

IDL Tutorial

Advanced Graphics

Copyright © 2008 ITT Visual Information Solutions

All Rights Reserved
http://www.ittvis.com/

IDL® is a registered trademark of ITT Visual Information Solutions for the computer

software described herein and its associated documentation. All other product names

and/or logos are trademarks of their respective owners.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 2 of 24

IDL’s Graphical Systems

The IDL software package has 3 distinct graphical systems :

• IDL Intelligent Tools (iTools)

• Object Graphics

• Direct Graphics

All of the graphical visualizations that have been created thus far have been in one of

the pre-built iTools utilities (iPlot, iContour, iSurface, iImage, iVolume, iMap). The

three graphical systems are listed above in order of increasing age; the iTools were

introduced in IDL version 6.0 (2003), the Object Graphics were introduced in version

5.0 (1997), and the Direct Graphics have been in IDL since the beginning. There is

actually an inherent relationship between the iTools and the Object Graphics because

the iTools system is merely a set of interactive (point-and-click) utilities with a

graphical user interface that are built on top of the underlying Object Graphics

components. In contrast, the Direct Graphics are a completely separate graphical

system that require a very unique syntax. Each graphical system has distinct

advantages in comparison to the others, and this chapter presents an introduction to

the Direct and Object Graphics systems.

The Direct Graphics rely on the concept of a current graphics device. The routines

in the IDL language that create Direct Graphics will send the graphical output directly

to the current graphics device. The relevant features of the Direct Graphics system

are :

• The Direct Graphics send visualizations to a graphics device (“X” for X-

windows systems displays, “WIN” for Microsoft Windows displays, “PS” for

PostScript files, etc.). The user switches between graphics devices using the

SET_PLOT procedure, and controls the features of the current graphics device

using the DEVICE procedure.

• Once a Direct Graphics mode visualization is drawn to the current graphics

device, it cannot be altered or re-used. This means that if the user wishes to

re-create the graphic on a different device, they must re-issue the IDL

commands to create the graphic again.

• When the user adds a new item to an existing Direct Graphics visualization,

the new item is drawn in front of the existing graphics.

• Some of the primary routines in the IDL language for creating Direct Graphics

are :

o Display Management : WINDOW, WSET, WSHOW, WDELETE

o Color Tables : TVLCT, LOADCT, XLOADCT, XPALETTE

o Line Plots : PLOT, OPLOT, PLOTS

o Contours : CONTOUR, IMAGE_CONT

o Surfaces : SURFACE, SHADE_SURF, SHOW3

o Images : TV, TVSCL, SLIDE_IMAGE, TVRD, XINTERANIMATE

o Volumes : SLICER3, SHADE_VOLUME, PROJECT_VOL, VOXEL_PROJ,

POLYSHADE

o Maps : MAP_SET, MAP_GRID, MAP_CONTINENTS, MAP_IMAGE

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 3 of 24

In contrast, the Object Graphics use an object-oriented programmer’s interface to

create graphic objects, which must then be explicitly drawn to a destination of the

programmer’s choosing. The relevant features of the Object Graphics system are :

• Object Graphics are device independent. There is no concept of a current

graphics device when using object-mode graphics; any graphics object can be

displayed on any physical device for which a destination object can be

created.

• Object Graphics are object-oriented. Graphic objects are meant to be created

and re-used; the user may create a set of graphic objects, modify their

attributes, draw them to a window on the computer screen, modify their

attributes again, then draw them to a printer device without reissuing all of

the IDL commands used to create the objects. Graphics objects also

encapsulate functionality. This means that individual objects include method

routines that provide functionality specific to the individual object.

• Object graphics are rendered in three dimensions. Rendering implies many

operations not needed when drawing Direct Graphics, including calculation of

normal vectors for lines and surfaces, lighting considerations, and general

object overhead. As a result, the time needed to render a given object—a

surface, say—will often be longer than the time taken to draw the analogous

graphic in Direct Graphics.

• Object Graphics use a programmer’s interface. Unlike Direct Graphics, which

are well suited for both programming and interactive, ad hoc use, Object

Graphics are designed to be used in programs that are compiled and run.

While it is still possible to create and use graphics objects directly from the

IDL> command prompt, the syntax and naming conventions make it more

convenient to build a program offline than to create graphics objects on the

fly.

• Because Object Graphics persist in memory, there is a greater need for the

programmer to be cognizant of memory issues and memory leakage.

Efficient design—remembering to destroy unused object references and

cleaning up—will avert most problems, but even the best designs can be

memory-intensive if large numbers of graphic objects (or large datasets) are

involved.

• Some of the primary object classes in the IDL language for creating Object

Graphics are :

o Display Management : IDLgrWindow, IDLgrScene, IDLgrView,

IDLgrViewgroup, IDLgrModel

o Color Tables : IDLgrPalette, IDLgrColorbar

o Line Plots : IDLgrPlot

o Contours : IDLgrContour

o Surfaces : IDLgrSurface

o Images : IDLgrImage

o Volumes : IDLgrVolume

o Geometries : IDLgrPolyline, IDLgrPolygon

o Auxiliary : IDLgrAxis, IDLgrFont, IDLgrLight, IDLgrROI, IDLgrBuffer,

IDLgrClipboard, IDLgrPrinter, IDLgrLegend, IDLgrMPEG, IDLgrPattern

The following exercise will illustrate a simple comparison between the Direct and

Object Graphics systems. Start by generating a small two-dimensional array using

the BESELJ and DIST functions :

1. IDL> data = BESELJ (SHIFT (DIST (50), 25, 25) / 2, 0)

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 4 of 24

2. IDL> HELP, data
 DATA FLOAT = Array[50, 50]

This two-dimensional array can be visualized using the Direct Graphics version of the

surface graphic by making a call to the SURFACE procedure :

3. IDL> SURFACE, data

The resulting display window should look similar to Fig. 1.

Figure 1: Direct Graphics surface visualization

One of the primary benefits of the Direct Graphics system is its ability to rapidly

render graphics to the current device, especially when the dataset is very large.

However, once the visualization is drawn to the display device the user no longer has

any control over the graphic.

4. For example, position the cursor over the IDL 0 window and click-and-drag

using the mouse. Notice that the Direct Graphics display window does not

provide the ability to interactively manipulate (rotate, translate, zoom, etc.)

the current visualization.

Furthermore, the surface visualization is drawn to the display window only once.

Consequently, if the display window is resized the scaling of the graphic does not

automatically update.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 5 of 24

5. Click on the maximize button in the upper-right hand corner of the IDL 0

window, or simply click on the edge of the window and drag.

Notice that the surface visualization does not automatically resize with the change in

window size. Moreover, if the user decreases the size of the display window to an

area smaller than the original graphic, then re-exposes the area where the graphic

first appeared the visualization will not automatically repair itself.

6. Click on the edge of the IDL 0 window and make it small enough to hide a

portion of the surface graphic. Then, drag the edge of the window back out

to show the full display area for the original visualization. Notice that the

graphic has been erased.

7. Close the current IDL 0 graphics window.

If the user wants to re-draw the graphic, or modify some property of the

visualization, the commands that are used to create the graphic must be re-issued.

In addition, aspects of the current graphics device (e.g. the current color lookup

table) might need to be modified. For example, in order to change the color of the

wire-mesh surface graphic to red, decomposed color must be disabled using the

DEVICE procedure, the RGB triplet for the color red must be loaded into a color table

index using the TVLCT procedure, and the call to the SURFACE procedure must be

re-issued :

8. IDL> DEVICE, DECOMPOSED=0

9. IDL> TVLCT, 255, 0, 0, 1

10. IDL> SURFACE, data, COLOR=1

The surface graphic and axes within the Direct Graphics visualization window should

now be red.

11. Once finished viewing the Direct Graphics surface visualization, close the IDL

0 display window.

Now create the same surface visualization within the Object Graphics system. This

can be accomplished by making a call to the OBJ_SURFACE procedure :

12. IDL> OBJ_SURFACE, data

Note: The OBJ_SURFACE routine is a custom program that is included with the distribution materials for
this tutorial. This program is basically a wrapper on top of the appropriate Object Graphics components.

If executing this statement results in the error “% Error opening file.”, then the “lib/” subfolder

included with this tutorial that contains this program file is not included in IDL’s path. To solve this
problem simply open the program file into IDL and select "Run > Compile" from the main menu.

The surface graphic visualization will appear within a window that has a bit more

functionality than the default Direct Graphics display window [Fig. 2]. A series of

bitmap buttons across the toolbar expose manipulation functionality (rotate, zoom,

pan, select, reset), and the menu system allows the user to export the graphic,

print, copy to clipboard, change the background color, etc..

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 6 of 24

Figure 2: Object Graphics surface visualization

By default, this Object Graphics display utility is setup in Rotate manipulation mode :

13. Position the cursor within the window and click-and-drag with the mouse in

order to rotate the graphic.

One of the primary advantages of the inherent 3-D rendering of the Object Graphics

system is the ability to expose robust interactive manipulation capabilities to the

user. In addition to the Rotate manipulation, experiment with the Zoom and Pan

capabilities :

14. Click on the Zoom button to enter zoom manipulation mode, then click-

and-drag with the mouse cursor within the display window.

15. Click on the Pan button to enter translate manipulation mode, then click-

and-drag with the mouse cursor within the display window.

The advantages of the Object Graphics system over the Direct Graphics system,

especially when working with 3-Dimensional visualizations, should be readily

apparent. However, the Object Graphics still lack the robust interactive graphical

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 7 of 24

properties modification, annotation, ROI, undo/redo, and operations of the iTools

graphical system. For example, in order to change the color of the surface graphic

to red, the call to the OBJ_SURFACE procedure must once again be re-issued :

16. Close the current OBJ_SURFACE display window.

17. Re-issue the call to the OBJ_SURFACE procedure, but this time set the COLOR

keyword equal to the color index for red :

IDL> OBJ_SURFACE, data, COLOR=1

The resulting wire-mesh surface graphic should now be red in color.

18. Once finished viewing the surface visualization, close the OBJ_SURFACE

window.

The evolution of IDL’s graphical systems from Direct Graphics � Object Graphics �

iTools has led to the development of a robust environment for data visualization that

has the convenience of point-and-click user interaction along with the power and

control of a programming language. At this point, users might be asking

themselves, “Why would I ever want to use the Direct or Object Graphics systems

directly? Why wouldn’t I always just use the iTools graphical system?”. The

following table clearly delineates the primary advantages and disadvantages of the 3

graphical systems :

GRAPHICAL SYSTEM ADVANTAGES DISADVANTAGES
Rapid Rendering No Built-In User Interaction

Efficient with Large Datasets Dependant Upon VRAM Resources Direct Graphics
Excellent Programmatic Control Change Code to Change Graphic

Rendering Done in 3-D Limited Built-In User Interaction

Object-Oriented Design Computationally Intensive Object Graphics
Excellent Programmatic Control Can Require Significant Coding

Excellent User Interaction May Expose Too Much Functionality

Pre-Built Tools (iPlot, iImage, etc.) iTools System Overhead Intelligent Tools
Customizable and Extendable Slower When Using Very Large Data

Table 9-1: Advantages and disadvantages of IDL’s graphical systems

Utilizing the Direct Graphics System

The Direct Graphics system sends graphical output to a specific destination, known

as a device. The output devices that are supported within the Direct Graphics

system of IDL are listed in Table 9-2. Useful information about the current Direct

Graphics device can be obtained from the HELP procedure by setting the DEVICE

keyword :

1. IDL> HELP, /DEVICE

The output from the execution of this statement should be similar to the following :

Available Graphics Devices: CGM HP METAFILE NULL PCL PRINTER PS WIN Z
Current graphics device: WIN
 Screen Resolution: 1024x768

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 8 of 24

 Simultaneously displayable colors: 16777216
 Number of allowed color values: 16777216
 System colors reserved by Windows: 0
 IDL Color Table Entries: 256
 NOTE: this is a TrueColor device
 NOT using Decomposed color
 Graphics Function: 3 (copy)
 Current Font: System, Current TrueType Font: <default>
 Default Backing Store: None.

Since the example above was generated on a Windows computer the default current

graphics device is “WIN”, which is the computer monitor screen. If this command

was executed on a UNIX, Linux, or Mac OS X computer the current graphics device

should be “X”, which is short for X-windows.

DEVICE NAME DESCRIPTION

CGM Computer Graphics Metafile

HP Hewlett-Packard Graphics Language (HP-GL)

METAFILE Windows Metafile Format (WMF)

NULL No graphics output

PCL Hewlett-Packard Printer Control Language (PCL)

PRINTER System printer

PS PostScript

REGIS Regis graphics protocol (DEC systems only)

TEK Tektronix compatible terminal

WIN Microsoft Windows

X X Window System

Z Z-buffer pseudo device

Table 9-2: Direct Graphics Output Devices

The SET_PLOT procedure must be used to select the graphic device to which IDL

directs its output. For example, change the current Direct Graphics output device to

the PostScript device and obtain information :

2. IDL> SET_PLOT, 'PS'

3. IDL> HELP, /DEVICE

The output from the execution of this statement should be similar to the following :

Available Graphics Devices: CGM HP METAFILE NULL PCL PRINTER PS WIN Z
Current graphics device: PS
 File: <none>
 Mode: Portrait, Non-Encapsulated, EPSI Preview Disabled, Color Disabled
 Output Color Model: RGB
 Offset (X,Y): (1.905,12.7) cm., (0.75,5) in.
 Size (X,Y): (17.78,12.7) cm., (7,5) in.
 Scale Factor: 1
 Preview Size (X,Y): (4.51556,4.51556) cm., (1.77778,1.77778) in.
 Preview Depth: 8 bits per pixel
 Font Size: 12
 Font Encoding: AdobeStandard
 Font: Helvetica TrueType Font: <default>
 # bits per image pixel: 4
 Font Mapping:
 (!3) Helvetica (!4) Helvetica-Bold

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 9 of 24

 (!5) Helvetica-Narrow (!6) Helvetica-Narrow-BoldOblique
 (!7) Times-Roman (!8) Times-BoldItalic
 (!9) Symbol (!10) ZapfDingbats
 (!11) Courier (!12) Courier-Oblique
 (!13) Palatino-Roman (!14) Palatino-Italic
 (!15) Palatino-Bold (!16) Palatino-BoldItalic
 (!17) AvantGarde-Book (!18) NewCenturySchlbk-Roman
 (!19) NewCenturySchlbk-Bold (!20) <Undefined-User-Font>

At this point, if the user were to execute a routine from the IDL library that creates

Direct Graphics visualizations the graphical output would actually be directed to this

invisible PostScript device and would not appear on the computer monitor screen.

4. In order to create Direct Graphics visualizations and see them on the display,

change the current graphics device back to its original setting :

• Windows: IDL> SET_PLOT, 'WIN'

• UNIX/Linux: IDL> SET_PLOT, 'X'

• Mac OS X: IDL> SET_PLOT, 'X'

The !D system variable within the IDL language also stores useful information on the

current Direct Graphics output device in a structure. The user can view these

settings by using the HELP procedure with the STRUCTURE keyword set :

5. IDL> HELP, !D, /STRUCTURE

The output from the execution of this statement should be similar to the following :

** Structure !DEVICE, 17 tags, length=84, data length=84:
 NAME STRING 'WIN'
 X_SIZE LONG 640
 Y_SIZE LONG 512
 X_VSIZE LONG 640
 Y_VSIZE LONG 512
 X_CH_SIZE LONG 7
 Y_CH_SIZE LONG 10
 X_PX_CM FLOAT 34.1333
 Y_PX_CM FLOAT 33.3913
 N_COLORS LONG 16777216
 TABLE_SIZE LONG 256
 FILL_DIST LONG 1
 WINDOW LONG -1
 UNIT LONG 0
 FLAGS LONG 328124
 ORIGIN LONG Array[2]
 ZOOM LONG Array[2]

However, the !D system variable is read-only and cannot be modified directly by the

user. In order to control the settings for the current graphics device (and obtain

other useful information) the DEVICE procedure must be used. The DEVICE

procedure controls the graphic device-specific functions for the device currently

selected by SET_PLOT. An attempt has been made to isolate all device-specific

functionality in this procedure.

For example, the use of decomposed color can be turned back on by executing the

following statement :

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 10 of 24

6. IDL> DEVICE, DECOMPOSED=1

Once this is accomplished, executing the command “HELP, /DEVICE” will show that

the current Direct Graphics device is using decomposed (24-bit) color :

7. IDL> HELP, /DEVICE

Available Graphics Devices: CGM HP METAFILE NULL PCL PRINTER PS WIN Z
Current graphics device: WIN
 Screen Resolution: 1024x768
 Simultaneously displayable colors: 16777216
 Number of allowed color values: 16777216
 System colors reserved by Windows: 0
 IDL Color Table Entries: 256
 NOTE: this is a TrueColor device
 Using Decomposed color
 Graphics Function: 3 (copy)
 Current Font: System, Current TrueType Font: <default>
 Default Backing Store: None.

The primary advantages of the Direct Graphics system is efficient handling of large

datasets and very rapid rendering. The following exercise illustrates one of these

benefits by executing a small GUI program that utilizes Direct Graphics (and IDL’s

widget toolkit). This program displays an image of a digital elevation model and

allows the user to click on the image and dynamically display X- and Y- line profiles

of the DEM data in a very rapid fashion. The data that is used in this exercise is

stored in the file named “DEM.tif” located in the “data” subfolder.

Start by launching the custom program that is built on top of the Direct Graphics

system :

8. IDL> PROFILE_VIEW

Note: The PROFILE_VIEW routine is a custom program that is included with the distribution materials for
this IDL tutorial. This program is basically a wrapper on top of the appropriate Direct Graphics

components. If executing this statement results in the error “% Error opening file.”, then the “lib/”

subfolder included with this tutorial that contains this program file is not included in IDL’s path. To solve
this problem simply open the program file into IDL and select "Run > Compile" from the main menu.

A standard native file selection dialog will appear entitled “Select “DEM.tif” file to

open”.

9. Select the file named “DEM.tif” and press the “Open” button.

A new Direct Graphics display window entitled “Profile Viewer” will appear with an

image display of the DEM data and two blank plot windows. This program window

allows the user to click-and-drag with the left mouse button on top of the image in

order to display both an X- and Y- line profile for the elevation data according to the

current cursor location [Fig. 3]. Moving the cursor around in the image, the user can

see how rapidly the Direct Graphics system is able to update the line profile plots.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 11 of 24

Figure 3: Program illustrating rapid line plot capabilities

10. Once finished viewing the line profiles, close the Profile Viewer window.

The next exercise illustrates another aspect of the Direct Graphics system’s rapid

rendering by displaying a very large image in a window that allows the user to

rapidly move a zoom window around on top of the picture using the mouse. The

image that will be used is stored in the file “St_Louis.jpg” located in the “data”

subfolder.

The file is in JPEG format and contains a 2000 x 2000 satellite image of downtown

St. Louis, Missouri. Both the Edward Jones Dome and Busch Stadium are readily

visible in this image. Start by launching a custom program that is built on top of the

Direct Graphics system :

11. IDL> IMAGE_FULLRES_ZOOM

Note: The IMAGE_FULLRES_ZOOM routine is a custom program that is included with the distribution
materials for this IDL tutorial. This program is basically a wrapper on top of the appropriate Direct

Graphics components. If executing this statement results in the error “% Error opening file.”, then

the “lib/” subfolder included with this tutorial that contains this program file is not included in IDL’s path.
To solve this problem simply open the program file into IDL and select "Run > Compile" from the main
menu.

A standard native file selection dialog will appear entitled “Select “St_Louis.jpg” file

to open”.

12. Select the file named “St_Louis.jpg” and press the “Open” button.

A new Direct Graphics display window entitled “Full Resolution Zoom (click with left

or right mouse button)” will appear with the image graphic. This display window

allows the user to click-and-drag with either the left (200 x 200 zoom window) or

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 12 of 24

right (400 x 400 zoom window) mouse button in order to display the current image

area at full resolution.

13. Experiment with clicking both the left and right mouse buttons within the

image display window [Fig. 4].

Figure 4: Direct Graphics image display with rapid overlay capabilities

Notice how rapidly the image display updates as the red zoom box is moved around

in the window. When the user moves the zoom box around in the image the

IMAGE_FULLRES_ZOOM program is utilizing techniques in the Direct Graphics

system in order to rapidly display an area surrounding the current cursor position at

full resolution within the zoom box, while also repairing the original image display.

These operations occur so fast that the user cannot see any delay while the image

graphic is being updated.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 13 of 24

14. Once finished viewing the image of St. Louis, close the Full Resolution Zoom

display window.

The following exercise illustrates another powerful aspect of the Direct Graphics

system by loading a series of images into IDL and displaying each in a sequential

fashion. The delay between the display of each image in the sequence is so short

that the visualization has the appearance of an animation (i.e. movie) to the viewer.

IDL has a pre-built utility that provides an interface and controls for viewing

animations called XINTERANIMATE. This utility utilizes the Direct Graphics system to

display images in a very rapid fashion.

The images that will be loaded as movie frames into this animation utility are located

in the “frames” subfolder of the “data” subfolder.

The individual data files found in this “frames” subfolder are in BMP format. Start by

selecting this folder and inputting the images into the current IDL session. The

DIALOG_PICKFILE function can be used to display the native file selection dialog.

Set the DIRECTORY keyword so the dialog prompts the user to select an entire folder

instead of individual files :

15. IDL> folder = DIALOG_PICKFILE (/DIRECTORY)

16. Within the dialog, select the “frames” subfolder and press “OK” [Fig. 5].

Figure 5: Selecting a directory using the native folder selection dialog

Confirm that the selected folder was successfully returned as a string into the named

variable “folder” :

17. IDL> HELP, folder
 FOLDER STRING = 'C:\Advanced_Graphics\data\frames\'

Note: The string value for the “folder” variable may be different depending on the location of the tutorial
files on your computer.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 14 of 24

Next, utilize the FILE_SEARCH function in order to determine the full path to each of

the individual 116 BMP format files located within the “frames” subfolder :

18. IDL> files = FILE_SEARCH (folder, '*', COUNT=nFiles)

Confirm that the number of files located is equal to 116 :

19. IDL> HELP, nFiles
 NFILES LONG = 116

Obtain information on the image data for the first BMP file in the sequence using the

QUERY_BMP function :

20. IDL> query = QUERY_BMP (files[0], info)

21. IDL> HELP, info, /STRUCTURE
 ** Structure <10b5168>, 7 tags, length=40, data length=36,
 refs=1:
 CHANNELS LONG 3
 DIMENSIONS LONG Array[2]
 HAS_PALETTE INT 0
 NUM_IMAGES LONG 1
 IMAGE_INDEX LONG 0
 PIXEL_TYPE INT 1
 TYPE STRING 'BMP'

22. IDL> PRINT, info.dimensions
 320 240

The contents of the information structure returned by QUERY_BMP illustrate that the

image data is of type byte and has a size of 320 columns by 240 rows with 3 color

channels. Initialize a new variable named “frames” that will be used to store all of

the images in the sequence :

23. IDL> frames = MAKE_ARRAY (3, 320, 240, nFiles, TYPE=1)

24. IDL> HELP, frames
 FRAMES BYTE = Array[3, 320, 240, 116]

Now that a variable has been initialized within the current IDL session to store all of

the images in the sequence, they can be input from their individual BMP format files.

Utilize the FOR loop control statement to read-in the images from all of the files into

the appropriate index of the “frames” variable :

25. IDL> FOR i=0,nFiles-1 DO frames[*,*,*,i] = READ_BMP(files[i],/RGB)

Finally, load the image frames into the XINTERANIMATE visualization utility. This is

accomplished by calling the XINTERANIMATE procedure 3 times; first to initialize the

utility, second to load the individual image frames, and third to actually launch the

display window.

26. IDL> XINTERANIMATE, SET=[320, 240, 116], /TRACK, /CYCLE

27. IDL> FOR i=0,nFiles-1 DO XINTERANIMATE, FRAME=i, $
 IMAGE=frames[*,*,*,i]

28. IDL> XINTERANIMATE, 50

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 15 of 24

An animation of MRI and PET data of a human brain will be displayed in an

interactive display window. The XINTERANIMATE utility also has built-in GUI

components for controlling the animation. The resulting visualization window should

look similar to Fig. 6.

Figure 6: Animation of multiple image frames using Direct Graphics

The extremely fast display speed of the Direct Graphics system can be seen by

changing the “Animation Speed:” slider to its highest setting :

29. Click on the vertical bar within the “Frames/Sec:” slider and drag it all the

way to the right in order to obtain the maximum setting.

Notice how fast the animation utility is able to update the image display.

30. Once finished viewing the animation, close the XInterAnimate window.

Utilizing the Object Graphics System

The IDL Object Graphics system is a collection of pre-defined object classes, each of

which is designed to encapsulate a particular visual representation. These objects

are designed for building complex three-dimensional data visualizations. In general,

object classes shipped with IDL have names of the form :

IDLxxYyyy

where xx represents the broad functional grouping (gr for graphics objects, db for

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 16 of 24

database objects, an for analysis objects, ff for file format objects, etc.). Yyyy is the

class name itself (such as Axis or Surface). For example, the IDLgrAxis object

provides an encapsulation of all of the components associated with a graphical

representation of an axis.

Object Graphics should be thought of as a collection of building blocks. In order to

display something on the screen, the user selects the appropriate set of blocks and

puts them together so that as a group they provide a visual result. In this respect,

Object Graphics are quite different than Direct Graphics. A single line of code is

unlikely to produce a complete visualization. Furthermore, a basic understanding of

the IDL object system is required (for instance, how to create an object, how to call

a method, how to destroy an object, etc.). Because of the level at which these

objects are presented, Object Graphics are aimed at application programmers rather

than command line users. The syntax involved in working with objects in the IDL

language is a bit different than the statements that have been executed thus far in

this tutorial. Consequently, a brief introduction to IDL objects and object-oriented

concepts is necessary.

IDL objects are actually special variables known as heap variables, which means

that they are global in scope and provide explicit user control over their lifetimes.

Object heap variables can only be accessed via object references. In order to

perform an action on an object’s instance data (such as the modification of

attributes), you must call one of the object’s methods. To call a method, you must

use the method invocation operator “->” (the hyphen followed by the greater-than

sign). The syntax is :

ObjRef->Method

where ObjRef is an object reference and Method is a method belonging either to the

object’s class or to one of its superclasses. The method may be specified either

partially (using only the method name) or completely using both the class name and

method name, connected with two colons :

ObjRef->ClassName::MethodName

In order to utilize Object Graphics, the user must build a self-contained hierarchy of

the appropriate objects that is subsequently drawn to a destination object. The 5

primary building blocks of an Object Graphics visualization are :

• Destination object : The device (such as a window, memory buffer, file,

clipboard, or printer) to which the visualization is to be rendered.

• Scene object : A container that can hold multiple views (if necessary).

• View object : The viewport rectangle (within the destination) within which

the rendering is to appear (as well as how data should be projected into that

rectangle).

• Model object : A transformation node.

• Atomic Graphic object : A graphical representation of data (such as an axis,

line plot, or surface mesh, text annotation, etc.).

For example, in the following exercise a hierarchy of objects will be created that

contain a simple line plot visualization, and this hierarchy will be drawn to a display

window destination object :

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 17 of 24

1. Create a simple one-dimensional dataset that can be displayed as a line plot

by executing a series of statements at the IDL> command prompt :

IDL> x = FINDGEN (720)

IDL> y = SIN (x * !DTOR) * COS (x * !DTOR / 3)

IDL> x = x / 450 - 0.8

2. Create an instance of the IDLgrPlot object class for this data using the

OBJ_NEW function. The object reference for this line plot is returned into the

variable named “oPlot” :

IDL> oPlot = OBJ_NEW ('IDLgrPlot', x, y)

3. Create an IDLgrModel object and execute the “Add” method in order to add

the line plot object to the model. Once this is accomplished, the model object

will contain the plot object :

IDL> oModel = OBJ_NEW ('IDLgrModel')

IDL> oModel -> Add, oPlot

4. Create an IDLgrView object and add the model to it :

IDL> oView = OBJ_NEW ('IDLgrView')

IDL> oView -> Add, oModel

5. Create an IDLgrWindow destination object, setting the RETAIN keyword equal

to 2 so that IDL is forced to provide backing store :

IDL> oWindow = OBJ_NEW ('IDLgrWindow', RETAIN=2)

6. Once this is accomplished, the entire object hierarchy can be rendered by

executing the Draw method with the top object container :

IDL> oWindow -> Draw, oView

The resulting visualization window should look similar to Fig. 7.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 18 of 24

Figure 7: Object Graphics visualization of a line plot

A simple black line plot will be drawn on top of the white view within the Object

Graphics window. Much like Direct Graphics, this is a static display window that does

not expose any interactive manipulation capabilities. Furthermore, the visualization

does not include axes because instances of the IDLgrAxis class were not explicitly

added to the object hierarchy. In order to make modifications to this visualization,

such as changing the color and adding an axis, the appropriate object must be

created and the SetProperty method must be utilized on the existing objects. For

example, the background color can be changed to yellow, the line plot color to blue,

and an X axis inserted into the visualization by executing the following statements :

7. IDL> oPlot -> SetProperty, COLOR=[0,0,255]

8. IDL> oView -> SetProperty, COLOR=[255,255,0]

9. IDL> oAxis = OBJ_NEW ('IDLgrAxis', RANGE=[-0.8,0.8], /EXACT)

10. IDL> oModel -> Add, oAxis

11. IDL> oWindow -> Draw, oView

The resulting visualization window should look similar to Fig. 8.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 19 of 24

Figure 8: Modification of the graphic colors and insertion of an axis

Since IDL objects are stored as heap variables, they persist in memory until they are

explicitly destroyed. Information on all of the current heap variables that exist

within an IDL session can be obtained by executing the HELP procedure with the

HEAP keyword set :

12. IDL> HELP, /HEAP
 Heap Variables:
 # Pointer: 13
 # Object : 8

 <ObjHeapVar1> STRUCT = -> IDLGRPLOT Array[1]
 <ObjHeapVar3> STRUCT = -> IDLGRDATA Array[1]
 <PtrHeapVar4> FLOAT = Array[3, 720]
 <PtrHeapVar5> STRUCT = -> IDL_CONTAINER_NODE Array[1]
 <ObjHeapVar6> STRUCT = -> IDLGRMODEL Array[1]
 <PtrHeapVar7> STRUCT = -> IDL_CONTAINER_NODE Array[1]
 <ObjHeapVar8> STRUCT = -> IDLGRVIEW Array[1]
 <PtrHeapVar10> STRUCT = -> IDL_CONTAINER_NODE Array[1]
 <ObjHeapVar11> STRUCT = -> IDLGRWINDOW Array[1]
 <PtrHeapVar12> BYTE = Array[3]
 <PtrHeapVar13> BYTE = Array[3]
 <ObjHeapVar14> STRUCT = -> IDLGRAXIS Array[1]
 <PtrHeapVar15> BYTE = Array[3]
 <PtrHeapVar16> DOUBLE = Array[3]
 <ObjHeapVar17> STRUCT = -> IDLGRTEXT Array[1]
 <PtrHeapVar18> BYTE = Array[3]

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 20 of 24

 <PtrHeapVar19> STRING = Array[3]
 <PtrHeapVar20> DOUBLE = Array[3, 3]
 <PtrHeapVar21> OBJREF = <ObjHeapVar17(IDLGRTEXT)>
 <ObjHeapVar22> STRUCT = -> IDLGRFONT Array[1]
 <PtrHeapVar23> STRUCT = -> IDL_CONTAINER_NODE Array[1]

The output from the HELP procedure illustrates that a number of objects and pointers

have been created and are currently using memory within the current IDL session.

In order to destroy all of the heap variables associated with this visualization and

free the memory that is currently being used, the OBJ_DESTROY procedure must be

used in order to complete the object life cycle :

13. IDL> OBJ_DESTROY, oWindow

14. IDL> OBJ_DESTROY, oView

Notice that destroying the top level object in a hierarchy (the view object in this

case) destroys all of the other objects it contains. Once this is accomplished,

another call to the HELP procedure should show that all of the heap variables have

been destroyed (and the memory they were using released) :

15. IDL> HELP, /HEAP
 Heap Variables:
 # Pointer: 0
 # Object : 0

The number of steps involved in creating an Object Graphics visualization from

scratch clearly demonstrate the need to write programs that create the entire object

hierarchy that is needed in order to display the graphic. Fortunately, there are a

number of pre-built utilities that are included with the IDL software package that

help the user visualize data using Object Graphics.

One of these utilities is called XDXF, and it is used to visualize geometric shapes

stored in AutoCAD DXF format files as 3-Dimensional polygonal objects. Another

more generic utility called XOBJVIEW can be used to quickly and easily visualize and

manipulate Object Graphics on screen. In the following exercise, a geometry from

the example data file “F-14.dxf” will be input into both of these utilities. This

example data file is located in the “data” subfolder.

This dataset contains the vertices and polygonal connectivity to define the three-

dimensional geometry for a F-14 fighter jet. Start by launching the XDXF utility :

16. IDL> XDXF

Since no filename was specified, a native file selection dialog will appear entitled

“Select DXF File to Read”.

17. Select the “F-14.dxf” file and press the “OK” button.

Two separate windows will appear once the data has been input from the DXF file; a

display window entitled “F-14.dxf”, and a window entitled “XDXF Information” that

displays information on the contents of the DXF file. The user can click-and-drag

with the mouse and execute the selected manipulation control on the object within

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 21 of 24

the display window. There is also several pieces of functionality exposed in the

menu system built into the F-14.dxf window.

18. Once finished viewing the 3-D geometry visualization, close the XDXF

Information window.

Within the XDXF utility, the geometry object is displayed by default with flat shading

and the vertex colors that are defined by the DXF file (in this case, all white). There

is no way to modify the appearance of the object unless the properties of the

underlying polygonal mesh object itself are modified. In order to give the geometry

object a more genuine appearance similar to that of a real F-14 fighter jet, the

Object Graphics components must be built manually.

In addition to graphical object classes, IDL also contains several file format objects

that are used to read and write data to files on disk. The DXF file format is one that

is handled using an object class in the IDL software package. The object class is

named “IDLffDXF”, and it can be utilized to input the data from the file “F-14.dxf”

file. Start by using the DIALOG_PICKFILE function to display the native file selection

dialog and select the “F-14.dxf” file on the harddrive :

19. IDL> file = DIALOG_PICKFILE (FILTER='F-14.dxf')

20. IDL> PRINT, file
 C:\Advanced_Graphics\data\F-14.dxf

Note: The string value for the “file” variable may be different depending on the location of the tutorial
files on your computer.

Next, create an instance of the IDLffDXF object class and read-in the entity list by

executing the Read method :

21. IDL> oDXF = OBJ_NEW ('IDLffDXF')

22. IDL> status = oDXF -> Read (file)

Obtain the contents of the DXF file and filter the result so it only contains “FACE3D”

entity types by setting the filter argument equal to 10 while executing the

GetContents method :

23. IDL> contents = oDXF -> GetContents (10)

Once the contents have been determined, the actual data can be read-in by

executing the GetEntity method :

24. IDL> data = oDXF -> GetEntity (contents)

Make sure to destroy the object and free the heap memory :

25. IDL> OBJ_DESTROY, oDXF

Once this is accomplished, a new structure named “data” will exist in the current IDL

session :

26. IDL> HELP, data, /STRUCTURE
 ** Structure IDL_DXF_POLYGON, 13 tags, length=80, data length=78:

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 22 of 24

 EXTRUSION DOUBLE Array[3]
 VERTICES POINTER <PtrHeapVar6>
 CONNECTIVITY POINTER <PtrHeapVar7>
 VERTEX_COLORS POINTER <PtrHeapVar8>
 MESH_DIMS INT Array[2]
 CLOSED INT Array[2]
 COLOR INT 256
 FIT_TYPE INT -1
 CURVE_FIT INT 0
 SPLINE_FIT INT 0
 DXF_TYPE INT 10
 BLOCK STRING ''
 LAYER STRING '0'

The vertices and polygonal connectivity can be extracted from the structure by

dereferencing their respective pointers :

27. IDL> vertices = *data.vertices

28. IDL> polygons = *data.connectivity

29. IDL> HELP, vertices, polygons
 VERTICES DOUBLE = Array[3, 4427]
 POLYGONS LONG = Array[30372]

A new polygon object can be created using the IDLgrPolygon class :

30. IDL> oJet = OBJ_NEW ('IDLgrPolygon', vertices, POLYGONS=polygons)

Once the polygon object has been created, change some of the properties to modify

the appearance of the geometry so it looks more like a grayish-blue metal aircraft :

31. IDL> oJet -> SetProperty, AMBIENT=[99,124,180]

32. IDL> oJet -> SetProperty, DIFFUSE=[129,129,154]

33. IDL> oJet -> SetProperty, SPECULAR=[155,155,155]

34. IDL> oJet -> SetProperty, SHININESS=21.2

35. IDL> oJet -> SetProperty, SHADING=1

Now that the polygon object has been created and its properties modified, it can be

visualized in the generic XOBJVIEW utility :

36. IDL> XOBJVIEW, oJet, BACKGROUND=[0,0,0]

You can rotate the image, zoom in and move it within the window. The resulting

visualization window should look similar to Fig. 9.

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 23 of 24

Figure 9: Visualization of F-14 fighter jet geometry from a DXF format file

37. Once finished viewing the polygon object, close the Xobjview window.

Another powerful aspect of the Object Graphics system is that most of the atomic

graphic objects have a property named either ALPHA_CHANNEL or

BLEND_FUNCTION that can be used to apply a transparency effect to the

visualization. This allows the user to create composite visualizations with more than

one object that involves an opacity adjustment in order to see through certain

objects. An example of this methodology is provided in the program named

ALPHA_BLENDING, which uses 2 images stored in the file “pictures.sav” located in

the “data” subfolder.

The file is in IDL save file format and contains two color photographs from Arches

National Park. Start by launching the custom program :

38. IDL> ALPHA_BLENDING

Note: The ALPHA_BLENDING routine is a custom program that is included with the distribution materials
for this IDL tutorial. This program is basically a wrapper on top of the appropriate Object Graphics

components. If executing this statement results in the error “% Error opening file.”, then the “lib/”

ITT Visual Information Solutions • 4990 Pearl East Circle Boulder, CO 80301
P: 303.786.9900 • F: 303.786.9909 • www.ittvis.com

Page 24 of 24

subfolder included with this tutorial that contains this program file is not included in IDL’s path. To solve
this problem simply open the program file into IDL and select "Run > Compile" from the main menu.

A standard native file selection dialog will appear entitled “Select “pictures.sav” file

to open”.

39. Select the file named “pictures.sav” and press the “Open” button.

A new Object Graphics display window will appear that shows a gradual transition

from one image to the next and back again [Fig. 10].

Figure 10: Transparency transition from one image to another

© 2008 ITT Visual Information Solutions
All Rights Reserved

IDL® is a registered trademark of ITT Visual Information Solutions for the computer software described
herein and its associated documentation. All other product names and/or logos are trademarks of their
respective owners.

The information contained in this document pertains to software products and services that are subject to
the controls of the Export Administration Regulations (EAR). All products and generic services described
have been classified as EAR99 under U.S. Export Control laws and regulations, and may be re-transferred
to any destination other than those expressly prohibited by U.S. laws and regulations. The recipient is
responsible for ensuring compliance to all applicable U.S. Export Control laws and regulations.

