the page. The user can also

manually move the individual offset bars.

24. If the computer being used is configured with a printer connection, the
“Setup…” button can be pressed to obtain the standard printer selection /
configuration dialog.

25. In addition, if the computer being used is configured with a printer
connection, the “Print” button can be pressed to direct output to the selected

printer.

IDL Quick Start - 34 - Two & Three Dimensional Plots

Figure 2-16: The iTools Print Preview tool

26. Once finished working with the Print Preview tool, press “Close”.
27. At this point, the IDL iPlot window containing the time-series visualizations

can be closed as it is no longer used from this point forward. This can be

accomplished by selecting “File > Exit” from the menu system or hitting the

Close button in the upper-right hand corner.

28. Restore the IDL Development Environment window so the IDL> command
prompt can be accessed.

Scatter, Histogram, Polar, and 3-Dimensional Plots

In addition to standard 2-Dimensional line plots, IDL also has the capability to

display X-Y scatter plots, histograms, polar plots, and 3-D line plots. The iTools

utilities can be launched with data automatically loaded using the arguments to the

appropriate iTool procedure call. Furthermore, the properties of the graphical

objects can be controlled by using the keywords to the iTool procedure. For

IDL Quick Start - 35 - Two & Three Dimensional Plots

example, create two 50 element vectors of uniformly-distributed, floating-point,

pseudo-random numbers by using the RANDOMU function :

1. IDL> x = RANDOMU (s, 50)

2. IDL> y = RANDOMU (s, 50)

The RANDOMU function returns two variables “x” and “y” that contain data values
ranging from 0 � 1.0 that are created by a random number generator. To visualize

these two vectors in a X-Y scatter plot, simply load the variables as arguments to

the IPLOT procedure and set the appropriate keywords in order to control the
properties of the plot object. In this example, the SCATTER keyword is set in order
to change the graphic style from the default line plot to scatter plot mode, the

SYM_INDEX keyword is set to the symbol index for small rectangular boxes, and the

COLOR keyword is set to a RGB triplet for the color red :

3. IDL> iPlot, x, y, /SCATTER, SYM_INDEX=6, COLOR=[255,0,0]

This will launch a new IDL iPlot window containing a X-Y scatter plot of the random

data values plotted as small red rectangles [Fig. 2-17].

4. It may help to click in the white viewplane outside of the graphics area to
deselect the scatter plot object in order to remove the cyan selection

markers.

Note: The appearance of the X-Y scatter plot that results may differ slightly from what appears in Fig. 2-
17 since the random numbers that are generated by the RANDOMU function will always be different.

5. Once finished viewing the X-Y scatter plot, close the IDL iPlot window.

IDL Quick Start - 36 - Two & Three Dimensional Plots

Figure 2-17: An X-Y scatter plot of the randomly generated numbers

A histogram can also be useful for visualizing 2-Dimensional signals or a density

plot showing a distribution of data values. In a histogram plot, only horizontal and

vertical lines are used to connect the plotted points. For example, plot a simple sine

wave using a histogram style plot :

6. IDL> sine = SIN (FINDGEN (50) / 5)

7. IDL> iPlot, sine, /HISTOGRAM, /FILL_BACK, FILL_COLOR=[255,0,0]

The resulting IDL iPlot visualization window should look like Fig. 2-18.

8. Once finished viewing the histogram plot, close the IDL iPlot window.

IDL Quick Start - 37 - Two & Three Dimensional Plots

Figure 2-18: A histogram style plot of a sine wave

So far all of the data that has been plotted is in a standard Cartesian (X-Y)

coordinate system. In some cases, the data may use a polar coordinate system,

which involves radius distances measured at various angles (theta) that are

expressed in units of radians. For example, create a vector named “theta” that

stores angles which encompass a full 360 degrees in 15° increments, and create a
vector named “radius” that contains distances which range from 0 � 24 :

9. IDL> theta = INDGEN (25) * 15 * !DTOR

10. IDL> radius = FINDGEN (25)

11. IDL> iPlot, radius, theta, /POLAR, XRANGE=[-24,24], $
 YRANGE=[-24,24]

The resulting IDL iPlot visualization window should look like Fig. 2-19.

12. Once finished viewing the polar plot, close the IDL iPlot window.

IDL Quick Start - 38 - Two & Three Dimensional Plots

Figure 2-19: A polar line plot of radius values that increase incrementally

Finally, the iPlot utility is not limited to two dimensions, and quite often it is
necessary to visualize datasets that have 3 variables (X, Y, Z) in three dimensions.

For example, consider the flight test data that is stored in the file “flight_test.txt”.
This example data file is located in the “data” subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\flight_test.txt

• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/flight_test.txt
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/flight_test.txt

The file “flight_test.txt” contains standard ASCII text consisting of 3 columns of data
separated by whitespace. The first column contains longitude location in units of

decimal degrees, the second column contains latitude position, and the third column

contains the altitude of the aircraft. Here are the first 2 lines of this ASCII text file :

 Longitude Latitude Altitude (feet)

 -97.3943 35.4237 798

This flight test data will be loaded into a new iPlot utility in the same manner as the
time-series data that was used in the previous exercise. Start by launching a new

blank IDL iPlot window :

IDL Quick Start - 39 - Two & Three Dimensional Plots

13. IDL> iPlot

14. Select “File > Open…” from the menu system.
15. Select the “flight_test.txt” file and hit “Open”.
16. In Step 1 of 3 for the ASCII Template wizard, make sure to change the “Data

Starts at Line:” field to “2”.
17. In the remaining steps of the ASCII Template wizard, all settings can be left

as their defaults. Simply hit “Next >>”, followed by “Finish”.

18. In the IDL iTools Create Visualization dialog, press “Select a visualization and
specify parameters” and hit “OK”. This will display the Insert Visualization
dialog.

19. In the Select a Visualization row in the lower-left hand corner, click on “Plot”
and change the graphic type droplist to “Plot3D” [Fig. 2-20].

20. Define the X parameter for the Plot3D visualization by clicking on “X” in the
table in the lower-left corner, select the “flight_test.FIELD1” in the upper-left

hand corner, then press the down arrow button. Do the same with

“flight_test.FIELD2” as the Y parameter, and “flight_test.FIELD3” as the Z
parameter [Fig. 2-20].

21. Once this is accomplished, hit “OK” to load the 3-Dimensional line plot.

Figure 2-20: Specifying the parameters for the 3-D line plot

The resulting IDL iPlot window should look like Fig. 2-21.

IDL Quick Start - 40 - Two & Three Dimensional Plots

Figure 2-21: The 3-Dimensional line plot of flight test data

All of the same translation, rotate, zoom, and scaling manipulators are available

within the iTools system when a 3-Dimensional graphic is displayed, although they

act in three dimensions.

22. Once finished viewing the 3-Dimensional line plot, close the IDL iPlot window.
23. Before moving on to the next chapter, it is a good idea to reset the IDL

session. This can be accomplished by executing the statement :

IDL> .reset_session

IDL Quick Start - 41 - Contours and Surfaces

Chapter 3: Contours and Surfaces

Contouring a 2-Dimensional Dataset

IDL has the ability to create contour plots of data stored in a rectangular 2-D array

or a set of irregular unstructured points (X, Y, Z). One of the most appropriate

datasets that can be visualized with contours is a digital elevation model, or “DEM”,

which is a gridded 2-D matrix of elevation values that define the topography for a

region. In the following exercise, DEM data for the Grand Canyon in Arizona will be

displayed within the iContour utility. This example data is stored in a file named
“Grand_Canyon_DEM.tif” that is located in the “data” subfolder of the Quick Start
directory :

• Windows:

 C:\RSI\IDL##\IDL_QS_Files\data\Grand_Canyon_DEM.tif
• UNIX et al.:

 /usr/local/rsi/idl_#.#/IDL_QS_Files/data/Grand_Canyon_DEM.tif
• Mac OS X:

 /Applications/rsi/idl_#.#/IDL_QS_Files/data/Grand_Canyon_DEM.tif

Although the file “Grand_Canyon_DEM.tif” is in TIFF image format, the pixels of this
dataset contain actual elevation data values in units of meters. Use the following

steps to load this dataset into the iContour utility :

1. IDL> iContour

2. Select “File > Open…” from the IDL iContour window.
3. Select the “Grand_Canyon_DEM.tif” file and hit “Open”.
4. A contour graphical object with the default properties will be automatically

inserted into the IDL iContour window.

5. It may help to maximize the iTool window in order to see the graphic, so
select “Window > Zoom on Resize” from the menu system and maximize the
IDL iContour window.

6. Select the contour plot object, right-click, and select “Properties…”.
7. Within the Visualization Browser window, click on the box to the right of the

“Levels color table” property and select “Edit…” [Fig. 3-1].
8. A separate dialog entitled Palette Editor will be displayed. In the “Load
Predefined…” droplist, select the “RAINBOW” color table.

9. Press “OK” to dismiss the Palette Editor window.
10. At this point the IDL iContour window will be brought to the foreground.

Relocate the Visualization Browser window, which may be behind the IDL
iContour window. Change the “Number of levels” property to a value of “10”,
hit Enter on the keyboard to complete the change, and close the Visualization
Browser window [Fig. 3-1].

The DEM data for the Grand Canyon should now be displayed with a sequence of

color contours that resembles a topographic map. The elevation at which the

IDL Quick Start - 42 - Contours and Surfaces

contours are drawn are automatically computed by dividing the data value range

(minimum to maximum) into 10 evenly sized levels. The exact elevation for any

given contour, and all other relevant properties, can also be modified by the user if

necessary.

Figure 3-1: Modifying the properties of the contour plot

The iTools system also have built-in tools for inserting a colorbar and legend for a

contour plot graphic :

11. Make sure the contour plot is selected.
12. Select “Insert > Colorbar”. A colorbar showing the color table and range of

elevations is automatically inserted below the graphics area.

13. Reselect the contour plot.
14. Select “Insert > New Legend”. Re-position the legend that is inserted in the

upper-right hand corner.

The final IDL iContour window should appear like Fig. 3-2.

15. Once finished viewing the contour plot visualization, close the IDL iContour
window.

IDL Quick Start - 43 - Contours and Surfaces

Figure 3-2: Contour plot visualization of DEM data for the Grand Canyon

Creating a Surface from a 2-Dimensional Dataset

A surface representation provides a way to visualize a gridded 2-Dimensional array

of data values as a 3-Dimensional object. The height of the surface at any given X-Y

location is defined by the data value (Z). In some cases, the 2-Dimensional data

may be in the form of 3 unstructured (X, Y, Z) vectors instead of a gridded matrix.

For example, elevation data is quite often measured and stored in irregular X-Y-Z

format. In order to visualize this type of data as a surface graphical object, the data

must first be gridded using an interpolation algorithm that converts the scattered

data values into a 2-Dimensional array. Fortunately, the iTools system has a built-in

Gridding Wizard to help walk the user through the process of gridding irregular X-Y-Z
data.

In the following exercise, the X-Y-Z data from the example data file “elevation.txt”
will be input into the iSurface utility. This example data file is located in the “data”
subfolder of the Quick Start directory :

IDL Quick Start - 44 - Contours and Surfaces

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\elevation.txt
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/elevation.txt

• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/elevation.txt

The file “elevation.txt” contains standard ASCII text consisting of 3 columns of data
separated by commas. The first column contains the longitude position, the second

column contains latitude, and the third stores the elevation data values. Here are

the first 2 lines of this ASCII text file :

Longitude,Latitude,Elevation

-136.049,59.3303,3537

Use the following steps in order to load the data from the file “elevation.txt” into the
iSurface utility :

24. IDL> iSurface

25. Select “File > Open…” from the menu system.
26. Select the “elevation.txt” file and hit “Open”.
27. In Step 1 of 3 for the ASCII Template wizard, make sure to change the “Data

Starts at Line:” field to “2”.
28. In the remaining steps of the ASCII Template wizard, all settings can be left

as their defaults. Simply hit “Next >>”, followed by “Finish”. There may be a
short delay while IDL ingests the data from this ASCII text file.

29. In the IDL iTools Create Visualization dialog, select “Launch the gridding
wizard” and press “OK”.

30. The IDL Gridding Wizard window will appear. In Step 1 of 3, the wizard
describes the data that was input and displays a preview of the resulting 2-

Dimensional grid. Confirm that this dialog appears as it does in Fig. 3-3 and

hit “Next >>”.
31. In Step 2 of 3, change the “Dimension:” parameter for both the “X

coordinates:” and “Y coordinates:” from the default setting of “25” to “500”
[Fig. 3-4] and hit “Next >>”.

32. In Step 3 of 3, change the “Please choose a gridding method:” droplist setting
to “Linear” [Fig. 3-5] and hit “Finish”.

IDL Quick Start - 45 - Contours and Surfaces

Figure 3-3: Step 1 of 3 for the IDL Gridding Wizard

Figure 3-4: Step 2 of 3 for the IDL Gridding Wizard

IDL Quick Start - 46 - Contours and Surfaces

Figure 3-5: Step 3 of 3 for the IDL Gridding Wizard

After the IDL Gridding Wizard is completed, the selected gridding and interpolation
algorithm is used to convert the unstructured X-Y-Z data into a 2-Dimensional grid.

Once this processing is finished, a surface object for the elevation data will be

displayed within the IDL iSurface window [Fig. 3-6]. At this point, it may be

beneficial to maximize the iSurface utility :

33. From the IDL iSurface window menu system, select “Window > Zoom on
Resize”.

34. Maximize the IDL iSurface window.

IDL Quick Start - 47 - Contours and Surfaces

Figure 3-6: Surface visualization of the X-Y-Z format elevation data

Manipulating 3-Dimensional Graphical Objects

The object selection, translation, view zoom, undo/redo, and annotation tools all

behave in the same exact manner as they do in 2-Dimensional graphics mode.

However, when an iTool is displaying a 3-Dimensional graphical object, the scaling

and rotate manipulators behave in a slightly different fashion.

There are 3 types of scaling available for 3-D objects :

• Constrained Scaling

o Multiple-Axis Scaling (mouse pointer)

o Single-Axis Scaling (mouse pointer)

• Unconstrained Scaling (mouse pointer)

The multiple-axis scaling mouse pointer for 3-D objects is obtained when the

mouse pointer is positioned over a corner of a 3-D object’s data space. Dragging the

constrained scaling pointer scales the object a fixed distance along all axes in the

IDL Quick Start - 48 - Contours and Surfaces

direction of the drag. In contrast, the single-axis scaling is accessed when the

mouse pointer is positioned over an axis “whisker”, which are small linear hash

marks on the edges of the data space in the direction of the three orthogonal axes.

Dragging along an axis whisker scales the object only in the direction of the axis
(and the arrows of the mouse pointer). Finally, unconstrained scaling of 3-D objects

can be performed when a single side of the data space bounding box is dragged,

scaling the object along the dimensions of the selected side.

1. Experiment with the 3 different styles of scaling with the 3-D surface object
within the IDL iSurface window.

2. Use the single-axis constrained scaling along the Z-dimension whisker to
adjust the vertical exaggeration of the surface object. It may be appropriate

to reduce the vertical exaggeration in order to make a more realistic

visualization of the terrain.

3. If at any time an undesirable scaling operation is performed, remember that
the Undo tool can be used to reverse the operation.

The rotation of 3-D objects in the iTools system can be done in a freehand

(unconstrained) fashion or constrained along each of the three orthogonal axes.

When a 3-D object is selected within rotation mode, a rotation sphere consisting of

circular X, Y, and Z dimension axes is displayed around the object. To rotate an

object in a constrained fashion, position the mouse cursor over one of the three axis

circles in the rotation sphere until the cursor changes to a constrained rotation

pointer and drag in the desired direction. To rotate an object in an freehand fashion

simply position the mouse pointer anywhere on the object until the cursor changes

to an unconstrained rotation pointer and drag in any arbitrary direction.

4. Experiment with both constrained and freehand rotation of the 3-D surface
object.

Adding Contours and a Texture Map

One of the benefits of the object-oriented design of the iTools system is the ability to

make composite visualizations that include more than one graphic. The data that is

currently being used to define the surface graphical object is digital elevation data,

and as the previous exercise demonstrated it is quite appropriate to visualize DEM

data using a contour plot. Fortunately, the iTools has a built-in operation that allows

the user to automatically add contours to the current visualization utility.

1. Using the Select/Translate arrow, select the surface object within the IDL

iSurface window.
2. While the surface object is highlighted, select “Operations > Contour” from

the menu system. The Contour dialog will appear [Fig. 3-7].

3. Within the Contour dialog, change the “Number of levels” parameter to “20”
[Fig. 3-7].

4. Click in the box to the right of “Projection” parameter and change its setting
to “Three-D” [Fig. 3-7].

5. Once these changes have been made, press the “OK” button. This will insert
the contour graphical object within the same iSurface utility as the existing
surface object.

IDL Quick Start - 49 - Contours and Surfaces

Figure 3-7: Options when inserting a contour visualization

In order to get a better view of these contours, it may be beneficial to change their

color so it contrasts with the surface.

6. Select “Window > Visualization Browser…” from the menu system.
7. Make sure the Contour object is selected. Within the property sheet along the

right-hand side, click on the box to the right of the “Contour level properties”

item and select “Edit…”.
8. A separate window entitled “Contour Levels” will appear. The first column of

this dialog can be used to adjust the properties of all of the contours. Change

the “Color” property for “All Levels” to bright blue and hit “OK” to dismiss this
dialog.

9. Close the Visualization Browser window.

The resulting visualization should look similar to Fig. 3-8.

IDL Quick Start - 50 - Contours and Surfaces

Figure 3-8: Surface with contours draped on top

In addition to the ability to drape contours on top of a surface, IDL also has the

capability to drape images on top of 3-Dimensional graphical objects. This

visualization technique involves the use of what’s known as a texture map.

The example “data” subfolder of the Quick Start directory contains a PNG image file
of a satellite image that covers the same exact area as the elevation data :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\satellite.png
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/satellite.png

• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/satellite.png

This image can be draped on top of the surface as a texture map using the following

steps :

10. First, remove the contours so they will not hinder the display of the texture
map image. This can be accomplished by opening the Visualization Browser,

right-click on the Contour object, and select “Delete”.
11. Close the Visualization Browser window.
12. Within the IDL iSurface window select the surface object, right-click, and

select “Parameters…”.

IDL Quick Start - 51 - Contours and Surfaces

The Parameter Editor dialog will appear. In the lower-left hand corner the

parameters that define the current surface object are listed. Currently, only the “Z”,

“X”, and “Y” parameters has been defined using the elevation data. Notice that there

is also a parameter called “TEXTURE”, and it is this parameter that can be used to

specify a texture map image to drape on top of the surface. However, the

“satellite.png” file must first be opened and input into the iTools system.

13. From the Parameter Editor window, press the “Import File…” button. This will
launch the File Import dialog.

14. Within the File Import dialog, press the file selection button, navigate to

the appropriate location, select the file “satellite.png” and hit “Open”.
15. Once this file is selected, the File Import wizard should recognize the format

as being “Portable Network Graphics”.
16. Hit “OK” to dismiss the File Import dialog.
17. Back within the Parameter Editor, expand the new “satellite.png” image item

so the “Image Planes” contained within are visible. This image is in 24-bit

RGB true color mode, so it has 3 image planes.

18. Select the “Texture” row located in the lower-left table, and then double-click
the “Image Planes” from the Data Manager in the upper-left corner of the

window in order to load this image as the surface’s texture map [Fig. 3-9].

19. Once this is accomplished, press “Apply” followed by “Dismiss” to complete
the changes.

The resulting visualization should look similar to Fig. 3-10.

20. Once finished viewing the surface visualization, close the IDL iSurface utility.
21. Before moving on to the next chapter, it is a good idea to reset the IDL

session. This can be accomplished by executing the statement :

IDL> .reset_session

IDL Quick Start - 52 - Contours and Surfaces

Figure 3-9: Using the satellite image to define a texture map

Figure 3-10: Surface with texture map draped on top

IDL Quick Start - 53 - Working with Images

Chapter 4: Working with Images

Image Display, Enhancement, and Regions of Interest

The IDL iImage tool can be used to display gridded 2-Dimensional arrays of data in

image form. The iImage utility has built-in support for the input of images in BMP,
DICOM, GIF, JPEG, JPEG2000, PICT, PNG, and TIFF formats. Once an image is

loaded into the iImage tool there are several options for visualizing, manipulating,
and processing the imagery. Furthermore, the library of IDL routines contains a rich

suite of image processing algorithms.

In the following exercise, the image data from the example data file “MRI.dcm” will

be input into the iImage utility. This example data file is located in the “data”
subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\MRI.dcm

• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/MRI.dcm
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/MRI.dcm

The file “MRI.dcm” is in DICOM format, which is the industry standard for storing

imagery and diagnostic patient information in the radiology community. This file

contains a grayscale (black-and-white) image of a MRI exam involving a single slice

through a human brain. The MRI image can be loaded into the iImage utility using

the following steps :

16. From the IDL Development Environment window, select “File > New >
Visualization > iImage”. A separate IDL iImage window will appear.

17. Click on the open file button on the toolbar of the IDL iImage window.
18. Select the “MRI.dcm” file and hit “Open”. An image graphical object will be

automatically inserted into the utility.

Along the right-hand side of the iImage utility is a panel that is not present on the
other iTools utilities. This panel contains cursor query, histogram manipulation, and

ROIs (Regions Of Interest) tools specific to the image graphical object.

19. While the image object is selected and the iTool is in Select/Translate arrow
mode, move the mouse cursor over the image and watch the “Pixel Location:”

and “Pixel Value:” fields update.

The origin location for the image (0,0) is considered to be the pixel in the lower-left

hand corner. Within the “Pixel Value:” field there is actually 2 numbers displayed:

the first being the actual image data pixel value, and the second within parentheses

is the scaled display value [Fig. 4-1]. Since the computer monitor can only display

256 (or sometimes less) levels of discrete brightness for each color channel, all
image data is scaled to fit within the range of 0 � 255 automatically by the iImage

utility if it does not already. The “Min:” and “Max:” fields within the Image panel

IDL Quick Start - 54 - Working with Images

show that the actual data range for this image is 0 � 402, so these image pixel data

values must be scaled in a linear fashion to fit within the corresponding display range

of 0 � 255.

Figure 4-1: The iImage utility displaying a MRI image of a human brain

The Image panel also displays a small histogram (density) plot of the pixel data

values displayed on its side [Fig. 4-1]. The histogram plot ranges from the minimum

pixel data value on the bottom to the maximum pixel value on the top. Since the

current image is dominated by very dark pixels (i.e. the black area around the

border), the scaling of this histogram is skewed and difficult to visualize in such a

small display window. Fortunately, the iTools system has a built-in operation for

creating a separate iPlot utility that displays the density distribution for data objects

using a histogram plot.

20. Make sure the image object is selected.
21. From the IDL iImage window menu system, select “Operations > Histogram”.

A separate IDL iPlot window appears, and the histogram density plot for the image is
displayed in a more robust fashion. Notice that most of the pixels in the image

(more than 40,000) have a very low (dark) data value.

22. Once finished viewing the image histogram, close the separate IDL iPlot
window.

IDL Quick Start - 55 - Working with Images

The image histogram window within the Image panel has 3 horizontal bars that the
user can interactively click-and-drag in order to modify the input data range that is

used to compute the output scaled image [Fig. 4-1]. The red bar is used to

designate the minimum threshold value, the green bar corresponds to the maximum

threshold value, and the black bar in the middle is used to move the current range

up and down within the image histogram. In other words, all input image data pixel

values that are equal to or less than the current location of the red bar are saturated

to an output display value of 0 (black), all input image data pixel values that are

equal to or greater than the current location of the green bar are saturated to an

output display value of 255 (white), and all of the pixel values in between are scaled

in a linear fashion from 1 � 254.

23. Click on the green maximum image stretch bar and move it down within the
histogram plot window. Notice how the “Max:” field within the Image panel

updates with the selected pixel data value, and the image display is

automatically updated based on the stretch modification.

24. Click on the red minimum image stretch bar and move it up within the
histogram plot window.

25. Finally, click on the black range location bar and move it up and down to re-
position the current image stretch.

26. Once finished experimenting with the histogram manipulation tool, reset the
stretch to its original state by moving the green and red bars to the top and

bottom of the window, respectively.

The Image panel within the iImage utility also has built-in regions of interest (ROI)

tools that can be used to specify certain areas within an image for processing and

analysis.

27. While the image object is selected, click on the freehand ROI definition

button to enter into ROI definition mode.

28. Once the mouse cursor is positioned over the image object it will change to
the ROI definition pencil pointer. Click-and-drag with the mouse to draw a

ROI on top of a feature within the MRI image. When the mouse button is

released the ROI definition will complete to a solid polygon, and the new ROI

will be highlighted with small green boxes.

Once the ROI definition is complete, the object can be resized and moved by clicking

on or within the green highlight boxes. Now that a region of interest has been

defined, the user can obtain useful information about the image pixels contained

within the region such as statistics :

29. While the ROI object is highlighted, select “Operations > Statistics…” from the
menu system.

A separate dialog entitled “Display statistics for the selected item” will appear, which

lists useful statistical information on the image data contained within the region of

interest [Fig. 4-2].

Note: The exact statistical information that is reported will vary from what appears in Fig. 4-2 since the

ROI is drawn in an arbitrary fashion.

IDL Quick Start - 56 - Working with Images

Figure 4-2: Statistical information on the image data within the defined ROI

30. Once finished viewing the statistical information, close the “Display statistics
for the selected item” dialog.

31. While the ROI object is selected and highlighted, right-click on it and select
“Delete” in order to remove it from the current visualization.

Color Palettes, Filtering, and Morphology

Currently the MRI image is displayed with a simple grayscale color palette that was

read-in from the DICOM file on disk. This palette displays the image in a very simple

black-and-white fashion. In addition to the standard grayscale color palette, IDL

also has a number of pre-built color tables that can be applied to singe channel

images in order to give them a colored appearance.

1. Select the image, then press the “Edit Palette…” button on the Image panel.
2. A separate Palette Editor dialog will appear. Within this window press the

“Load Predefined…” droplist and select the “BLUE/GREEN/RED/YELLOW” color
palette.

3. Press “OK” to dismiss the Palette Editor dialog.

Instead of displaying the image with the input Black � Gray � White color palette,

the IDL iImage utility is now applying the selected color table and displaying the
image brightness values through the color range of Black � Blue � Green � Red �

Yellow. This allows the user to visualize the features within the image in color and

IDL Quick Start - 57 - Working with Images

can help highlight aspects of the image that were not readily visible in standard

black-and-white mode.

4. Experiment with moving the green, red, and black stretch manipulation bars
on the image histogram once again to see the effect the new color palette has

on the image display.

5. Once finished experimenting with the histogram manipulation tool, reset the
stretch to its original state by moving the green and red bars to the top and

bottom of the window, respectively.

At this point it may be useful to insert a colorbar into the current visualization so the

user can see how the input image pixel data range maps to the colors that are

displayed.

6. Make sure the image object is selected, and from the menu system select
“Insert > Colorbar” [Fig. 4-3].

Figure 4-3: The MRI image displayed with a color palette

In addition to the extraction of statistics, there are a number of other standard

image processing tools found within the Operations menu. The operations available

for an image object include the ability to apply a filter, highlight shapes using

morphological operators, and rotate or flip the image.

7. Make sure the image object is highlighted and select “Operations > Filter >
Smooth” from the menu system.

IDL Quick Start - 58 - Working with Images

8. Within the Smooth dialog, leave all parameters set to their default values and
simply press the “OK” button.

This operation will apply a smoothing image filter, which helps to remove unwanted

noise using a weighted average. Notice how the image histogram and colorbar

automatically update based on the image that is returned from this operation.

9. Select “Operations > Filter > Sobel Filter” from the menu system.

The Sobel filter operation uses the Sobel edge enhancement algorithm to detect and

highlight edges within the image.

10. Finally, select “Operations > Morph > Morph Open” from the menu system.
11. Within the Morph Open dialog, leave all parameters set to their default values

and simply press the “OK” button.

The opening morphological operator removes noise from an image while maintaining

the overall sizes of objects in the foreground. The resulting visualization should look

similar to Fig. 4-4.

Figure 4-4: The result of applying Smooth, Sobel and Morph Open operations

12. Once finished viewing the MRI image visualization, close the IDL iImage
window.

IDL Quick Start - 59 - Working with Images

Line Profiles, Contouring, and Advanced Processing

In the following exercise, the image data from the example data file “nebula.jpg” will

be input into the iImage utility. This example data file is located in the “data”
subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\nebula.jpg

• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/nebula.jpg
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/nebula.jpg

The file is in JPEG format and contains an image of the famous Ring Nebula taken by

the Hubble Space Telescope. In contrast to the single channel MRI image used in

the last exercise, this dataset is a 3 channel (Red, Green, Blue) 24-bit true color

image. In this case, the three color channels are displayed together in order to

visualize the color image. Use the following steps to load the “Nebula.jpg” image
into a new iImage utility :

1. IDL> iImage

2. Click on the open file button on the toolbar of the IDL iImage window.

3. Select the “Nebula.jpg” file and press “Open”.

The color image be automatically displayed within the IDL iImage window.

4. Move the mouse cursor over the image and notice how the “Pixel Value:” field
in the Image panel is now reporting 3 pixel values: one each for the R (red),
G (green), and B (blue) image channels that are combined together to make

the color display.

In this case, the image data values already fall within the display range of 0 � 255,

so no scaling is needed.

The iImage utility has a built-in line profile tool that will plot image pixel values along
a user-defined transect. This tool will automatically launch a secondary iPlot utility

containing line plots for the pixel values along the selected line for each of the three

red, green, and blue image channels.

5. While the image object is selected, click on the line profile button on the

toolbar.

Once the mouse cursor is positioned over the image object it will change to the line

profile pointer. In order to define a line profile, the user must left-click at the

desired starting location for the transect, hold down the mouse button, drag to the

desired ending location for the transect, and release the mouse button in order to

complete the profile. Once this is accomplished a separate iPlot utility will be
launched containing the 3 line profiles (one for each color channel).

6. Using the mouse, click-and-drag from the upper-right hand corner of the
image to the lower-left hand corner.

The resulting IDL Line Profile window should look similar to Fig. 4-5.

IDL Quick Start - 60 - Working with Images

Figure 4-5: Line profiles extracted from the color JPEG image

7. Once finished viewing the line profiles, close the IDL Line Profile window.
8. To remove the line from the current visualization, click on it and press the
Delete key on the keyboard.

Since image data is actually a gridded 2-Dimensional array of pixel values, it can

also be visualized using some of the other graphical objects available in the iTools

system. For example, it is quite easy to insert a contour plot into the existing utility

in order to make a composite visualization.

9. Make sure the image object is selected.
10. From the menu system, select “Operations > Contour”.
11. Within the Contour dialog box, change the “Number of levels” parameter to

“10”.
12. Press the “OK” button to dismiss the Contour dialog box.
13. Select “Window > Visualization Browser…” to view the property sheet for the

new contour object.

14. Within the Visualization Browser window, make sure the contour object is
selected, click on the box to the right of the “Contour level properties” item,

and select “Edit…”.

IDL Quick Start - 61 - Working with Images

15. Within the first “All Levels” column, change the “Color” property to bright
green and hit “OK”.

16. Close the Visualization Browser window.

The resulting visualization should look similar to Fig. 4-6.

Figure 4-6: Contour map overlaid on top of the image display

In addition to the analysis capabilities exposed within the iTools system under the

Operations menu, the IDL library includes hundreds of routines that provide

advanced processing capabilities. Some of these processing algorithms are very

specialized, and it is not appropriate to place an item within the Operations menu in
the iTools system to run all of these more advanced tools. Fortunately, the iTools

system was designed in a manner that allows the user to easily pass data back-and-

forth between an iTool utility and the IDL> command prompt.

In the following exercise, the green channel for the current image will be exported

from the iImage utility to the IDL> command prompt level within the IDL

Development Environment for specialized processing. First, the green channel image

will be smoothed using the SMOOTH function in an effort to minimize noise. Then,

the WATERSHED function from the IDL library will be used to segment the image into

watershed regions and their boundaries. The watershed algorithm considers the

grayscale image as a surface, where each local minimum can be thought of as the

point to which water falling on the surrounding region drains. The boundaries of the

watersheds lie on the tops of the ridges. This operator labels each watershed region

IDL Quick Start - 62 - Working with Images

with a unique index pixel value, and sets the boundaries to zero so they are readily

visible.

17. From the IDL iImage window menu system, select “File > Export…”.
18. In Step 1 of 3 for the IDL Data Export Wizard, select “To an IDL Variable” and

hit “Next >>”.

19. In Step 2 of 3, expand the object hierarchy tree until the green image plane
“Channel 1” can be selected [Fig. 4-7].

Figure 4-7: Selecting the green channel image for export to IDL

20. Press “Next >>”, and within Step 3 of 3 leave the “IDL Variable Name:” field
set to the default “Channel_1” and hit “Finish”.

21. Bring-up the IDL Development Environment window so the IDL> command
prompt can be accessed. Execute the following statements at the IDL>

command prompt.

22. IDL> HELP, Channel_1

This will report to the output log that a 2-Dimensional byte array with the same

spatial size as the Ring Nebula image loaded into the iImage utility now exists within
IDL’s main memory space :

CHANNEL_1 BYTE = Array[500, 500]

This is a duplicate copy of the same data that is stored in the iImage utility, so it can

be acted upon in a manner independent of the image that is currently being

displayed. Now execute the advanced watershed analysis :

IDL Quick Start - 63 - Working with Images

23. IDL> smoothed = SMOOTH (Channel_1, 9, /EDGE_TRUNCATE)

24. IDL> segmented = WATERSHED (smoothed, CONNECTIVITY=8)

Once this is accomplished, a new variable named “segmented” exists at the main IDL
level which contains the resulting watershed image. This new image can be loaded

into the existing iImage utility and compared to the original image using the
following steps :

25. From the IDL iImage menu system, select “Window > Layout…”. This will
bring-up a separate dialog entitled “Window Layout” [Fig. 4-8].

26. Within the Window Layout dialog, change the “Columns:” field to “2” and hit
Enter on the keyboard. The Preview pane will update to show the new

viewplane which will be inserted into the existing iImage utility [Fig. 4-8].

Figure 4-8: The Window Layout tool within the iTools system

27. Press “OK” to dismiss the Window Layout dialog.
28. The user will be returned to the iImage utility, where the original viewplane

will be selected and highlighted with a red border. Click within the new

viewplane on the right-hand side in order to designate it as the target for

future visualization insertion. Once this is accomplished, the viewplane on

the right-hand side of the utility will be outlined in red.

29. Select “Insert > Visualization…” from the menu system.
30. Within the Insert Visualization dialog, press the “Import Variable…” button.
31. Within the IDL Variable Browser window, select the “SEGMENTED” variable

and hit “OK”.
32. Back within the Insert Visualization dialog, click on the new “SEGMENTED”

data object and use it to define “IMAGEPIXELS” parameter of a new Image
object visualization.

IDL Quick Start - 64 - Working with Images

33. Press “OK” to dismiss the Insert Visualization dialog and insert the image for
the watershed analysis into the second viewplane.

The watershed analysis has segmented the image into discrete regions, which are

currently being displayed with the default grayscale color palette. It is more

effective to visualize this watershed image using one of IDL’s built-in color tables.

34. Select the new watershed segmentation image and press the “Edit Palette…”
button.

35. Within the Palette Editor dialog click on the “Load Predefined…” droplist and
select the “Rainbow + white” color table.

36. Press “OK” to dismiss the Palette Editor dialog.

The resulting visualization should look similar to Fig. 4-9.

Figure 4-9: Display of the watershed analysis segmentation image

37. Once finished viewing the two images, close the IDL iImage utility.
38. Before moving on to the next chapter, it is a good idea to reset the IDL

session. This can be accomplished by executing the statement :

IDL> .reset_session

IDL Quick Start - 65 - Volume Rendering

Chapter 5: Volume Rendering

Displaying 3-Dimensional Volumetric Data

A volumetric dataset consists of a 3-Dimensional array of numbers that represent a

certain measurement made at each element location within the 3-D space. Each

data element location within the 3-D array is called a voxel, which is analogous to a

three-dimensional pixel. One manner in which volumetric datasets can be created is

by stacking numerous 2-D image slices together into a three-dimensional array.

In the following exercise, volumetric data of numerous image slices from the Visible

Human project stacked together will be visualized using the iVolume utility. This

volume consists of seventy 128 x 128 image slices acquired through the torso of a

human body. This example data is stored in a file named “torso.dat” that is located
in the “data” subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\torso.dat
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/torso.dat
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/torso.dat

The “torso.dat” file does not have any particular file format, and the data is stored
within this file in a flat binary fashion. Consequently, the user will be required to

provide IDL with the information it needs in order to successfully read the data from

the file on disk. Use the following steps to load this dataset into the iVolume utility :

1. IDL> iVolume
2. Select “File > Open…” from the IDL iVolume window.
3. Within the Open dialog, change the “Files of type:” droplist to “All files (*)”.
4. Select the “torso.dat” file and hit “Open”.

The dialog for the Binary Template wizard will appear. This wizard helps walk the
user through the steps of providing IDL with information on the structure of the

binary file so the data can be read into the iVolume utility. The user must provide
the following basic information in order for the data to be successfully input :

• Number of dimensions

• Size of each dimension

• Data type

• Offset (size of header)

• Byte order (Little Endian or Big Endian)

Without this information, there is no way for the software to know how to read-in the

binary data from the file on disk.

5. Start by pressing the “New Field…” button within the Binary Template wizard.

IDL Quick Start - 66 - Volume Rendering

A field is basically a data segment that will be read-in from the file on the harddrive.

In this case, the “torso.dat” file only contains the stacked image data, so the entire

volume will be input from the file as one field.

6. Within the New Field dialog, set the “Field name:” parameter to the string
“torso” [Fig. 5-1].

7. The data type for this volumetric dataset is unsigned 8-bits (Byte), so the
“Type:” droplist can be left as its default setting [Fig. 5-1].

8. The selected data file does not contain a header, so the “Offset:” parameter
can be left as its default “>0” setting [Fig. 5-1].

9. The volumetric dataset has three dimensions, so set the “Number of
dimensions:” droplist to “3” [Fig. 5-1]. Once this is accomplished, the “Size:”
text boxes for the 1st, 2nd, and 3rd dimensions will become active.

10. The seventy images are stored within this volume using an interleave known
as band-interleaved by line (BIL). Consequently, the dimensions of the 3-D
array are 128 x 70 x 128 [Fig. 5-1].

11. Once these settings have been completed, press “OK” to dismiss the New
Field dialog.

Figure 5-1: The New Field dialog within the Binary Template wizard

The user will be returned to the Binary Template wizard, which will show the
parameters for the “torso” field definition that was just created [Fig. 5-2].

IDL Quick Start - 67 - Volume Rendering

12. Since the data type for the selected file is only single bytes, the user does not
need to be concerned with the byte order, and the “File’s byte ordering:”

droplist can be left as its default setting of “Native” [Fig. 5-2].
13. Press “OK” to complete the Binary Template wizard.

Figure 5-2: The completed Binary Template wizard

Once the Binary Template wizard is finished a 3-Dimensional volume object will be
automatically inserted into the IDL iVolume utility. By default, the data space and
axes will be shown, but the volume itself will not be rendered.

There are a number of ways to visualize volumetric data within the iVolume utility.
Of course, the individual image planes that were stacked up to create the volume

can be extracted and viewed in each of the three (X-Y, Y-Z, and X-Z) orthogonal

planes. A technique known as isosurfacing can be used to contour the data, which

creates a surface that shows the voxels in the 3-D data space that all have a

specified data value (the isovalue). In addition, an interval volume can be

extracted which is a tetrahedral mesh that spans the 3-D data space between two

isosurfaces created at different data values. Finally, true volume rendering can be

performed, which maps the voxel data elements to colors and opacity values through

a set of lookup tables, then projects the 3-D volume to a two-dimensional graphical

visualization. By default, the volume object within the iVolume utility is setup to

perform volume rendering.

14. While the data space is selected, click on the “Render” button within the
Volume panel on the right-hand side of the iVolume utility.

A volume rendering of the 3-Dimensional array is created using the default color

palette (grayscale) and opacity settings. The reason the iVolume utility forces the
user to press the “Render” button in order to visualize the object is because the
volume rendering process of very large datasets can be very computationally

intensive. In most cases, it is not feasible to constantly render the volume object

when any of the standard iTools manipulators (Translate, Rotate, Zoom, etc.) are

IDL Quick Start - 68 - Volume Rendering

used to modify the visualization, especially when performing a click-and-drag

operation.

15. Using the Select/Translate arrow button, click on the data space and

move it slightly in one direction within the viewplane. The volume rendering

of the object disappears.

Since the current volumetric dataset is relatively small, the Auto-Render option can

be turned on so the iVolume utility will automatically update the visualization after

every action.

16. Click on the small white checkbox to the left of the Auto-Render option to
enable the auto-rendering capability.

Now the volume will be constantly rendered while object manipulations are being

performed.

Data Space Scaling

Currently the data space is displayed with its default geometry, which scales the

volume object in each of the three dimensions so it fits within a perfect cube.

However, the size of this volume is actually 128 x 70 x 128, so it is not equal in all

three dimensions. Consequently, the volume object is being exaggerated in the Y

dimension (70) to fit the same 3-Dimensional space as the other X and Z dimensions

(128). In order to display the volume with its true geometry, the scaling of the data

space must be set to isotropic.

1. From the IDL iVolume menu system, select “Window > Visualization
Browser…”.

2. On the left-hand side of the Visualization Browser window, select the “Data
Space” object [Fig. 5-3].

3. In the Data Space property sheet, click on the box to the right of the
“Isotropic scaling” property and set the droplist to “Isotropic” [Fig. 5-3]. The

volume object within the iVolume utility will automatically update and display

the data space in an isotropic fashion.

4. Close the Visualization Browser window.

The data space is now displayed in an isotropic fashion and the length of each of the

three X-Y-Z axes is proportionate to their size.

IDL Quick Start - 69 - Volume Rendering

Figure 5-3: Changing the scaling of the data space object to isotropic

Volume Object Properties

Volume objects have numerous properties that control the manner in which they are

rendered. These properties define the rendering attributes for the visualization. The

first properties of the volume rendering that can be easily modified by the user are

present in the Quality and Boundary droplists on the Volume panel along the right-
hand side of the iVolume utility. By default, the iVolume utility displays the volume

with a low rendering quality and solid walls boundary.

There are two rendering qualities available for the volume object visualization :

• Low (textures): Rendering is performed with a stack of 2-D texture-

mapped semi-transparent polygons. The polygons are oriented so that the

flat sides face the viewer as directly as possible. On most computers, low

quality mode renders the volume faster but with less accuracy.

• High (volume): Rendering is performed with a ray-casting volume renderer.

This quality is more CPU-intensive and will usually take much longer to

complete than low quality mode, but creates a much more accurate

visualization.

The Boundary option displays an internal translucent solid cube within the data

space, which is useful when the volume is not automatically rendered so that the

user can locate and select the volume when no graphic is visible. Since the Auto-

Render option is currently enabled, there is no need to display the boundary.

1. Change the Quality droplist to “High (volume)” and the Boundary droplist to
“None”. Notice the effect these changes have on the volume rendering
visualization [Fig. 5-4].

IDL Quick Start - 70 - Volume Rendering

Figure 5-4: Volume rendering with high quality and no internal extents

Once the rendering quality is set to high, the Render Step “X:”, “Y:”, and “Z:” fields

will become sensitive, which allow the user to specify the stepping factor (in screen

dimensions) through the voxel matrix [Fig. 5-4]. By default, these fields are set to

“1” so that each and every voxel is considered when the volume is rendered.

Changing this setting to “2” would render only half as many voxels in the specified
screen dimension.

It is much quicker and easier to modify the other properties of the volume

visualization when the Auto-Render functionality is turned off. Once the desired

changes have been made, the “Render” button can be pressed in order to display the
visualization of the volume dataset.

2. Un-check the Auto-Render checkbox.

The opacity lookup table controls the transparency of any given voxel, while the

current color palette defines what color is applied based on the voxel’s data value.

Manipulation of the color palette and opacity table is critical to controlling and

improving the appearance of a volume rendering.

3. While the volume object is selected, right-click on it and select “Properties…”.
4. Within the Visualization Browser window, click on the “Edit color/opacity

table” field to the right of the “Color & opacity table 0” property and select

“Edit…”. This will bring-up the Palette Editor dialog.

IDL Quick Start - 71 - Volume Rendering

5. Within the “Load Predefined…” droplist, scroll down and select the “Rainbow +
white” color table.

Next, the opacity table can be modified in order to control the transparency effect

that is applied during the volume rendering. The Palette Editor dialog contains a
number of items [Fig. 5-5] :

• Reference colorbar along the top illustrating data value range increasing

from left-to-right using a grayscale ramp.

• Current palette colorbar that displays the currently loaded color table being

applied to the visualization.

• Channel display window, which contains line plots for the individual red,

green, and blue color palette channel vectors, along with a purple line for the

Alpha channel (opacity lookup table).

• Cursor location/value window.

• View and edit tools, including zoom options, color space, editing operations,

and channel selection.

The user can use the mouse cursor within the channel display window to modify the

selected channels by interactively drawing the desired lookup table curve. The 3

color channel vector line plots are displayed with increasing brightness from bottom-

to-top, and the combination of these 3 vectors creates the “Rainbow + white” color
table that was just loaded. Since the R, G, B color channels have already been set to

the desired color palette in the previous step, there is no need to modify or visualize

these channels.

6. At the bottom of the Palette Editor window, un-check each of the R, G, B color
channels in both the “Display” and “Modify” rows [Fig. 5-5].

IDL Quick Start - 72 - Volume Rendering

Figure 5-5: The Palette Editor dialog with a gaussian distribution curve for

the alpha (opacity) channel

Now that all of the boxes under the R, G, B color channels are un-checked, only the

Alpha channel (A) is displayed with the purple line plot. This is a plot of the lookup

table for the current opacity effect, ranging from 0% opaque (100% transparent) at

the bottom of the channel display window to 100% opaque (0% transparent) at the

top. By default, the current opacity lookup table is a straight ramp from minimum

data value (left-hand side) to maximum data value (right-hand side). This straight

line has a slope of 1, meaning that the volume is rendered in a progressively more

Reference
Colorbar

Current

Palette
Colorbar

Channel

Display
Window

Cursor

Location/

Value

Window

View and
Edit Tools

IDL Quick Start - 73 - Volume Rendering

opaque fashion as the voxel data values get larger. Since the “Modify” field under

the A channel is still checked, the user can click with the mouse cursor within the

channel display window and draw a new opacity lookup table line in an arbitrary

fashion.

7. Using the mouse cursor, click-and-drag within the channel display window
and draw a standard gaussian shaped distribution curve [Fig. 5-5].

8. Click on the “Smooth” button a few times to give the line a smoother
appearance if necessary.

9. Once the desired curve has been drawn, click “OK” to dismiss the Palette
Editor dialog.

Creating a gaussian shaped curve for the opacity lookup table has the effect of

highlighting (i.e. making more opaque) those voxels within the volume that have a

medium data value around the middle of the overall data range.

10. Press the “Render” button in order to display the volume visualization.

The resulting visualization should look similar to Fig. 5-6.

Figure 5-6: The volume rendering using a gaussian curve for the opacity

There are a number of other properties for the volume object that can be modified in

order to control the appearance and quality of the visualization. By default, when

rendering a volume object to the screen the voxel values that are selected to

compute the visualization properties are selected using nearest neighbor selection

IDL Quick Start - 74 - Volume Rendering

process. If higher quality rendering is desired, the “Interpolation” property can be

changed so this task if performed using a trilinear interpolation.

11. If the Visualization Browser window is not still visible, select “Window >
Visualization Browser…”. Within the Visualization Browser window, scroll
down and change the “Interpolation” property for the Volume object to

“Trilinear”.
12. Press the “Render” button in order to display the volume visualization.

The rendering of the volume object should visually improve. When a volume is

rendered, gradients within the volume are used to approximate a surface normal for

each voxel, and the lighting sources in the current visualization are then applied to

illuminate the object. Gradient shading can be enabled by modifying the “Use

lighting” property. Furthermore, both sides of the voxels can be lighted by changing

the “Voxel gradient” property.

13. Change the “Use lighting” property to “True” and the “Voxel gradient”
property to “Two-sided”.

14. Press the “Render” button in order to display the volume visualization.

The resulting visualization should look similar to Fig. 5-7.

Figure 5-7: The rendering of the volume object with modified properties

By default, the volume object is rendered using the color palette and opacity table in

a composite function technique known as Alpha blending. In Alpha blending, each

IDL Quick Start - 75 - Volume Rendering

voxel occludes other voxels behind it according to the opacity of the voxel in front,

thereby allowing the viewer to see features within the 3-D volume. However, the

iVolume utility also supports a number of methods for blending the projected voxels
together to form an image. One common technique for projecting a volume into an

image is the Maximum Intensity Projection (MIP).

15. Within the Visualization Browser window, change the volume object’s
“Composite function” property to “Maximum intensity projection”.

16. Press the “Render” button in order to display the volume visualization.

The volume object rendering will change to display a MIP of the volume based on the

current orientation of the 3-D data space. The resulting visualization should look

similar to Fig. 5-8.

Figure 5-8: Maximum Intensity Projection (MIP) of the volume object

17. Once finished viewing the MIP visualization, revert the setting for the
“Composite function” property back to the default “Alpha blending” and close

the Visualization Browser window.

Image Planes, Subvolumes, and Isosurfaces

In addition to the true volume rendering capabilities, the iVolume utility also offers a
wide variety of other tools that allow the user to visualize volumetric datasets using

IDL Quick Start - 76 - Volume Rendering

additional graphical objects. For example, the user has the ability to extract and

analyze individual image slices from any of the 3 orthogonal planes.

1. While the volume object is selected, use “Operations > Volume > Image
Plane” to insert a new image object into the existing data space.

A cyan color rectangular box outlining the default image plane oriented in the Y-Z

direction and located in the exact center of the volume is inserted. The user can

click on this cyan box to move the location of the image plane within the current

orientation, and the center voxel location for the image plane is displayed in the

lower-right hand corner of the IDL iVolume window. For more advanced
modifications to the image plane, the Visualization Browser must be utilized.

2. Select “Window > Visualization Browser…” from the menu system.
3. Click on the new “Image Plane” object so its property sheet is displayed [Fig.

5-9].

4. Change the “Opacity control” property to “Opaque” so the image is readily
visible [Fig. 5-9].

5. Change the “Orientation” property to “Y” so the image plane is oriented in the
X-Z direction [Fig. 5-9].

Figure 5-9: Modifying the image plane properties

The iVolume utility also has the ability to display a subvolume within the current

data space. This allows the user to specify a subset of the 3-Dimensional array to

use when rendering the volume object.

6. Within the Visualization Browser window, select the “Volume” object.
7. Click on the “Edit Subvolume extents” item next to the “Subvolume” property

and select “Edit…”.
8. Within the SubVolume Extents Selector dialog box, use the keyboard to enter

a specific voxel range for a subvolume to display [Fig. 5-10]. This will extract

a 32 x 32 x 32 voxel subvolume located in the center of the volumetric

dataset.

IDL Quick Start - 77 - Volume Rendering

• Volume X Extents : 48 � 79

• Volume Y Extents : 20 � 51

• Volume Z Extents : 48 � 79

9. Click “OK” to dismiss the SubVolume Extents Selector dialog and close the
Visualization Browser window.

10. Press the “Render” button in order to display the volume visualization.

The subvolume extent will be rendered instead of the full 3-Dimensional dataset.

Figure 5-10: Specifying a subvolume to render

Finally, the volumetric dataset can be contoured in order to highlight all of the voxels

that have the same specific data value. These voxels are highlighted with a planar

object called an isosurface that is automatically loaded into the existing data space.

11. While the subvolume object is selected, use the “Operations > Volume >
Isosurface” menu item to launch the Isosurface Value Selector tool [Fig. 5-

11].

12. Use the mouse to drag the red data value selector line until the number “95”
appears in the text box.

13. Press the “OK” button to dismiss the Isosurface Value Selector tool.

The isosurface is computed for the volume and a new graphical object is inserted into

the iVolume utility. The resulting visualization should look similar to Fig. 5-12.

IDL Quick Start - 78 - Volume Rendering

Figure 5-11: Selecting an isosurface data value

Figure 5-12: Composite visualization of the volumetric dataset

IDL Quick Start - 79 - Volume Rendering

14. Once finished viewing the volume visualization, close the IDL iVolume
window.

15. Before moving on to the next chapter, it is a good idea to reset the IDL
session. This can be accomplished by executing the statement :

IDL> .reset_session

IDL Quick Start - 80 - Volume Rendering

IDL Quick Start - 81 - Advanced Signal Processing

Chapter 6: Advanced Signal
Processing

What is Signal Processing?

A signal is basically the record of a process that occurs in relation to an independent

variable. This independent variable can be any of a number of things, but in most

cases it is time, in which case the signal is actually called a “time-series”.

Consequently, this exercise will only work with time-series signals. In addition,

although IDL’s digital signal processing tools can work in more than one dimension,

this exercise will only work with one-dimensional signals (i.e. vectors).

A digital signal is essentially a sequence of real values observed at discrete points

in time that is stored as numbers on your computer. The term “digital” actually

describes two different properties of the signal :

• The values of the signal are only measured at discrete points in time as a

result of sampling. In general most signals have a constant sampling

interval.

• The signal can take only discrete values as defined by the dynamic range of

the instrument and the precision at which the data is stored on the computer.

Quite often it is difficult or even impossible to make sense of the information

contained in a digital signal by looking at it in its raw form. In addition, any signal

obtained from an instrument measuring a physical process will almost always contain

noise. Signal processing is a technique that involves using computer algorithms to

analyze and transform the signal in an effort to create natural, meaningful, and

alternate representations of the useful information contained in the signal while

suppressing the effects of noise. In most cases signal processing is a multi-step

process that involves both numerical and graphical methods.

Curve Fitting

The problem of curve fitting can be summarized as follows :

Given a tabulated set of data values {xi, yi} and the general form of a mathematical

model (i.e. a function f(x) with unspecified parameters), determine the parameters
of the model that minimize an error criterion.

In the following exercise, the signal data from the example data file “curve.csv” will

be input into the current IDL session using the Import ASCII macro. This example

data file is located in the “data” subfolder of the Quick Start directory :

IDL Quick Start - 82 - Advanced Signal Processing

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\curve.csv
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/curve.csv

• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/curve.csv

The file “curve.csv” is standard ASCII text containing 2 columns of data that
represent 2 variables (“x” and “y”). This ASCII text file uses comma-separated

values as the file format, which can be easily viewed in spreadsheet form within

Microsoft Excel.

1. From the main IDL development environment window, select “Macros >
Import ASCII”.

2. Within the file selection dialog choose the “curve.csv” file and hit “Open”.

This will launch the standard ASCII Template wizard which was used in previous

exercises to load data into the iTools system.

3. Within Step 1 of 3, make sure to change the “Data Starts at Line:” field to 2
and hit “Next >>”.

4. In Step 2 of 3 all settings can be left as their defaults, so simply hit “Next
>>”.

5. In Step 3 of 3, change the “Name:” of FIELD1 and FIELD2 to X and Y,
respectively.

6. Once this is accomplished, press “Finish”.

Once the ASCII Template wizard has finished running the user will be returned to the

main IDL development environment window where a new structure variable named

“curve_ascii” now exists. This variable stores the data that was input from the file,
and the HELP procedure can be used to acquire information on this variable :

7. IDL> HELP, curve_ascii, /ST
** Structure <14a2b70>, 2 tags, length=400, data length=400, refs=1:

 X FLOAT Array[50]

 Y FLOAT Array[50]

The POLY_FIT function within IDL performs a least-squares polynomial fit with

optional error estimates and returns a vector of coefficients. The POLY_FIT function
uses matrix inversion. A newer version of this routine, SVDFIT, uses Singular Value
Decomposition (SVD), which is more flexible but slower. Another version of this

routine, POLYFITW, performs weighted least-squares fitting. In addition, the

CURVEFIT function uses a gradient-expansion algorithm to compute a non-linear
least squares fit to a user supplied function with an arbitrary number of parameters.

The user supplied function may be any non-linear function where the partial

derivatives are known or can be approximated.

Using the tabulated polynomial data now stored in the “curve_ascii” variable, use the
POLY_FIT fitting algorithm to fit a 3rd degree polynomial to the points :

8. IDL> coeff = POLY_FIT (curve_ascii.x, curve_ascii.y, 3, yFit)

9. IDL> iPlot, curve_ascii.x, curve_ascii.y, LINESTYLE=6, SYM_INDEX=2

10. IDL> iPlot, curve_ascii.x, yFit, /OVERPLOT

The resulting IDL iPlot visualization window should look similar to Fig. 6-1.

IDL Quick Start - 83 - Advanced Signal Processing

Figure 6-1: Simulated instrument response data (* symbols) and the fitted

function (solid line)

Notice that POLY_FIT returns a vector containing the 4 estimated coefficients for the

3rd degree polynomial :

11. IDL> PRINT, coeff
 -0.154124

 0.183942

 -0.00846933

 8.83802e-005

12. Once finished viewing the fitted curve, close the IDL iPlot window.

Simple Noise Removal

A general discussion of time-series analysis assumes that a time-series is comprised

of four components :

IDL Quick Start - 84 - Advanced Signal Processing

• A trend or long-term movement (a constant or uniformly varying background

level)

• A cyclical fluctuation about the trend (a superposition of sinusoidal variations,

each with a definite amplitude, frequency, and phase)

• A pronounced seasonal effect (sinusoidal variation with a large frequency

value)

• A residual, irregular, or random effect (additive noise)

It is the identification and extraction of these components that can be of interest

when performing analysis of signals. In addition, adjacent observations are likely to

be correlated, especially as the time intervals between them become shorter. The

analysis of the correlation between signals can also be of interest and will be covered

later within this exercise.

Start by creating a test signal that can be used for analysis. An IDL batch file called

“test_signal.pro” has been supplied within the “lib” subfolder of the Quick Start
directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\lib\test_signal.pro
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/lib/test_signal.pro

• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/lib/test_signal.pro

The file “test_signal.pro” contains a package of multiple statements needed to create
a test signal. To execute this batch file simply use the special batch execution

character “@” followed by the filename :

1. IDL> @test_signal

Note: If executing this statement results in the error “% Error opening file.”, then the

“IDL_QS_Files/lib/” subfolder that contains this batch file is not included in IDL’s path. Please go back to
chapter 1 of this Quick Start tutorial and perform the steps delineated in the section entitled “Installing
the Tutorial Files” in order to rectify this problem.

Once this batch file has executed there will be 2 new variables called “x” (the
independent variable time) and “s” (the actual signal data) within the IDL session :

2. IDL> HELP, x, s
X FLOAT = Array[100]

S FLOAT = Array[100]

Both of these variables are vectors of 32-bit floating-point precision data that are

100 elements in length. To visualize this time-series signal simply make a call to the

iPlot procedure and maximize the display window :

3. IDL> iPlot, x, s, VIEW_GRID=[2,2], VIEW_TITLE='Original Signal'

4. Select “Window > Zoom on Resize” from the IDL iPlot window menu system.

5. Press the button in the upper-right hand corner to maximize the window.

The resulting IDL iPlot window will contain 4 view sub-windows. The line plot for the
independent variable “x” as the X component and the signal variable “s” as the Y
component will appear in the upper-left hand corner view window. The resulting

visualization should look similar to Fig. 6-2.

IDL Quick Start - 85 - Advanced Signal Processing

Figure 6-2: Simple line plot of test signal data

This signal has very sharp components that are analogous to noise. One way to

attenuate certain types of noise in a signal is by using the SMOOTH function within

IDL. The SMOOTH function filters an input array using a running-mean top hat
kernel of a user-specified width (boxcar average). The SMOOTH function moves the
kernel over the input array, element-by-element. At each step, the mean of the

elements of the input array that fall under the window of the kernel is calculated,

and this value is placed at the location of the centroid of the kernel at its current

array element location. For example, consider a simple vector with five elements :

3.00 1.00 7.00 2.00 4.00

When applying a SMOOTH function the output will be the average across the user-

specified kernel size. For instance, when using a kernel size of 3 the element in the

exact center of this vector would be replaced with the value (1.00 + 7.00 + 2.00) / 3

= 3.33. This is the output that results from smoothing the above vector using a

kernel with a size of 3 :

3.00 3.66 3.33 4.33 4.00

IDL Quick Start - 86 - Advanced Signal Processing

Note: By default, the endpoints outside the kernel window are replicated and placed in the output array
unchanged. To override this effect use the EDGE_TRUNCATE keyword to the SMOOTH function.

Apply the SMOOTH function to the test signal and visualize the results :

6. IDL> smoothed = SMOOTH (s, 3)

7. IDL> iPlot, x, smoothed, /VIEW_NEXT, VIEW_TITLE='Smoothed'

The smoothed signal will be displayed in the upper-right hand corner view window.

Smoothing a signal is this manner tends to distort the phase of the signal. Another

interesting way to visualize the effect is by viewing the residual signal that is left

after you remove the mean signal generated by the SMOOTH function from the
original signal :

8. IDL> residual = s - smoothed

9. IDL> iPlot, x, residual, /VIEW_NEXT, VIEW_TITLE='Residual Signal'

The residual signal will contain information about the noise that the smoothing

process removed.

Another way to remove certain types of unwanted noise from a signal is by using the

MEDIAN function. The filtering process used by MEDIAN is similar to SMOOTH, but

the application of the kernel is quite different. In MEDIAN, the median value
(instead of the mean value) of the elements under the kernel is placed in the output

array at the current centroid location. For example, if a MEDIAN function is applied

to the same example vector :

3.00 1.00 7.00 2.00 4.00

With a kernel of size 3 the MEDIAN function will return :

3.00 3.00 2.00 4.00 4.00

Apply the MEDIAN function to the test signal and visualize the results :

10. IDL> median_filt = MEDIAN (s, 3)

11. IDL> iPlot, x, median_filt, /VIEW_NEXT, VIEW_TITLE='Median Filter'

The resulting IDL iPlot visualization window should look similar to Fig. 6-3.

IDL Quick Start - 87 - Advanced Signal Processing

Figure 6-3: Result of applying SMOOTH and MEDIAN functions to test signal

12. Once finished viewing the modified signal line plots, close the IDL iPlot
window.

In addition, the CONVOL function in IDL also provides the ability to convolve a signal
with a user-defined kernel array. Convolution is a general process that can be used

for various types of smoothing, shifting, differentiation, edge detection, etc..

Digital filters can also be used to remove unwanted frequency components (e.g.

noise) from a sampled signal. Two broad classes of filters are Finite Impulse

Response (a.k.a. Moving Average) filters and Infinite Impulse Response (a.k.a.

Autoregressive Moving Average) filters.

Digital filters that have an impulse response that reaches zero in a finite number of

steps are called Finite Impulse Response (FIR) filters. An FIR filter is implemented

by convolving its impulse response with the data sequence it is filtering. IDL’s

DIGITAL_FILTER function computes the impulse response of an FIR filter based on

Kaiser’s window, which in turn is based on the Bessel function. DIGITAL_FILTER
constructs lowpass, highpass, bandpass, or bandstop filters.

IDL Quick Start - 88 - Advanced Signal Processing

Obtain the coefficients of a non-recursive lowpass filter for the equally spaced data

points and convolve it with the original signal :

13. IDL> coeffs = DIGITAL_FILTER (0.0, 0.25, 50, 12)

14. IDL> digital_filt = CONVOL (s, coeffs, /EDGE_WRAP)

15. IDL> iPlot, x, s, VIEW_GR=[3,1], VIEW_TI='Original Signal'

16. IDL> iPlot, x, digital_filt, /VIEW_NE, VIEW_TI='Digital Filter'

Another filtering technique, known as the Savitzky-Golay smoothing filter (a.k.a.

least-squares or “DISPO”), also provides a digital smoothing that can be used to
process a noisy signal. IDL’s SAVGOL function returns the coefficients of a Savitzky-
Golay smoothing filter, which can then be applied using the CONVOL function. The
filter is defined as a weighted moving average with weighting given as a polynomial

of a certain degree. The returned coefficients, when applied to a signal, perform a

polynomial least-squares fit within the filter window.

Use the SAVGOL function to obtain the coefficients of a Savitzky-Golay smoothing
filter and visualize the results of both the DIGITAL_FILTER and SAVGOL functions :

17. IDL> coeffs = SAVGOL (5, 5, 0, 2)

18. IDL> savgol = CONVOL (s, coeffs, /EDGE_WRAP)

19. IDL> iPlot, x, savgol, /VIEW_NE, VIEW_TI='Savitzky-Golay'

The resulting IDL iPlot visualization window should look similar to Fig. 6-4.

IDL Quick Start - 89 - Advanced Signal Processing

Figure 6-4: Result of applying DIGITAL_FILTER and SAVGOL functions to

test signal

20. Once finished viewing the modified signal line plots, close the IDL iPlot
window.

Correlation Analysis

The first step in the analysis of a time-series is the transformation to a stationary

series. A stationary series exhibits statistical properties that are unchanged as the

period of observation is moved forward or backward in time. Specifically, the mean

and variance of a stationary series remain fixed in time. The sample autocorrelation

function is commonly used to determine the stationarity of a time-series. The

autocorrelation of a time-series measures the dependence between observations as a

function of their time differences or lag. In other words, the autocorrelation of a

function shows how a function is related to itself as a function of a lag value. A plot

of the sample autocorrelation coefficients versus corresponding lags can be very

helpful in determining the stationarity of a time-series.

IDL Quick Start - 90 - Advanced Signal Processing

Compute the autocorrelation of the synthesized signal data versus a set of user-

defined lag values and display the results :

1. IDL> lag = INDGEN (n/2) * 2

2. IDL> acorr = A_CORRELATE (s, lag)

3. IDL> iPlot, lag, acorr, VIEW_TI='Auto-Correlation'

4. IDL> iPlot, [0,n], [0,0], LINESTYLE=1, YRANGE=[-1,1], /OVER

The resulting IDL iPlot visualization window should look similar to Fig. 6-5.

Figure 6-5: Autocorrelation function for test signal

The autocorrelation measures the persistence of a wave within the whole duration of

a time-series. When the autocorrelation goes to zero, the process is becoming

random, implying there are no regularly occurring structures. An autocorrelation of

1 means the signal is perfectly correlated with itself. An autocorrelation of –1 means

the signal is perfectly anticorrelated with itself.

5. Once finished viewing the autocorrelation results, close the IDL iPlot window.

IDL Quick Start - 91 - Advanced Signal Processing

The C_CORRELATE function in IDL can be used to compute the cross-correlation of
two sample populations as a function of the lag. To demonstrate the use of this

function, construct another signal that is simply the reverse of the original :

6. IDL> lag = INDGEN (n) - n/2

7. IDL> t = REVERSE (s)

8. IDL> ccorr = C_CORRELATE (s, t, lag)

9. IDL> iPlot, lag, ccorr, VIEW_TI='Cross-Correlation'

10. IDL> iPlot, [-n/2,n/2], [0,0], LINESTYLE=1, YRANGE=[-1,1], /OVER

The resulting IDL iPlot visualization window should look similar to Fig. 6-6.

Figure 6-6: Cross-correlation between two series at a set of user-defined lag

values

11. Once finished viewing the cross-correlation results, close the IDL iPlot
window.

IDL Quick Start - 92 - Advanced Signal Processing

Signal Analysis Transforms

Most signals can be decomposed into a sum of discrete (usually sinusoidal) signal

components. The result of such decomposition is a frequency spectrum that can

uniquely identify the signal. IDL provides three main transforms to decompose a

signal and prepare it for analysis :

� The Discrete Fourier Transform

� The Hilbert Transform

� The Wavelet Transform

The Discrete Fourier Transform (DFT) is the most widely used method for

determining the frequency spectra of digital signals (and is the only transform that

will be covered in this Quick Start). This is due in part to the development of an

efficient computer algorithm for computing DFTs known as the Fast Fourier

Transform (FFT). IDL implements the Fast Fourier Transform in its FFT function.
The DFT is essentially a way of estimating a Fourier transform at a finite number of

discrete points, which works well with a digital signal since it is also sampled at

discrete intervals.

The Fourier transform is a mathematical method that converts an input signal from

the physical (time or space) domain into the frequency (or Fourier) domain.

Functions in physical space are plotted as functions of time or space, whereas the

same function transformed to Fourier space is plotted versus its frequency

components. What the Fourier transform will help illustrate is that real signals can

often be comprised of multiple sinusoidal waves (with the appropriate amplitude and

phase) that when added together will re-create the real signal. In other words, the

FFT algorithm decomposes the input time-series into an alternative set of basis

functions, in this case sines and cosines.

The result of a FFT analysis is complex-valued coefficients, and spectra are derived
from these coefficients in order to visualize the transform. Spectra are essentially

the amplitude of the coefficients (or some product or power of the amplitudes) and

are usually plotted versus frequency. There are a number of different ways to

calculate spectra, but the primary forms are :

� Real and imaginary parts of Fourier coefficients

� Magnitude spectrum

� Phase spectrum

� Power spectrum

The most direct way to visualize spectra of a Fourier transformation of a signal is to

plot the real and imaginary parts of the spectrum as a function of frequency. For

example, calculate and display a Fourier transform for a new signal that consists of a

sine wave. For simplicity assume the vector “x” contains time-series values in units
of seconds :

1. IDL> sine = SIN (3.15 * x)

2. IDL> dft = FFT (sine)

3. IDL> real = FLOAT (SHIFT (dft, n/2-1))

4. IDL> imaginary = IMAGINARY (SHIFT (dft, n/2-1))

IDL Quick Start - 93 - Advanced Signal Processing

5. IDL> iPlot, x, sine, VIEW_GR=[2,2], VIEW_TI='Original Signal'

6. IDL> iPlot, real, /VIEW_NE, VIEW_TI='Real Part'

7. IDL> iPlot, imaginary, /VIEW_NE, VIEW_TI='Imaginary Part'

Although the real and imaginary parts contain some useful information, it is more

common to display the magnitude spectrum since it actually has physical

significance. Since there is a one-to-one correspondence between a complex

number and its magnitude (and phase for that matter), no information is lost in the

transformation from a complex spectrum to its magnitude. In IDL, the magnitude

can be easily computed using the absolute value (ABS) function :

8. IDL> magSpec = ABS (dft)

9. IDL> iPlot, magSpec, /VIEW_NE, XRANGE=[0,n/2], XTITLE='Mode', $
 YTITLE='Spectral Density'

The resulting IDL iPlot visualization window should look similar to Fig. 6-7.

Figure 6-7: Real and imaginary parts of DFT plus the magnitude spectrum

for the signal with sinusoidal component

IDL Quick Start - 94 - Advanced Signal Processing

From this magnitude spectrum the mode at which the sinusoidal pattern occurs

matches the peak of the spectral density (in this case Mode=3.15). Assuming the

independent time variable “x” is in units of seconds, the plot of the original signal on
top shows that this sinusoidal component (SIN(3.15*x)) has a wavelength (X-

distance of one sine cycle) of approximately 2 seconds. Consequently, the frequency

of this sinusoidal component is approximately (1 / 2 seconds) = 0.5 Hz.

10. Once finished viewing the magnitude spectrum, close the IDL iPlot window.

In addition to the sine component, add a cosine variation of a sinusoidal pattern to

the signal with a wavelength of 0.5 seconds and a frequency of 2 Hz :

11. IDL> cosine = COS (12.5 * x)

12. IDL> y = sine + cosine

13. IDL> iPlot, x, sine, COLOR=[255,0,0], NAME='SIN (3.15 * x)'

14. IDL> iPlot, x, cosine, COLOR=[0,0,255], NAME='COS (12.5 * x)', $
 /OVER

15. IDL> iPlot, x, y, COLOR=[0,128,0], NAME='Combined Signal', $
 /OVER

16. Using the mouse cursor, click and drag a rectangular selection box that
encompasses the entire plot dataspace so that everything is highlighted.

17. From the iPlot menu system select “Insert > New Legend” in order to insert a
legend.

The resulting IDL iPlot visualization window should look similar to Fig. 6-8.

IDL Quick Start - 95 - Advanced Signal Processing

Figure 6-8: Synthetic signal created from addition of two sinusoidal

components

18. Once finished viewing the combined signal, close the IDL iPlot window.

Signals are usually sampled at regularly spaced intervals in time. For example, the

test signal dataset currently contained in the IDL variable “y” is a discrete
representation of three superposed sine and cosine waves at n=100 points. In this

case, the independent variable “x” that was used to create the test signal “y” is
sampled at regularly spaced intervals of time, which is assumed to be in units of

seconds. Consequently, the difference between any two neighboring elements in this

vector “x” is known as the sampling interval (δ) :

19. IDL> samplingInterval = x[1] - x[0]

20. IDL> HELP, samplingInterval
SAMPLINGINTERVAL FLOAT = 0.0628319

Since it is assumed that the time values are in units of seconds, it follows that the

sampling frequency for this test signal is ~16 Hz :

21. IDL> samplingFreq = 1 / samplingInterval

IDL Quick Start - 96 - Advanced Signal Processing

22. IDL> HELP, samplingFreq
SAMPLINGFREQ FLOAT = 15.9155

The Nyquist frequency (or “folding frequency”) is a special property of the

sampling interval. The Nyquist frequency is basically the critical sampling interval at

which measurements must be made in order to accurately portray the signal with

only discrete values. For example, the critical sampling of a simple sine wave is two

sample points per cycle. In other words, a digital signal has to have a sampling

interval that is equal to or smaller than ½ the sinusoidal component’s wavelength.

Consequently, the Nyquist Frequency is defined as (1/2*δ) :

23. IDL> Nyquist = 1 / (2 * samplingInterval)

24. IDL> HELP, Nyquist
NYQUIST FLOAT = 7.95775

If a discretely sampled signal is not bandwidth-limited to frequencies less than the

Nyquist frequency then aliasing occurs. When aliasing occurs the power spectrum

will have a feature that has been falsely translated back across the Nyquist

frequency. For example, construct another signal that adds a sinusoidal component

with a frequency greater than the Nyquist frequency (7.96 Hz in this example). The

new component will be (SIN(70*x)), which has a wavelength of approximately 0.089

seconds and a frequency of 11.14 Hz :

25. IDL> frq = FINDGEN (n) * samplingFreq / (n-1)

26. IDL> y = sine + cosine + SIN (70*x)

27. IDL> dft = FFT (y)

28. IDL> magSpec = ABS (dft)

29. IDL> iPlot, x, y, VIEW_GR=[2,1], VIEW_TI='Original Signal'

30. IDL> iPlot, frq, magSpec, /VIEW_NE, XRANGE=[0,Nyquist], $
 XTITLE='Frequency (Hz)', YTITLE='Spectral Density'

The resulting IDL iPlot visualization window should look similar to Fig. 6-9.

IDL Quick Start - 97 - Advanced Signal Processing

Figure 6-9: Magnitude spectrum for signal with sinusoidal components

The original “sine” and “cosine” components (at 0.5 Hz and 2 Hz respectively) are

readily apparent in this magnitude spectrum, but there is also an aliased feature

located at 4.77 Hz (Nyquist - (11.14-Nyquist)). Furthermore, the shape of the

magnitude spikes vary from relatively narrow spikes to more diffuse features. For

instance, the peak at 2 Hz is more spread-out, and this is due to an effect known as

smearing or leakage. The leakage effect is a direct result of the definition of the

DFT and is not due to any inaccuracy in the FFT.

Note: Leakage can be reduced by increasing the length of the time sequence, or by choosing a sample
size that includes an integral number of cycles of the frequency component of interest.

31. Once finished viewing the magnitude spectrum, close the IDL iPlot window.

The phase spectrum of a Fourier transform can also be easily computed in IDL

using the arc-tangent (ATAN) function. By convention, the phase spectrum is usually

plotted versus frequency on a logarithmic scale :

32. IDL> y = sine + cosine

33. IDL> dft = FFT (y)

34. IDL> phiSpec = ATAN (dft)

IDL Quick Start - 98 - Advanced Signal Processing

35. IDL> iPlot, x, y, VIEW_GR=[2,1], VIEW_TI='Original Signal'

36. IDL> iPlot, frq, phiSpec, /VIEW_NE, VIEW_TI='Phase Spectrum', $

 XRANGE=[1,Nyquist], YRANGE=[0,0.006]

The resulting IDL iPlot visualization window should look similar to Fig. 6-10.

Figure 6-10: Phase spectrum for signal with sinusoidal components

The same sinusoidal frequency component in the signal at 2 Hz shows up as a

discontinuity in this phase plot.

37. Once finished viewing the phase spectrum, close the IDL iPlot window.

Finally, another way to visualize the same information is with the power spectrum,

which is the square of the magnitude of the complex spectrum :

38. IDL> powSpec = (ABS (dft)) ^ 2

39. IDL> iPlot, x, y, VIEW_GR=[2,1], VIEW_TI='Original Signal'

40. IDL> iPlot, frq, powSpec, /VIEW_NE, XRANGE=[0,Nyquist], $
 VIEW_TI='Power Spectrum'

IDL Quick Start - 99 - Advanced Signal Processing

The resulting IDL iPlot visualization window should look similar to Fig. 6-11.

Figure 6-11: Power spectrum for signal with sinusoidal components

41. Once finished viewing the power spectrum, close the IDL iPlot window.

Windowing

The leakage effect mentioned previously is a direct consequence of the definition of

the Discrete Fourier Transform, and of the fact that a finite time sample of a signal

often does not include an integral number of some of the frequency components in

the signal. The effect of this leakage can be reduced by increasing the length of the

time sequence or by employing a windowing algorithm. IDL’s HANNING function

computes two windows that are widely used in signal processing :

� Hanning Window

� Hamming Window

IDL Quick Start - 100 - Advanced Signal Processing

For example, compare the power spectrum from the original signal to one that has

the Hanning window applied :

1. IDL> hann = FFT (HANNING (n) * y)

2. IDL> hannPowSpec = (ABS (hann)) ^ 2

3. IDL> iPlot, frq, powSpec, XRANGE=[0,3], XTITLE='Frequency (Hz)', $
 YTITLE='PSD', LINESTYLE=2

4. IDL> iPlot, frq, hannPowSpec, XRANGE=[0,3], /OVER

The resulting IDL iPlot visualization window should look similar to Fig. 6-12.

Figure 6-12: Power spectrum of original (dashed) and Hanning windowed

(solid) signal

The power spectrum of the Hanning windowed signal shows some mitigation of the

leakage effect.

5. Once finished viewing the power spectrums, close the IDL iPlot window.

IDL Quick Start - 101 - Advanced Signal Processing

Wavelet Analysis

Wavelet analysis is becoming a popular technique for both signal and image analysis.

By decomposing a signal using a particular wavelet function, one can construct a

picture of the energy within the signal as a function of both spatial dimension (or

time) and wavelet scale (or frequency). The wavelet transform is used in numerous

fields such as geophysics (seismic events), medicine (EKG and medical imaging),

astronomy (image processing), and computer science (object recognition and image

compression).

The WV_CWT function within IDL can be utilized to calculate the continuous wavelet
transform for a signal. Use the WV_CWT function to compute the transform for the
signal currently stored in the variable “y” using a Gaussian wavelet function :

1. IDL> cwt = WV_CWT (y, 'Gaussian', 2)

Next, create the power spectrum for this continuous wavelet transform :

2. IDL> ps = ABS (cwt) ^ 2

An effective method for visualizing the continuous wavelet power spectrum is by

using an image display with a color palette applied. The LOADCT routine within IDL
can be used to automatically create the approriate color table vectors for a number

of pre-defined color palettes. Use the LOADCT routine in conjunction with TVLCT to

create the color table for a rainbow paletter ranging from blue to red :

3. IDL> ct = BYTARR (3, 256)

4. IDL> LOADCT, 34

5. IDL> TVLCT, r, g, b, /GET

6. IDL> ct[0,*] = r

7. IDL> ct[1,*] = g

8. IDL> ct[2,*] = b

Finally, display the continuous wavelet power spectrum within the iImage utility :

9. IDL> iImage, ps, RGB_TABLE=ct, VIEW_TI='Wavelet Power Spectrum'

The resulting IDL iImage visualization window should look similar to Fig. 6-13.

IDL Quick Start - 102 - Advanced Signal Processing

Figure 6-13: Continuous wavelet power spectrum displayed as an image

The display of the wavelet power spectrum clearly illustrates the sinusoidal

components contained in the input signal.

10. Once finished viewing the continuous wavelet power spectrum, close the IDL
iImage window.

11. Before moving on to the next chapter, it is a good idea to reset the IDL
session. This can be accomplished by executing the statement :

IDL> .reset_session

IDL Quick Start - 103 - Advanced Image Processing

Chapter 7: Advanced Image
Processing

Digital Images and Advanced iImage Operations

IDL provides a powerful environment for image processing and display. Digital

images are easily represented as two-dimensional arrays in IDL and can be

processed just like any other array. Within an image array the value of each pixel

represents the intensity and/or color of that position in the scene. Images of this

form are known as sampled or raster images, because they consist of a discrete grid

of samples. IDL contains many procedures and functions specifically designed for

image display and processing. In addition, the iImage tool allows the user great
flexibility in manipulating and visualizing image data.

In the following exercise, the image from the example data file “meteorite.bmp” will

be input into IDL. This example data file is located in the “data” subfolder of the
Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\meteorite.bmp

• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/meteorite.bmp
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/meteorite.bmp

The file is in Windows bitmap format and contains an image of a thin section taken

through the Shergotty meteorite that is believed to represent a sample of the surface

of Mars. Input the image data into the current IDL session by utilizing the Import
Image macro built into the IDL Development Environment :

1. Start by selecting “Macros > Import Image” from the main IDL Development
Environment window. A dialog entitled Select Image File will appear.

2. Navigate to the “data” subfolder of the Quick Start directory and select the
“meteorite.bmp” file. Information on the image and a small preview will be
displayed in the bottom of the Select Image File dialog [Fig. 7-1].

3. Press the “Open” button to read the image data into IDL and dismiss the
Import Image wizard.

Once the Import Image macro is finished running the user will be returned to the
main IDLDE window where a new variable named “meteorite_image” is now present

within the current IDL session. The HELP procedure can be used to obtain
information on this variable :

4. IDL> HELP, meteorite_image
 METEORITE_IMAGE STRUCT = -> <Anonymous> Array[1]

IDL Quick Start - 104 - Advanced Image Processing

Figure 7-1: The Import Image macro dialog

The output from the HELP procedure shows that the “meteorite_image” variable is
actually a structure containing multiple pieces of data and information read in from

the BMP image file. To obtain information on the contents of this structure variable

the HELP procedure must be executed with the STRUCTURE keyword set :

5. IDL> HELP, meteorite_image, /STRUCTURE
 ** Structure <14ca450>, 5 tags, length=177112, data

 length=177106, refs=1:

 IMAGE BYTE Array[514, 343]

 R BYTE Array[256]

 G BYTE Array[256]

 B BYTE Array[256]

 QUERY STRUCT -> <Anonymous> Array[1]

The actual image data from the BMP file is stored in the IMAGE tag of the structure
variable, which contains a 2-dimensional array that has 514 columns and 343 rows

with an 8-bit (BYTE) data type. The R, G, and B tags within the structure variable

are provided to store the color table vectors that can be stored within 8-bit BMP files,

which in this case are not necessary since the image is in simple grayscale mode.

Furthermore, the QUERY tag stores yet another sub-structure that contains other

useful information on the BMP image file.

IDL Quick Start - 105 - Advanced Image Processing

In order to access the data that is stored within the fields of this “meteorite_image”
structure, the period “.” character must be used to reference the tags. For example,

to view the information within the QUERY sub-structure field the following syntax
must be utilized :

6. IDL> HELP, meteorite_image.query, /STRUCTURE
 ** Structure <14ca298>, 7 tags, length=40, data length=36,

 refs=3:

 CHANNELS LONG 1

 DIMENSIONS LONG Array[2]

 HAS_PALETTE INT 1

 NUM_IMAGES LONG 1

 IMAGE_INDEX LONG 0

 PIXEL_TYPE INT 1

 TYPE STRING 'BMP'

The QUERY field contains some useful information on the BMP image file. In order to
access the actual image data stored within the “meteorite_image” structure in a

manner that does not require a lot of typing, extract the IMAGE field of the structure
and assign it to a new variable named “image” :

7. IDL> image = meteorite_image.image

Once this is accomplished a new variable is created at the main IDL level that is

simply called “image” :

8. IDL> HELP, image
 IMAGE BYTE = Array[514, 343]

Now that the image data has been extracted into a simple variable it can be easily

visualized by loading it into the iImage utility :

9. IDL> iImage, image

The resulting IDL iImage visualization window should look similar to Fig. 7-2.

IDL Quick Start - 106 - Advanced Image Processing

Figure 7-2: Display of the Shergotty meteorite image within the iImage

utility

On the right-hand side of the IDL iImage window the “Min:” and “Max:” boxes show
that the pixels in the image range throughout the full 8-bit range (0 � 255).

However, the histogram plot window illustrates that most of the pixels within the

image have brightness values in the lower half of the data range. The histogram plot

is essentially portraying the overall dark gray to black appearance of the image.

A simple form of image enhancement can be obtained by moving the histogram

threshold bars within the iImage utility. This will adjust the range of pixel data

values that are mapped to the 256 levels of gray displayed on the screen. The

stretching of the image in the defined range is performed in a linear fashion and

this provides a form of contrast enhancement.

10. Within the “Max:” field box, type a pixel data value of 110 and press the Enter
key on the keyboard. This will saturate all pixels in the image with a value of
110 or higher to white, while stretching the pixels with values 0 � 109

throughout the full range of the grayscale display.

The resulting IDL iImage visualization window should look similar to Fig. 7-3.

IDL Quick Start - 107 - Advanced Image Processing

Figure 7-3: Contrast enhancement of the image via a linear stretch

This manipulation of the histogram stretch bars only affects the display of the image

and does not change the actual pixel values for the image dataset. Notice that the

“Pixel Value:” field within the Image panel now displays a number in parentheses

next to the actual pixel data value. This number in parentheses is the output

grayscale intensity for the current pixel according to the stretch that is being applied.

11. Change the “Max:” field back to “255” by either typing in the text box or
clicking on the green stretch bar and dragging it back up to the top of the

histogram display window.

There are a number of analysis tools found within the Operations menu of the iImage
utility. The operations that are built into the iTools system represent some of the

most common image processing tasks.

12. While the image object is selected within the IDL iImage window, select
“Operations > Statistics…” from the menu system.

A separate dialog will appear that displays some statistical information on the current

image dataset [Fig. 7-4]. Notice that the average (mean) pixel value for this image

is 47.7387, which explains the relatively dark appearance of the original image.

13. Once finished viewing the image statistics, close the Display statistics for the
selected item dialog.

IDL Quick Start - 108 - Advanced Image Processing

Figure 7-4: Statistics for the meteorite thin section image

One of the operations built into the iImage utility is the Unsharp Masking
technique, which applies a sharpening filter to the image. Digital Unsharp Masking

is a digital image processing technique that increases the contrast where subtle

details are set against a diffuse background. This operation suppresses features

which are smooth (those with structures on large scales) in favor of sharp features

(those with structure on small scale), resulting in a net enhancement of the contrast

of fine structure in the image.

14. From the IDL iImage window menu system select “Operations > Filter >
Unsharp Mask”.

15. Within the Unsharp Mask dialog that pops up, leave all parameters set to their
default values and simply press “OK”.

Notice that the fine detail within the image is enhanced by applying the Unsharp

Mask operation.

The iImage utility also has a built-in tool for convolving an image array with a kernel.

Convolution is a simple matrix algebra operation that can be used for various types

of smoothing, shifting, differentiation, edge detection, etc..

16. Select “Operations > Filter > Convolution” from the iImage menu system. A
separate dialog entitled Convolution Kernel Editor will appear [Fig. 7-5].

IDL Quick Start - 109 - Advanced Image Processing

Figure 7-5: The iTools Convolution Kernel Editor dialog

The Convolution Kernel Editor window allows the user to select from a list of pre-
defined kernels, or define their own user-defined kernel. The convolution of these

different kernels will have a wide variety of effects on the resulting image display.

The Laplacian filter can be applied by convolving a Laplacian kernel with the image.

A Laplacian filter is an edge enhancement filter that operates without regard to edge

direction. Laplacian filtering emphasizes maximum values within the image by using

a kernel with a high central value typically surrounded by negative weights in the up

down and left-right directions and zero values at the kernel corners. The Laplacian

kernel convolution is a form of high pass filter, which removes the low frequency

components of an image while retaining the high frequency (local variations). It can

be used to enhance edges between different regions as well as to sharpen an

image.

17. Using the droplist next to the “Filter” parameter in the upper left hand corner
of the Convolution Kernel Editor dialog, select the “Laplacian” kernel.

IDL Quick Start - 110 - Advanced Image Processing

18. Notice that a surface representation of the current kernel is displayed within
this dialog. The user can click on this surface and rotate it in order to

visualize the structure of the kernel.

19. Once the “Laplacian” kernel has been selected press “OK” to apply the
convolution operation and dismiss the Convolution Kernel Editor dialog.

20. At this point, it is beneficial to change the range for the current stretch to the
following values :

• Max: 140

• Min: 115

The application of the Laplacian filter will enhance the edges between different

regions (in this case mineral grains) within the image. The resulting IDL iImage
visualization window should look similar to Fig. 7-6.

Figure 7-6: Application of a Laplacian filter convolution

IDL also has a number of morphological image operators built into its library of

routines. Mathematical morphology is a method of processing digital images on the

basis of shape. Some of these morphological algorithms have been added to the

operations within the iTools system. For example, the dilate operator, which is

commonly known as the "fill", "expand", or "grow” operator, can be used to further

enhance the boundaries between mineral grains in the current image.

21. Select “Operations > Morph > Dilate” from the iImage menu system. A
separate dialog entitled Dilate will appear [Fig. 7-7]. The parameters

IDL Quick Start - 111 - Advanced Image Processing

associated with the dilate operation are displayed in this dialog along with a

preview of the operation.

22. Click on the box to the right of the “Structure shape” field and change the
setting to “Circle” [Fig. 7-7].

23. Press the “OK” button to apply the dilate operation and dismiss the Dilate
dialog.

Figure 7-7: The iTools Dilate operation dialog

The resulting IDL iImage visualization window should look similar to Fig. 7-8.

IDL Quick Start - 112 - Advanced Image Processing

Figure 7-8: Application of the Dilate morphological operation

24. Once finished viewing the processed image, close the IDL iImage window.

In addition to sharpening, high pass filtering, and edge enhancement techniques, IDL

also offers operations to perform image smoothing, low pass filtering, and noise

removal. Re-launch the iImage utility with the original image so these techniques
can be investigated :

25. IDL> iImage, image

The median operation replaces each pixel with the median of the two-dimensional

neighborhood of the specified width. In an ordered set of values, the median is a

value with an equal number of values above and below it. Median filtering is

effective in removing salt and pepper noise (isolated high or low values). The

resulting image will have a less grainy appearance than the original.

26. From the iImage menu system, select “Operations > Filter > Median”.
27. Within the Median dialog window, leave all of the default settings and press

“OK”.

The smooth operation will compute the boxcar average of a specified width for the

image. Smoothing is similar to the median filter except the pixels are replaced with

the average (mean) value across the neighborhood. This tends to have the effect of

blurring the edges within the image and making them more diffuse.

IDL Quick Start - 113 - Advanced Image Processing

28. From the iImage menu system, select “Operations > Filter > Smooth”.
29. Press the “OK” button to apply the smoothing operation and dismiss the
Smooth dialog window.

Finally, the Convolution tool can be used once again to apply a low pass filter to the

image. The Gaussian kernel provides a form of low pass filtering that preserves the

low frequency components of an image.

30. Select “Operations > Filter > Convolution” from the iImage menu system.
31. Within the Convolution Kernel Editor dialog, change the “Filter” selection

droplist to “Gaussian” [Fig. 7-9].
32. Edit the number of columns and rows fields so the kernel has a size of 5 x 5

[Fig. 7-9].

33. Press the “OK” button to apply the Gaussian filter and dismiss the dialog.

Figure 7-9: Application of the Gaussian filter convolution

IDL Quick Start - 114 - Advanced Image Processing

The resulting IDL iImage visualization window should look similar to Fig. 7-10.

Figure 7-10: Image display after noise removal, smoothing, and low pass

filtering

34. Once finished viewing the processed image, close the IDL iImage window.

Thresholding, Clipping, and Histogram Equalization

Although the iImage utility has a lot of built-in analytical techniques, the bulk of
IDL’s image processing capabilities must be accessed using routines within the IDL

language. IDL’s image processing library contains a number of routines for contrast

enhancement, filtering, feature extraction, image segmentation, geometry

transformations, and regions of interest analysis. In addition, the IDL language has

built-in operators that can be utilized to perform simple image processing techniques

such as masking and stretching.

Thresholding (also known as masking) is used to isolate features within an image

above, below, or equal to a specified pixel value. The value (known as the threshold

level) determines how the masking occurs. In IDL, thresholding is performed using

the relational operators. IDL’s relational operators are illustrated in Table 7-1 :

IDL Quick Start - 115 - Advanced Image Processing

OPERATOR DESCRIPTION

EQ Equal to

NE Not equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

Table 7-1 : IDL’s Relational Operators

For example, in order to threshold the Shergotty meteorite image and identify the

pixels that have a value greater than 70 (byte) simply execute the following

statement :

1. IDL> mask = image GT 70B

This expression creates a new variable named “mask” that is a 2-dimensional array

of the same size as the original image. This new “mask” variable contains a binary
image where each pixel has a value of either one (original image pixel value was

greater than 70) or zero (original image pixel value was equal to or less than 70). At

this point, the user may wish to view this binary threshold image by loading it into

the iImage utility :

2. IDL> iImage, mask

The resulting image display within the IDL iImage window should appear completely

black. This is due to the fact that all of the pixels within the “mask” binary image
have a value of 0 or 1, which are very difficult to discern (and very dark) within a 0
� 255 grayscale display. Consequently, the BYTSCL function should be utilized

when displaying binary images so the pixels with a value of 1 are actually mapped to

255 (white). The BYTSCL function scales all values of an array into a specified range
(0 � 255 by default) :

3. Close the existing IDL iImage window.
4. Re-issue the iImage statement, but this time wrap the mask image variable

with a dynamic call to the BYTSCL function :

IDL> iImage, BYTSCL (mask)

The resulting IDL iImage visualization window should look similar to Fig. 7-11.

IDL Quick Start - 116 - Advanced Image Processing

Figure 7-11: Threshold image showing pixels with values greater than 70

(white) and less than or equal to 70 (black)

5. Once finished viewing the binary threshold image, close the IDL iImage
window.

Binary threshold images can also be used to mask-out the pixels in an image that

do not qualify based on the given expression. For example, in order to display only

those pixels from the original image that have a value greater than 70 simply

execute the following statements :

6. IDL> masked = image * mask

7. IDL> iImage, masked

The resulting IDL iImage visualization window should look similar to Fig. 7-12.

IDL Quick Start - 117 - Advanced Image Processing

Figure 7-12: Display of the original image with all pixels that have a value of

70 or less masked-out (i.e. displayed as black)

8. Once finished viewing the masked image, close the IDL iImage window.

The user can also provide both upper and lower bounds when creating threshold

images by using the Boolean operators built into IDL (AND, NOT, OR, and XOR). For
example, create a threshold image that identifies those pixels which have a data

value between 50 and 70 :

9. IDL> mask = (image GE 50B) AND (image LE 70B)

10. IDL> iImage, BYTSCL (mask)

The resulting IDL iImage visualization window should look similar to Fig. 7-13.

IDL Quick Start - 118 - Advanced Image Processing

Figure 7-13: Threshold image showing all pixels with data values between

50 and 70

11. Once finished viewing the threshold image, close the IDL iImage window.

Clipping is similar to thresholding because pixels with data values above or below a

specified level are all set to the same value. However, when clipping an image the

pixels that do not satisfy the expression are set to the selected level and the

resulting image is not binary in nature. Clipping can be used to enhance features

within an image.

In IDL, clipping is performed with the minimum (<) and maximum (>) operators. In

order to clip an image the user must design an expression that contains an image

array, the appropriate operator, and the clipping level. For example, to clip the

meteorite thin section image so that all pixels with a value greater than or equal to

50 are set to a value of 50 simply execute the following statements :

12. IDL> clipped = image < 50B

13. IDL> iImage, clipped

The resulting IDL iImage visualization window should look similar to Fig. 7-14.

IDL Quick Start - 119 - Advanced Image Processing

Figure 7-14: Clipped image showing all pixels with data values 50 or higher

set to a brightness level of 50

14. Once finished viewing the clipped image, close the IDL iImage window.

When clipping is used in conjunction with byte-scaling it is equivalent to performing a

stretch on an image. For example, in order to stretch the image between the range
of 25 � 100 simply execute the following statements :

15. IDL> stretched = BYTSCL (image > 25B < 100B)

16. IDL> iImage, stretched

It is worth mentioning that the same stretching technique can be obtained by

utilizing the MIN and MAX keywords to the BYTSCL function :

17. IDL> stretched = BYTSCL (image, MIN=25, MAX=100)

18. IDL> iImage, stretched

The resulting IDL iImage visualization window(s) should look similar to Fig. 7-15.

IDL Quick Start - 120 - Advanced Image Processing

Figure 7-15: Stretched image that highlights all pixels with data values

between 25 and 100

19. Once finished viewing the stretched image, close the IDL iImage window(s).

In addition to simple linear stretching techniques, IDL also has routines that allow

the user to stretch the image using other histogram manipulations. For example, the

HIST_EQUAL function can be used to apply a histogram equalization stretch to the

image data. Histogram equalization employs a monotonic, non-linear mapping which

re-assigns the intensity values of pixels in the input image such that the output

image contains a uniform distribution of intensities (i.e. a flat histogram). Execute

the following statements in order to derive and display the histogram-equalized

version of the meteorite thin section image :

20. IDL> equalized = HIST_EQUAL (image)

21. IDL> iImage, equalized

Notice that the resulting image has improved contrast and the histogram has a very

even distribution throughout the 0 � 255 range. The resulting IDL iImage

visualization window should look similar to Fig. 7-16.

IDL Quick Start - 121 - Advanced Image Processing

Figure 7-16: Image display with a histogram equalization stretch

22. Once finished viewing the histogram-equalized image, close the IDL iImage
window.

In addition to the standard histogram equalization provided by the HIST_EQUAL
function, IDL also provides the ADAPT_HIST_EQUAL function which performs
adaptive histogram equalization (a form of automatic image contrast enhancement).

Adaptive histogram equalization involves applying contrast enhancement based on

the local region surrounding each pixel. Each pixel is mapped to an intensity

proportional to its rank within the surrounding neighborhood. This method of

automatic contrast enhancement has proven to be broadly applicable to a wide range

of images and to have demonstrated effectiveness. Execute the following

statements in order to apply the adaptive histogram equalization and display the

resulting image :

23. IDL> adaptive = ADAPT_HIST_EQUAL (image)

24. IDL> iImage, adaptive

The resulting IDL iImage visualization window should look similar to Fig. 7-17.

IDL Quick Start - 122 - Advanced Image Processing

Figure 7-17: Image display with an adaptive histogram equalization stretch

25. Once finished viewing the adaptive histogram-equalized image, close the IDL
iImage window.

Morphological Operations and Image Segmentation

Morphological image processing operations reveal the underlying structures and

shapes within binary and grayscale images. While individual morphological

operations perform simple functions, they can be combined to extract specific

information from an image. Morphological operations often precede more advanced

pattern recognition and image analysis operations such as segmentation. Shape

recognition routines commonly include image thresholding or stretching to separate

foreground and background image features.

Morphological operations apply a structuring element or morphological mask to an
image. A structuring element that is applied to an image must be 2 dimensional,

having the same number of dimensions as the array to which it is applied. A

morphological operation passes the structuring element, of an empirically

determined size and shape, over an image. The operation compares the structuring

element to the underlying image and generates an output pixel based upon the

function of the morphological operation. The size and shape of the structuring

IDL Quick Start - 123 - Advanced Image Processing

element determines what is extracted or deleted from an image. In general, smaller

structuring elements preserve finer details within an image than larger elements.

Start by thresholding the Shergotty meteorite image in order to identify the dark

mineral grains with a pixel value less than or equal to 20 :

1. IDL> minerals = image LE 20B

Next, create a structuring element array with a square shape that will help extract

objects with sharp rectangular edges :

2. IDL> structElem = BYTARR (3,3) + 1B

3. IDL> PRINT, structElem
 1 1 1

 1 1 1

 1 1 1

The MORPH_CLOSE function can be used with this structuring element to apply the
closing operator to the binary threshold image. The closing operator has the effect

of clumping the threshold image, thereby filling in holes within and connecting gaps

between neighboring regions. In addition, the MORPH_OPEN function can be
subsequently used to apply the opening operator, which will have a sieving effect on

the image that helps to remove small isolated regions. Apply these morphological

operations and visualize the results in comparison to the original image :

4. IDL> clumped = MORPH_CLOSE (minerals, structElem)

5. IDL> sieved = MORPH_OPEN (minerals, structElem)

6. IDL> iImage, image, VIEW_GR=[2,2]

7. IDL> iImage, BYTSCL (minerals), /VIEW_NE

8. IDL> iImage, BYTSCL (clumped), /VIEW_NE

9. IDL> iImage, BYTSCL (sieved), /VIEW_NE

10. Click on each individual window pane and change the canvas zoom droplist to
“50%”.

The resulting IDL iImage visualization window should look similar to Fig. 7-18.

IDL Quick Start - 124 - Advanced Image Processing

Figure 7-18: Display of original image (upper left), binary threshold image

of dark mineral grains (upper right), application of a clumping operation

(lower left), followed by a sieving operation (lower right)

Finally, the LABEL_REGION function can be used to perform image segmentation,
which will consecutively label all of the regions, or blobs, of the clumped and sieved

binary image with a unique region index. The resulting segmentation image can be

displayed with a color table in order to visualize the separate distinct mineral grains

within the meteorite image :

11. IDL> segmented = LABEL_REGION (sieved)

12. IDL> iImage, segmented

13. Within the Image panel on the right hand side of the IDL iImage window,
press the “Edit Palette…” button.

14. Within the Palette Editor dialog, click on the “Load Predefined…” droplist and
select “Rainbow18” from the dropdown menu.

15. Press the “OK” button to dismiss the Palette Editor dialog.

The resulting IDL iImage visualization window should look similar to Fig. 7-19.

IDL Quick Start - 125 - Advanced Image Processing

Figure 7-19: Image segmentation of the separate dark mineral grains

26. Once finished viewing the segmentation image, close the IDL iImage window.

Processing Images in Alternate Domains

So far all of the processing and visualization of image data has been performed in

the spatial domain. This means that the digital image is represented by pixel

values that have a particular spatial location (i.e. column and row). However, a

pixel’s value and location can also be represented in other domains. Transforming

an image into an alternate domain can provide a basis for performing image filters,

noise removal, sharpening, or feature extraction. In addition, domain

transformations also provide additional information about an image and can enable

robust image compression techniques.

In the frequency or Fourier domain, the value and location are represented by

sinusoidal relationships that depend upon the frequency of a pixel occurring within

an image. In this domain, pixel location is represented by its X and Y frequencies

and its value is represented by an amplitude. Images can be transformed into the

frequency domain to determine which pixels contain the most important information

and whether repeating patterns occur.

IDL Quick Start - 126 - Advanced Image Processing

In addition to the Fourier domain, IDL also has the ability to transform images into

the wavelet (time-frequency), Hough, and Radon domains. In the wavelet domain

the value and location of pixels are represented by sinusoidal relationships that only

partially transform the image into the frequency domain. The wavelet

transformation process is the basis for many image compression algorithms. The

image information within the Hough domain shows the pixels of the original

(spatial) image as sinusoidal curves. If the points of the original image form a

straight line, their related sinusoidal curves in the Hough domain will intersect.

Masks can be easily applied to the image within the Hough domain to determine if

and where straight lines occur. The image information within the Radon domain

shows a line through the original image as a point. Specific features and geometries

within the original image will produce peaks within the Radon domain and can be

easily identified.

In IDL, the FFT routine can be utilized to perform a Fast Fourier Transformation

and convert an image from the spatial domain into the frequency domain. In the

following exercise, the image data from the example data file “hamburg.jp2” will be

input into the iImage utility and subsequently transformed into the Fourier domain.
This example data file is located in the “data” subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\hamburg.jp2
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/hamburg.jp2
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/hamburg.jp2

The file “hamburg.jp2” is in JPEG2000 format and contains a satellite image of the
loading docks at the port in Hamburg, Germany. Start by loading this image into a

new iImage utility :

1. IDL> iImage

2. From the iImage menu system select “File > Open…”.
3. Select the “hamburg.jp2” file and hit “Open”.

The resulting image display should look similar to Fig. 7-20. Notice the linear and

rectangular patterns that are prevalent in this image in both diagonal directions.

IDL Quick Start - 127 - Advanced Image Processing

Figure 7-20: Image of the port in Hamburg, Germany

Once the image has been loaded into the iImage utility, it can be exported to an IDL

variable for processing at the IDL> command prompt. Use the following steps to

create a variable for this image at the main IDL level :

4. Select “File > Export…” from the iImage menu.
5. In Step 1 of 3 of the IDL Data Export Wizard select “To an IDL Variable” and

press the “Next >>” button.
6. In Step 2 of 3 of the IDL Data Export Wizard select the “Image Planes”

parameter and press the “Next >>” button [Fig. 7-21].
7. In Step 3 of 3 of the IDL Data Export Wizard change the “IDL Variable Name:”

field to “hamburg” and press the “Finish” button.
8. Once this is accomplished, close the IDL iImage window and return to the

main IDL Development Environment.

IDL Quick Start - 128 - Advanced Image Processing

Figure 7-21: Step 2 of 3 of the IDL Data Export Wizard

A new variable named “hamburg” now exists at the main IDL level :

9. IDL> HELP, hamburg
 HAMBURG BYTE = Array[3, 500, 500]

In order to work with this image in the frequency domain it is beneficial to extract

the individual color channel images. This can be accomplished using IDL’s standard

array subscripting syntax in conjunction with the REFORM function, which is used to
remove the first dimension (that has a size of one) and return a simple two-

dimensional array :

10. IDL> r = REFORM (hamburg[0,*,*])

11. IDL> g = REFORM (hamburg[1,*,*])

12. IDL> b = REFORM (hamburg[2,*,*])

13. IDL> HELP, r, g, b
 R BYTE = Array[500, 500]

 G BYTE = Array[500, 500]

 B BYTE = Array[500, 500]

Note: Remember that the up-arrow and down-arrow keys on the keyboard can be used to perform
command recall within IDL, which may be beneficial during these exercises.

Once this is accomplished, the FFT routine can be used to transform the image

planes into the frequency domain :

IDL Quick Start - 129 - Advanced Image Processing

14. IDL> rFFT = FFT (r)

15. IDL> gFFT = FFT (g)

16. IDL> bFFT = FFT (b)

The Fast Fourier Transform decomposes an image into sines and cosines of varying

amplitudes and phases. The values of the resulting transform represent the

amplitudes of particular horizontal and vertical frequencies. The data type of the

array returned by the FFT function is complex, which contains real and imaginary
parts :

17. IDL> HELP, gFFT
 GFFT COMPLEX = Array[500, 500]

The amplitude is the absolute value of the FFT, while the phase is the angle of the

complex number, computed using the arctangent. In most cases, the imaginary part

will look the same as the real part.

The image information in the frequency domain shows how often patterns are

repeated within an image. Within the Fourier domain, low frequencies represent

gradual variations in an image, while high frequencies correspond to abrupt

variations in the image. The lowest frequencies usually contain most of the

information, which is shown by the large peak in the center of the result. If the

image does not contain any background noise, the rest of the data frequencies are

very close to zero.

The results of the FFT function are often shifted to move the origin of the X and Y

frequencies to the center of the display. Furthermore, the range of values from the

peak to the high frequency noise is usually extreme. Consequently, a logarithmic

scale is often utilized in order to visualize the image in the frequency domain. Since

the logarithmic scale only applies to positive values, the power spectrum should be

computed since it is the absolute value squared of the Fourier transform.

Visualize the power spectrum of the Fourier domain image for the green channel by

executing the following statements :

18. IDL> center = 500 / 2 + 1

19. IDL> gShift = SHIFT (gFFT, center, center)

20. IDL> gPowSpec = ABS (gShift) ^ 2

21. IDL> gScaled = ALOG10 (gPowSpec)

22. IDL> iImage, gScaled, TITLE='Log-Scaled FFT Power Spectrum (G)'

The resulting IDL iImage visualization window should look similar to Fig. 7-22.

IDL Quick Start - 130 - Advanced Image Processing

Figure 7-22: Power spectrum for the green channel image in the frequency

domain

Notice the orientation of spatial patterns within the power spectrum image in both of

the diagonal directions (just like the original image).

23. Once finished viewing the power spectrum image, close the IDL iImage
window.

It may also be beneficial to visualize the power spectrum as a surface. Use the

REBIN function to sub-sample the power spectrum in order to suppress some of the

noise and set the shading for the surface to Gouraud :

24. IDL> iSurface, REBIN (gScaled, 100, 100), SHADING=1

The resulting IDL iSurface visualization window should look similar to Fig. 7-23.

IDL Quick Start - 131 - Advanced Image Processing

Figure 7-23: Power spectrum displayed as a surface

25. Once finished viewing the power spectrum surface, close the IDL iSurface
window.

Low frequencies within the image tend to contain the most information because they

determine the overall shape or patter in the image. High frequencies provide detail

in the image, but they are often contaminated by the spurious effects of noise.

Consequently, masks can be easily applied to an image within the frequency domain

in order to remove noise.

Create a mask for the low spatial frequency components based on the highest values

within the power spectrum for the green channel image :

26. IDL> lsfMask = REAL_PART (gScaled) GT -2.5

Note: The threshold value of –2.5 was arbitrarily selected based on the surface visualization above.

Visualize this mask by loading it into the iImage utility :

27. IDL> iImage, BYTSCL (lsfMask)

IDL Quick Start - 132 - Advanced Image Processing

The resulting IDL iImage visualization window should look similar to Fig. 7-24.

Figure 7-24: Mask of the low spatial frequency components (white) within

the power spectrum for the green color channel

Notice that the low frequency components are found predominantly in the center of

the power spectrum.

28. Once finished viewing the mask image, close the IDL iImage window.

In order to remove the high spatial frequency noise from the image, this mask must

be applied to the Fourier transform data and then the inverse FFT must be

computed. Applying the low spatial frequency mask allows these components to be

converted back to the spatial domain during the inverse transform, while the high

spatial frequency components are masked out.

First, the mask image must be shifted back to the original location of the Fourier

transform :

29. IDL> lsfMask = SHIFT (lsfMask, -center, -center)

Once this is accomplished, the mask can be applied to the FFT results for the 3 color

channels :

30. IDL> rMasked = rFFT * lsfMask

IDL Quick Start - 133 - Advanced Image Processing

31. IDL> gMasked = gFFT * lsfMask

32. IDL> bMasked = bFFT * lsfMask

The inverse FFT can be used in conjunction with the REAL_PART function in order to
convert the images back into the spatial domain :

33. IDL> rInvert = REAL_PART (FFT (rMasked, /INVERSE))

34. IDL> gInvert = REAL_PART (FFT (gMasked, /INVERSE))

35. IDL> bInvert = REAL_PART (FFT (bMasked, /INVERSE))

The result can be visualized by loading the individual color channel images into the

iImage utility [Fig. 7-25] :

36. IDL> iImage, RED=rInvert, GREEN=gInvert, BLUE=bInvert

Figure 7-25: Result of the inverse FFT after the high spatial frequency

components have been masked out (low pass filter)

37. Once finished viewing the inverse FFT image, close the IDL iImage window.

The high spatial frequency components of an image can also be enhanced using

masking techniques in the frequency domain. A circular-cut (high pass) filter can

be created by utilizing the DIST function in IDL and the appropriate threshold value :

IDL Quick Start - 134 - Advanced Image Processing

38. IDL> hsfMask = DIST (500) GE 50

Visualize this mask by shifting it into the appropriate location and loading the result

into the iImage utility [Fig. 7-26] :

39. IDL> iImage, BYTSCL (SHIFT (hsfMask, center, center)), $
 BACKGROUND=[80,80,80]

Figure 7-26: Circular-Cut filter for the high spatial frequency components

(white) within the image

Notice that the high frequency components are found around the outer edges of the

transform.

40. Once finished viewing the mask image, close the IDL iImage window.

Use the same methodology as before to apply the high pass filter, compute the

inverse FFT, and display the result :

41. IDL> rMasked = rFFT * hsfMask

42. IDL> gMasked = gFFT * hsfMask

43. IDL> bMasked = bFFT * hsfMask

44. IDL> rInvert = REAL_PART (FFT (rMasked, /INVERSE))

45. IDL> gInvert = REAL_PART (FFT (gMasked, /INVERSE))

IDL Quick Start - 135 - Advanced Image Processing

46. IDL> bInvert = REAL_PART (FFT (bMasked, /INVERSE))

47. IDL> iImage, RED=rInvert, GREEN=gInvert, BLUE=bInvert

The resulting IDL iImage visualization window should look similar to Fig. 7-27.

Figure 7-27: Result of the inverse FFT after the low spatial frequency

components have been masked out (high pass filter)

48. Once finished viewing the inverse FFT image, close the IDL iImage window.
49. Before moving on to the next chapter, it is a good idea to reset the IDL

session. This can be accomplished by executing the statement :

IDL> .reset_session

IDL Quick Start - 136 - Advanced Image Processing

IDL Quick Start - 137 - Working with Maps

Chapter 8: Working with Maps

Introduction to Mapping

In some cases the data that is being analyzed may be related to a location or area

on the surface of the Earth, and it is usually beneficial to visualize this data within a

map projection. Map projections are attempts to portray the surface of the earth

or a portion of the earth on a flat surface (in this case the computer monitor screen).

Every flat map misrepresents the surface of the Earth in some way. Consequently,

no 2-D map can rival a 3-D globe in truly representing the surface of the entire

Earth. Some distortions of conformality, distance, direction, scale, and area always

result from this process. However, a map or parts of a map can show one or more

(but never all) of the following :

• True Directions

• True Distances

• True Areas

• True Shapes

Some map projections minimize distortions in some of these properties at the

expense of maximizing errors in others. In addition, some projections are attempts

to only moderately distort all of these properties. A discussion on all of the various

map projections and their advantages vs. disadvantages is beyond the scope of this

manual.

IDL has several built-in routines that deal with creating, manipulating, and displaying

data within map projections. In addition, the installation of the IDL software

package includes three databases that can be useful when mapping at a small scale

(i.e. over a large regional area) :

• A low resolution database of continental outlines (located in the

“…/resource/maps/low/” subfolder of the IDL installation).
• A high resolution database that was adapted from the 1993 CIA World Map

database (located in the “…/resource/maps/high/” subfolder of the IDL

installation).

• ESRI Data and Maps CD-ROM datasets in Shapefile format (located in the

“…/resource/maps/shape/” subfolder of the IDL installation).

Note: The “High Resolution Maps” is an optional item that is not installed by default. If this item was not
installed the user can go back to the software installer and modify the contents of the distribution in order
to add this database.

The iTools system within the IDL software package contains a pre-built utility for

working with data in a map projection called iMap. The iMap utility displays image

and contour data that are georeferenced to a particular map projection. The iMap
tool gives the user great flexibility in manipulating and visualizing these datasets.

Images and contour data can be warped from geographic (latitude / longitude)

IDL Quick Start - 138 - Working with Maps

coordinates to a specific map projection, or the data can be directly displayed onto

the chosen projection. In addition, the user can import ESRI Shapefile data and

warp the data to the desired map projection. The Shapefile format stores

nontopological vector geometry and attribute information for the spatial features in

an area. The Shapefile format was created by ESRI, and is widely used in the

geographic information systems (GIS) community. Several predefined Shapefile

datasets are provided with the IDL installation, including continents, countries,

rivers, lakes, states & provinces, and cities. The user can also insert a set of

longitude and latitude gridlines.

Launch the iMap utility by executing the iMap procedure at the IDL> command
prompt :

1. IDL> iMap

Start by inserting some of the vector data from the ESRI Shapefile database included

with the IDL software installation :

2. From the IDL iMap window menu system select “Insert > Map > Continents”.

Since the iMap tool is currently in its initial state with no active map projection

defined, the vector data is displayed in the standard geographic (lat/lon) coordinate

system.

Next, insert the low-resolution countries, along with the United States and Canadian

province boundaries, and the longitude-latitude grid :

3. Select “Insert > Map > Countries (low res)” from the iMap menu system.
4. Select “Insert > Map > United States” from the iMap menu system.
5. Select “Insert > Map > Canadian Provinces” from the iMap menu system.
6. Select “Insert > Map > Grid” from the iMap menu system.

The resulting IDL iMap visualization window should look similar to Fig. 8-1.

IDL Quick Start - 139 - Working with Maps

Figure 8-1: Display of some of the ESRI Shapefile datasets included with the

IDL installation

Currently the data is displayed in the geographic lat/lon coordinate system and has

not been warped into a specific map projection. The data can be viewed in any of

the supported map projections by editing the current map projection within the iMap
utility. Use the following steps to change the map projection to Mercator with the

WGS-84 datum :

7. Press the “Edit Projection…” button on the Map panel in the bottom right-hand
corner of the IDL iMap window. The Map Projection dialog will appear [Fig. 8-

2].

8. Within the Map Projection dialog change the “Projection” droplist to
“Mercator” [Fig. 8-2].

9. Change the “Ellipsoid (datum)” droplist to “WGS 84” [Fig. 8-2].
10. Press the “OK” button to apply the changes and dismiss the Map Projection

dialog.

IDL Quick Start - 140 - Working with Maps

Figure 8-2: The map projection selection dialog

The cursor will change to an hourglass while the transformation is processing. Once

the conversion is complete, it may be beneficial to change some of the properties

associated with the map objects so they are easier to identify within the

visualization.

11. From the IDL iMap window menu system, select “Window > Visualization
Browser…”. A dialog entitled “IDL iMap: Visualization Browser” will appear
[Fig. 8-3].

12. Click on the “Map Grid” object so it is selected within the left visualization
panel [Fig. 8-3].

13. Click on the show right panel button to display the property sheets for the

selected object [Fig. 8-3].

14. Change the “Line style” property to dashed and the “Color” property to blue
for the “Map Grid” object [Fig. 8-3].

15. Next, select the “Canadian Provinces” object, change the “Color” to green, set
“Fill background” to True, change the “Fill color” to orange, and set the

“Transparency” to “0”.
16. Select the “United States” object, change the “Color” to red, set “Fill

background” to True, change the “Fill color” to yellow, and set the
“Transparency” to “0”.

17. Close the Visualization Browser window.

IDL Quick Start - 141 - Working with Maps

Figure 8-3: The iMap visualization browser window

The resulting IDL iMap visualization window should look similar to Fig. 8-4.

Figure 8-4: Display of the data in the Mercator map projection

IDL Quick Start - 142 - Working with Maps

18. Once finished viewing the map visualization, close the IDL iMap window.

Displaying an Image within a Map Projection

A map projection establishes the axis type and coordinate conversion mechanism for

mapping points on the Earth’s surface, expressed in latitude and longitude, to points

on a plane according to one of several possible projections. The user can apply a

map projection either before or after an image is imported into the iMap utility. In
the following exercise, the image from the example data file “colorado.jpg” will be

input into the iMap utility and subsequently displayed in the UTM map projection.
This example data file is located in the “data” subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\colorado.jpg

• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/colorado.jpg
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/colorado.jpg

The file is in JPEG format and contains a hill shade image of a digital elevation model

for a portion of the state of Colorado. Start by inputting this image into a new iMap
utility window :

1. IDL> iMap

2. Select “File > Open…” from the iMap menu system.
3. Select the file “colorado.jpg” and press “Open”.

The IDL Map Register Image dialog will be displayed, which walks the user through

the steps of specifying the geolocation for the image dataset.

4. In Step 1 of 2, select “Degrees longitude/latitude (geographic coordinates)”
and press the “Next >>” button.

5. In Step 2 of 2, enter the following geographic coordinates [Fig. 8-5] :

Longitude minimum (deg) : -108.41417

Longitude maximum (deg) : -104.25083

Latitude minimum (deg) : 37.37667

Latitude maximum (deg) : 40.70667

Once the minimum and maximum values have been entered the appropriate pixel

size is automatically computed based on the size of the image (approximately

0.00333 degrees).

6. Press the “Finish” button to complete the geolocation definition and return to
the IDL iMap window.

IDL Quick Start - 143 - Working with Maps

Figure 8-5: Step 2 of 2 for the IDL Map Register Image wizard

The standard Image panel will automatically be placed along the right-hand side
within the current tool window since the data being displayed is an image [Fig. 8-6].

This is the same Image panel that is present within the iImage utility.

7. Maximize the IDL iMap window and scale the image so it fits within the
current view space.

The “Pixel Location:” and “Pixel Value:” fields within the Image panel will show the
mouse cursor location within the image and the pixel values in each of the 3 color

channels, while the geographic location is displayed in the lower-right hand corner of

the IDL iMap window [Fig. 8-6].

8. Using the mouse, click on the Map panel tab to switch back to the original tool
configuration.

Notice that the longitude and latitude locations are also reported in the Map panel as

the mouse cursor is moved over the image display.

IDL Quick Start - 144 - Working with Maps

Figure 8-6: Display of the image in the geographic coordinate system

Now that the image has been imported into the iMap utility and the geolocation has

been defined, a new map projection for the tool can be defined. In this case, it will

be beneficial to visualize the current image within the UTM map projection. The area

within the state of Colorado that this image covers is located within UTM zone #13

(North). Use the following steps to change the current map projection to UTM :

9. Within the Map panel, press the “Edit Projection…” button.
10. Within the Map Projection dialog, change the “Projection” droplist to “UTM”

[Fig. 8-7].

11. Change the “Zone (1-60)” field to “13” [Fig. 8-7].
12. Press the “OK” button to apply the map projection and dismiss the Map
Projection dialog.

The mouse cursor will change to a hourglass while the map projection conversion of

the image data is processing. Once the conversion is complete the map projection

for the iMap tool will now be UTM. The resulting IDL iMap visualization window
should look similar to Fig. 8-8.

IDL Quick Start - 145 - Working with Maps

Figure 8-7: Defining the UTM map projection for the iMap utility

IDL Quick Start - 146 - Working with Maps

Figure 8-8: Display of the image in the UTM map projection

Notice that the image has been warped to conform to the specifications of the UTM

map projection. Also notice that the geographic location that is reported while the

mouse cursor is moved over the image is now includes Easting and Northing in units

of meters.

13. Once finished viewing the map visualization, close the IDL iMap window.

Mapping Data Programmatically

In addition to the iMap utility, IDL also has several routines in its library that can be
used to programmatically warp data to and from specific map projections. Once the

data itself has been warped into a map projection it can be subsequently displayed in

any of the standard iTools such as iImage or iContour. The four primary routines
that can be used to work with maps within the IDL language are :

• MAP_PROJ_INIT : Initializes a mapping projection using either IDL's own

map projections or the map projections from the U.S. Geological Survey's

General Cartographic Transformation Package (GCTP).

IDL Quick Start - 147 - Working with Maps

• MAP_PROJ_FORWARD : Transforms map coordinates from longitude and
latitude to Cartesian (x, y) coordinates using a supplied map projection

structure.

• MAP_PROJ_INVERSE : Transforms map coordinates from Cartesian (x, y)
coordinates to longitude and latitude using a supplied map projection

variable.

• MAP_PROJ_IMAGE : Warps an image (or other 2-dimensional dataset) from
geographic coordinates (longitude and latitude) to a specified map projection.

In the following exercise, the DEM data from the example data file

“New_Zealand_DEM.tif” will be input into IDL and displayed using iContour. This
example data file is located in the “data” subfolder of the Quick Start directory :

• Windows:

 C:\RSI\IDL##\IDL_QS_Files\data\New_Zealand_DEM.tif
• UNIX et al.:

 /usr/local/rsi/idl_#.#/IDL_QS_Files/data/New_Zealand_DEM.tif

• Mac OS X:

 /Applications/rsi/idl_#.#/IDL_QS_Files/data/New_Zealand_DEM.tif

The file is in TIFF format and contains elevation values for both the north and south

islands of New Zealand. The elevation data is in units of meters and ranges from

sea-level (0 m) up to the highest elevation (3173 m). Start by inputting this data

into a new iContour utility :

1. IDL> iContour

2. Select “File > Open…” from the iContour menu, select the
“New_Zealand_DEM.tif” file, and press “Open”.

A contour object with the default properties will be inserted into the IDL iContour
window. Since the iContour utility automatically creates a certain number of
contours at evenly spaced intervals from the minimum data value to the maximum,

it is difficult to see the outline of the two islands. In this case, it is beneficial to

change the minimum contour value from the default 0.0 (sea level) to an elevation

slightly above the ocean in order to see the edge of the land mass. In addition, the

data space scaling is anisotropic by default, which leads to a difference between the

length of two axes.

3. From the iContour menu select “Window > Visualization Browser…”.
4. Within the Visualization Browser window, select the Data Space object and

change the “Isotropic scaling” property to “Isotropic”.
5. Next, select the Contour object, click on the box to the right of the “Contour

level properties” field, and select “Edit…”.
6. Within the Contour Levels dialog, change the “Value” field for “Level 1” from 0

to 0.1 [Fig. 8-9].
7. Press the “OK” button to dismiss the Contour Levels dialog.
8. Close the Visualization Browser window.

The outline of both the north and south islands of New Zealand should now be

readily visible [Fig. 8-10].

IDL Quick Start - 148 - Working with Maps

Figure 8-9: Setting a contour level just above sea-level

Figure 8-10: Contour of the New Zealand digital elevation model data

IDL Quick Start - 149 - Working with Maps

Currently the DEM dataset is displayed in the geographic lat/lon coordinate system.

The data can be exported to the IDL> command line and warped using the

appropriate programmatic mapping routines so it can be displayed in an actual map

projection :

9. Select “File > Export…” from the IDL iContour window.
10. In Step 1 of 3 of the IDL Data Export Wizard, select “To an IDL Variable” and

press “Next >>”.
11. In Step 2 of 3, select the “Channel 0” two-dimensional array under the
Parameters for the Contour object and hit “Next >>” [Fig. 8-11].

12. In Step 3 of 3, change the “IDL Variable Name:” field to “nz” and press
“Finish”.

Figure 8-11: Step 2 of 3 of the IDL Data Export Wizard

13. Once finished viewing the contour visualization, close the IDL iContour
window.

14. Confirm that the new variable named “nz” exists at the main IDL level :

IDL> HELP, nz
NZ INT = Array[760, 819]

Next, create variables for the input parameters to the MAP_PROJ_INIT function that
define the geographic location of the current dataset. The MAP_PROJ_INIT function
will be used to define the map projection structure for a Stereographic map

projection that is centered over the country of New Zealand.

IDL Quick Start - 150 - Working with Maps

15. IDL> cLon = 172.6

16. IDL> cLat = -40.8

17. IDL> limit = [-47.616, 166.242, -33.967, 178.900]

Use the MAP_PROJ_INIT function to define a Stereographic map projection with the

appropriate parameters :

18. IDL> sMap = MAP_PROJ_INIT ('Stereographic', CENTER_LON=cLon, $

 CENTER_LAT=cLat, LIMIT=limit)

Next, define the range for the current dataset and warp into the Stereographic map

projection using the MAP_PROJ_IMAGE function :

19. IDL> range = [166.242, -47.616, 178.900, -33.967]

20. IDL> warped = MAP_PROJ_IMAGE (nz, range, MAP_STRUCTURE=sMap)

Finally, create a vector of elevation values for the contour levels and load the two

datasets into a new iMap utility :

21. IDL> cValues = [0.1, 1000.0, 2000.0, 3000.0]

22. IDL> iContour, nz, C_VALUE=cValues, COLOR=[0,0,255], $
 NAME='Geo Lat/Lon'

23. IDL> iContour, warped, C_VALUE=cValues, COLOR=[255,0,0], $
 NAME='Stereographic', /OVER

Once again, the scaling of the axes are anisotropic by default, so change the scaling

and insert a legend into the current visualization :

24. Select “Window > Visualization Browser…” from the iContour menu system.
25. Select the Data Space object and change the “Isotropic scaling” field to

“Isotropic”.
26. While the Data Space object is selected, go back to the iContour menu

system and select “Insert > New Legend”.

27. Close the Visualization Browser window.

The resulting IDL iMap visualization window should look similar to Fig. 8-12.

IDL Quick Start - 151 - Working with Maps

Figure 8-12: Contours of New Zealand DEM data in both the geographic

lat/lon coordinate system and the Stereographic map projection

28. Once finished viewing the contour maps, close the IDL iMap window.
29. Before moving on to the next chapter, it is a good idea to reset the IDL

session. This can be accomplished by executing the statement :

IDL> .reset_session

IDL Quick Start - 152 - Working with Maps

IDL Quick Start - 153 - Advanced Graphics

Chapter 9: Advanced Graphics

IDL’s Graphical Systems

The IDL software package has 3 distinct graphical systems :

• IDL Intelligent Tools (iTools)

• Object Graphics

• Direct Graphics

All of the graphical visualizations that have been created thus far have been in one of

the pre-built iTools utilities (iPlot, iContour, iSurface, iImage, iVolume, iMap). The

three graphical systems are listed above in order of increasing age; the iTools were

introduced in IDL version 6.0 (2003), the Object Graphics were introduced in version

5.0 (1997), and the Direct Graphics have been in IDL since the beginning. There is

actually an inherent relationship between the iTools and the Object Graphics because

the iTools system is merely a set of interactive (point-and-click) utilities with a

graphical user interface that are built on top of the underlying Object Graphics

components. In contrast, the Direct Graphics are a completely separate graphical

system that require a very unique syntax. Each graphical system has distinct

advantages in comparison to the others, and this chapter presents an introduction to

the Direct and Object Graphics systems.

The Direct Graphics rely on the concept of a current graphics device. The routines

in the IDL language that create Direct Graphics will send the graphical output directly

to the current graphics device. The relevant features of the Direct Graphics system

are :

• The Direct Graphics send visualizations to a graphics device (“X” for X-
windows systems displays, “WIN” for Microsoft Windows displays, “PS” for

PostScript files, etc.). The user switches between graphics devices using the

SET_PLOT procedure, and controls the features of the current graphics device
using the DEVICE procedure.

• Once a Direct Graphics mode visualization is drawn to the current graphics

device, it cannot be altered or re-used. This means that if the user wishes to

re-create the graphic on a different device, they must re-issue the IDL

commands to create the graphic again.

• When the user adds a new item to an existing Direct Graphics visualization,

the new item is drawn in front of the existing graphics.

• Some of the primary routines in the IDL language for creating Direct Graphics

are :

o Display Management : WINDOW, WSET, WSHOW, WDELETE
o Color Tables : TVLCT, LOADCT, XLOADCT, XPALETTE
o Line Plots : PLOT, OPLOT, PLOTS
o Contours : CONTOUR, IMAGE_CONT

o Surfaces : SURFACE, SHADE_SURF, SHOW3

IDL Quick Start - 154 - Advanced Graphics

o Images : TV, TVSCL, SLIDE_IMAGE, TVRD, XINTERANIMATE
o Volumes : SLICER3, SHADE_VOLUME, PROJECT_VOL, VOXEL_PROJ,

POLYSHADE
o Maps : MAP_SET, MAP_GRID, MAP_CONTINENTS, MAP_IMAGE

In contrast, the Object Graphics use an object-oriented programmer’s interface to

create graphic objects, which must then be explicitly drawn to a destination of the

programmer’s choosing. The relevant features of the Object Graphics system are :

• Object Graphics are device independent. There is no concept of a current

graphics device when using object-mode graphics; any graphics object can be

displayed on any physical device for which a destination object can be

created.

• Object Graphics are object-oriented. Graphic objects are meant to be created

and re-used; the user may create a set of graphic objects, modify their

attributes, draw them to a window on the computer screen, modify their

attributes again, then draw them to a printer device without reissuing all of

the IDL commands used to create the objects. Graphics objects also

encapsulate functionality. This means that individual objects include method

routines that provide functionality specific to the individual object.

• Object graphics are rendered in three dimensions. Rendering implies many

operations not needed when drawing Direct Graphics, including calculation of

normal vectors for lines and surfaces, lighting considerations, and general

object overhead. As a result, the time needed to render a given object—a

surface, say—will often be longer than the time taken to draw the analogous

graphic in Direct Graphics.

• Object Graphics use a programmer’s interface. Unlike Direct Graphics, which

are well suited for both programming and interactive, ad hoc use, Object

Graphics are designed to be used in programs that are compiled and run.

While it is still possible to create and use graphics objects directly from the

IDL> command prompt, the syntax and naming conventions make it more

convenient to build a program offline than to create graphics objects on the

fly.

• Because Object Graphics persist in memory, there is a greater need for the

programmer to be cognizant of memory issues and memory leakage.

Efficient design—remembering to destroy unused object references and

cleaning up—will avert most problems, but even the best designs can be

memory-intensive if large numbers of graphic objects (or large datasets) are

involved.

• Some of the primary object classes in the IDL language for creating Object

Graphics are :

o Display Management : IDLgrWindow, IDLgrScene, IDLgrView,

IDLgrViewgroup, IDLgrModel
o Color Tables : IDLgrPalette, IDLgrColorbar
o Line Plots : IDLgrPlot
o Contours : IDLgrContour

o Surfaces : IDLgrSurface
o Images : IDLgrImage
o Volumes : IDLgrVolume

o Geometries : IDLgrPolyline, IDLgrPolygon
o Auxiliary : IDLgrAxis, IDLgrFont, IDLgrLight, IDLgrROI, IDLgrBuffer,
IDLgrClipboard, IDLgrPrinter, IDLgrLegend, IDLgrMPEG, IDLgrPattern

IDL Quick Start - 155 - Advanced Graphics

The following exercise will illustrate a simple comparison between the Direct and

Object Graphics systems. Start by generating a small two-dimensional array using

the BESELJ and DIST functions :

1. IDL> data = BESELJ (SHIFT (DIST (50), 25, 25) / 2, 0)

2. IDL> HELP, data
 DATA FLOAT = Array[50, 50]

This two-dimensional array can be visualized using the Direct Graphics version of the

surface graphic by making a call to the SURFACE procedure :

3. IDL> SURFACE, data

The resulting display window should look similar to Fig. 9-1.

Figure 9-1: Direct Graphics surface visualization

One of the primary benefits of the Direct Graphics system is its ability to rapidly

render graphics to the current device, especially when the dataset is very large.

However, once the visualization is drawn to the display device the user no longer has

any control over the graphic.

4. For example, position the cursor over the IDL 0 window and click-and-drag
using the mouse. Notice that the Direct Graphics display window does not

provide the ability to interactively manipulate (rotate, translate, zoom, etc.)

the current visualization.

IDL Quick Start - 156 - Advanced Graphics

Furthermore, the surface visualization is drawn to the display window only once.

Consequently, if the display window is resized the scaling of the graphic does not

automatically update.

5. Click on the maximize button in the upper-right hand corner of the IDL 0

window, or simply click on the edge of the window and drag.

Notice that the surface visualization does not automatically resize with the change in

window size. Moreover, if the user decreases the size of the display window to an

area smaller than the original graphic, then re-exposes the area where the graphic

first appeared the visualization will not automatically repair itself.

6. Click on the edge of the IDL 0 window and make it small enough to hide a
portion of the surface graphic. Then, drag the edge of the window back out

to show the full display area for the original visualization. Notice that the

graphic has been erased.

7. Close the current IDL 0 graphics window.

If the user wants to re-draw the graphic, or modify some property of the

visualization, the commands that are used to create the graphic must be re-issued.

In addition, aspects of the current graphics device (e.g. the current color lookup

table) might need to be modified. For example, in order to change the color of the

wire-mesh surface graphic to red, decomposed color must be disabled using the

DEVICE procedure, the RGB triplet for the color red must be loaded into a color table
index using the TVLCT procedure, and the call to the SURFACE procedure must be
re-issued :

8. IDL> DEVICE, DECOMPOSED=0

9. IDL> TVLCT, 255, 0, 0, 1

10. IDL> SURFACE, data, COLOR=1

The surface graphic and axes within the Direct Graphics visualization window should

now be red.

11. Once finished viewing the Direct Graphics surface visualization, close the IDL
0 display window.

Now create the same surface visualization within the Object Graphics system. This

can be accomplished by making a call to the OBJ_SURFACE procedure :

12. IDL> OBJ_SURFACE, data

Note: The OBJ_SURFACE routine is a custom program that is included with the distribution materials for
this IDL Quick Start tutorial. This program is basically a wrapper on top of the appropriate Object

Graphics components. If executing this statement results in the error “% Error opening file.”, then

the “IDL_QS_Files/lib/” subfolder that contains this batch file is not included in IDL’s path. Please go back
to chapter 1 of this Quick Start tutorial and perform the steps delineated in the section entitled “Installing
the Tutorial Files” in order to rectify this problem.

The surface graphic visualization will appear within a window that has a bit more

functionality than the default Direct Graphics display window [Fig. 9-2]. A series of

bitmap buttons across the toolbar expose manipulation functionality (rotate, zoom,

IDL Quick Start - 157 - Advanced Graphics

pan, select, reset), and the menu system allows the user to export the graphic,

print, copy to clipboard, change the background color, etc..

Figure 9-2: Object Graphics surface visualization

By default, this Object Graphics display utility is setup in Rotate manipulation mode :

13. Position the cursor within the window and click-and-drag with the mouse in
order to rotate the graphic.

One of the primary advantages of the inherent 3-D rendering of the Object Graphics

system is the ability to expose robust interactive manipulation capabilities to the

user. In addition to the Rotate manipulation, experiment with the Zoom and Pan

capabilities :

14. Click on the Zoom button to enter zoom manipulation mode, then click-

and-drag with the mouse cursor within the display window.

15. Click on the Pan button to enter translate manipulation mode, then click-

and-drag with the mouse cursor within the display window.

IDL Quick Start - 158 - Advanced Graphics

The advantages of the Object Graphics system over the Direct Graphics system,

especially when working with 3-Dimensional visualizations, should be readily

apparent. However, the Object Graphics still lack the robust interactive graphical

properties modification, annotation, ROI, undo/redo, and operations of the iTools

graphical system. For example, in order to change the color of the surface graphic

to red, the call to the OBJ_SURFACE procedure must once again be re-issued :

16. Close the current OBJ_SURFACE display window.
17. Re-issue the call to the OBJ_SURFACE procedure, but this time set the COLOR

keyword equal to the color index for red :

IDL> OBJ_SURFACE, data, COLOR=1

The resulting wire-mesh surface graphic should now be red in color.

18. Once finished viewing the surface visualization, close the OBJ_SURFACE
window.

The evolution of IDL’s graphical systems from Direct Graphics � Object Graphics �

iTools has led to the development of a robust environment for data visualization that

has the convenience of point-and-click user interaction along with the power and

control of a programming language. At this point, users might be asking

themselves, “Why would I ever want to use the Direct or Object Graphics systems

directly? Why wouldn’t I always just use the iTools graphical system?”. The

following table clearly delineates the primary advantages and disadvantages of the 3

graphical systems :

GRAPHICAL SYSTEM ADVANTAGES DISADVANTAGES
Rapid Rendering No Built-In User Interaction

Efficient with Large Datasets Dependant Upon VRAM Resources Direct Graphics
Excellent Programmatic Control Change Code to Change Graphic

Rendering Done in 3-D Limited Built-In User Interaction

Object-Oriented Design Computationally Intensive Object Graphics
Excellent Programmatic Control Can Require Significant Coding

Excellent User Interaction May Expose Too Much Functionality

Pre-Built Tools (iPlot, iImage, etc.) iTools System Overhead Intelligent Tools
Customizable and Extendable Slower When Using Very Large Data

Table 9-1: Advantages and disadvantages of IDL’s graphical systems

Utilizing the Direct Graphics System

The Direct Graphics system sends graphical output to a specific destination, known

as a device. The output devices that are supported within the Direct Graphics

system of IDL are listed in Table 9-2. Useful information about the current Direct

Graphics device can be obtained from the HELP procedure by setting the DEVICE
keyword :

1. IDL> HELP, /DEVICE

The output from the execution of this statement should be similar to the following :

IDL Quick Start - 159 - Advanced Graphics

Available Graphics Devices: CGM HP METAFILE NULL PCL PRINTER PS WIN Z

Current graphics device: WIN

 Screen Resolution: 1024x768

 Simultaneously displayable colors: 16777216

 Number of allowed color values: 16777216

 System colors reserved by Windows: 0

 IDL Color Table Entries: 256

 NOTE: this is a TrueColor device

 NOT using Decomposed color

 Graphics Function: 3 (copy)

 Current Font: System, Current TrueType Font: <default>

 Default Backing Store: None.

Since the example above was generated on a Windows computer the default current

graphics device is “WIN”, which is the computer monitor screen. If this command
was executed on a UNIX, Linux, or Mac OS X computer the current graphics device

should be “X”, which is short for X-windows.

DEVICE NAME DESCRIPTION

CGM Computer Graphics Metafile

HP Hewlett-Packard Graphics Language (HP-GL)

METAFILE Windows Metafile Format (WMF)

NULL No graphics output

PCL Hewlett-Packard Printer Control Language (PCL)

PRINTER System printer

PS PostScript

REGIS Regis graphics protocol (DEC systems only)

TEK Tektronix compatible terminal

WIN Microsoft Windows

X X Window System

Z Z-buffer pseudo device

Table 9-2: Direct Graphics Output Devices

The SET_PLOT procedure must be used to select the graphic device to which IDL
directs its output. For example, change the current Direct Graphics output device to

the PostScript device and obtain information :

2. IDL> SET_PLOT, 'PS'

3. IDL> HELP, /DEVICE

The output from the execution of this statement should be similar to the following :

Available Graphics Devices: CGM HP METAFILE NULL PCL PRINTER PS WIN Z

Current graphics device: PS

 File: <none>

 Mode: Portrait, Non-Encapsulated, EPSI Preview Disabled, Color Disabled

 Output Color Model: RGB

 Offset (X,Y): (1.905,12.7) cm., (0.75,5) in.

 Size (X,Y): (17.78,12.7) cm., (7,5) in.

 Scale Factor: 1

 Preview Size (X,Y): (4.51556,4.51556) cm., (1.77778,1.77778) in.

 Preview Depth: 8 bits per pixel

 Font Size: 12

 Font Encoding: AdobeStandard

 Font: Helvetica TrueType Font: <default>

IDL Quick Start - 160 - Advanced Graphics

 # bits per image pixel: 4

 Font Mapping:

 (!3) Helvetica (!4) Helvetica-Bold

 (!5) Helvetica-Narrow (!6) Helvetica-Narrow-BoldOblique

 (!7) Times-Roman (!8) Times-BoldItalic

 (!9) Symbol (!10) ZapfDingbats

 (!11) Courier (!12) Courier-Oblique

 (!13) Palatino-Roman (!14) Palatino-Italic

 (!15) Palatino-Bold (!16) Palatino-BoldItalic

 (!17) AvantGarde-Book (!18) NewCenturySchlbk-Roman

 (!19) NewCenturySchlbk-Bold (!20) <Undefined-User-Font>

At this point, if the user were to execute a routine from the IDL library that creates

Direct Graphics visualizations the graphical output would actually be directed to this

invisible PostScript device and would not appear on the computer monitor screen.

4. In order to create Direct Graphics visualizations and see them on the display,
change the current graphics device back to its original setting :

• Windows: IDL> SET_PLOT, 'WIN'

• UNIX et al.: IDL> SET_PLOT, 'X'

• Mac OS X: IDL> SET_PLOT, 'X'

The !D system variable within the IDL language also stores useful information on the

current Direct Graphics output device in a structure. The user can view these

settings by using the HELP procedure with the STRUCTURE keyword set :

5. IDL> HELP, !D, /STRUCTURE

The output from the execution of this statement should be similar to the following :

** Structure !DEVICE, 17 tags, length=84, data length=84:

 NAME STRING 'WIN'

 X_SIZE LONG 640

 Y_SIZE LONG 512

 X_VSIZE LONG 640

 Y_VSIZE LONG 512

 X_CH_SIZE LONG 7

 Y_CH_SIZE LONG 10

 X_PX_CM FLOAT 34.1333

 Y_PX_CM FLOAT 33.3913

 N_COLORS LONG 16777216

 TABLE_SIZE LONG 256

 FILL_DIST LONG 1

 WINDOW LONG -1

 UNIT LONG 0

 FLAGS LONG 328124

 ORIGIN LONG Array[2]

 ZOOM LONG Array[2]

However, the !D system variable is read-only and cannot be modified directly by the
user. In order to control the settings for the current graphics device (and obtain

other useful information) the DEVICE procedure must be used. The DEVICE

procedure controls the graphic device-specific functions for the device currently

selected by SET_PLOT. An attempt has been made to isolate all device-specific
functionality in this procedure.

IDL Quick Start - 161 - Advanced Graphics

For example, the use of decomposed color can be turned back on by executing the

following statement :

6. IDL> DEVICE, DECOMPOSED=1

Once this is accomplished, executing the command “HELP, /DEVICE” will show that

the current Direct Graphics device is using decomposed (24-bit) color :

7. IDL> HELP, /DEVICE

Available Graphics Devices: CGM HP METAFILE NULL PCL PRINTER PS WIN Z

Current graphics device: WIN

 Screen Resolution: 1024x768

 Simultaneously displayable colors: 16777216

 Number of allowed color values: 16777216

 System colors reserved by Windows: 0

 IDL Color Table Entries: 256

 NOTE: this is a TrueColor device

 Using Decomposed color

 Graphics Function: 3 (copy)

 Current Font: System, Current TrueType Font: <default>

 Default Backing Store: None.

The primary advantages of the Direct Graphics system is efficient handling of large

datasets and very rapid rendering. The following exercise illustrates one of these

benefits by executing a small GUI program that utilizes Direct Graphics (and IDL’s

widget toolkit). This program displays an image of a digital elevation model and

allows the user to click on the image and dynamically display X- and Y- line profiles

of the DEM data in a very rapid fashion. The data that is used in this exercise is

stored in the file named “DEM.tif” located in the “data” subfolder of the Quick Start
directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\DEM.tif
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/DEM.tif
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/DEM.tif

Start by launching the custom program that is built on top of the Direct Graphics

system :

8. IDL> PROFILE_VIEW

Note: The PROFILE_VIEW routine is a custom program that is included with the distribution materials for
this IDL Quick Start tutorial. This program is basically a wrapper on top of the appropriate Direct Graphics

components. If executing this statement results in the error “% Error opening file.”, then the

“IDL_QS_Files/lib/” subfolder that contains this batch file is not included in IDL’s path. Please go back to
chapter 1 of this Quick Start tutorial and perform the steps delineated in the section entitled “Installing
the Tutorial Files” in order to rectify this problem.

A standard native file selection dialog will appear entitled “Select “DEM.tif” file to
open”.

9. Select the file named “DEM.tif” and press the “Open” button.

A new Direct Graphics display window entitled “Profile Viewer” will appear with an
image display of the DEM data and two blank plot windows. This program window

allows the user to click-and-drag with the left mouse button on top of the image in

IDL Quick Start - 162 - Advanced Graphics

order to display both an X- and Y- line profile for the elevation data according to the

current cursor location [Fig. 9-3]. Moving the cursor around in the image, the user

can see how rapidly the Direct Graphics system is able to update the line profile

plots.

Figure 9-3: Program illustrating rapid line plot capabilities

10. Once finished viewing the line profiles, close the Profile Viewer window.

The next exercise illustrates another aspect of the Direct Graphics system’s rapid

rendering by displaying a very large image in a window that allows the user to

rapidly move a zoom window around on top of the picture using the mouse. The

image that will be used is stored in the file “St_Louis.jpg” located in the “data”
subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\St_Louis.jpg
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/St_Louis.jpg

• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/St_Louis.jpg

The file is in JPEG format and contains a 2000 x 2000 satellite image of downtown

St. Louis, Missouri. Both the Edward Jones Dome and Busch Stadium are readily

visible in this image. Start by launching a custom program that is built on top of the

Direct Graphics system :

11. IDL> IMAGE_FULLRES_ZOOM

Note: The IMAGE_FULLRES_ZOOM routine is a custom program that is included with the distribution
materials for this IDL Quick Start tutorial. This program is basically a wrapper on top of the appropriate

Direct Graphics components. If executing this statement results in the error “% Error opening file.”,

then the “IDL_QS_Files/lib/” subfolder that contains this batch file is not included in IDL’s path. Please go
back to chapter 1 of this Quick Start tutorial and perform the steps delineated in the section entitled
“Installing the Tutorial Files” in order to rectify this problem.

IDL Quick Start - 163 - Advanced Graphics

A standard native file selection dialog will appear entitled “Select “St_Louis.jpg” file

to open”.

12. Select the file named “St_Louis.jpg” and press the “Open” button.

A new Direct Graphics display window entitled “Full Resolution Zoom (click with left
or right mouse button)” will appear with the image graphic. This display window
allows the user to click-and-drag with either the left (200 x 200 zoom window) or

right (400 x 400 zoom window) mouse button in order to display the current image

area at full resolution.

13. Experiment with clicking both the left and right mouse buttons within the
image display window [Fig. 9-4].

Figure 9-4: Direct Graphics image display with rapid overlay capabilities

IDL Quick Start - 164 - Advanced Graphics

Notice how rapidly the image display updates as the red zoom box is moved around

in the window. When the user moves the zoom box around in the image the

IMAGE_FULLRES_ZOOM program is utilizing techniques in the Direct Graphics
system in order to rapidly display an area surrounding the current cursor position at

full resolution within the zoom box, while also repairing the original image display.

These operations occur so fast that the user cannot see any delay while the image

graphic is being updated.

14. Once finished viewing the image of St. Louis, close the Full Resolution Zoom
display window.

The following exercise illustrates another powerful aspect of the Direct Graphics

system by loading a series of images into IDL and displaying each in a sequential

fashion. The delay between the display of each image in the sequence is so short

that the visualization has the appearance of an animation (i.e. movie) to the viewer.

IDL has a pre-built utility that provides an interface and controls for viewing

animations called XINTERANIMATE. This utility utilizes the Direct Graphics system to

display images in a very rapid fashion.

The images that will be loaded as movie frames into this animation utility are located

in the “frames” subfolder of the “data” subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\frames*
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/frames/*

• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/frames/*

The individual data files found in this “frames” subfolder are in BMP format. Start by
selecting this folder and inputting the images into the current IDL session. The

DIALOG_PICKFILE function can be used to display the native file selection dialog.
Set the DIRECTORY keyword so the dialog prompts the user to select an entire folder
instead of individual files :

15. IDL> folder = DIALOG_PICKFILE (/DIRECTORY)

16. Within the dialog, select the “frames” subfolder and press “OK” [Fig. 9-5].

IDL Quick Start - 165 - Advanced Graphics

Figure 9-5: Selecting a directory using the native folder selection dialog

Confirm that the selected folder was successfully returned as a string into the named

variable “folder” :

17. IDL> HELP, folder
 FOLDER STRING = 'C:\RSI\IDL61\IDL_QS_Files\data\frames\'

Note: The string value for the “folder” variable may be different depending on the installation location for
the IDL software.

Next, utilize the FILE_SEARCH function in order to determine the full path to each of
the individual 116 BMP format files located within the “frames” subfolder :

18. IDL> files = FILE_SEARCH (folder, '*', COUNT=nFiles)

Confirm that the number of files located is equal to 116 :

19. IDL> HELP, nFiles
 NFILES LONG = 116

Obtain information on the image data for the first BMP file in the sequence using the

QUERY_BMP function :

20. IDL> query = QUERY_BMP (files[0], info)

21. IDL> HELP, info, /STRUCTURE
 ** Structure <10b5168>, 7 tags, length=40, data length=36,

 refs=1:

 CHANNELS LONG 3

 DIMENSIONS LONG Array[2]

 HAS_PALETTE INT 0

 NUM_IMAGES LONG 1

 IMAGE_INDEX LONG 0

IDL Quick Start - 166 - Advanced Graphics

 PIXEL_TYPE INT 1

 TYPE STRING 'BMP'

22. IDL> PRINT, info.dimensions
 320 240

The contents of the information structure returned by QUERY_BMP illustrate that the

image data is of type byte and has a size of 320 columns by 240 rows with 3 color

channels. Initialize a new variable named “frames” that will be used to store all of
the images in the sequence :

23. IDL> frames = MAKE_ARRAY (3, 320, 240, nFiles, TYPE=1)

24. IDL> HELP, frames
 FRAMES BYTE = Array[3, 320, 240, 116]

Now that a variable has been initialized within the current IDL session to store all of

the images in the sequence, they can be input from their individual BMP format files.

Utilize the FOR loop control statement to read-in the images from all of the files into
the appropriate index of the “frames” variable :

25. IDL> FOR i=0,nFiles-1 DO frames[*,*,*,i] = READ_BMP(files[i],/RGB)

Finally, load the image frames into the XINTERANIMATE visualization utility. This is
accomplished by calling the XINTERANIMATE procedure 3 times; first to initialize the

utility, second to load the individual image frames, and third to actually launch the

display window.

26. IDL> XINTERANIMATE, SET=[320, 240, 116], /TRACK, /CYCLE

27. IDL> FOR i=0,nFiles-1 DO XINTERANIMATE, FRAME=i, $
 IMAGE=frames[*,*,*,i]

28. IDL> XINTERANIMATE, 50

An animation of MRI and PET data of a human brain will be displayed in an

interactive display window. The XINTERANIMATE utility also has built-in GUI

components for controlling the animation. The resulting visualization window should

look similar to Fig. 9-6.

IDL Quick Start - 167 - Advanced Graphics

Figure 9-6: Animation of multiple image frames using Direct Graphics

The extremely fast display speed of the Direct Graphics system can be seen by

changing the “Animation Speed:” slider to its highest setting :

29. Click on the vertical bar within the “Frames/Sec:” slider and drag it all the
way to the right in order to obtain the maximum setting.

Notice how fast the animation utility is able to update the image display.

30. Once finished viewing the animation, close the XInterAnimate window.

Utilizing the Object Graphics System

The IDL Object Graphics system is a collection of pre-defined object classes, each of

which is designed to encapsulate a particular visual representation. These objects

are designed for building complex three-dimensional data visualizations. In general,

object classes shipped with IDL have names of the form :

IDLxxYyyy

where xx represents the broad functional grouping (gr for graphics objects, db for
database objects, an for analysis objects, ff for file format objects, etc.). Yyyy is the
class name itself (such as Axis or Surface). For example, the IDLgrAxis object

provides an encapsulation of all of the components associated with a graphical

representation of an axis.

IDL Quick Start - 168 - Advanced Graphics

Object Graphics should be thought of as a collection of building blocks. In order to

display something on the screen, the user selects the appropriate set of blocks and

puts them together so that as a group they provide a visual result. In this respect,

Object Graphics are quite different than Direct Graphics. A single line of code is

unlikely to produce a complete visualization. Furthermore, a basic understanding of

the IDL object system is required (for instance, how to create an object, how to call

a method, how to destroy an object, etc.). Because of the level at which these

objects are presented, Object Graphics are aimed at application programmers rather

than command line users. The syntax involved in working with objects in the IDL

language is a bit different than the statements that have been executed thus far in

this tutorial. Consequently, a brief introduction to IDL objects and object-oriented

concepts is necessary.

IDL objects are actually special variables known as heap variables, which means

that they are global in scope and provide explicit user control over their lifetimes.

Object heap variables can only be accessed via object references. In order to

perform an action on an object’s instance data (such as the modification of

attributes), you must call one of the object’s methods. To call a method, you must

use the method invocation operator “->” (the hyphen followed by the greater-than

sign). The syntax is :

ObjRef->Method

where ObjRef is an object reference and Method is a method belonging either to the
object’s class or to one of its superclasses. The method may be specified either

partially (using only the method name) or completely using both the class name and

method name, connected with two colons :

ObjRef->ClassName::MethodName

In order to utilize Object Graphics, the user must build a self-contained hierarchy of

the appropriate objects that is subsequently drawn to a destination object. The 5

primary building blocks of an Object Graphics visualization are :

• Destination object : The device (such as a window, memory buffer, file,

clipboard, or printer) to which the visualization is to be rendered.

• Scene object : A container that can hold multiple views (if necessary).

• View object : The viewport rectangle (within the destination) within which

the rendering is to appear (as well as how data should be projected into that

rectangle).

• Model object : A transformation node.

• Atomic Graphic object : A graphical representation of data (such as an axis,

line plot, or surface mesh, text annotation, etc.).

For example, in the following exercise a hierarchy of objects will be created that

contain a simple line plot visualization, and this hierarchy will be drawn to a display

window destination object :

IDL Quick Start - 169 - Advanced Graphics

1. Create a simple one-dimensional dataset that can be displayed as a line plot
by executing a series of statements at the IDL> command prompt :

IDL> x = FINDGEN (720)

IDL> y = SIN (x * !DTOR) * COS (x * !DTOR / 3)

IDL> x = x / 450 - 0.8

2. Create an instance of the IDLgrPlot object class for this data using the
OBJ_NEW function. The object reference for this line plot is returned into the
variable named “oPlot” :

IDL> oPlot = OBJ_NEW ('IDLgrPlot', x, y)

3. Create an IDLgrModel object and execute the “Add” method in order to add
the line plot object to the model. Once this is accomplished, the model object

will contain the plot object :

IDL> oModel = OBJ_NEW ('IDLgrModel')

IDL> oModel -> Add, oPlot

4. Create an IDLgrView object and add the model to it :

IDL> oView = OBJ_NEW ('IDLgrView')

IDL> oView -> Add, oModel

5. Create an IDLgrWindow destination object, setting the RETAIN keyword equal
to 2 so that IDL is forced to provide backing store :

IDL> oWindow = OBJ_NEW ('IDLgrWindow', RETAIN=2)

6. Once this is accomplished, the entire object hierarchy can be rendered by
executing the Draw method with the top object container :

IDL> oWindow -> Draw, oView

The resulting visualization window should look similar to Fig. 9-7.

IDL Quick Start - 170 - Advanced Graphics

Figure 9-7: Object Graphics visualization of a line plot

A simple black line plot will be drawn on top of the white view within the Object

Graphics window. Much like Direct Graphics, this is a static display window that does

not expose any interactive manipulation capabilities. Furthermore, the visualization

does not include axes because instances of the IDLgrAxis class were not explicitly

added to the object hierarchy. In order to make modifications to this visualization,

such as changing the color and adding an axis, the appropriate object must be

created and the SetProperty method must be utilized on the existing objects. For

example, the background color can be changed to yellow, the line plot color to blue,

and an X axis inserted into the visualization by executing the following statements :

7. IDL> oPlot -> SetProperty, COLOR=[0,0,255]

8. IDL> oView -> SetProperty, COLOR=[255,255,0]

9. IDL> oAxis = OBJ_NEW ('IDLgrAxis', RANGE=[-0.8,0.8], /EXACT)

10. IDL> oModel -> Add, oAxis

11. IDL> oWindow -> Draw, oView

The resulting visualization window should look similar to Fig. 9-8.

IDL Quick Start - 171 - Advanced Graphics

Figure 9-8: Modification of the graphic colors and insertion of an axis

Since IDL objects are stored as heap variables, they persist in memory until they are

explicitly destroyed. Information on all of the current heap variables that exist

within an IDL session can be obtained by executing the HELP procedure with the

HEAP keyword set :

12. IDL> HELP, /HEAP
 Heap Variables:

 # Pointer: 13

 # Object : 8

 <ObjHeapVar1> STRUCT = -> IDLGRPLOT Array[1]

 <ObjHeapVar3> STRUCT = -> IDLGRDATA Array[1]

 <PtrHeapVar4> FLOAT = Array[3, 720]

 <PtrHeapVar5> STRUCT = -> IDL_CONTAINER_NODE Array[1]

 <ObjHeapVar6> STRUCT = -> IDLGRMODEL Array[1]

 <PtrHeapVar7> STRUCT = -> IDL_CONTAINER_NODE Array[1]

 <ObjHeapVar8> STRUCT = -> IDLGRVIEW Array[1]

 <PtrHeapVar10> STRUCT = -> IDL_CONTAINER_NODE Array[1]

 <ObjHeapVar11> STRUCT = -> IDLGRWINDOW Array[1]

 <PtrHeapVar12> BYTE = Array[3]

 <PtrHeapVar13> BYTE = Array[3]

 <ObjHeapVar14> STRUCT = -> IDLGRAXIS Array[1]

 <PtrHeapVar15> BYTE = Array[3]

 <PtrHeapVar16> DOUBLE = Array[3]

 <ObjHeapVar17> STRUCT = -> IDLGRTEXT Array[1]

 <PtrHeapVar18> BYTE = Array[3]

IDL Quick Start - 172 - Advanced Graphics

 <PtrHeapVar19> STRING = Array[3]

 <PtrHeapVar20> DOUBLE = Array[3, 3]

 <PtrHeapVar21> OBJREF = <ObjHeapVar17(IDLGRTEXT)>

 <ObjHeapVar22> STRUCT = -> IDLGRFONT Array[1]

 <PtrHeapVar23> STRUCT = -> IDL_CONTAINER_NODE Array[1]

The output from the HELP procedure illustrates that a number of objects and pointers

have been created and are currently using memory within the current IDL session.

In order to destroy all of the heap variables associated with this visualization and

free the memory that is currently being used, the OBJ_DESTROY procedure must be

used in order to complete the object life cycle :

13. IDL> OBJ_DESTROY, oWindow

14. IDL> OBJ_DESTROY, oView

Notice that destroying the top level object in a hierarchy (the view object in this

case) destroys all of the other objects it contains. Once this is accomplished,

another call to the HELP procedure should show that all of the heap variables have

been destroyed (and the memory they were using released) :

15. IDL> HELP, /HEAP
 Heap Variables:

 # Pointer: 0

 # Object : 0

The number of steps involved in creating an Object Graphics visualization from

scratch clearly demonstrate the need to write programs that create the entire object

hierarchy that is needed in order to display the graphic. Fortunately, there are a

number of pre-built utilities that are included with the IDL software package that

help the user visualize data using Object Graphics.

One of these utilities is called XDXF, and it is used to visualize geometric shapes
stored in AutoCAD DXF format files as 3-Dimensional polygonal objects. Another

more generic utility called XOBJVIEW can be used to quickly and easily visualize and
manipulate Object Graphics on screen. In the following exercise, a geometry from

the example data file “F-14.dxf” will be input into both of these utilities. This

example data file is located in the “data” subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\F-14.dxf
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/F-14.dxf

• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/F-14.dxf

This dataset contains the vertices and polygonal connectivity to define the three-

dimensional geometry for a F-14 fighter jet. Start by launching the XDXF utility :

16. IDL> XDXF

Since no filename was specified, a native file selection dialog will appear entitled

“Select DXF File to Read”.

17. Select the “F-14.dxf” file and press the “OK” button.

IDL Quick Start - 173 - Advanced Graphics

Two separate windows will appear once the data has been input from the DXF file; a

display window entitled “F-14.dxf”, and a window entitled “XDXF Information” that

displays information on the contents of the DXF file. The user can click-and-drag

with the mouse and execute the selected manipulation control on the object within

the display window. There is also several pieces of functionality exposed in the

menu system built into the F-14.dxf window.

18. Once finished viewing the 3-D geometry visualization, close the XDXF
Information window.

Within the XDXF utility, the geometry object is displayed by default with flat shading
and the vertex colors that are defined by the DXF file (in this case, all white). There

is no way to modify the appearance of the object unless the properties of the

underlying polygonal mesh object itself are modified. In order to give the geometry

object a more genuine appearance similar to that of a real F-14 fighter jet, the

Object Graphics components must be built manually.

In addition to graphical object classes, IDL also contains several file format objects

that are used to read and write data to files on disk. The DXF file format is one that

is handled using an object class in the IDL software package. The object class is

named “IDLffDXF”, and it can be utilized to input the data from the file “F-14.dxf”
file. Start by using the DIALOG_PICKFILE function to display the native file selection
dialog and select the “F-14.dxf” file on the harddrive :

19. IDL> file = DIALOG_PICKFILE (FILTER='F-14.dxf')

20. IDL> PRINT, file
 C:\RSI\IDL61\IDL_QS_Files\data\F-14.dxf

Note: The string value for the “file” variable may be different depending on the installation location for
the IDL software.

Next, create an instance of the IDLffDXF object class and read-in the entity list by

executing the Read method :

21. IDL> oDXF = OBJ_NEW ('IDLffDXF')

22. IDL> status = oDXF -> Read (file)

Obtain the contents of the DXF file and filter the result so it only contains “FACE3D”
entity types by setting the filter argument equal to 10 while executing the

GetContents method :

23. IDL> contents = oDXF -> GetContents (10)

Once the contents have been determined, the actual data can be read-in by

executing the GetEntity method :

24. IDL> data = oDXF -> GetEntity (contents)

Make sure to destroy the object and free the heap memory :

25. IDL> OBJ_DESTROY, oDXF

IDL Quick Start - 174 - Advanced Graphics

Once this is accomplished, a new structure named “data” will exist in the current IDL
session :

26. IDL> HELP, data, /STRUCTURE
 ** Structure IDL_DXF_POLYGON, 13 tags, length=80, data length=78:

 EXTRUSION DOUBLE Array[3]

 VERTICES POINTER <PtrHeapVar6>

 CONNECTIVITY POINTER <PtrHeapVar7>

 VERTEX_COLORS POINTER <PtrHeapVar8>

 MESH_DIMS INT Array[2]

 CLOSED INT Array[2]

 COLOR INT 256

 FIT_TYPE INT -1

 CURVE_FIT INT 0

 SPLINE_FIT INT 0

 DXF_TYPE INT 10

 BLOCK STRING ''

 LAYER STRING '0'

The vertices and polygonal connectivity can be extracted from the structure by

dereferencing their respective pointers :

27. IDL> vertices = *data.vertices

28. IDL> polygons = *data.connectivity

29. IDL> HELP, vertices, polygons
 VERTICES DOUBLE = Array[3, 4427]

 POLYGONS LONG = Array[30372]

A new polygon object can be created using the IDLgrPolygon class :

30. IDL> oJet = OBJ_NEW ('IDLgrPolygon', vertices, POLYGONS=polygons)

Once the polygon object has been created, change some of the properties to modify

the appearance of the geometry so it looks more like a grayish-blue metal aircraft :

31. IDL> oJet -> SetProperty, AMBIENT=[99,124,180]

32. IDL> oJet -> SetProperty, DIFFUSE=[129,129,154]

33. IDL> oJet -> SetProperty, SPECULAR=[155,155,155]

34. IDL> oJet -> SetProperty, SHININESS=21.2

35. IDL> oJet -> SetProperty, SHADING=1

Now that the polygon object has been created and its properties modified, it can be

visualized in the generic XOBJVIEW utility :

36. IDL> XOBJVIEW, oJet, BACKGROUND=[0,0,0]

You can rotate the image, zoom in and move it within the window. The resulting

visualization window should look similar to Fig. 9-9.

IDL Quick Start - 175 - Advanced Graphics

Figure 9-9: Visualization of F-14 fighter jet geometry from a DXF format file

37. Once finished viewing the polygon object, close the Xobjview window.

Another powerful aspect of the Object Graphics system is that most of the atomic

graphic objects have a property named either ALPHA_CHANNEL or
BLEND_FUNCTION that can be used to apply a transparency effect to the

visualization. This allows the user to create composite visualizations with more than

one object that involves an opacity adjustment in order to see through certain
objects. An example of this methodology is provided in the program named

ALPHA_BLENDING, which uses 2 images stored in the file “pictures.sav” located in
the “data” subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\data\pictures.sav

• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/data/pictures.sav
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/data/pictures.sav

The file is in IDL save file format and contains two color photographs from Arches

National Park. Start by launching the custom program :

38. IDL> ALPHA_BLENDING

IDL Quick Start - 176 - Advanced Graphics

Note: The ALPHA_BLENDING routine is a custom program that is included with the distribution materials
for this IDL Quick Start tutorial. This program is basically a wrapper on top of the appropriate Object

Graphics components. If executing this statement results in the error “% Error opening file.”, then

the “IDL_QS_Files/lib/” subfolder that contains this batch file is not included in IDL’s path. Please go back
to chapter 1 of this Quick Start tutorial and perform the steps delineated in the section entitled “Installing
the Tutorial Files” in order to rectify this problem.

A standard native file selection dialog will appear entitled “Select “pictures.sav” file

to open”.

39. Select the file named “pictures.sav” and press the “Open” button.

A new Object Graphics display window will appear that shows a gradual transition

from one image to the next and back again [Fig. 9-10].

Figure 9-10: Transparency transition from one image to another

40. Once finished viewing the images, close the IDL Object Window 32 window.
41. Before moving on to the next chapter, it is a good idea to reset the IDL

session. This can be accomplished by executing the statement :

IDL> .reset_session

IDL Quick Start - 177 - Programming in IDL

Chapter 10: Programming in IDL

Introduction to IDL Programming

An IDL program consists of one or more IDL commands that are executed in a

sequential fashion. The IDL software integrates a powerful, array-oriented language

with numerous mathematical analysis and graphical display techniques.

Programming in IDL is a time-saving alternative to programming in compiled

computer languages such as FORTRAN or C. Using IDL, tasks which require days or

weeks of programming with traditional languages can be accomplished in hours. The

user can explore data interactively using IDL commands and then create complete

applications by writing IDL programs. Advantages of programming in IDL include :

• IDL is a complete, structured language that can be used both interactively

and to create sophisticated algorithms and interactive applications.

• Operators and functions work on entire arrays (without using loops),

simplifying interactive analysis and reducing programming time.

• Immediate compilation and execution of IDL commands provides instant

feedback and “hands-on” interaction.

• Rapid 2D plotting, multi-dimensional plotting, volume visualization, image

display, and animation allow the user to observe the results of computations

immediately.

• Many numerical and statistical analysis routines—including Numerical Recipes

routines—are provided for analysis and simulation of data.

• IDL’s flexible input/output facilities allow the user to read any type of custom

data format. Support is also provided for common image standards (including

BMP, JPEG, and XWD) and scientific data formats (CDF, HDF, and NetCDF).

• IDL widgets can be used to quickly create multi-platform graphical user

interfaces.

• IDL programs run the same across all supported platforms (Microsoft

Windows and a wide variety of Unix systems) with little or no modification.

This application portability allows the program to easily support a variety of

computers.

• Existing FORTRAN and C routines can be dynamically-linked into IDL to add

specialized functionality. Alternatively, C and FORTRAN programs can call IDL

routines as a subroutine library or display “engine”.

There are several different ways in which a computer program can be created, and

IDL supports the development of programs using a wide variety of methodologies.

There are 5 primary types of IDL programs :

• Batch Files

• Main-Level Programs

• Named Programs (procedures & functions)

o Object-Oriented Programs (creating IDL objects and their methods)

o iTools System Programs

IDL Quick Start - 178 - Programming in IDL

These different types of IDL programs are not necessarily completely distinct from

one another, and each may or may not include components from IDL’s widget toolkit

in order to display a graphical user interface. For example, in order to create objects

in IDL the programmer must actually write a series of named procedures or

functions. Furthermore, iTools system programming is merely an extension of IDL’s

object-oriented methodology that focuses on customizing and extending the iTools.

IDL is inherently a procedural language, which means that the programmer

specifies an explicit sequences of steps to follow to produce a result. A procedural

program is written as a list of instructions telling the computer, step-by-step, what to

do (e.g. open a file, read in data, perform processing, display result, etc.).

Procedural programming is a method of computer programming based upon the

concept of the unit and scope (the data viewing range of an executable code

statement). It is possible for a procedural program to have multiple levels or scopes,

with procedures defined inside other procedures. Each scope can contain variables

which cannot be seen in outer scopes.

Batch Files

A batch file contains one or more IDL statements or commands. Each line of the

batch file is read and executed before proceeding to the next line. This makes batch

files different from main-level programs, which are compiled as a unit before being

executed, and named programs, in which all program modules are compiled as an

unit before being executed. Batch files are sometimes referred to as include files,

since they can be used to include the multiple IDL statements contained in the file in
another program.

In the following exercise, a simple batch file is created and executed using the at

symbol (“@”) special character. The “@” symbol is either used as an include
character within other programs or to signal that batch processing is to be

performed. Executing the “@” symbol followed by the path to a batch file on disk
will execute all of the statements within the batch file, one line at a time, in a

sequential fashion.

1. Start by selecting “File > New > Editor” from the main IDL Development
Environment menu system. This will open a new blank text editor window in

the document panel of the IDLDE.

2. Within the text editor window, enter the following IDL code :

file = filepath('marsglobe.jpg', subdir=['examples', 'data'])

read_jpeg, file, image

iImage, image

3. Once these 3 lines of IDL code have been entered, select “File > Save As…”
from the menu system.

4. Save the text to a new file named “batch.pro” located in the “output”
subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\output\batch.pro
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/output/batch.pro

IDL Quick Start - 179 - Programming in IDL

• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/output/batch.pro

5. Finally, execute this batch file :

IDL> @batch

This will execute each of the 3 lines from the batch file in sequence as if they were

executed individually at the IDL> command prompt. The resulting iImage

visualization window should look similar to Fig. 10-1.

Figure 10-1: Result of executing batch file program

6. Once finished viewing the image, close the IDL iImage window.
7. Select “File > Close” in order to close the text editor window for this batch

file.

Main-Level Programs

Main-level programs are entered at the IDL command line, and are useful when

you have a few commands you want to run without creating a separate file to

contain your commands. Main-level programs are not explicitly named; they consist

of a series of statements that are not preceded by a procedure or function heading.

IDL Quick Start - 180 - Programming in IDL

They do, however, require an END statement. Since there is no heading, the
program cannot be called from other routines and cannot be passed arguments.

When IDL encounters a main program as the result of a .RUN executive command, it
compiles it into the special program named $MAIN$ and immediately executes it.
Afterwards, it can be executed again by using the .GO executive command.

The following example creates and executes a small main-level program :

1. At the IDL> command prompt, enter the following :

IDL> a = 3

2. Next, execute the .RUN executive command. This changes the command
prompt from “IDL>” to “-” :

IDL> .RUN

3. Enter the following 3 statements at the “-” prompt :

a = a ^ 2

PRINT, a

END

4. This creates a main-level program, which automatically compiles and
executes, resulting in the following output :

% Compiled module: $MAIN$.

 9

5. This main-level program can be run again by executing the .GO executive
command :

IDL> .GO

6. The result of executing this program a second time is cumulative, resulting in
the following output :

 81

Named Programs (Procedures & Functions)

Named programs are modules that are given explicit names so they can be called

from other programs as well as executed at the IDL command line. Named

programs are usually stored in ASCII text files on disk and are given a “.pro”

extension by convention. There are two different types of named programs in IDL;

procedures and functions. The concept of procedures and functions should be

familiar since almost all of the statements executed in this tutorial thus far have

involved either a procedure or a function (or a combination of both).

Procedures and functions are self-contained modules that break large tasks into

smaller, more manageable ones. A procedure is a self contained sequence of IDL

IDL Quick Start - 181 - Programming in IDL

statements with an unique name that performs a well defined task. A function is a

self-contained sequence of IDL statements that performs a well-defined task and

returns a value to the calling program unit when it is executed. Consequently, all

functions must contain a call to the RETURN procedure with a specific value (scalar,
string, array, structure, etc.) as the argument which is returned to the calling

program unit.

Before a procedure or function can be executed, it must be compiled. When a

system routine (a function or procedure built into IDL, such as SURFACE) is called,
either from the command line or from another procedure, IDL already knows about

this routine and compiles it automatically. When a user-defined function or

procedure is called, IDL must compile the program before it can be executed. There

are 3 ways in which a procedure or function can be compiled :

• Automatically : If the ASCII text source code file for the program has a

filename that is identical to the name of the main program module, the

filename ends with a “.pro” extension, and this file is found within IDL’s path,

then the program will be automatically compiled when it is executed. For

reference, IDL’s path is one of the Preferences found within the IDL

Development Environment, and it is also stored in an internal system variable

named !PATH.
• Interactively : If the source code file for the program is currently open within

the text editor of the IDL Development Environment, the user can either

select “Run > Compile” from the menu system or press the yellow

compile button on the toolbar in order to compile the program.

• Manually : The user can explicitly compile a program by executing the

.COMPILE, .RUN, or .RNEW executive commands with the appropriate path to

the source code file on disk. If the source code file is found within IDL’s path

or the current working directory, then just the name of the file itself is

needed. If the user is working within the IDL Development Environment, the

source code will automatically be opened into the text editor window.

In the following exercise, a simple procedure program named “muscle_view” will be
created, compiled, and executed. This program will open the example data file

“muscle.jpg” included with the IDL installation, read the image data into IDL, and
displays the image in a FOR loop that cycles through all of IDL’s 41 predefined
colortables using Direct Graphics.

1. Start by selecting “File > New > Editor” from the main IDL Development
Environment menu system. This will open a new blank text editor window in

the document panel of the IDLDE.

2. The first step in writing a procedure is to create the definition statement,

and this is accomplished using the PRO statement in IDL. In this case, the
name given to the procedure will be “muscle_view”, so start by typing the
following text in the blank text editor window :

PRO muscle_view

At this point, the name of the current text document is probably [Untitled1*] and it

is not being saved to the harddrive, so it may be appropriate to save this text to an

IDL source code file on disk.

IDL Quick Start - 182 - Programming in IDL

3. From the main IDLDE menu system select “File > Save As”.
4. Save the text to a new file named “muscle_view.pro” located in the “output”

subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\output\muscle_view.pro
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/output/muscle_view.pro

• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/output/muscle_view.pro

Once this is accomplished, the title bar across the top of the IDL Development

Environment should be labeled with “[muscle_view.pro]”. Whenever a change is

made to the file an asterisk “*” character will be added to the end of the filename,

alerting the user that the file contains modifications that have not yet been saved to

the file on disk. Changes to the source code file can be saved by selecting “File >

Save” from the IDLDE menu or by pressing the button on the IDLDE toolbar.

5. The first step within the program that needs to be entered on the next line of
the text editor is the specification of the path to the file that is going to be

opened :

 file = filepath('muscle.jpg', subdir=['examples','data'])

6. When writing a program it is always a good idea to include as much error
checking as possible. In this case it may be a good idea to make sure that

the specified file is a valid JPEG image file and obtain some information about

it using the QUERY_JPEG function before proceeding :

result = query_jpeg(file, info)

7. The QUERY_JPEG function returns a value of “1” into the result if the query
was successful and the file appears to be a valid JPEG format image file,

otherwise it returns “0” upon failure. Consequently, it may be a good idea to
terminate the execution of this program at this point using the RETURN
procedure if the file is not determined to be a valid JPEG image file :

if result eq 0 then return

8. Now the JPEG image file data can be read into this IDL program unit using the
READ_JPEG procedure :

read_jpeg, file, image

9. An IDL graphics window needs to be created to display this image, and the
size of this window can be made to match the size of the image using the

“info” structure returned by the earlier call to QUERY_JPEG :

window, xsize=info.dimensions[0], ysize=info.dimensions[1]

10. Next, the use of color decomposition must be disabled in order to use IDL’s
built-in colortables on 24-bit displays :

device, decomposed=0

IDL Quick Start - 183 - Programming in IDL

Now the program is ready to cycle through the colortables and display the image in

the Direct Graphics window. In order to accomplish this task, the programmer must

make use of the FOR control statement. The syntax for declaring a FOR loop within
the IDL language is :

FOR variable = init, limit DO BEGIN

 statements

ENDFOR

11. In order to loop through each of IDL’s predefined colortables and display the
image data insert the following lines of text :

for i = 0, 40 do begin

 loadct, i

 tvscl, image

endfor

This will cycle through the variable “i” set to values 0�40, load the colortable index

for the current FOR loop iteration value of “i” using LOADCT, display the image using
TVSCL, increment the variable “i” by a value of 1, and start the next iteration.

12. Once the FOR loop has executed, the graphics window that was created can
be cleaned up and destroyed by calling the WDELETE procedure :

wdelete

13. Finally, the end of the program must be defined by inserting the END
statement :

 END

14. Once all of this text has been entered make sure to select “File > Save” or hit

the button on the IDLDE toolbar.

The final program within the text editor window should look similar to Fig. 10-2.

Figure 10-2: Completed source code for the “muscle_view” procedure

IDL Quick Start - 184 - Programming in IDL

The first step in running this IDL program is to compile the procedure so it can be

executed within the IDL process.

15. In order to compile the procedure, simply select “Run > Compile

muscle_view.pro” from the main IDLDE menu system or hit the yellow

compile button on the toolbar. This will automatically call the executive

command .COMPILE and the output log should read :

% Compiled module: MUSCLE_VIEW.

If there are any compilation errors an informational message will appear in the

output log and a red circular dot will be placed to the left of the line where the error

occurs. Any compilation errors must be resolved before the program can be

executed.

16. Once the program is successfully compiled it can be executed by selecting

“Run > Run muscle_view” from the menu, hitting the blue run button on

the toolbar, or simply executing “muscle_view” at the IDL> prompt :

IDL> muscle_view

During execution of the program the “muscle.jpg” image will be displayed using all
41 of IDL’s built-in colortables [Fig. 10-3]. While the program is executing the

LOADCT procedure will output the currently loaded colortable to the output log when
it’s being called within the FOR loop. The total time it takes for this program to
execute should be very short, which is a testament to the rapid image display

capabilities of the Direct Graphics system and the overall speed of the IDL language.

IDL Quick Start - 185 - Programming in IDL

Figure 10-3: Image display during execution of the “muscle_view” program

17. Select “File > Close” in order to close the text editor window for this
procedure.

In the next exercise a simple function will be created that computes the area of a

circle given its radius. Functions are slightly different from procedures because they

must return a specific value to the calling module. Consequently, functions are

particularly useful when performing data processing and analysis. In addition, as

previous exercises within this tutorial have illustrated, the calling syntax for

executing functions is different than procedures.

18. Start by selecting “File > New > Editor” from the main IDL Development
Environment menu system. This will open a new blank text editor window in

the document panel of the IDLDE.

Once again, the first step in writing a function is to create the definition

statement, and this is accomplished using the FUNCTION statement in IDL. In this
case, the function will need to accept an argument in order to allow passing of the

input radius value into the program. Furthermore, the user may wish to specify

whether they want the calculation performed using single-precision or double-

precision floating-point arithmetic. This can be accomplished by specifying a

keyword that the user can utilize in order to control the behavior of the function.

19. The name given to the function will be “circle_area”, the input argument
should be named “radius”, and a keyword named “dbl” can be declared so the

IDL Quick Start - 186 - Programming in IDL

user has control over the precision. This can be accomplished with the

following definition statement :

FUNCTION circle_area, radius, dbl=dbl

Once again, it is a good idea to save this text to an IDL source code file on disk :

20. From the main IDLDE menu system select “File > Save As”.
21. Save the text to a new file named “circle_area.pro” located in the “output”

subfolder of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\output\circle_area.pro
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/output/circle_area.pro

• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/output/circle_area.pro

22. The KEYWORD_SET function built into the IDL language library is useful for
determining the status of a keyword variable and whether or not it was “set”
by the user. In this case, a variable named “dbl” exists within the function
and either has a value of 1 if it was set, or 0 if it was left un-set. The
KEYWORD_SET function can be used in conjunction with an IF … THEN …

ELSE code block to perform the necessary calculation using the appropriate

IDL system variable for the value of ∏ :

if keyword_set(dbl) then begin

 area = !DPI * radius ^ 2

endif else begin

 area = !PI * radius ^ 2

endelse

23. Once the area has been computed using the appropriate precision, the “area”
variable can be returned to the calling program module :

return, area

24. Finally, the end of the program must be defined by inserting the END
statement :

END

25. Once all of this text has been entered make sure to select “File > Save” or hit

the button on the IDLDE toolbar.

The final program within the text editor window should look similar to Fig. 10-4.

IDL Quick Start - 187 - Programming in IDL

Figure 10-4: Completed source code for the “circle_area” function

Before the “circle_area” function can be executed it must be compiled.

26. In order to compile the function, simply select “Run > Compile

circle_area.pro” from the main IDLDE menu system or hit the yellow

compile button on the toolbar. This will automatically call the executive

command .COMPILE and the output log should read :

% Compiled module: CIRCLE_AREA.

If there are any compilation errors an informational message will appear in the

output log and a red circular dot will be placed to the left of the line where the error

occurs. Any compilation errors must be resolved before the program can be

executed.

Once the program is successfully compiled it can be executed by calling it with the

appropriate function syntax :

27. IDL> area = CIRCLE_AREA (7)

This statement calls the “circle_area” function and specifies an input radius value of
seven. The named variable “area” contains the result of this calculation that is

returned from the function :

28. IDL> HELP, area
 AREA FLOAT = 153.938

In addition, the “circle_area” function can be called with the “dbl” keyword set in
order to compute the area in double-precision :

29. IDL> area = CIRCLE_AREA (7, /DBL)

30. IDL> HELP, area
 AREA DOUBLE = 153.93804

The “area” variable that is returned from the function is now double-precision.

31. Once finished experimenting with the “circle_area” function, select “File >
Close” in order to close the text editor window.

IDL Quick Start - 188 - Programming in IDL

Object-Oriented Programs

Traditional programming techniques make a strong distinction between routines

written in the programming language (procedures and functions in the case of IDL)

and the data to be acted upon by these routines. In contrast, object-oriented

programming removes this distinction by encapsulating both data and functionality

(i.e. routines) into a single entity known as objects.

IDL objects may contain data with various data types or organizational arrangement.

The routines (i.e. functionality) within an object that act upon this data are called

methods. Object methods are merely IDL procedures and functions that have

special names and are called in a special way. In the IDL programming

environment, object data are protected from the rest of the program and are only

accessible through the object methods (i.e. IDL object data is always private).

IDL’s object system provides support for the following concepts and mechanisms:

• Classes and Instances : IDL objects are created as instances of a class,

which is defined in the form of an IDL structure. The name of the structure is

also the class name for the object. Objects can only be created by calling the

OBJ_NEW (or OBJARR) function with the name of the class structure as the

argument, and can only be accessed via the returned object reference.

• Encapsulation : Encapsulation is the ability to combine data and the

routines that affect the data (known as methods) into a single object.

• Methods : Methods are the routines (procedures and functions) that perform

specific operations within the object. Method routines are identified as

belonging to an object class via a routine naming convention

ClassName::MethodName.

• Polymorphism : Polymorphism is the ability to create multiple object types

that support the same operations.

• Inheritance : Inheritance is the ability of an object class to inherit the

behavior of other object classes. This means that when writing a new object

class that is very much like an existing object class, you need only program

the functions that are different from those in the inherited class.

• Persistence : Persistence is the ability of objects to remain in existence in

memory after they have been created, allowing you to alter their behavior or

appearance after their creation. IDL objects persist until you explicitly

destroy them, or until the end of the IDL session.

• Object Lifecycle : The life of an object can be broken into three phases:

creation, use, and destruction. Object references are created using one of

two lifecycle routines: OBJ_NEW or OBJARR. The object is used by executing
its methods. Finally, the object is destroyed using the OBJ_DESTROY
procedure.

Objects are implemented in IDL as extensions of data structures. In other words, a

data structure and one or more IDL routines are combined to form an IDL object

class. Object classes are essentially the blueprints used to define individual objects.

There are 2 basic steps to creating an object class in IDL :

• Define the object class data structure by creating a named structure. The

name of this structure must be the same as the desired name for the object

IDL Quick Start - 189 - Programming in IDL

class. For example, the following would be an appropriate structure definition

for an object class named SHOW3OBJ :

namedStructure = {SHOW3OBJ, data:ptr_new()}

• Define the methods of the object class using the CLASSNAME::method
declaration syntax. For example, a method named “Display” could be defined
for the SHOW3OBJ class using the following syntax :

PRO SHOW3OBJ::Display

if ptr_valid(self.data) then show3, *self.data

END

Once the object class has been defined an instance of the object can be created

using the OBJ_NEW function :

oShow3 = OBJ_NEW ('SHOW3OBJ', dist(100))

The Display method to this object can then be executed using IDL’s method
invocation operator (“->”), which is a hyphen followed by a greater-than sign :

 oShow3 -> display

In this example the Display method is a procedure, but methods can also be

functions. If an object method is defined as a function then its calling sequence will

be :

 result = object -> functionMethod ()

Once an object has data assigned to it, the methods automatically have access to

this data in a structure called “self” that has the same layout as the original object

class data structure. Consequently, there is no need to pass the data via arguments

and/or keywords in the call to an object method. In addition, the self structure can
be used to call other methods within an object. For instance, if there was a

LOADCOLOR method to the SHOW3OBJ object class it could directly call the DISPLAY

method using the self structure :

PRO SHOW3OBJ::Loadcolor, index

if n_params() NE 1 then return

if !D.N_COLORS GT 256 then device, decomposed=0

loadct, index

self -> display

END

When an instance of an object is created from a class using the OBJ_NEW function
an object reference is returned that points to an object heap variable [Fig. 10-5].

A heap variable is an area of common memory allocated for a specific use and

accessed by way of one or more reference variables. These reference variables are

the means through which the object is referenced in IDL.

IDL Quick Start - 190 - Programming in IDL

Figure 10-5: An object heap variable with an object reference. The heap

variable encapsulates both the data and methods for the object.

Consequently, in the hypothetical example above, the variable oShow3 is not
actually the object itself but a reference to the object contained in heap memory.

Consequently, the programmer must take care when deleting objects since the

destruction of the object reference variable will not cleanup the heap memory

occupied by the object. Object heap variables persist in memory until explicitly

destroyed by the OBJ_DESTROY procedure:

 OBJ_DESTROY, oShow3

Once the OBJ_DESTROY procedure is called the object heap variable for this object
no longer exists, but the object reference variable oShow3 still exists and points to a
non-existent piece of memory. This is known as a dangling reference.

Consequently, it is always a good idea to also destroy all object reference variables

when destroying an object by either using the DELVAR procedure (interactive IDL
only) or the TEMPORARY function:

OBJ_DESTROY, TEMPORARY(oShow3)

In order to create an object class in IDL there are a set of programming rules that

must be followed when writing the source code. Selecting a name for a custom

object class is a very important consideration because it is important not to use the

same name as a class already built into IDL. Fortunately, most object classes built

IDL Quick Start - 191 - Programming in IDL

into IDL have names that start with the string “IDL”, so it should be easy to derive a
name that does not conflict with one of the built-in classes.

When creating a custom object class in IDL a special naming convention must be

used for the source code file name and the procedure/function names within that

source code file. As mentioned before, the general form for the procedure/function

declaration statements within the object class source code is “CLASSNAME::method”.
In addition, there is also a naming convention for the source code file itself that

follows the general form “CLASSNAME__method” (Note: “__” is two underscores).

The information necessary for the object must be defined in the object class data.

When defining the data of an object, the programmer must determine in advance all

of the various data elements that might be necessary to complete all of the

functionality for the object. As mentioned earlier, the object class data is defined

and stored in an IDL named structure that has the same name as the class itself.

This is the first step in creating an object class and it occurs within a special

procedural method called “DEFINE”. Consequently, in order for IDL to create an

instance of an object with OBJ_NEW an IDL source code file for this object with the
name “CLASSNAME__define.pro” must be found in the !PATH (or manually compiled
within the current session of IDL). The define method is also the only method which

uses the two underscores (“__”) in the procedural declaration statement as opposed

to the two colons (“::”). For example, the source code to define the SHOW3OBJ
object class above would look like:

PRO SHOW3OBJ__define

namedStructure={SHOW3OBJ, data:ptr_new()}

END

This source code needs to be saved in an ASCII text file called

“show3obj__define.pro” in order for the object class to be used. The only purpose of

the __define procedure is to create the named structure that will contain the data for
the object class.

Once the data has been defined for an object class, the next step is to create the

methods that will define the functionality. These methods can be stored in separate

“CLASSNAME__method.pro” ASCII source code files, or they can all be stored in the
main “CLASSNAME__define.pro” file as long as the __define procedure is the last

module that occurs within the file.

There are also 2 other methods that must be included with every object class: INIT
and CLEANUP. The 3 main object methods (DEFINE, INIT, CLEANUP) must be

defined and compiled within IDL before an instance of the object can be created with

OBJ_NEW. The INIT method is an IDL function that is called by OBJ_NEW when the
object is created. The job of the INIT method is to take any arguments and

keywords passed from the user and perform any initialization necessary for the

object class. The process of initialization usually involves filling-in the members of

the object data structure with the data passed by the user in the call to OBJ_NEW.
Finally, the INIT method should return 1 if successful in initializing the object and 0 if

the initialization failed. In contrast, the CLEANUP method is called when the object
reference is destroyed (when OBJ_DESTROY is executed)) and should clean up any
pointers, objects, or other miscellaneous data in an effort to avoid memory leakage.

IDL Quick Start - 192 - Programming in IDL

The following exercise completes the definition of the SHOW3OBJ object class that
has been discussed herein by writing its IDL source code.

1. Start by selecting “File > New > Editor” from the main IDL Development
Environment menu system. This will open a new blank text editor window in

the document panel of the IDLDE.

2. Immediately select “File > Save As” and save this to a file called
“show3obj__define.pro” located in the “output” subfolder of the Quick Start
directory :

• Windows:

 C:\RSI\IDL##\IDL_QS_Files\output\show3obj__define.pro
• UNIX et al.:

 /usr/local/rsi/idl_#.#/IDL_QS_Files/output/show3obj__define.pro
• Mac OS X:

 /Applications/rsi/idl_#.#/IDL_QS_Files/output/show3obj__define.pro

3. Type out the source code for this object class in the IDLDE text editor. There
will be a total of 5 methods defined for the SHOW3OBJ object class: DEFINE,
INIT, CLEANUP, LOADCOLOR, and DISPLAY. Make sure to remember the rule

of placing the __define procedure at the bottom of this file :

FUNCTION SHOW3OBJ::Init, data

self.data = ptr_new(data)

if !d.n_colors gt 256 then device, decomposed=0

loadct, 0, /silent

return, 1

END

PRO SHOW3OBJ::Cleanup

ptr_free, self.data

print, 'SHOW3OBJ object successfully destroyed.'

END

PRO SHOW3OBJ::Display

if ptr_valid(self.data) then show3, *self.data

END

PRO SHOW3OBJ::Loadcolor, index

loadct, index

self -> display

END

PRO SHOW3OBJ__define

namedStructure = {SHOW3OBJ, data:ptr_new()}

END

4. Once all of this source code has been entered into the text editor, save the

file and then compile the object class by pressing the yellow compile

button. This should report the following in the IDL Output Log :

IDL Quick Start - 193 - Programming in IDL

IDL> .COMPILE show3obj__define.pro

% Compiled module: SHOW3OBJ::INIT.

% Compiled module: SHOW3OBJ::CLEANUP.

% Compiled module: SHOW3OBJ::DISPLAY.

% Compiled module: SHOW3OBJ::LOADCOLOR.

% Compiled module: SHOW3OBJ__DEFINE.

Now that the object class is compiled within the current session of IDL it is ready to

be used. Initialize an instance of the SHOW3OBJ object class with data created by
the DIST function :

5. IDL> oShow3 = OBJ_NEW ('SHOW3OBJ', DIST (100))

Next, call the Display method for the object :

6. IDL> oShow3 -> Display

The resulting IDL 0 visualization window should contain a composite 3-D visualization
including an image, wire-mesh surface, and contour plot produced by IDL’s built-in

SHOW3 routine.

The Loadcolor method can also be executed to load IDL’s Rainbow colortable and
automatically redisplay the graphic:

7. IDL> oShow3 -> Loadcolor, 13

The resulting visualization window should look similar to Fig. 10-6 :

IDL Quick Start - 194 - Programming in IDL

Figure 10-6: Result of invoking the “Loadcolor” method of the “SHOW3OBJ”

object class

Once the user is finished working with the object it is important to destroy the heap

variable and object reference:

8. IDL> OBJ_DESTROY, TEMPORARY (oShow3)
 SHOW3OBJ object successfully destroyed.

9. Once finished experimenting with the “SHOW3OBJ” object, select “File >
Close” in order to close the text editor window.

iTools System Programs

iTools programming is a special form of object-oriented programming that is used

to control, customize, and extend the tools built into the iTools system. The IDL

Intelligent Tools, or iTools, are applications written in IDL to perform a variety of
data analysis and visualization tasks. iTools share a common underlying application

framework, presenting a full-featured, customizable, application-like user interface

with menus, toolbars, and other graphical features.

However, iTools are much more than just a set of pre-written IDL programs. Behind

the iTool system lies the IDL Intelligent Tools Component Framework — a set of

object class files and associated utilities designed to allow you to easily extend the

supplied toolset or create entirely new tools of your own. The iTools component

IDL Quick Start - 195 - Programming in IDL

framework is a set of object class definitions written in the IDL language. It is

designed to facilitate the development of sophisticated visualization tools by

providing a set of pre-built components that provide standard features including :

• Creation of visualization graphics

• Mouse manipulations of visualization graphics

• Annotations

• Management of visualization and application properties

• Undo/redo capabilities

• Data import and export

• Printing

• Data filtering and manipulation

• Interface element event handling

In addition, the iTools component framework makes it easy to extend the system

with components of your own creation, allowing you to design a tool to manipulate

and display your data in any way you choose. Programming in the iTools system

allows the user to create their own :

• iTool

• Visualization

• Operation

• Manipulator

• File Reader

• File Writer

• Graphical User Interface

A discussion of programming within the iTools system is beyond the scope of this

tutorial. For more information please consult the iTool Developer’s Guide
documentation manual included with the IDL online help system [Fig. 10-7].

IDL Quick Start - 196 - Programming in IDL

Figure 10-7: The iTool Developer’s Guide documentation manual

Creating Graphical User Interfaces

IDL allows you to construct and manipulate graphical user interfaces using widgets.

Widgets (or controls, in the terminology of some development environments) are

simple graphical objects such as pushbuttons or sliders that allow user interaction via

a pointing device (usually a mouse) and a keyboard. This style of graphical user

interaction offers many significant advantages over traditional command-line based

systems.

IDL widgets are significantly easier to use than other alternatives, such as writing a

C language program using the native window system graphical interface toolkit

directly. IDL handles much of the low-level work involved in using such toolkits. The

interpretive nature of IDL makes it easy to prototype potential user interfaces. In

addition to the user interface, the author of a program written in a traditional

compiled language also must implement any computational and graphical code

required by the program. IDL widget programs can draw on the full computational

and graphical abilities of IDL to supply these components.

The style of widgets IDL creates depends on the windowing system supported by

your host computer. Unix hosts use Motif widgets, while Microsoft Windows systems

use the native Windows toolkit. Although the different toolkits produce applications

with a slightly different look and feel, most properly-written widget applications work

on all systems without change.

IDL Quick Start - 197 - Programming in IDL

IDL graphical user interfaces are constructed by combining widgets in a treelike

hierarchy. Each widget has one parent widget and zero or more child widgets.

There is one exception: the topmost widget in the hierarchy (called a top-level

base) is always a base widget and has no parent.

Programs that use widgets are event driven. In an event driven system, the

program creates an interface and then waits for messages (events) to be sent to it

from the window system. Events are generated in response to user manipulation,

such as pressing a button or moving a slider. The program responds to events by

carrying out the action or computation specified by the programmer, and then

waiting for the next event. Because of widget applications’ event-driven nature,

creating applications that use widgets is fundamentally different from creating non-

widget programs.

The following exercise creates a very simple graphical user interface application with

the appropriate event handling sub-program. This program displays a simple GUI

with a button labeled “Display Image” that can be pressed by the user in order to
generate an event that display an image from an example file included with IDL.

1. Start by selecting “File > New > Editor” from the main IDL Development
Environment menu system. This will open a new blank text editor window in

the document panel of the IDLDE.

2. Immediately select “File > Save As” from the menu system and save this
document to a file called “simple_gui.pro” located in the “output” subfolder of
the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\output\simple_gui.pro

• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/output/simple_gui.pro
• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/output/simple_gui.pro

3. Type out the source code for this widget program into the IDLDE text editor :

PRO simple_gui_event, event

widget_control, event.top, get_uvalue=state

tv, state.image, true=1

END

PRO simple_gui

tlb = widget_base(/row, title='Simple GUI')

 subBase=widget_base(tlb)

 button = widget_button(subBase, value='Display Image')

 draw = widget_draw(tlb, xsize=512, ysize=512)

widget_control, tlb, /realize

file = filepath('elev_t.jpg', subdir=['examples', 'data'])

read_jpeg, file, image

device, decomposed=1

state = {image:image}

widget_control, tlb, set_uvalue=state

xmanager, 'simple_gui', tlb

END

This program contains 2 modules; the main GUI creation procedure named

“simple_gui”, and the event handler procedure called “simple_gui_event”. Within

IDL Quick Start - 198 - Programming in IDL

the “simple_gui” procedure the layout of the widget hierarchy is defined, the GUI is
realized (i.e. displayed) to the screen, the image is read-in from a JPEG file on disk

and stored in a state structure, and the XMANAGER routine is called in order to
manage the event callback distribution. The “simple_gui_event” procedure is called
when the user presses the “Display Image” button, and it obtains the state structure
for the application and displays the image using the TV routine.

4. Once the source code for the program has been entered, save the changes by

pressing the button on the IDLDE toolbar.

5. Compile the program by pressing the yellow compile button.

6. Finally, run the program by pressing the blue run button.

7. Once the GUI for the program is displayed, use the mouse to press the
“Display Image” button [Fig. 10-8].

Figure 10-8: Execution of the “simple_gui” widget program

8. Once finished viewing the simple widget application, close the Simple GUI
window.

IDL Quick Start - 199 - Programming in IDL

Distributing IDL Programs

Once an application has been written in IDL, the user may wish to distribute this

program to friends, colleagues, or their own customers. IDL programs can be stored

and distributed as source code in ASCII text files with a “.pro” extension, or they can
be compiled within a development copy of IDL and saved to runtime binary files with

a “.sav” extension. Creating a runtime binary save file for an application allows the
programmer to create a distributable version of their application that does not

contain the original source code, thereby protecting the intellectual property rights of

the developer. Furthermore, the runtime binary save file version of a program can

be executed in the runtime environment of IDL, whereas a source code file requires

that the end-user have a full development copy of the IDL software package in order

to compile the program before execution. Creation of a runtime binary save file

version of a program involves using either the Projects built into the IDL
Development Environment, or the .COMPILE, RESOLVE_ALL, and SAVE routines built
into the IDL language library.

IDL has an architectural (and distribution) paradigm that is very analogous to Java

since they are both interpreted computer languages. There are basically 3 different

varieties of the IDL software package that can be used to execute programs written

in the IDL language :

• IDL (full developer’s copy)

• IDL Runtime

• IDL Virtual Machine

The primary difference between these varieties of IDL is that the full developer’s

copy allows the user to create, edit, modify, compile, execute, and save IDL

programs. In contrast, both the IDL Runtime and IDL Virtual Machine versions of

IDL can only be used to execute pre-compiled runtime binary versions (*.sav file) of
a program. Consequently, users of the IDL Runtime or the IDL Virtual Machine

cannot modify the IDL programs that are being executed.

In the following exercise, the “muscle_view” program that was created earlier will be
compiled and saved out to a runtime binary file on disk that can be executed in

either IDL Runtime or the IDL Virtual Machine. This can be accomplished with the

SAVE procedure, which is used to save either data variables or the compiled routines
within the current software session to IDL’s proprietary binary save file format. The

IDL save file format is encrypted (and is not documented) so it is impossible to

reverse-engineer a program stored in a “*.sav” file and obtain the original source

code. Calling the SAVE procedure with the ROUTINES keyword set will save all
currently compiled user-defined procedures and functions within the current IDL

session. Consequently, it is a good idea to reset the IDL session and start fresh so

that none of the other programs that have been compiled thus far are included in the

save file that is created :

1. IDL> .reset_session

Next, compile the “muscle_view” program that was created in the earlier exercise by

utilizing the .COMPILE executive command :

IDL Quick Start - 200 - Programming in IDL

2. IDL> .COMPILE muscle_view
 % Compiled module: MUSCLE_VIEW.

The Runtime and Virtual Machine versions of the software are basically the IDL

interpreter provided in a series of library files. This interpreter includes all of the

internal system routines within the IDL language. However, it does not include the

routines within the IDL library that are written in IDL itself and are distributed as

source code *.pro files in the “lib” subfolder of a developer’s copy installation. For
example, the FILEPATH function from the IDL library that this “muscle_view”
program utilizes is actually distribute with the software in the following source code

file :

• Windows: C:\RSI\IDL##\lib\filepath.pro

• UNIX et al.: /usr/local/rsi/idl_#.#/lib/filepath.pro
• Mac OS X: /Applications/rsi/idl_#.#/lib/filepath.pro

When the “muscle_view” program is executed within a full developer’s copy of IDL,

the “filepath.pro” source code file is automatically located and compiled on-the-fly
because the “lib” subfolder of the installation is part of the default path. Since the
Runtime and Virtual Machine versions of IDL cannot compile programs from their

ASCII text source code, these routines cannot be distributed in their original *.pro

file form. Consequently, the programmer must be sure to resolve and compile all of

the external IDL routines that their program utilizes that are not internal system

routines built into the interpreter libraries. Fortunately, IDL contains a convenient

procedure that can be used by the IDL programmer in order to resolve all of these

dependencies named RESOLVE_ALL :

3. IDL> RESOLVE_ALL
 % Compiled module: RESOLVE_ALL.

 % Compiled module: LOADCT.

 % Compiled module: FILEPATH.

 % Compiled module: PATH_SEP.

 % Compiled module: UNIQ.

Notice that the RESOLVE_ALL procedure will locate and compile not only the LOADCT
and FILEPATH routines from the IDL library that this program explicitly calls, but will
also resolve any subsequent routines that these programs happen to call that are not

already compiled (in this case, PATH_SEP and UNIQ). Under initial inspection, it may

not be obvious to the programmer that this “muscle_view” program relies on the
PATH_SEP and UNIQ routines from the external IDL library because they do not
explicitly appear within the program, and this is the benefit of utilizing the

RESOLVE_ALL procedure when creating distributable applications.

Finally, the SAVE procedure can be called with the ROUTINES keyword set in order to
save all of the currently compile procedures and functions to an IDL runtime binary

save file. Use the FILE keyword to specify the appropriate output filename, which is
the name of the primary program module followed by a .sav extension :

4. IDL> SAVE, /ROUTINES, FILE='muscle_view.sav'

IDL Quick Start - 201 - Programming in IDL

This operation will create a new file named “muscle_view.sav” within the current
working directory. The current working directory should be the “output” subfolder of

the of the Quick Start directory :

• Windows: C:\RSI\IDL##\IDL_QS_Files\output\muscle_view.sav
• UNIX et al.: /usr/local/rsi/idl_#.#/IDL_QS_Files/output/muscle_view.sav

• Mac OS X: /Applications/rsi/idl_#.#/IDL_QS_Files/output/muscle_view.sav

5. Navigate to this “output” folder and attempt to locate the file named
“muscle_view.sav”. If this file is not found within the “output” folder, then

execute the following IDL statements in order to determine the current

working directory and locate the “muscle_view.sav” file :

IDL> CD, CURRENT=current

IDL> PRINT, current

6. Once the “muscle_view.sav” file has been located, it can be executed within
IDL Runtime using the appropriate execution methodology based on operating

system :

• Windows: Simply double-click on the “muscle_view.sav” file.
• UNIX, Linux, & Mac OS X: At a shell or X11 terminal prompt, navigate to

the folder that contains the “muscle_view.sav” file and execute the following
command :

idl –rt=muscle_view.sav

Once this is accomplished a new IDL process will launch, the “muscle_view” program
will be executed, and the IDL process will shut-down.

7. Finally, the same program can be executed within the IDL Virtual Machine by
performing the following steps :

• Windows: Select “Start > Programs > RSI IDL #.# > IDL Virtual Machine”.

• UNIX, Linux, & Mac OS X: At a shell or X11 terminal prompt, navigate to

the folder that contains the “muscle_view.sav” file and execute the following
command :

idl –vm=muscle_view.sav

8. The IDL Virtual Machine splash screen will appear, and the user must click on
this splash screen in order to continue.

9. On Windows, the user will be prompted with a dialog to select the
“muscle_view.sav” program file on the harddrive.

Once this is accomplished a new IDL process will launch, the “muscle_view” program
will be executed, and the IDL process will shut-down.

A discussion on the creation of distributable applications, utilization of the Projects

built into the IDL Development Environment, and the exact differences between IDL

Runtime and IDL Virtual Machine is beyond the scope of this tutorial. For more

information please consult the Building IDL Applications documentation manual.

IDL Quick Start - 202 - Programming in IDL

IDL Quick Start - 203 - Programming in IDL

IDL Quick Start - 203 - Appendices

Appendix A: IDL Code Tuning

Writing Efficient IDL Programs

Knowledge of IDL’s internal design and implementation, along with careful memory

management, can be exploited to greatly improve the efficiency of IDL programs. In

IDL, complicated computations can be specified at a high level. Therefore, inefficient

IDL programs can suffer severe speed penalties — perhaps much more so than with

compiled programming languages.

Techniques for writing efficient programs in IDL are identical to those in other

computer languages, with the addition of the following simple guidelines :

• Use vector and array operations rather than loops wherever possible.

• Try to avoid loops with high repetition counts.

• Use IDL system functions and procedures wherever possible.

• Access array data in machine address order (IDL is row-major).

• Pay attention to expression evaluation order.

• Avoid IF … THEN … ELSE code block statements if possible, especially within
loops.

• Use only the highest precision (variable data types) necessary during

computations.

• Eliminate invariant expressions.

• Make use of the TEMPORARY function.
• Utilize the IDL Code Profiler.

Attention also must be given to algorithm complexity and efficiency, as this is usually

the greatest determinant of resources used. For a more detailed discussion on the

subject of writing efficient IDL programs (along with some code examples), please

consult the Building IDL Applications documentation manual included with the IDL

online help system [Fig. A-1].

IDL Quick Start - 204 - Appendices

Figure A-1: The discussion on Writing Efficient IDL Programs

IDL Quick Start - 205 - Appendices

Appendix B: External Development

IDL Calling External Software

There are a number of different approaches used to link IDL to other software.

Some of these methods are simple, while others are quite complex. Some methods

work on all platforms supported by IDL, while others depend on operating services

and are not supported on all platforms (e.g. ActiveX is a Windows only technology).

Moreover, sometimes a method is implemented differently on the various operating

systems that are supported by the IDL software package.

The various methods for calling external software components from IDL are :

• The CALL_EXTERNAL method

• The LINKIMAGE method

• COM Object method (Windows only)

• The IDL-Java Bridge

The CALL_EXTERNAL function allows IDL to link to C or FORTRAN code in a very

tight, but somewhat limited way that is far easier to use and implement that the

LINKIMAGE procedure. With LINKIMAGE, a programmer needs to write C code
similar to the system routines built into IDL. This methodology is more robust than

CALL_EXTERNAL, but requires more detailed knowledge of IDL internals and,
inevitably, more coding. The CALL_EXTERNAL method is simpler and quicker to
develop. The basic concept of the CALL_EXTERNAL method is to create an external
shareable code resource from your existing C or FORTRAN code, and then

dynamically load it into the IDL process space at run-time. The external shareable

code resource created is referred to differently on each operating system. Under

UNIX, the shareable code is known as a shared object library; on Windows platforms

it is a 32-bit dynamic link library (DLL). The form that the shareable code resource

is in (i.e. what platform you are on) does not affect the way it is accessed using the

CALL_EXTERNAL function. The code in the external shareable resource is
dynamically linked into the IDL process the first time it is referenced in the IDL

session, and every time you want to use this code within IDL you have to “wrap” it
with a call to the CALL_EXTERNAL function.

In contrast, the LINKIMAGE procedure provides a way to load external C code into

IDL and declare it in a manner so it appears as if it were part of the IDL internals.

That way, you can execute your external code as if it were an IDL routine built into

IDL, with the same calling sequence syntax as any other IDL function. An obvious

caveat is that you must declare it with a name that does not conflict with any of the

routine names already built into IDL. The LINKIMAGE procedure must “link in” this
code in any given IDL session before the routine can be used, so it is a good idea to

perform this linking in an IDL startup file.

IDL Quick Start - 206 - Appendices

COM (Component Object Model) objects are a specification and implementation for

building software components that may be used to build programs or to add

functionality to existing programs running on the Windows platform. COM

components are written in a variety of programming languages (although most are

written in C++) and are able to be utilized in a program at run time without having

to recompile the program. In IDL, COM objects, regardless of type or method of

creation, are treated as IDL objects. IDL will then internally recognize this COM-

based object and will route the method calls to the internal COM subsystem for

dispatching. COM Objects can be used in 2 ways when calling an external resource

from an IDL program :

• Using the IDLcomIDispatch object within your IDL program to instantiate a
desired COM object by using a provided class or program ID. This method is

ideal for COM objects that do not utilize a graphical-user interface.

• Using the WIDGET_ACTIVEX function to embed an ActiveX control in an IDL
widget hierarchy. In this scenario IDL would be acting as an "ActiveX
Container".

The IDL-Java Bridge allows users to access Java objects within their IDL code,

which enables you to take advantage of functionality provided by Java, including

Java I/O, networking, and third party functionality. The IDLjavaObject class
instantiates a desired Java object using the object’s class name. An instance of this

object within IDL allows you access methods and data members (properties) of the

desired Java object. To the IDL user, an instance of the IDLjavaObject class behaves

just like any other IDL object. When an instance of the IDLjavaObject class is
created, the IDL-Java bridge connects that instance to a Java object. This initial

connection starts a Java session. In IDL, you can monitor the session through the

IDLJavaBridgeSession object. This object can be used to handle any exceptions

(caused by the Java object) within IDL. Currently, the IDL-Java bridge is supported

on the Windows, Linux, Solaris, and Macintosh platforms supported in IDL.

External Software Calling IDL

The various methods for calling IDL from external software are :

• The Callable IDL method

• The Remote Procedure Call (RPC) method (UNIX only)

• The IDLDrawWidget ActiveX Control (Windows only)

• ION (IDL On the Net) plugin for IDL

• IDL Export Bridges

IDL is packaged in a shareable form that allows other programs to call IDL as a

subroutine using a mechanism known as Callable IDL. This shareable portion of

IDL can be linked into your own programs written in C, C++, FORTRAN, etc.. With

this mechanism, all the functionality of the IDL interpreter is usable and presented to

the programmer as a library of commands. The actual functionality is linked into the

external program at run-time via the shared resource, such as a dynamic link library

on Windows. For example, within a C program, IDL statements can be executed

using IDL_ExecuteStr :

IDL Quick Start - 207 - Appendices

IDL_ExecuteStr("tmp = indgen(100)");

IDL_ExecuteStr("plot, sin(tmp)");

This code creates an IDL variable called “tmp” and plots the sine of “tmp”, just as if
these commands were executed directly at an IDL> command prompt.

The Remote Procedure Call mechanism allows IDL to be run as an RPC server on

UNIX platforms. In other words, your program runs as an RPC client. It can execute

procedure and function calls as if it were in the same memory space as the server.

However, these two programs may be on entirely separate machines connected via a

network. The commands are actually executed on the server machine. Variables

can be created on the client and sent to the server, and variables created on the

server can be sent to the client. With this method, you have access to the power of

the server machine from a client machine.

IDL has been built into an ActiveX Control, which allows programs enabled with the

ActiveX technology to access IDL functionality. This allows IDL functionality to be

embedded into Windows applications and programming environments such as Visual

Basic and Visual C++. When the ActiveX control is embedded, all the analysis and

graphics capabilities of IDL become available to the application. The ActiveX control

in IDL is presented in the form of the IDLDrawWidget object class. ActiveX is a
technology that defines a standard way of embedding and controlling foreign

components into applications on Window platforms. ActiveX is a Microsoft term for

this set of technologies and services that are all based on the common object model

(COM). There are several variations of ActiveX including ActiveX Documents, ActiveX

Scripting, and ActiveX Controls. All variations of ActiveX are an outgrowth of

Microsoft’s Object Linking and Embedding (OLE), which defines a common interface

for including foreign software components in applications.

ION (IDL On the Net) is a plugin for IDL. ION is a family of products that allow you

to run your IDL applications in a networked environment, giving Intranet or Internet

users access to IDL visualization and analysis. The primary design of this plugin is

focused on a client-server environment that involves a web browser. There are 2

versions of the ION plugin. "ION Script" is a tool that includes a powerful tag-based

language (similar to HTML) to publish IDL visualizations, analyses, and interactive

applications on a webpage. "ION Java" can be used to create either Web-based, or

entirely self-contained, distributable Java applications. ION Java combines both IDL

and Java into a single, powerful tool for building client-server Java applications and

Web applets. ION Java includes a low-level Java class library, pre-built Java applets,

and mid-level component classes that provide you with the ability to create

sophisticated Java applications that are driven by IDL.

The IDL Export Bridges provide the ability to easily export an IDL object as a

native Java or ActiveX/COM object for use in external environments (such as Visual

C++ and Visual Basic). When exported, an IDL object will appear like a native

object in the target environment and, as such, doesn't require the user to know IDL

syntax or operating methodologies. The user interacts with the objects using native

methodologies and syntax. The bridge technology will convert data between the

native formats and IDL as well as dispatch the method calls being made to the target

IDL object. While the classic IDL execute string methodology is still available, for

non-IDL users this technology provides a rapid method to use and deploy

functionality developed in IDL.

IDL Quick Start - 208 - Appendices

Appendix C: Other Training Courses

Training Courses Available from ITT

ITT offers introductory, intermediate and advanced courses in both IDL and ENVI.

Classes are held year round at a variety of convenient locations and can be

customized to meet your unique requirements. In addition, we can come to your

facility and perform custom on-site training as well. Our expert instructors focus on

your goals and how you can best utilize ITT’s tools to achieve them. All classes are

taught with hands-on instruction by a team of skilled professionals.

The course that are currently offered for the IDL software package include :

• Introduction to IDL :

o Scientists and programmers starting to use IDL for exploring their data

become immediately more productive with this three-day course.

Beginning with the basic concepts of variables and line plotting, the

course takes students through file manipulation, programming

methods, interactive data visualization and analysis techniques. Users

are introduced to the IDL Development Environment (IDLDE) and IDL's

advanced mathematical and image processing capabilities. This class

is perfect for new users of IDL.

• Intermediate Programming with IDL :

o Standard techniques are presented for building IDL programs to

perform custom analyses that can be easily used by others. Topics

include advanced visualization techniques, use of built-in data analysis

and image processing routines, development of applications employing

a graphical user interface, introduction to object-oriented

programming, introduction to the IDL Object Graphics system and a

discussion of linking with external programs using the CALL_EXTERNAL

function.

• Advanced Topics in IDL :

o In this course a significant IDL application is planned, designed and

built. The application employs a user interface that allows interactive

manipulation of objects in a graphical scene. Emphasis is placed on

visualization using the newest features of the IDL Object Graphics

System and the IDL Widget Toolkit. This course is designed for the

scientist or programmer wanting to increase the visual impact and

usability of their IDL applications for customers or colleagues.

• iTools Programming :

o Learn how to work within the iTools Component Framework to build

your own iTool. Construct and register iTools visualizations, file

readers and writers, manipulators and operations. Learn how to

modify the default iTools user interface, construct your own iTools user

interface and embed an iTool in an existing IDL widget application.

This class includes a review of object-oriented programming in IDL,

IDL Quick Start - 209 - Appendices

including working in the IDL Object Graphics system, as well as an

overview of the iTools system architecture. This class is intended for

advanced users of IDL.

• Medical Image Processing with IDL :

o The course covers image processing with IDL. Emphasis on hands-on

demonstration of image processing techniques commonly used in

medical research. Explanation of how to use IDL's IDLffDICOMex class

to read, write and query DICOM-format files, through several

examples and exercises.

