
IDL Primer’s course
Luciano Nicastro

nicastro@iasfbo.inaf.it

Reference Web site:
http://ross.iasfbo.inaf.it/IDL/

IDL ?

 IDL, the Interactive Data Language,
 is the ideal software for data analysis,
 visualization, and cross-platform
 application development. IDL combines
 all of the tools you need for any type
 of project - from "quick-look,"
 interactive analysis and display to
 large-scale commercial programming
 projects. All in an easy-to-use, fully
 extensible environment.

IDL ?
Current version (October 2007): 7.0

Web site: http://www.ittvis.com/idl/

OS: runs “almost” in the same way on UNIX, Windows and MAC
platforms

Costs: ask ITT national representative; “network” and “personal”
license are available. For educational Institutions, “campus”
or “student” versions. Cost for profit companies are much
higher!

Installation: via delivered DVD or download from the internet.
Without license file, IDL can be used in demo mode for 7
minutes (cannot write files, etc.).

http://www.ittvis.com/idl/

IDL ?
An interesting feature for developers is the IDL Virtual Machine:

It's a free tool which allows software developers to distribute
compiled IDL code applets, or entire applications to
colleagues and customers without additional licensing
requirements or fees!

IDL official courses at various level are “offered” by ITT and last
from 2 to 5 days. Costs are of the order of 1000 Euro. For
information check the Web site (free webinar are available)
and/or contact ITT Italia.

The main reference IS and MUST be the "IDL Online Help“.

No course can compare to practice, especially if combined with a
well defined aim!

Manuals/Tutorials/Libraries
The IDL Online Help is a comprehensive resource. It runs in the

web browser and is a major improvement introduced in
version 6.x and makes its use really easy and more than
"helpful". Just run idlhelp or type ? at the IDL> prompt.
The ITT page http://www.ittvis.com/idl/docs/index.asp has
several free Guides. Printed copies can be bought.

As usual, the WEB is a valuable resource, even if (typically) the
reference IDL version is not the latest. Try typing “IDL
training” or “IDL tutorial” or similar in Google… You’ll
probably find all of the following:

Tutorials, On-line documentation, Books, User's libraries and
programs, this course!

Tutorials
www.us-vo.org/summer-school/2006/proceedings/presentations/idl_tutorial.html

US-VO Tutorial (summer school 2006)
www.ncnr.nist.gov/staff/dimeo/IDL_Training.html
Rob Dimeo's training courses at NCNR (2 PDF files of the
courses are available).
www.astro.virginia.edu/class/oconnell/astr511/IDLguide.html

R. W. O’Connell – A Guide to IDL for Astronomers

http://www.us-vo.org/summer-school/2006/proceedings/presentations/idl_tutorial.html
http://www.ncnr.nist.gov/staff/dimeo/IDL_Training.html
http://www.astro.virginia.edu/class/oconnell/astr511/IDLguide.html

On-line documentation
• General:

www.metvis.com.au/idl/
IDL resources @ METVIS Services. A fairly complete list of web
resources.
www.dfanning.com/
Coyote's Guide to IDL Programming. A growing list of
suggestions and example progams (see below).

• ITT IDL manuals in PDF format:
www.ittvis.com/idl/docs/index.asp

• Direct Graphics in IDL:
www.sljus.lu.se/stm/IDL/Surf_Tips/
Struan Gray's excellent tutorial on Extending IDL's Surface
Plotting Routines.

http://www.metvis.com.au/idl/
http://www.dfanning.com/
http://www.ittvis.com/idl/docs/index.asp
http://www.sljus.lu.se/stm/IDL/Surf_Tips/

On-line documentation (2)
• Selected topics:

ftp://fermi.jhuapl.edu/s1r/idl/s1rlib/local_idl.html
Tutorials on some of the JHU/APL/S1R IDL Library routines.

• Documentation and tips on IDL programming are also
available at the ITT site:
www.ittvis.com/codebank/index.asp
and the IDL Astronomy User's Library:
idlastro.gsfc.nasa.gov/homepage.html

• Old IDL FAQ:
www.astro.virginia.edu/class/oconnell/astr511/IDLresources/idl-faq-ivsoft-v4.html

ftp://fermi.jhuapl.edu/s1r/idl/s1rlib/local_idl.html
http://www.ittvis.com/codebank/index.asp
http://idlastro.gsfc.nasa.gov/homepage.html
http://www.astro.virginia.edu/class/oconnell/astr511/IDLresources/idl-faq-ivsoft-v4.html

On-line documentation (3)

• Old IDL newsgroup:
comp.lang.idl-pvwave

Hosted by Google:
groups.google.com/group/comp.lang.idl-pvwave/topics
Mirrored at:
www.fotovallescrivia.it/public/news/comp.lang.idl-pvwave/comp.lang.idl-pvwave0.htm

http://groups.google.com/group/comp.lang.idl-pvwave/topics
http://www.fotovallescrivia.it/public/news/comp.lang.idl-pvwave/comp.lang.idl-pvwave0.htm

Books

• David Fanning: “IDL Programming Techniques”. Available at:
www.dfanning.com/documents/books.html (it was $65)

• Ronn L. Kling: “Application Development with IDL, Combining
Analytical Methods with Widget Programming”. Available at:
www.rlkling.com/html/textbook.htm (it was $55)

• ITT's training manuals: see ITT web site.

http://www.dfanning.com/documents/books.html
http://www.rlkling.com/html/textbook.htm

User’s libraries and programs
• IDL Astronomy User's Library:

http://idlastro.gsfc.nasa.gov/homepage.html

 - A refernce site for all 'generic' Astronomical procedures
 - Procedures documentation
 - IDL-Databases of astronomical catalogues (small)
 - NEWS

• Eric Deutsch IDL Libraries Browser:
www.astro.washington.edu/deutsch/idl/htmlhelp/index.html
www.astro.washington.edu/deutsch/idl/htmlhelp/slibrary28.html

ESRG UCSB Library
• Craig B. Markwardt IDL Library:

http://cow.physics.wisc.edu/~craigm/idl/

http://idlastro.gsfc.nasa.gov/homepage.html
http://idlastro.gsfc.nasa.gov/news.html
http://www.astro.washington.edu/deutsch/idl/htmlhelp/index.html
http://www.astro.washington.edu/deutsch/idl/htmlhelp/slibrary28.html
http://cow.physics.wisc.edu/~craigm/idl/

User’s libraries and programs (2)

• Soho library
http://sohowww.nascom.nasa.gov/solarsoft/gen/idl/

 Various libraries, including WCS (World Coordinate System)
www.mps.mpg.de/projects/soho/sumer/text/cookbook.html
SUMER Data Cookbook

• IDL Libraries at IAAT, Astronomy:
http://astro.uni-tuebingen.de/software/idl/

• Extended IDL Help:
http://astro.berkeley.edu/~marc/idlshare/general/html/

• Use a web search engine for more…

Please, again note that sites may contain material not up-to-date
in many respects. Do not contact me if something is missing
or does not behaves as announced in the web sites or
libraries or programs.

http://sohowww.nascom.nasa.gov/solarsoft/gen/idl/
http://www.mps.mpg.de/projects/soho/sumer/text/cookbook.html
http://astro.uni-tuebingen.de/software/idl/
http://astro.berkeley.edu/~marc/idlshare/general/html/

Linux specific notes
• Idl_setup file:

it can be found in the directory: /usr/local/itt/idl/bin
"idl_setup" or "idl_setup.csh" for the csh/tcsh shell and
"idl_setup.bash" for bash. Even if on some system you
already have the IDL commands defined, I suggest to copy
this file into your $HOME dir. and edit it for customization.
To execute it automatically for every terminal:

csh/tcsh: at the end of the ".cshrc" (or .login) file add
 source ~/idl_setup.csh
bash: in the ".bashrc" (or .bash_profile) file add
 . ~/idl_setup.bash

The setup file (tcsh)
Change and uncomment below for a network license
#setenv LM_LICENSE_FILE 1700@ServerName
setenv ITT_DIR /usr/local/itt
setenv IDL_DIR /usr/local/itt/idl
alias ittlicense $IDL_DIR/bin/ittlicense
alias idl $IDL_DIR/bin/idl
alias idlde $IDL_DIR/bin/idlde
alias idlhelp $IDL_DIR/bin/idlhelp
alias idlman $IDL_DIR/bin/idlman
alias idlrpc $IDL_DIR/bin/idlrpc
alias idldemo $IDL_DIR/bin/idldemo
if (-d $HOME/IDL) then
 setenv IDL_PATH "<IDL_DEFAULT>":\+$HOME/IDL
endif
if (-e $HOME/.idl_startup) then
 setenv IDL_STARTUP $HOME/.idl_startup

Linux specific notes (2)
There are also X11 resources which are used by IDL (in the file

~/.Xdefaults or in the file $XAPPLRESDIR/Idl).

idl.colors: number of color IDL can use (useful for
PseudoColor devices).
idl.gr_depth: Depth, in bits, of the graphics device in use.
idl.retain: default parameter retain (Backing Store selection
→ graphics covered by other windows):

0= none, 1= by server, 2= by IDL.
idl.gr_visual: type of visual device to use:

StaticGray, GrayScale, StaticColor, PseudoColor, TrueColor,
DirectColor.
And so on. Check the help pages!

For example:

…

Linux specific notes (3)
…

Idl*fontlist: screen16
Idl.colors: -16
Idl.retain: 2
Idl.gr_visual: PseudoColor

IDL saves preferences into the file

$HOME/.idl/itt/pref-10-idl_7_0-unix/idl.pref

The same (and more) parameters can be defined using a
'startup' file using IDL instructions. For example:

…

The startup file
…
 print, 'Setting display attributes...‘
; 24 bit true color display with backing store
 device, deco=0, retain=2, true=24
; Create window to allocate colors
 window, /free, /pixmap
; Might not be needed, but won't hurt
 plot, [0]
; Delete the window
 wdelete, !d.window
; Set the vector font size
 device, set_character_size=[6,9]
 print, 'Number of colors allocated is ', !

d.n_colors

Linux specific notes (4)
Keyword DECOMPOSED=1 means IDL must interpret the color

indices as composed by 3 values (8-bits each) corresponding
to the red, green and blue intensities (from the less → most
significative byte). Default for a display using TrueColor and
DirectColor graphics (for example Windows and any machine
equipped with graphics card with 16 million colors).
 DECOMPOSED=0 means that IDL must interpret the color
index (actually the less significant 8-bits) as the index of the
PseudoColor color table → this index is in the range 0 − 255.
This "was" the default for UNIX machines (not Linux!) using a
"standard" display and allowed users (like me) to write
"standard" code which run on any machine. Nowadays,
TrueColor displays are the standard, so what runs on Linux
should run on Windows in the same way (graphically
speaking). The keyword PSEUDO is not allowed on Windows.

Linux specific notes (6)
If you prefer, can use idlde, which launches a GUI 'Workbench'.

In your home directory you'll have a subdir.
.idl/itt/idlworkbench-config-idl70 containing more directories
with the application preferences etc.

Preferences can be changed either manually or using the
Workbench itself.

IDL system variables
• Constants

!PI, !DPI, !RADEG, !DTOR, !MAP, !VALUES
• For the graphics

!D, !X, !Y, !Z, !P, !ORDER
• Error Handling and Informative messages

!ERR, !ERR_STRING, !SYSERR_STRING, ...
• IDL environment

!PATH, !PROMPT, !VERSION, ...

To add system variables:

IDL> DEFSYSV, 'Var_Name', Value [, /Read_only] [, EXISTS=i]
IDL> DEFSYSV, '!TEXTOUT', 1

Keep note…
1. IDL is not case sensitive (but, under Linux, the file names

which store the IDL routines are case sensitive!)

2. IDL "procedures" are of type PROgram and FUNCTION
(similarly to Fortran SUBROUTINE and FUNCTION) and both
can have "comma separated" parameters and keywords.
Parameters can be passed by reference or value, keywords
can be passed by name or value using the format:
KEY_NAME=name (value) or simply /KEY_NAME which
translates into KEY_NAME=1 (i.e. TRUE). Functions have their
parameters and keywords passed in brackets. For example:

PRO:

PLOT, FINDGEN(20)^2, XSTYLE=1, YSTYLE=1, THICK=2

FUNCTION:

cv = CONVERT_COORD([0,1],[0,1],/NORM,/TO_DEV)

Keep note…(2)
A series of commands make a "script" which IDL calls a MAIN.

Script syntax is slightly (but significantly) different from that
used in procedures.

3. Arrays are defined by comma separated values in square
brackets:
1-d: a = [3,6,12,24,64], 2-d: b = [[2,4,6,8,10],[8,12,24,36,72]]
and the indices of the elements go from 0 to n_elements - 1.
To extract an adjacent section one can use ":". For example to
transfer into the variable c the first 3 elements of a:
c = a[0:2] and to transfer those from the third to the last:
c = a[2:*]. To extract random elements one can use an array of
integer values (chosen elements). For example:
i = [0,2,4] & c = a[i] will select first, third and fifth element of
the array a. In a two dimensional array, the first index refers to
the column, the second to the row (in Fortran it's the reverse).

Keep note…(3)
4. Constant numbers containing the "." or "E" (es. 13., 2e3) are

assumed to be of type FLOAT (4 bytes); those containing a "D"
of type DOUBLE (8 bytes); those with an "L" at the end of type
LONG INTEGER (4 bytes) o simply LONG; those ending with a
"B" are of type BYTE; those with none of these letters are of
type INTEGER (2 bytes).
Moreover: UL →UNSIGNED LONG, LL → 64-bit LONG, ULL →
UNSIGNED 64-bit LONG.
To define an exadecimal value, add an "X" at the end of the
string constant. Example: '2E'XB, 'FF'XL, ecc.
Similarly use "O" for octal constants. Please refer to the on-
line help → Constants.

Pay attention to the definition of INTEGER constants which
could trespass the 32768 limit (especially in the FOR loops!).

Keep note…(4)
Example:

a = 7 & a = a+32760 & print, a

32767

a = 7 & a = a+32761 & print, a

−32768

It would have been OK if I used "a = 7L"

If not sure, always add "L" at the and of integer values.

5. Array elements are addressed between square brackets [] (it
was "()"). Ex.: a[10]

Pay attention to the definition of INTEGER constants which
could trespass the 32768 limit (especially in the FOR loops!).

Keep note…(5)
6. Keyword names can be truncated to the letter which makes it

"unique".
For example if a command or procedure has as possible
keywords CHARTHICK and CHARSIZE, then those can be
truncated to CHART and CHARS, respectively.

7. Blank spaces (one or more) in expressions and statements
containing operator, "=", ",", "&", etc. are optional;
an instruction line can be split in several lines adding a "$" at
the end of each line (not the last one, of course). Example:

PLOT, FINDGEN(20)^2, XSTYLE=1, YSTYLE=1, THICK=2, $

 XRANGE=[-2,22], TITLE='Demo plot’

8. Several instruction lines can be concatenated on the same
line using an "&" as separator. Example:

a = fltarr(12) & b = dblarr(4,7)

Keep note…(6)
9. Comment lines (or part of it) start with a semicolon ";".

Example:

plot, alog(x),alog(y), xtype=1, ytype=1; logarithmic plot X vs. Y

10. The keyword FORMAT, used to have formatted I/O, uses the
same notation as Fortran OR C. Example:

PRINT, [1,2,3,4], FORMAT='(4(I2,2X))'

11. Alphanumeric strings are concatenated using a "+" sign.
Example:

a = "Example" & b = 'of strings' & c = 'concatenation.'

ss = a +' '+ b +' '+ c & print, ss

Example of strings concatenation.

Keep note…(7)
12. Plotting coordinates can be given using the following types:

DATA (defined by the data values)

DEVICE (defined as pixel coordinates of the active device)

NORMAL (defined in the fixed interval [0, 1] for all the axes)

Examples:

plot, [0,10], [0,10], /data ; default

plots, [.5,1], [.5,1], /norm ; normalized

plots, [100,200], [100,200], /dev ; device

13. For the on-line help “idlhelp” or, at the IDL> prompt:

? <Enter> or

? item <Enter>

iTools ?
The iTools are made up of five pre-built tools:

• iPlot provides 2D and 3D graphing
• iSurface allows for surface representations of 2D array data

and irregularly sampled point collections
• iContour enables the production and manipulation of contour

plots
• iImage provides image display, exploration, ROI definition

and basic processing
• iVolume is used for the rendering and dissection of

volumetric data
• iMap allows you to work with geo-located data
• iVector displays 2D vector flow fields

Let’s start !
From now on, IDL intrinsic commands / instructions /

PROgrams / FUNCTIONS will be reported in CAPITAL LETTERS
whereas external (personal, etc.) programs will be reported
in lower-case letters. Variable names will be lower-case too.

Run IDL interactively typing: idl or idlde (def. on Windows).

This results into the "terminal" (old-style) approach and the new
"Workbench".

Operative System check
IDL> HELP, !VERSION, /STRUCT

** Structure !VERSION, 8 tags, length=104, data
length=100:

 ARCH STRING 'x86_64'
 OS STRING 'linux'
 OS_FAMILY STRING 'unix'
 OS_NAME STRING 'linux'
 RELEASE STRING '7.0'
 BUILD_DATE STRING 'Oct 25 2007'
 MEMORY_BITS INT 64
 FILE_OFFSET_BITS
 INT 64

Operative System check (2)
Within a program can check OS like this:

 CASE !VERSION.OS_FAMILY OF
 'MacOS':...

 'unix':...

 'Windows':...
 ELSE:
 ENDCASE

Useful to set initial parameters which are OS dependent
(directory names, display color properties, etc.).

Graphics device check
IDL> HELP, /DEVICE
Available Graphics Devices:
 CGM HP LJ NULL PCL PRINTER PS REGIS TEK X Z
 Current graphics device: X
 Server: X11.0, The XFree86 Project, Inc, Release 40300000
 Display Depth, Size: 24 bits, (1400,1050)
 Visual Class: TrueColor (4)
 Bits Per RGB: 8 (8/8/8)
 Physical Color Map Entries (Emulated / Actual): 256 / 256
 Colormap: Private, 16777216 colors. Translation table: Enabled
 Graphics pixels: Decomposed, Dither Method: Ordered
 Write Mask: 16777215 (decimal) ffffff (hex)
 Graphics Function: 3 (copy)
 Current Font: <default>, Current TrueType Font: <default>
 Default Backing Store: Req from Server.
 Window Status: ---------------------
 id typ(x, y, backing store)
 0: Win(700, 525, Req from Server)

Operators
IDL> a = INDGEN(10) ; array of integers 0-9
IDL> PRINT, a
 0 1 2 3 4 5 6 7 8 9
IDL> PRINT, 10 - a
 10 9 8 7 6 5 4 3 2 1
IDL> b = a < (10-a) ; the operator "<"
IDL> PRINT, b ; let's see the result...
 0 1 2 3 4 5 4 3 2 1
IDL> v = 12
IDL> v = v > 1 < 10 ; operators "<" and ">"
IDL> PRINT, v ; the result ...
 10
IDL> b = a > (10-a) ; the operator ">"
IDL> PRINT, b ; the result...
 10 9 8 7 6 5 6 7 8 9

Operators (2)
Logical operators are like in Fortran (but without "."):

LE GE GT LT NOT AND OR NOR
IDL> i = WHERE(b GT 7)
The WHERE function returns the indices of its array

elements which satisfy the expression argument.
IDL> HELP, i
IDL> PRINT, i
 0 1 2 8 9
The indices of "b" satisfying the expression
Let's substitute these elements with the average of

the values >= 7 (which is 5)
IDL> b[i] = TOTAL(WHERE(b le 7, n))/n
TOTAL performs the sum of its argument and the "n"

parameter in the WHERE returns the number of
elements in "b“ which are >= 7

Operators (3)
IDL> PRINT, b
 5 5 5 7 6 5 6 7 5 5
Multi-dim arrays multiplication:
IDL> array1 = [[1, 2, 1], [2, -1, 2]]
Array with 3 columns and 2 rows
IDL> array2 = [[1, 3], [0, 1], [1, 1]]
Array with 2 columns and 3 rows
IDL> PRINT, array1#array2
 7 -1 7
 2 -1 2
 3 1 3
Matrix multiplication (cols. x rows)

Operators (4)
IDL> a = array1##array2
Matrix multiplication (rows x cols.)
IDL> HELP, a
A LONG = Array[2, 2]
Array expansion:
IDL> a = [a,[[8,9],[10,11]]]
Expand the array adding 2 extra columns
IDL> HELP, a
A LONG = Array[4, 2]
IDL> PRINT, a
 2 6 8 9
 4 7 10 11

Operators (5)
Selecting columns or rows:
IDL> PRINT, a[*,0] ; first row
 2 6 8 9
IDL> PRINT, a[1,*] ; second column
 6
 7
Dimension degeneracy:

To remove an initial "single-element" dimension (referred as
"degeneracy") the intrinsic REFORM function can be used:

Operators (6)
IDL> ar1 = a[1,*]
Assign the second column of "a" to "ar1"
IDL> HELP, ar1
Note how we get a 2-d array having 1 column
AR1 LONG = Array[1, 2]
IDL> ar2 = REFORM(ar1)
IDL> HELP, ar2
AR2 LONG = Array[2]

Edit a script and run it
IDL> $vi example.pro
Cut-and-paste one of the on-line help
IDL> @example

The $ allows to “escape” the shell, i.e. to execute a command in
a new shell. The @ tells IDL to execute the script example.

Help on programs
To view the help of the routines for which the code exists on the

IDL path (!PATH), one can use DOC_LIBRARY. For example to
see the help on DOC_LIBRARY itself:

IDL> DOC_LIBRARY, 'doc_library‘
--- Documentation for /usr/local/itt/idl/lib/doc_library.pro ---

 NAME:
 DOC_LIBRARY

 PURPOSE:
 Extract the documentation template of one or more IDL modules
 (procedures or functions). This command provides a standard

interface
 to the operating-system specific DL_DOS, DL_UNIX, and
 DL_VMS procedures.
...

Help on programs (2)
Note that the extension ".pro" must be omitted (and the final '

can be omitted). Moreover if the file contains more routines
with their header help section (we'll see later that the header
comment starts conventionally with ;+ and end with ;-), ONLY
the first one is shown!

Again, under Linux it is important to pay attention to UPPER and
lower case letters. Using always lower case letters in file
names is advisable.

Again, for the system routines, the best way to get help is using
the interactive web interface:

From the Linux prompt: idlhelp

From the IDL prompt: ?

Help on programs (3)
Examples of help on procedures that can be found in the

IDL_PATH / !PATH system variable (Linux / IDL):
DOC_LIBRARY, 'nxyreadf

DOC_LIBRARY, 'mpltw'

DOC_LIBRARY, 'pposn'

DOC_LIBRARY, 'sqplset'

DOC_LIBRARY, 'aitoff_grid2'

DOC_LIBRARY, 'lmfit' ; IDL routine with source code

...

And there is much more…
MIN / MAX and Statistics (assume data into array d):
print, MIN(d, MAX=hmax), hmax
hmin = MIN(d, MAX=hmax)
moms = MOMENT(d, MDEV=mdev, SDEV=sdev)
 ninfo = 7 & info = STRARR(ninfo)
 info[0] = 'Mean: '+ STRTRIM(STRING(moms[0]),2)
 info[1] = 'Variance: '+ STRTRIM(STRING(moms[1]),2)
 info[2] = 'Skewness: '+ STRTRIM(STRING(moms[2]),2)
 info[3] = 'Kurtosis: '+ STRTRIM(STRING(moms[3]),2)
 info[4] = 'Mean Absolute Deviation: '+
 STRTRIM(STRING(mdev),2)
 info[5] = 'Standard Deviation: '+
 STRTRIM(STRING(sdev),2)
 info[6] = 'Minimum: ' + STRTRIM(hmin,2) +
 'Maximum: ' + STRTRIM(hmax,2)

And there is much more…(2)
• Variables information (size , type, …):

SIZE
• Memory (allocation) saving:

TEMPORARY
• Strings manipulation:

STRTRIM, STRCOMPRESS, STRMID, STRPOS, STRPUT,
STRSPLIT

• Interacting with the operative system:
SPAWN

• Logging commands into a file:
JOURNAL

• Selecting files for I/O:
FILEPATH, FINDFILE, PICKFILE

	IDL Primer’s course
	IDL ?
	Slide 3
	Slide 4
	Manuals/Tutorials/Libraries
	Tutorials
	On-line documentation
	On-line documentation (2)
	On-line documentation (3)
	Books
	User’s libraries and programs
	User’s libraries and programs (2)
	Linux specific notes
	The setup file (tcsh)
	Linux specific notes (2)
	Linux specific notes (3)
	The startup file
	Linux specific notes (4)
	Linux specific notes (6)
	IDL system variables
	Keep note…
	Keep note…(2)
	Keep note…(3)
	Keep note…(4)
	Keep note…(5)
	Keep note…(6)
	Keep note…(7)
	iTools ?
	Let’s start !
	Operative System check
	Operative System check (2)
	Graphics device check
	Operators
	Operators (2)
	Operators (3)
	Operators (4)
	Operators (5)
	Operators (6)
	Edit a script and run it
	Help on programs
	Help on programs (2)
	Help on programs (3)
	And there is much more…
	And there is much more…(2)

