
MODERN WEB 2.0 TOOLS
 FOR EDUCATIONAL ASTRONOMY

Davide Ricci1,2, Luciano Nicastro1, Miguel Ángel Pio3
On behalf of the GLORIA collaboration

1INAF/Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Gobetti 101, Bologna, (ITALY),
2Instituto de Astronomía, UNAM, AP 877, Ensenada, B.C. 22800 (MEXICO),

3Instituto de Astrofísica de Canarias (SPAIN)
indy@astrosen.unam.mx, nicastro@iasfbo.inaf.it, mpio@iac.es

Abstract

In the framework of the GLORIA (GLObal Robotic-telescopes Intelligent Array) project, we present an
overview of what we believe are the best web technologies that can be applied to build browser-based
educational tools. A step-by-step code tutorial will help the reader to understand how this result can be
achieved. We also present these concepts in two websites for educational purposes. The first one
uses real images of the Sun taken during the last transit of Venus (June 2012). Students can use
these images to calculate the Sun-Earth distance. The second one makes use of meteorological data
taken in Australia during the last total solar eclipse (November 2012) to interactively calculate the time
lag between observed changes in luminosity and ambient temperature.

Keywords: GLORIA project, Astronomy, Web 2.0, HTML5, CSS3, jQuery, d3.js, PHP, mysqli, MySQL

1 INTRODUCTION

Young students spend a lot of time in front of a computer for leisure (offline or online gaming, social
networking, etc.) but also for educational purposes (homeworks, research). For this reason it is
common habit to refer to this generation with the term “digital natives”. These “modern” students are
not simply computer users, but rather experienced Internet users who use web browsers as the main
interface for self learning and surfing the Internet in general. As such they have developed a “taste”
for web design that goes beyond the pure concept of graphical presentation of the content. It is
simpler and faster to find or to learn something on the web if the site is user friendly, i.e. browsable in
an intuitive way, and if it implements what we now consider as “natural” actions while surfing. For
example, if we use the mouse wheel on a standard web page or a text, we expect to scroll it; if we use
the same wheel on an image, we expect to zoom it.
It is interesting and important to take advantage of this common knowledge of the latest Internet
technologies to build modern web-based scientific educational tools, in particular in scientific fields like
astronomy. In fact astronomy is a particularly popular science among young students and the general
public: televisions, websites and newspapers regularly inform people about exoplanets discoveries,
Mars rover results, spectacular nebulae images, and much more.
But what happens when the students try to increase their knowledge or deepen these information
through the Internet for homework, school laboratories or simply for personal interest? Except for
some cases, they probably land on old-style sites or static applications that are completely outdated
with respect to their expectations.
This happens for several reasons: first of all scientists, and astronomers in particular, concentrate their
efforts on standard scientific communication, like papers and oral presentations, and their technical
knowledge is linked to the related instruments to produce them, e.g. LaTeX and PowerPoint.
Moreover, when they decide to show their results on a website, they usually adopt the same (typically
static) schema of the scientific communications. However, a website is not a paper, nor an oral
presentation. A reader expects interactivity, usability, a text easy to read and a consistent layout: all
things that we now consider “natural”, as explained above, while surfing professionally written sites.

Modern web technologies can help non-professional web-designers, like astronomers, to achieve the
goal to effectively explain their complex work to students and the general public, and to spread news
about their discoveries via educational sites. Moreover web based citizen science projects have
proven particularly successful when clear and intuitive user interfaces are implemented. This is for
example the case of the projects proposed by zooniverse.org and we hope it will be also true for the
GLORIA project (see gloria-project.eu for all the details). GLORIA is an EC funded project with the aim
to give free and open-access to a network of robotic telescopes worldwide. Moreover a web 2.0
environment will allow users to do research in astronomy by observing with such telescopes and/or by
analysing data that other users have acquired. The use of effective web technologies is of great
importance to manage and make available to the users images and data collected by a wide variety of
instruments. In particular simple and efficient graphics tool together with a distributed database system
will be required.

In this paper we present such technologies in Sect. 2. In Sect. 3 we show them in a simple step-by-
step tutorial. We also present some of them in action in two educational web-based tools (Sects. 4.1
and 4.2). In Sect. 5 we draw the conclusions.

2 TECHNOLOGIES

The web is constantly changing and it is important for the developers to be updated to all the latest
standards and technologies. In this section we present an overview of the basic instruments that
could, actually should, be used to build modern web tools for educational astronomy.

2.1 HTML5

Web pages are written in html, a markup language, such as LaTeX, which is interpreted by the
browser to show the content as we are used to see it when surfing the Internet. The last revision of
this language, called html5, is foreseen to be released on July 2014 and offers several new features1,
most of which are already supported by the major browsers. In particular:
input types: html5 provides a set of new attributes for input forms such as datetime, datetime-­‐local,
number, range, url, email that could help to check, client-side, the input values for a query in a
database. Moreover, several new touch devices (such as tablets) use these attributes to show to the
user the more suitable keyboard layout (alphabetical, numerical, custom-defined);
form attributes: new attributes such as step (defining the allowed intervals of an input field),
required, and pattern (which uses regular expressions) could help to avoid errors in the submission
of a form in the context, e.g. astronomy, where the nomenclature is sometimes very complex;
semantic tags: the <article>, <section>, <figure>, <figcaption>, <summary> and <details> can help
astronomers to present their work following the scheme already used for their scientific publications,
simplifying their work and helping to design consistent web layouts;
MathML: this technology provides an xml-based markup, already supported by the major browsers
(except Chromium) to write high quality mathematical formulae. The markup is very heavy, but several
converters from/to the LaTeX syntax are already available on the Internet2;
media tags: the <audio>, <video> and <track> will provide a valid cross-browser alternative to flash-
based plugins for online access to multimedia contents like tutorials and video samples;
geolocation: used to report user’s position with a simple click. It can be used, for example, for survey
statistics;
application cache: it offers an opportunity to create an offline version of a web application. It can be
used to reduce the server load because the browser will only download updated or changed resources
from the server;
local storage: web pages can store data locally within the user’s browser, overriding so the
limitations of the cookies;

1 http://www.w3schools.com/html5/default.asp
2 http://latex2mathml.freewebmaster.fr/demo.php 2 http://latex2mathml.freewebmaster.fr/demo.php

server-sent events: this technology provides the possibility to obtain real-time events as emitted by
the server without a specific request from the client (e.g. with a click, a mouse movement, a polling or
a WebSocket). It is a kind of communication that reminds the old concept of television. See for
example nodejs.org and socket.io;
canvas: this element allows to draw graphics and display data, on the fly, on a web page. It can be
used for dynamic plots, for displaying FITS images (see fits.gsfc.nasa.gov and www.astrojs.org) or, for
example, to superpose to the image additional layers with labels and marks;
SVG: inline vector graphics management can be used for plots and data representation. Simple or
complex vector shapes can be directly included between the <svg></svg> tags using a syntax similar
to html and xml, and it can be seen either as an alternative or complementary to the <canvas> element;
WebGL: although it is not an html5 element, it can be seen as a side technology of it. It allows the
rendering of interactive 3D graphics without the use of browser plug-ins via the <canvas> element.
WebGL is a low-level technology and requires good programming skills.

It is crucial to understand that the only thing requested to the user to be able to work with all these
kind of technologies is nothing but an updated browser.

2.2 CSS3
In modern web design, it is essential to separate the content (written in html) from the layout (defined
by the css stylesheet3). It is the same concept that researchers apply every day while using LaTeX
where the layout and graphical presentation are defined by the style sheet, typically provided by the
publisher, and is normally described in a .sty file.

The improvements coming with the third version of the css language, or css3, are still in development.
The new modules of css3 can help to build attractive pages by introducing new methods for
backgrounds, borders, effects and animations. css3 can also help to adapt the layout of a web
application for different kind of devices.

2.3 jQuery and D3
Normally, in web pages, client-side interaction is provided by JavaScript (JS). This language is not to
be confused with java, a software platform based on a virtual machine which runs programs written in
its specific object-oriented programming language, also named java. Several JS libraries, for any kind
of purpose, are available through the Internet. In the last years the jquery library (jquery.com) grew in
popularity due to its simplified way to access the html elements (using a syntax similar to that of the
css selectors) and to manage asynchronous requests. The functions are chainable, cross-browser,
and easily expandable with custom plugins. The popularity of jquery is currently very wide4 and
Internet offers a long list of free resources that allow a developer to perform a great variety of tasks.
We consider this library very suitable for educational web-based applications. It is simple enough to
accomplish the most common operations required by a dynamic website, and generic enough to be
adapted to our aims.

D3 (d3.js) is a JS library for manipulating documents based on data (d3js.org) and acts in particular on
html and <svg> elements. Its syntax is very similar to that of jquery. The main concept is to use the
html and <svg> elements to draw graphics within the web page (see [1]). Thanks to its flexibility, we
foresee that the d3.js library will grow in popularity in the next months/years and should be considered
one of the most promising libraries for real-time plotting and charting. An educational set of examples
is provided by the author, Mike Bostock (http://bl.ocks.org/mbostock), and is being updated daily. The
library provides a set of methods for plots and charts (pie chart, scatter plot, bar chart, area and line
chart, etc.), and a set of cartographic projections (Equirectangular, Mollweide, Aitoff, Orthographic,
etc.) that are particularly useful to mark astronomical data points on the celestial sphere.

3 http://www.w3schools.com/css/default.asp
4 http://w3techs.com/technologies/details/js-jquery/all/all

Listing 1. Top: an example of HTML code containing elements of HTML5. It calls the JS and CSS
files. Bottom: the PHP code used to connect to the database and execute the query.

<!doctype	
 html>	

<title>bright	
 stars	
 catalog</title>	

<meta	
 charset="utf-­‐8">	

<!-­‐-­‐	
 <link	
 rel="stylesheet"	
 href="bright-­‐stars.css">	
 -­‐-­‐>	

<style>	

	
 	
 body{	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 margin:	
 0px	
 auto;	
 font-­‐family:	
 Helvetica,	
 sans-­‐serif;	
 }	

	
 	
 h1{	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 padding:	
 30px;	
 font-­‐weight:	
 300;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 svg{	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 border:	
 1px	
 solid	
 white;	
 float:	
 left;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 circle{	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 fill-­‐opacity:	
 0.8;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 circle.mouseover{	
 stroke-­‐width:	
 20;	
 stroke:	
 green;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 tr.mouseover,	
 td.mouseover{	
 	
 	
 	
 	
 background-­‐color:	
 green;	
 color:	
 white;	
 	
 }	

	
 	
 td,	
 th{	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 width:	
 110px;	
 text-­‐align:	
 center;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 th:last-­‐child{	
 	
 	
 	
 width:	
 120px;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 thead,	
 thead	
 tr{	
 	
 display:	
 block;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 tbody{	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 display:	
 block;	
 height:	
 400px;	
 overflow:	
 auto;	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 .background	
 {	
 	
 	
 	
 	
 fill:	
 #a4bac7;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 .foreground	
 {	
 	
 	
 	
 	
 fill:	
 none;	
 stroke:	
 #333;	
 stroke-­‐width:	
 1.5px;	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 .graticule	
 {	
 	
 	
 	
 	
 	
 fill:	
 none;	
 stroke:	
 #fff;	
 stroke-­‐width:	
 .5px;	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 .graticule	
 :nth-­‐child(2n)	
 {	
 stroke-­‐dasharray:	
 2,2;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 :invalid{background:	
 pink}	

	
 	
 div{	
 float:	
 left;	
 width:45px;	
 margin-­‐top:40px;	
 }	

	
 	
 div>svg{cursor:	
 pointer}	

</style>	

<script	
 src="js/jquery.min.js"></script>	

<script	
 src="js/d3.v3.min.js"></script>	

<script	
 src="js/d3.geo.projection.v0.min.js"></script>	

<body>	

	
 	
 <h1>bright	
 stars	
 catalog</h1>	

	

	
 	
 <label	
 for="nstars">Query	
 the	
 number	
 of	
 stars</label>	

	
 	
 <input	
 id="nstars"	
 type="number"	
 value="300"	
 min="100"	
 max="9000"	
 step="100">	

	
 	
 reset	

	

	
 	
 <div>B-­‐V<!-­‐-­‐	
 here	
 d3.js	
 will	
 display	
 the	
 legend	
 -­‐-­‐></div>	

	
 	
 <article>	
 <!-­‐-­‐	
 here	
 d3.js	
 will	
 display	
 the	
 chart	
 -­‐-­‐>	
 </article>	

	
 	
 <aside>	
 	
 <!-­‐-­‐	
 here	
 d3.js	
 will	
 display	
 the	
 table	
 -­‐-­‐>	
 </aside>	

	

<script	
 src="bright-­‐stars.js"></script>	

	

	

<?php	

//	
 mysql	
 connection	
 (host,	
 username,	
 password,	
 database)	

$c	
 =	
 new	
 mysqli('ross.iasfbo.inaf.it','generic','password','test');	

$table	
 =	
 'simpleBSC';	
 	
 	

$order	
 =	
 '	
 order	
 by	
 '.$_GET['ord'];	

$limit	
 =	
 '	
 limit	
 '.$_GET['lim'];	

$bvmin	
 =	
 $_GET['bvmin'];	

$bvmax	
 =	
 $_GET['bvmax'];	

$where	
 =	
 '	
 where	
 (B-­‐V)>'.$bvmin.'	
 and	
 (B-­‐V)<'.$bvmax;	

	

$result=$c-­‐>query("select	
 *	
 from	
 ".$table	
 .'	
 limit	
 0');	

$mt=$result-­‐>fetch_fields();	

	

for($m=0;$m<	
 count($mt);$m++){	

	
 	
 $v=get_object_vars($mt[$m]);	

	
 	
 $mt2[]=$v['name'];	

}	

	

$q=	
 'select	
 '.implode(',',$mt2).'	
 from	
 '.$table	
 .$where	
 .$order	
 .$limit;	

	

$result=$c-­‐>query($q);	

	

while($r	
 =	
 $result-­‐>fetch_assoc())	
 {	

	
 	
 $r2[]=$r;	

}	

	

echo	
 json_encode($r2);	

?>	

Figure 1. Interactive sky chart of the bright stars catalogue.

3 TUTORIAL
In order to show the potential of these technologies, we provide a short code tutorial aimed at building
a simple interactive chart of bright stars (see Fig. 1). We extracted a custom table from the Hoffleit
catalogue (about 9,000 stars, see [2]). To run this code, it is necessary to have set a web server with
php and the mysqli module necessary to interact with a remote database. We will introduce the html5
new input type number, the new data type, some semantic tags. We also show the usage of the mysqli
extension of the php language, which we use to connect to a MySQL database. We finally introduce
jquery and several components of the new d3.js library we use to draw svg and html elements.

html5 and css3 get programmers used to a minimalist code. Looking at Listing 1 (top): the first three
lines set the html doctype, the title and the character encoding, whereas the commented fourth line
can be used to link an external css stylesheet. For the sake of simplicity, in this tutorial we embedded
the style between the <style></style> tags, then we linked the external JS libraries mentioned in
Sect. 2 (copied in the local js subdir): jquery and d3.js, plus a d3.js plugin. The following <body> tag
sets the point where the content displayed by the browser starts. This is already a fully valid html5 file.

The <input	
 type="number"> tag, new in html5, sets a minimum, maximum and a step value to manage
the desired number of stars. The <article> and <aside> semantic tags of html5 are meant to embed a
self-consistent section and a related content of a webpage, respectively. They will contain the bright
stars sky chart and the related table with coordinates, V and B magnitudes, proper motions in RA and
Dec and star name (Fig. 1). Finally, the last line will call the JS code to draw the chart and the table.

Before explaining how to draw the chart and populate the table, in Listing 1 (bottom) we show a simple
php code that uses the mysqli extension to connect to a remote database located in Bologna. First a
new connection to the database is created, then the name of the database table is declared. The
following lines read the user passed parameters from the $_GET global variable. They define the
column to use for ordering the result table (ord), the maximum number of entries to retrieve from the
database (lim), plus a filter for the limits in the B−V color index (bvmin,	
 bvmax). Only lim is managed
in the html file through the <input> tag. All the other parameters are set in the JS file. A range of 0.25
in color index can be selected by clicking on the legend. Then, the database is queried and the fields
are fetched. An associative array, which contains these fields, is prepared by a for cycle and the
second query provides the result used to populate the array within a while statement. The results are
finally encoded in the json (json.org) format and are used by the JS.
The code can be tested directly by opening the php file in the browser. For example, assuming that
the file is placed in the www-­‐path directory of the local webserver:
http://localhost/www-path/bright-stars.php?lim=2&ord=V&bvmin=0.5&bvmax=1.0
The previous “page” address will output this json result:
[{"RAdeg":"219.8996","DECdeg":"-­‐60.8353","V":"-­‐0.01","B":"0.70","pmRA":"-­‐3.642","pmDEC":"0.699",	

"Name":"Alp1Cen"},	

	
 {"RAdeg":"79.1725","DECdeg":"45.9981","V":"0.08","B":"0.88","pmRA":"0.076","pmDEC":"-­‐0.425",	

"Name":"13Alp	
 Aur"}]	

Once the html page is prepared and the php page is able to output the results, we can proceed to
show how to draw the chart by coding the JS file called in the last line of Listing 1. As said, we use the
d3.js library. First of all, we create the two orthographic projections for the northern and southern
emisphere using a method already implemented in d3.js:

var	
 width	
 =	
 900,	

	
 	
 	
 	
 height	
 =	
 450;	
 //	
 dimensions	
 of	
 the	
 svg	
 image	

	

var	
 projection	
 =	
 d3.geo.interrupt(

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 d3.geo.orthographic.raw)	

	
 	
 .lobes([[
 //	
 northern	
 hemisphere	

	
 	
 	
 	
 	
 [[-­‐180,0],[-­‐90,	
 90],[0,0]],	
 [[0,0],[90,	
 90],[180,0]]	

	
 	
],	
 [
 //	
 southern	
 hemisphere	

	
 	
 	
 	
 	
 [[-­‐180,0],[-­‐90,-­‐90],[0,0]],	
 [[0,0],[90,-­‐90],[180,0]]	

	
 	
]])	

then we append the <svg> tag and set the graticule inside the <article> tag:
var	
 svg	
 =	
 d3.select("article").append("svg")	

	
 	
 	
 	
 .attr("width",	
 width)	

	
 	
 	
 	
 .attr("height",	
 height);	

	

var	
 defs	
 =	
 svg.append("defs");	

	

defs.append("path")	

	
 	
 	
 	
 .datum({type:	
 "Sphere"})	

	
 	
 	
 	
 .attr("id",	
 "sphere")	

	
 	
 	
 	
 .attr("d",	
 path);	

	

defs.append("clipPath")	

	
 	
 	
 	
 .attr("id",	
 "clip")	

	
 	
 	
 	
 .append("use")	

	
 	
 	
 	
 .attr("xlink:href",	
 "#sphere");	

	

	

	

The table that will contain the results inside the <aside> tag is created as follows:	

var	
 table	
 =	
 d3.select("aside").append("table"),	

	
 	
 	
 	
 thead	
 =	
 table.append("thead"),	

	
 	
 	
 	
 tbody	
 =	
 table.append("tbody");	

We define the color range for the B−V color index:
var	
 color	
 =	
 d3.scale.linear()	

	
 	
 	
 	
 .domain([-­‐0.5,1.5])	
 //	
 min	
 and	
 max	
 color	
 index	
 domain	

	
 	
 	
 	
 .range(['rgb(0,0,255)',	
 'rgb(255,0,0)']);	

	

and create the clickable legend:	

var	
 q	
 =	
 40;	

var	
 step	
 =	
 0.125;	
 //	
 =	
 0.25	
 range	

var	
 legdata	
 =	

[-­‐0.25,	
 0.00,	
 0.25,	
 0.50,	
 0.75,	
 1.00,	
 1.25,	
 1.50];	

var	
 legend	
 =d3.select('div').selectAll('svg')	

	
 	
 	
 .data(legdata).enter()	

	
 	
 	
 .append('svg')	
 //	
 one	
 little	
 svg	
 square	
 for	
 each	
 value	

	
 	
 	
 .attr('height',q)	

	
 	
 	
 .attr('width',q)	

	
 	
 	
 .style('background-­‐color',function(d){return	
 color(d)})	

Note that we defined two interactions with mouse events. The functions that handle these behaviours
are shown at the end of the script. At start we define the default parameters used by the php code
($limit,	
 $order,	
 $bvmin,	
 $bvmax), whereas we call the main function table2 on load, on changing
the <input> tag value (retrieved using jquery) and on clicking on the legend:
var	
 ord	
 =	
 "V";	

var	
 bvmin0	
 =	
 d3.extent(legdata)[0];	

var	
 bvmax0	
 =	
 d3.extent(legdata)[1];	

var	
 bvmin	
 =	
 bvmin0;	

var	
 bvmax	
 =	
 bvmax0;	

//	
 on	
 load	

table2(

$('[type="number"]').val(),	
 ord,	
 bvmin0,	
 bvmax0	

);	

//	
 on	
 click	
 on	
 the	
 legend	

d3.selectAll('div>svg').on('click',function(d,i)
{	

	
 	
 	
 .rotate([90,	
 0,	
 90])	
 //	
 center	
 at	
 the	
 poles	

	
 	
 	
 .scale(height/2)	

	
 	
 	
 .translate([width/2,	
 height/2])	

	
 	
 	
 .precision(.1);	

var	
 path	
 =	
 d3.geo.path()	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .projection(projection);	

svg.append("use")	

	
 	
 	
 	
 .attr("class",	
 "background")	

	
 	
 	
 	
 .attr("xlink:href",	
 "#sphere");	

	

var	
 graticule	
 =	
 d3.geo.graticule()	

	
 	
 	
 	
 .extent([[-­‐180,	
 -­‐90],	
 [180,	
 90]]);	

	

svg.append("g")	

	
 	
 	
 .attr("class",	
 "graticule")	

	
 	
 	
 .selectAll("path")	

	
 	
 	
 .data(graticule.lines)	

	
 	
 	
 .enter().append("path")	

	
 	
 	
 .attr("d",	
 path);	

	

svg.append("use")	

	
 	
 	
 	
 .attr("class",	
 "foreground")	

	
 	
 	
 	
 .attr("xlink:href",	
 "#sphere");	

	
 	
 	
 	
 .on('mouseover',	
 mouserange)	

	
 	
 	
 	
 .on('mouseout',	
 mouseout)	

	

legend.append('text')	

	
 	
 	
 	
 .text(function	
 (d){return	
 d})	

	
 	
 	
 	
 .attr('x',20	

	
 	
 	
 	
 .attr('y',26)	

	
 	
 	
 	
 .attr('text-­‐anchor','middle')	

	
 	
 	
 	
 .attr('fill','white')	

	
 	
 	
 	
 .attr('stroke','none');	

	
 bvmin	
 =	
 d-­‐step;	

	
 bvmax	
 =	
 d+step;	

	
 console.log(bvmin,	
 bvmax);	

	
 table2($('[type="number"]').val(),ord,bvmin,bvmax)	

});	

	

//	
 on	
 number	
 of	
 stars	
 select	

d3.select('[type="number"]').on('change',function()
{	

	
 	
 table2($(this).val(),	
 ord,	
 bvmin,	
 bvmax)	

});	

The main function table2 just calls the php script with the parameters previously defined and it
expects a json object or file as a result:
function	
 table2(lim,ord,bmin,bmax){d3.json(

"./bright-­‐stars.php?lim="+lim+"&ord="+ord+"&bvmin="+bvmin+"&bvmax="+bvmax,	
 function(error,	
 data){	

We define a scale range for the radius of the circles that will represent the stars. A linear scale is
adopted for encoding the brightness range:
var	
 radius	
 =	
 d3.scale.linear()	

	
 	
 	
 	
 .domain(d3.extent(data,	
 function(d){	
 return	
 d.V;	
 }))	

	
 	
 	
 	
 .range([5.0,1.0]);	

and we append these circles to the svg image. Note that these circles do not exist yet:
var	
 circle	
 =	
 svg.selectAll("circle")	

	
 	
 	
 	
 .data(data);	

Then the circles are entered in the drawing, and their x and y pixel position is calculated by projection,
rounded, and placed on the celestial sphere:
circle.enter().append("circle")	

	
 	
 	
 	
 .attr('data-­‐index',function(d,i){return	
 i});	

	

circle.attr("cx",	
 function(d){	
 return	
 projection([d.RAdeg,d.DECdeg])[0].toFixed(0)	
 })	

	
 	
 	
 	
 	
 	
 .attr("cy",	
 function(d){	
 return	
 projection([d.RAdeg,d.DECdeg])[1].toFixed(0)	
 })	

	
 	
 	
 	
 	
 	
 .attr("fill",	
 function(d){return	
 color((d.B-­‐d.V).toFixed(2))})	

	
 	
 	
 	
 	
 	
 .attr("r",	
 function(d){	
 return	
 radius(d.V).toFixed(0)	
 })//	
 radius	
 depends	
 on	
 V	
 mag	

	
 	
 	
 	
 	
 	
 .on('mouseover',	
 mousescroll)	

	
 	
 	
 	
 	
 	
 .on('mouseout',	
 mouseout);	

Here again we added a simple interaction while the mouse is over. We will define these interactions in
two functions at the end of the script. When another query to the database is performed, the unused
nodes are removed:
circle.exit().remove();

The same approach applies to the side table:
//	
 column	
 names	
 from	
 first	
 data	
 row	

var	
 columns	
 =	
 [];	

for	
 (var	
 key	
 in	
 data[0]){	
 columns.push(key);	
 }	

In the same way as the circle elements, the header row is appended, the data are bind, the rows are
entered:
//	
 appending	
 the	
 header	
 row	

var	
 th	
 =	
 thead.selectAll("th")	

	
 	
 	
 	
 .data(columns).enter()	

	
 	
 	
 	
 .append("th")	

	
 	
 	
 	
 .attr('data-­‐key',function(c){	
 return	
 c	
 })	

	
 	
 	
 	
 .text(function(c){	
 return	
 c	
 });	

then a row for each object in the returned data is created together with a mouse interaction similar to
the previous one (while on a row with the cursor, the corresponding star on the sky chart is
highlighted):
//	
 creating	
 a	
 row	
 for	
 each	
 object	
 in	
 the	
 data	

var	
 rows	
 =	
 d3.select("tbody").selectAll('tr')	

	
 	
 	
 .data(data)	

	

rows.enter().append("tr").attr('data-­‐index',function(d,i){	
 return	
 i	
 });	

rows	

	
 	
 	
 	
 .on('mouseover',	
 mouseover)	

	
 	
 	
 	
 .on('mouseout',	
 mouseout);	

rows.exit().remove();	

then a cell for each column in the rows is created and finally the function is closed:
//	
 creating	
 a	
 cell	
 for	
 each	
 column	
 in	
 the	
 rows	

var	
 cells	
 =	
 rows.selectAll("td").data(function(row){	

	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 columns.map(function(key){	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 {key:key,	
 value:row[key]};	

	
 	
 	
 	
 	
 	
 	
 	
 	
 });	

	
 	
 	
 });	

	
 	
 cells.enter().append("td");	

	
 	
 cells.text(function(d){	
 return	
 d.value;	
 });	

	
 	
 cells.exit().remove();	

	
 	
 })	
 //json	

}	
 	
 //function	

The interaction on mouseover and clicking are described in these simple functions: while a star or a
table row is selected, the corresponding table row or circle is highlighted:
function	
 mouseover(d,i){	

	
 	
 	
 	
 var	
 filter1=	
 d3.selectAll('circle').filter(function(e,j){	
 return	
 i===j	
 });	

	
 	
 	
 	
 var	
 filter2=	
 d3.selectAll('tr').filter(function(e,j){	
 return	
 i===j	
 });	

	
 	
 	
 	
 filter1.attr('class','mouseover');	

	
 	
 	
 	
 filter2.attr('class','mouseover');	

}	

	

function	
 mouseout(d,i){	

	
 	
 	
 	
 var	
 filter1=	
 d3.selectAll('.mouseover');	

	
 	
 	
 	
 filter1.attr('class',null);	

}	

the table is scrolled until the selected item becomes visible
function	
 mousescroll(d,i){	

	
 	
 	
 	
 mouseover(d,i);	

$('tbody').scrollTop(
 $('tr[data-­‐index="'+i+'"]').offset().top	
 -­‐	
 $('tbody').offset().top	
 +	

	
 	
 	
 $('tbody').scrollTop()	
);	

}

and finally, while passing the cursor on the color legend, all the stars in the selected 0.25 range of
color index are highlighted:
function	
 mouserange(d,i){	

	
 	
 	
 	
 var	
 filter1=	
 d3.selectAll('circle').filter(function(e)	
 {	
 return	
 Math.abs((e.B-­‐e.V).toFixed(2)-­‐d)	

	
 	
 	
 <	
 step	
 });	

	
 	
 	
 	
 var	
 filter2=	
 d3.selectAll('tr').filter(function(e)	
 {	
 	
 	
 	
 	
 return	
 Math.abs((e.B-­‐e.V).toFixed(2)-­‐d)	

	
 	
 	
 <	
 step	
 });	

	
 	
 	
 	
 filter1.attr('class','mouseover');	

	
 	
 	
 	
 filter2.attr('class','mouseover');	

}	

A live example of this code can be seen at http://ross.iasfbo.inaf.it/~gloria/web-examples/valencia/.

4 EXAMPLES

In this section we present two websites that host tools we built for educational purposes by using the
technologies described in this paper. Both sites can be displayed in 6-7 different languages and
provide online tutorials. Educational reference documents are available for download from the
GLORIA portal.

Figure 2. Venus webcalc website, available at gloria-project.eu/venus-webcalc/.

Figure 3. Schema showing the Venus transit visibility from two different sites on Earth.
Angles used for the calculations of the Earth-Sun distance are shown.

4.1 Venus webcalc

This tool uses real images of the Sun taken during the last transit of Venus of June 5th, 2012 from two
distant sites on Earth (see Fig. 2), namely from Cairns (Australia) and Sapporo (Japan). Because the
two Earth site-Venus lines of sight fall on different location on the Sun (see Fig. 3), trigonometric
formulae can be used to calculate the Sun-Earth distance. Students can use the web tool to calculate
the distance as follows: from each of the two available sets, one chooses an image checking that the
time markers (UT) are as close as possible (in principle they should be identical). For each of the two
images, click on the position 1. of Venus, 2. of a sunspot, and 3. of the centre of the Sun. Submitting
the data, the Earth-Sun distance is calculated by triangulation (parallax). Skilled users are capable to
pinpoint the three positions with an error not greater than 1 pixel. This allows to calculate the distance
(of ~150 million km) with an accuracy of 5-10%. All the data are managed by a relational database.

4.2 Eclipse meteo

This website makes a large use of the new web technologies described in this paper. The webtool
uses real meteorological data taken in Australia during the last total solar eclipse of November 13th,
2012 (see Fig. 4). In particular it allows students to interactively estimate the time lag between
observed changes in luminosity and ambient temperature. In fact an interesting phenomenon that
occurs during the course of an eclipse, more remarkable in a total eclipse, is the decrease of the
environmental temperature due to the decrease of the solar radiation. The thing is that the minimum of
the temperature drop does not occur instantaneously when the Sun is completely covered, but it
occurs after a time ranging from 2 to 20 minutes. This time delay depends on many factors, such as
the hour of the day when the eclipse occurs, the presence of nearby bodies of water such as a lake or
sea, proximity to wooded areas. However the effect is easily measurable. Luminosity and temperature
data sets are plotted in the same plot area but the corresponding axes range can be easily (and
intuitively) expanded or scrolled in an independent way to better identify the two minima. The user is
then asked to guess where the minima of the luminosity and temperature curves would be if we had a
continuous monitoring rather than a 1 minute sampling. Two crosshairs must be placed on the
(guessed) middle of the two minima caused by the eclipse to mark these points. The corresponding
luminosity and temperature values plus the time lag between them are shown. Finally the user is
asked to fill a simple form with position and personal data. On submitting the results, simple bar charts
with statistics are displayed (Fig. 4), showing how the inserted data compare with all those already
present in the database. Our webtool also provides a text and a video tutorial, with subtitles, that also
use html5 technologies.

5 CONCLUSIONS
We presented the latest standards and concepts that should be applied when designing attractive,
simple and well conceived browser-based educational tools. We have shown that this is particularly
interesting and useful in scientific fields like astronomy.
To give the readers an insight of these new technologies and to understand their great potential, we
provided a step-by-step code tutorial implementing a basic interactive browser of the bright stars
catalogue [2]. Further astronomical examples will be implemented and made publicly accessible.
Taking advantage from these technologies, within the GLORIA project we built two websites for
educational purposes and presented their main features and use.

Figure 4. Top: eclipse meteo website, available at gloria-project.eu/eclipse-meteo/. Bottom:
the statistics displayed after the form submission.

Acknowledgments: GLObal Robotic telescopes Intelligent Array for e-Science (GLORIA) is a project
funded by the European Union Seventh Framework Programme (FP7/2007-2012) under grant
agreement number 283783.

REFERENCES

[1] Bostock, M., Ogievetsky, V., Heer, J. (2011), “D3: Data-Driven Documents”, IEEE Trans.
Visualization & Comp. Graphics (Proc. InfoVis)

[2] Hoffleit, D. (1964), “Catalogue of bright stars, 3rd revised”, New Haven, Conn., Yale University
Observatory

